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Trough models: Universality classes, distribution of avalanches, and cluster sizes
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Extensions of the one-dimensional two-state trough model introduced by Carlson, Chayes, Grannan,
and Swindle (CCGS) [Phys. Rev. A 42, 2467 (1990)] are considered. In particular, I investigate what
kinds of physical processes are relevant to its scaling behavior. Short-range rearrangements of trough
positions (slide events), which were neglected by CCGS, are shown to be irrelevant. By a simple
modification of the dynamics, however, I obtain universality classes characterized by a single parameter.
For trough models in general, including the two-state and the “limited local” sandpile models, asymptot-
ically exact relations between the distribution of trough-trough distances and that of the mass of
avalanches are derived. They yield moment relations in agreement with Krug’s [J. Stat. Phys. 66, 1635

(1992)]. All results are verified by simulations.

PACS number(s): 05.40.+j, 05.60.+w, 64.60.Ht, 02.50.+s

I. INTRODUCTION

Bak, Tang, and Wiesenfeld (1] (BTW) made the re-
markable observation that many dissipative dynamical
systems in nature exhibiting scale-invariant properties
can be generally understood in terms of the notion of
“self-organized criticality.” While the concept is reminis-
cent of traditional critical phenomena, it is characterized
by threshold instability, with no need of parameter tun-
ing in reaching scale-invariant states.

A pile of sand, modeled by certain cellular automata, is
often used as the paradigm of self-organized criticality.
First introduced by BTW, and systematically studied
with computer simulation by Kadanoff et al. [2], these
cellular automation models exhibit nontrivial scaling be-
havior governed by one kind of threshold instability or
another. To elucidate the nature of such behavior, Carl-
son, Chayes, Grannan, and Swindle [3] (CCGS) identified
certain sites, which they called troughs, as those that trap
grains sliding down the slope. By definition, the distribu-
tion of troughs limits the extent of avalanches. Although
the idea was applied specifically to a certain class of one-
dimensional models, namely the “limited local” model of
Kadanoff et al. [2], it seems to be useful in understanding
the presence or the lack of scaling in other models as
well.

CCGS identified birth, death, slides, and coalescence of
troughs as the events triggered by random dropping of a
grain on a pile. The trough terminology not only pro-
vides an efficient numerical algorithm for simulating
sandpile models [3,4], it also offers some hope for a more
tractable analytical approach [5]. To illustrate their
points, they proposed a simple two-state model and
showed that it has a phase transition characterized by the
density of troughs p. Although its criticality requires
tuning the birth rate, it has the following important prop-
erties: (i) The mean distance between troughs, 1/p, scales
with the system size L as L% and (i) with 0 <8< 1 af the
critical point, there exists nontrivial multiscaling in the
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distribution of avalanches [6]. These are qualitatively
similar to those of sandpile models [2], suggesting a simi-
lar physical mechanism is at work.

In connection with the trough model, a few interesting
topics deserve further investigation. First, within the
simple two-state model, what are the relevant
modifications to the rules of dynamics that will yield ad-
ditional universality classes? This issue is significant be-
cause the model is probably the simplest one to display
nontrivial multiscaling. Second, aided by its simplicity,
what other results can we derive and generalize to more
complex sandpile models? Third, what simplifications
should be removed and what extra features should be
added in order to achieve a closer correspondence to
sandpile models? In the following, I will present my at-
tempt in answering these questions.

II. THE ORIGINAL TWO-STATE MODEL

CCGS defined the two-state trough model on a one-
dimensional lattice. A site is either occupied by a trough
(n=1) or empty (n=0). The dynamical rules mirror
those of sandpiles: A site i is randomly picked (corre-
sponding to random addition of a grain in sandpiles). If
n; =0, a trough is either born at rate A (birth), or a coales-
cence is performed at rate unity provided that there are
troughs on its left and its right, at sites {; and ig. A
coalescence amounts to removing the troughs at i; and
ip and filling the empty site conjugate to i at
ic=ig+i; —i. If n;=1, then the trough is removed at
rate 8 (death).

CCGS showed that a phase transition exists with a
critical point at A=1 for 6>0. They found that
p(L)~L ™% with 6=1, 1, or 0 for A<1, A=1, or A>1,
respectively. They analyzed the case of open boundaries
[6], and concluded by simulations that closed boundaries
yield the same results.

To facilitate my discussion, I now rederive CCGS’s re-
sults on finite-size effects associated with different sets of
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boundary conditions, by means of very simple physical
arguments. For convenience, I define a cluster to be an
interval of zeros bounded either by ones or the boun-
daries. The left-most cluster will be labeled as S;, and
the right-most one as Sz. Only coalescence events will be
affected by the boundary conditions: For an open bound-
ary, a coalescence event occurring at the last cluster sim-
ply removes the last trough. For a closed boundary, the
last trough is removed and the empty site at i is filled.
Notice that there is a net change of —1 or O in the total
number of troughs pL for coalescence near an open or a
closed boundary.

For infinite system, there always exist a trough on the
left and another on the right of the site i being picked
(even if p=0). Thus a coalescence event always contrib-
utes a term —(1—p) to dp/dt,

dp _ A(1—
dt (
Now I consider finite-size effects on the basis of this equa-

tion. The left and right boundary are located at i =0 and
L+1.

p)—8p—(1—p) . (1)

A. Left-closed, right-open boundary

For a finite system, the density has nontrivial spatial
dependence (see Sec. V below). However, this does not
complicate our analysis because the “grain” is dropped
on a randomly chosen site i. What matters to dp/dt is
the mean density p, regardless of spatial inhomogeneity.
When a coalescence event happens on the cluster S,
which is bounded by a wall to its left and a trough to its
right, there is no change in p. This must be excluded
from Eq. (1). Denote the mean cluster size by s=1/p.
The probability of i not belonging to S; is thus 1—s/L,
and the probability of such a site being empty is
1—pL /(L —s) (I expect s; to scale as the spatial average
s, as confirmed by simulations). So we have

40— 1 (1—p)—8p+ —

dt (A—1)(1—p)—dp+ oL (2)
Its steady-state solution yields precisely the same results
as found by CCGS, with the desirable stability. If the
right boundary is also closed (not interesting for sandpile
because no outflow of sand is allowed), only the ampli-
tudes of scaling get changed.

B. Both boundaries open, type I

Here I try to mimic a sandpile with open boundaries by
keeping track of a special site near the center designated
as the “top” of the pile (7). In a sandpile, the left (or
right) nearest neighbor of T, by definition of T, is always
a trough for avalanches occurring on the right (or left)
side of T. This translates to ny=1 for all time in the
two-state model. Finite-size correction to Eq. (1) arises
when a coalescence is chosen on either clusters adjacent
to T, in which case p is unchanged. So we have the same
results as in Sec. IT A.
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C. Both boundaries open, type II

This is the boundary condition considered by CCGS.
It differs from Sec. II B in that no special site T is desig-
nated. At first glance, there seems to be no simple
correction to Eq. (1), since any coalescence event always
results in one less trough. Examining closer, however, re-
veals that the finite-size effects are embedded in the sto-
chasticity of the dynamics. To see this, consider A=1.
The cancellation between birth and coalescence in the
deterministic Eq. (1) actually means that pL changes by
+1 or —1 due to these two events with equal probability.
That implies p(¢)L is equivalent to the trajectory x (¢) of a
random walk in one dimension, wandering between two
walls at x =0 and L, with unit steps biased towards x =0
by a probability x8/L. Wandering further away from
x =0 results in stronger pulling back. From the exact
solution of the master equation for such a random walk,
the mean distance from x =0 is indeed proportional to
VL /8 with a variance proportional to L. Thus
p(L)~1/V'L. By properly incorporating the bias be-
tween +1 and —1 steps, the above bias random walk
turns out to be the most efficient way to check the scaling
behavior of p for any A and boundary conditions.

III. VARIATIONS OF THE TWO-STATE MODEL

A. Irrelevance of slide events

As noted by CCGS, if the trough on the left at i; dur-
ing coalescence is formed by the grain dropped at
i=i; +1, then the number of trough is unchanged. The
net effect is a shift to the left by one step for the trough
on the right of i. CCGS called it a slide event. Another
situation where a slide can also occur but with much less
frequency is when i is a (shallow) trough, and i—1 a
stable site. These events occur in sandpiles, but they have
not been included in the two-state model.

CCGS suggested that the absence of slide events in the
original two-state model may be one of the factors ac-
counting for the differences in scaling behavior from
sandpiles. Now I argue that slide events are irrelevant to
scaling behavior of the two-state model (but not true for
sandpile models [5]). First, notice that slides in the bulk
merely result in short-range rearrangements of the spatial
distribution of troughs, causing no net change in the
number pL. These rearrangements are irrelevant to
dp /dt by virtue of the randomness in the position of the
grain added. Alternatively, if slides occur at rate €, then
they contribute two terms, en; ,(1—n;)—en;(1—n; ),
to dn; /dt. By summing over i to get dp/dt, these extra
terms cancel out in pairs.

For finite-size effects, I consider the case with left-
closed and right-open boundary. The only correction
comes in when a trough at i =1 is picked and a slide is
executed (although effectively the same as a death event,
it is an independent process). This process gives an extra
term —ep/L to Eq. (2), leading to an O(1/L) correction
to p(L). Thus the asymptotic scaling behavior is not
changed by slides. This expectation is confirmed numeri-
cally, for slides accounting for up to 90% of all possible



46 TROUGH MODELS: UNIVERSALITY CLASSES, ... 6213
-0.4 universality classes. From Eq. (2), the steady-state condi-
__ -0.67 tion gives
o -0.81 - {
= -1.01 slides - 0% Sp=—, (3)
2 1.2 pL
§’ 1.4 67% which yields p(L)=1/ V'8L . If the term for death events
L 6 is generalized to 8p%, with arbitrary a, then we have
o 90%
o -1.81
2 Lo 1/(a+1)
2 plL)= | , 4)

2620 0.30 040 050 0,60 0.70 0.80 0.0 1.00
log10 (M/M0 )/Iog10 (L/L0 )

FIG. 1. Multiscaling fits of the mass of bulk avalanches in
the two-state model, for slides representing different fractions of
all events. This demonstrates its irrelevance. Parameters are
M,=0.085, L,=0.084. For clarity, only L=512 is drawn;

curves for different L’s practically overlap on each other.

events. The multiscaling are also checked and no sys-
tematic difference from €=0 is detected [7] (see Fig. 1).

B. Other universality classes

Within the two-state model, there is a very simple
modification to the rules of dynamics that results in new
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FIG. 2. A modified death rate with a=2 gives new critical
behavior in (a) the density of troughs: the straight line has slope
1 1

— 3, while @=1 has slope —3; and (b) multiscaling fit to the

distribution of bulk avalanches for L =32-512. M,=0.1,
L,=0.105. To demonstrate the differences, the dashed line is
for a=1 taken from Fig. 1.

i.e., a one-parameter family of different universality
classes. For integral a, the death of troughs becomes a
multisite process. For example, the case of @ =2 involves
checking a second random site in determining the fate of
a trough. This has been checked by simulation. Besides
p(L), the multiscaling spectra are also different from
those of a=1 (see Fig. 2).

IV. SOME EXACT RESULTS

A. Distribution functions

One of the most appealing features of the two-state
model is the appearance of a “mesoscopic” length scale
(s)=1/p. In the thermodynamic limit at criticality,
(s)— o0, but {s)/L—0. This leads to nontrivial scal-
ing in dynamical quantities such as the sizes of
avalanches [6]. In contrast, {s)~L below criticality
(A<1) so that all averages scale trivially with integral
powers of L, even though avalanches also occur over all
possible scales from 1 to L. Avalanche in the limited lo-
cal [2] and the two-state models occurs only during a
coalescence event. Its size is given M =i —i, (in units of
the number of falling grains per step [2] Np).

Krug [4] argued that the average avalanche size (M )
is determined not by the first moment, but by the second
moment of the cluster size. The simple reason for the
first part of the statement is that an avalanche of a given
size M can only be initiated in a cluster of size s > M.
Thus, the statistical weights of various cluster sizes that
enter { M ) differ from those of (s ).

Using this fact, it is possible to generalize Krug’s re-
sults by deriving the full distribution of avalanche P(M)
in terms of the cluster size distribution P(s): For a given
M, the number of possible sites to initiate the fall is pre-
cisely equal to the number of clusters with sizes s > M, so
P(M)x<3E_, . P(s). Normalization then gives

L ~
P(s)
_s=M+1
P(M)———-—(s>__1 . (5)

Hence P(s) prescribes both the statistics of troughs and of
avalanches. This result is exact for the two-state model
and is valid for either edge events (with MN grains of
sand falling off the pile) or bulk events (with no falling
off). It has been verified numerically up to five digits over
the entire range of M for all L probed.

Various moments can then be derived,
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1 L s—1
(M")=-~—— 3 P(s) 3 k". (6)
(s)—1 s§1 kgo
In particular, the first moment agrees asymptotically with
Krug’s result,

(s)—(s)
M =, 7
(M) 2[(s)—1] 7
and the leading term for large L is [8]
o <sn+l>
(M >~(n+1)<s> ‘ ®)

The relation between P(s) and P (M) reminds us of the
well-known fluctuation-dissipation theorem in equilibri-
um statistical mechanics [9], since the dynamical quantity
M is determined by the fluctuation of the static quantity
s. Clearly a multiscaling in one implies that for the other.
Equations (5)-(8) can be generalized to the Ny =2 limited
local model [2]. In that model, the nontrough sites are ei-
ther unstable or stable against the addition of a grain.
Let p, be the fraction of stable ones among those sites.
As a result of the randomness in the position of addition,
the parity variable o; =(z;mod2)—1 is random with zero
mean [10], where z; is the slope. Since the mean cluster
size diverges with L, the nontrough sites are asymptoti-
cally uncorrelated. This enables us to write for large L,

L L
P(M)=8y, 3 P(s)+pdy; 3 (s—2)P(s)
s=2 s=3

L
H(1=p)[1=8y,] X Pls)
s=M+1

L
=pdyl{s)—11+(1=p) 3 Pls).
s=M+1

The first term accounts for events when a grain is added
to the right nearest neighbor of a trough, the second term
for slide events of CCGS, and the third for the rest. The
second kind of rare slide events mentioned in Sec. III is
not included in P(M). Summing over M, one finds the
same normalization constant {s)—1 as for the two-state
model. Therefore

L
S P(s)
= —pyiEMEl
P(M)=p,By1+(1-p) 5 (9)

is the normalized distribution for the Nz =2 limited local
model for large L, which has been confirmed with simula-
tions. Up to prefactors involving p, expressions for mo-
ments are the same as those for the two-state model. 1
should emphasize that both P(s) and P(M) are nontrivial,
and the analytic determination of their scaling properties
remains an open problem.

B. Relation between edge and bulk cluster sizes

For the Np=2 sandpile, Krug [4] has measured the
cluster sizes both in the bulk (s,) and at the edge (sg).
The two are indeed related: By definition, the bulk aver-
age is
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(35)

_ 'j=1
R AN

where N, is the number of troughs. By using a trivial
sum rule Ejs,()”ZL +1+4sz and p=N, /L, we find
L+1—(sg)
Sp)=—"—"" .
(550 Ip (10)
For (sg ) ~L"?, Eq. (10) offers an interpretation for 6’ as
an exponent for correction to scaling,

(sp)=AL%1—cLY '+ ---). (1

This relation applies to any sandpile model with troughs.
From this point of view, there seems to be no reason why
6’ should be identical to 6, although Krug found that
6’ =0 for the sandpile model. For the two-state model, I
found 6’ =0.65, significantly different from 6=1.

V. OTHER RESULTS FROM SIMULATIONS

The two-state model with and without slide events or
modified death rate has been simulated. Since scaling be-
havior is independent of the death rate, I set 6=1
throughout my simulations. Besides the results described
above, I also found nontrivial power-law scaling in both
the correlation function C(i) and the trough density
profile #(i)={n, ). It is expected for a system at criticali-
ty (A=1). Figure 3 shows the scaling of
C(i)=(n,n;)—p® vs i. As far as I know, these ex-
ponents have not been determined by theory.

By employing 7i(i)=~Bi ", and p(L)~L ~Y, it is easy to
show that 7 (i) obeys simple finite-size scaling (for 7 <1),

A(i)~p(L)F(i/L) , (12)

with F(x)=(1—m)x ~". Figure 4 displays this scaling be-
havior. It should be emphasized that this result is not
limited to the two-state model; it is valid for any model
with power-law dependences in 7 (i) and p(L).

Finally, I end with some comments on multiscaling.
Customarily, multiscaling of the distribution of a certain

0.00? T
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FIG. 3. Power-law decay of trough correlation for a=1,
€=0, L =32-512, with a slope = —0.47.
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FIG. 4. Finite-size scaling of the local trough density [see Eq.
(12)), for a=1, e=0, L =32-512. The slope is —0.28.
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FIG. 5. ¢, is extracted from the moments of edge avalanches

(M) ~L¢", for a=1, €=0. The straight line is for reference.
Nonlinearity is barely discernable at large n.
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FIG. 6. Multiscaling fit of distribution of edge avalanches for
a=1,e=0. My=0.37, L,=0.31, L =32-512.

quantity Q is explored via two alternative routes: (i)
Compute the distribution function and fit it to a multi-
scaling form [2]; or (ii) extract the exponents of power

laws from various moments ( Q") ~L"" and plot ¢, vs n
(up to some large n) [11]. Multiscaling is then inferred by
the presence of curvature in the resulting curve. Here I
point out that the converse of the second method may
fail: The absence of curvature (within the limit of a finite
maximum n) does not imply the absence of multiscaling.

Figure 5 shows such a plot of the exponents for
avalanches off the edge. It is as linear as the statistics of
data allow. Yet the full distribution unambiguously ex-
hibits multiscaling form (Fig. 6), and the failure of a sim-
ple finite-size-scaling fit. In contrast, the distribution of
bulk avalanches has a similar multiscaling fit, but the
nonlinearity is clearly shown in a plot of exponents. The
deficiency of the second method is easily understood by
noting that it is limited to a finite set of moments,
whereas the full distribution contains information for all
moments.

VI. CONCLUSIONS

The advantage of the two-state model is its simplicity.
Most importantly, it presents several diverging inter-
mediate length scales, power-law decays in correlation
and density profile (and possibly in temporal decays too),
and multiscaling behavior in various distributions. More-
over, some exact results can be derived and easily gen-
eralized to sandpile models. Its disadvantage is its re-
striction to two local states, thus leaving little room for
extensions. I showed that it produces critical properties
different from sandpiles even when all physical processes
of the latter are incorporated. Finally, it requires the
tuning of a parameter to get critical.

A limited local model with one nontrough state is one
with Ny=1, which is trivial and has no avalanche. To go
beyond the trough model, a generalization to more states
is essential. It will then be interesting to prove with the
help of the trough representation that the critical point of
the sandpile system is naturally attained via its dynamics
alone. Progress along this direction is planned to be re-
ported in a forthcoming publication [5].
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