Appendix

Proof of Lemma 1:

First, if y_{s} is the stock after trade in a steady state, then $P\left(y_{s}\right)=f\left(y_{s}\right)$. The reason is that in the steady state we have $t\left((1-\mu) y_{s}\right)=y_{s}$. Hence, the consumer's arbitrage equation $f\left(y_{s}\right)-P\left(y_{s}\right)=\rho\left[f\left(y_{s}\right)-P\left(t\left((1-\mu) y_{s}\right)\right)\right]$ implies $P\left(y_{s}\right)=f\left(y_{s}\right)$.

To prove that a steady state must exist, we first show that if P and f cross, then there always is a steady state. Then we establish that P and f necessarily cross.

We claim that if $S=\{q: P(q)=f(q)\}$ is non-empty then $q^{\prime}=\max S$ is a steady state. To see this, observe that q^{\prime} is the maximum state to have acceptance price $P\left(q^{\prime}\right)$. Indeed, if there existed $q^{\prime \prime}>q^{\prime}$ with $P\left(q^{\prime \prime}\right)=P\left(q^{\prime}\right)$, then from the definition of q^{\prime} we must have $f\left(q^{\prime \prime}\right)<f\left(q^{\prime}\right)$. Furthermore, since $t(\cdot)$ is non-decreasing, and since $P(\cdot)$ is non-increasing, we have $P\left(t\left((1-\mu) q^{\prime \prime}\right)\right) \leq$ $P\left(t\left((1-\mu) q^{\prime}\right)\right)$. This implies the contradiction $P\left(q^{\prime \prime}\right)=(1-\rho) f\left(q^{\prime \prime}\right)+\rho P\left(t\left((1-\mu) q^{\prime \prime}\right)\right)<(1-$ p) $f\left(q^{\prime}\right)+\rho P\left(t\left((1-\mu) q^{\prime}\right)\right)=P\left(q^{\prime}\right)$. Hence following the offer $P\left(q^{\prime}\right)$, all $q \leq q^{\prime}$ accept and all $q>q^{\prime}$ reject. Now from $P\left(q^{\prime}\right)=(1-\rho) f\left(q^{\prime}\right)+\rho P\left(t\left((1-\mu) q^{\prime}\right)\right)$ and $P\left(q^{\prime}\right)=f\left(q^{\prime}\right)$ we have $P\left(t\left((1-\mu) q^{\prime}\right)\right)$ $=P\left(q^{\prime}\right)$. Thus when the state before trade is $(1-\mu) q^{\prime}$ the monopolist's price $P\left(t\left((1-\mu) q^{\prime}\right)\right)$ $=P\left(q^{\prime}\right)$ leads to a state after trade equal to q^{\prime}, i.e. $t\left((1-\mu) q^{\prime}\right)=q^{\prime}$.

Suppose now that there is a stationary equilibrium which does not have any steady state. We claim that this implies $P(q)<\bar{v}$ for $q \in[0, \hat{q}]$ and $P(q)>\underline{v}$ for $q \in(\hat{q}, 1]$. To see this, note that since there is no steady state, it follows from the previous paragraph that the set S is empty, i.e. $P(q) \neq \bar{v}$ for any $q \in[0, \hat{q}]$ and $P(q) \neq \underline{v}$ for any $q \in(\hat{q}, 1]$. An argument similar to Fudenberg, Levine and Tirole (1985, Lemma 2) establishes that $P(q) \geq \underline{v}$ for all $q \in[0,1]$. Hence we necessarily have $P(q)>\underline{v}$ for all $q \in(\hat{q}, 1]$. Furthermore, we cannot have $P(q)>\bar{v}$ for some $q \in[0, \hat{q}]$. Otherwise, since $P(\cdot)$ is non-increasing, we would have $P(0)>\bar{v}$. But then $P(0)=(1-\rho) \bar{v}+\rho P(t(0))$ implies $P(t(0))>P(0)$. This is a contradiction, as $t(0) \geq 0$ and $P(\cdot)$ is a non-increasing function.

Next, we show that $P(q)<\bar{v}$ for $q \in[0, \hat{q}]$ and $P(q)>\underline{v}$ for $q \in(\hat{q}, 1]$ imply that the total stock is increasing for $q \in[0, \hat{q}]$ and decreasing for $q \in(\hat{q}, 1]$, and that this yields a contradiction.

By the consumer's arbitrage equation, we have $\bar{v}-P(q)=\rho[\bar{v}-P(t((1-\mu) q)]$ for all $q \in[0, \hat{q}]$. Since $\rho \in(0,1)$ for all $z>0$ and $\bar{v}-P(q)>0$, we have $\bar{v}-P(q)<\bar{v}-P(t(1-\mu) q)$ which implies $P(t((1-\mu) q))<P(q)$ for all $q \in[0, \hat{q}]$. Since $P(\cdot)$ is decreasing, we have $t((1-\mu) q)>q$ for all $q \in[0, \hat{q}]$.

A similar argument also establishes that $t((1-\mu)(\hat{q}+\epsilon))<\hat{q}+\epsilon$ for all $\epsilon \in(0,1-\hat{q}]$. Hence,
$\lim _{\epsilon \rightarrow 0} t((1-\mu)(\hat{q}+\epsilon)) \leq \hat{q}<t((1-\mu) \hat{q})$. Since $T(\cdot)$ is upper hemi-continuous, $\lim _{\epsilon \rightarrow 0} t((1-\mu)(\hat{q}+$ $\epsilon)) \in T((1-\mu) \hat{q})$. This contradicts the definition of $t(\cdot)=\min T(\cdot)$.
Q.E.D.

Lemma 4 If $f(q)=f\left(q^{\prime}\right)$ and $P(q)=P\left(q^{\prime}\right)$ for some $q<q^{\prime}$ then q cannot be a steady state.

Proof : If q were a steady state, then when the state after depreciation is $(1-\mu) q$ the monopolist will charge $P(q)$. All buyers in $\left((1-\mu) q, q^{\prime}\right]$ will accept this, contradicting that $t((1-\mu) q)=q$. Q.E.D.

Proof of Lemma 2:

First, we show that $y \in(\hat{q}, 1)$ cannot be a steady state. Suppose not; then Lemma 1 implies that $P(y)=\underline{v}$. Since $P(\cdot)$ is a decreasing function, we have $P(q) \leq \underline{v}$ for $q \geq y$. Similar to Fudenberg, Levine, and Tirole (1985), we have $P(q) \geq \underline{v}$ for all $q \in[0,1]$. Hence, $P(q)=\underline{v}$ for all $q \in[y, 1]$. Lemma 4 then shows that y cannot be a steady state.

To prove (ii), suppose that \hat{q} is a steady state so that $P(\hat{q})=\bar{v}$. Then since $P(\cdot)$ is decreasing, and since (as shown in the proof of Lemma 1) $P(y) \leq \bar{v}$ for $y \leq \hat{q}$, we have $P(y)=\bar{v}$ for all $y \in[0, \hat{q}]$. Hence Lemma 4 shows that $y<\hat{q}$ cannot be a steady state. We conclude that the only possible steady state other than \hat{q} is 1 .

To prove (iii) suppose that $0<y^{*}<\hat{q}$ is a steady state. Then we must have $P(y)=\bar{v}$ for all $y \in\left[0, y^{*}\right]$, so Lemma 4 implies that no $y<y^{*}$ can be a steady state, and that $P(q)<\bar{v}$ for $q \in\left(y^{*}, \hat{q}\right]$ (otherwise y^{*} could not be a steady state). Thus by Lemma 1 no $y \in\left(y^{*}, \hat{q}\right]$ can be a steady state, leaving $y=1$ as the only other possible steady state. Suppose $y=1$ were not a steady state, so $P(1)>\underline{v}$. This would imply $P(q)>\underline{v}$ for all $q \in(\hat{q}, 1]$. We can then use the argument at the end of the proof of Lemma 1 to obtain a contradiction.

To prove (i), note that if there is no steady state in $[0, \hat{q}]$, then by the first paragraph $y=1$ is the only possible steady state. It then follows from Lemma 1 that $y=1$ must be a steady state. Q.E.D.

Proof of Theorem 1:

We start by defining $\bar{\mu}$. To this effect, let $\bar{x}_{0}=1-\mu, \bar{x}_{1}=(1-\mu) \hat{q}, \bar{x}_{2}=\frac{\hat{q} \bar{v}-v}{\bar{v}-\underline{v}}$, and for $k \geq 3$ let

$$
\begin{equation*}
\bar{x}_{k}=(1-\mu)^{-1}\left(\bar{x}_{k-1}-\left(\bar{x}_{k-2}-\bar{x}_{k-1}\right) \frac{\bar{v}}{\rho^{k-2}(\bar{v}-\underline{v})}\right) \tag{A-1}
\end{equation*}
$$

Let $\Lambda=\left\{\mu \geq 0 \mid \exists m<\infty\right.$ s.t. $\bar{x}_{m+1}<0 \leq \bar{x}_{m}$ and s.t. $\left\{\bar{x}_{k}\right\}_{i=0}^{m}$ is a strictly decreasing sequence $\}$, and define $\bar{\mu}=\sup \Lambda$. Note that $0 \in \Lambda$ and that Λ is open in \mathbb{R}_{+}. It follows that $\bar{\mu}>0$. Now let
μ_{2} be the solution to $(1-\mu) \hat{q}=\frac{\hat{q} \bar{v}-\underline{v}}{\bar{v}-\underline{v}}$. Then for $\mu \geq \mu_{2}$ we have $\bar{x}_{2} \geq \bar{x}_{1}$, so $\bar{\mu} \leq \mu_{2}<1$.
First, we show that if $\mu^{\prime} \in \Lambda$ and $\mu<\mu^{\prime}$ then $\mu \in \Lambda$, i.e. $\Lambda=[0, \bar{\mu})$. We will prove this by showing that $\Delta_{k}=\left(\bar{x}_{k-1}-\bar{x}_{k}\right)$ is decreasing in μ. By definition we have $\bar{x}_{0}=1-\mu, \bar{x}_{1}=(1-\mu) \hat{q}$, $\bar{x}_{2}=\frac{\hat{q} \bar{v}-\underline{v}}{\bar{v}-\underline{v}}$, and

$$
\bar{x}_{k}=(1-\mu)^{-1}\left(\bar{x}_{k-1}-a_{k-2} \Delta_{k-1}\right)
$$

where $a_{k}=\frac{\bar{v}}{\rho^{k}(\bar{v}-\underline{v})}$. Thus $\frac{d \Delta_{k}}{d \mu}<0$ for $k \leq 2$ and

$$
\begin{aligned}
\frac{d \bar{x}_{3}}{d \mu} & =(1-\mu)^{-2}\left(a_{1} \bar{x}_{1}+\bar{x}_{2}-2 a_{1} \Delta_{2}\right) \\
& =(1-\mu)^{-2}\left(a_{1} \bar{x}_{1}-\bar{x}_{2}+2(1-\mu) \bar{x}_{3}\right)
\end{aligned}
$$

Thus $\frac{d \bar{x}_{3}}{d \mu}>0$ and $\frac{d \Delta_{3}}{d \mu}<-2(1-\mu)^{-1} \bar{x}_{3}$. We now prove by induction that if $\frac{d \bar{x}_{k-1}}{d \mu}>0$ and $\frac{d \Delta_{k-1}}{d \mu}<-(k-2)(1-\mu)^{-1} \bar{x}_{k-1}$ then $\frac{d \bar{x}_{k}}{d \mu}>0$ and $\frac{d \Delta_{k}}{d \mu}<-(k-1)(1-\mu)^{-1} \bar{x}_{k}$. Indeed, $\Delta_{k}=$ $\left(1-(1-\mu)^{-1}\right) \bar{x}_{k-1}+(1-\mu)^{-1} a_{k-2} \Delta_{k-1}$, so

$$
\begin{aligned}
\frac{d \Delta_{k}}{d \mu} & <-(1-\mu)^{-2} \bar{x}_{k-1}+(k-1)(1-\mu)^{-2} a_{k-2} \Delta_{k-1}+(1-\mu)^{-1} a_{k-2} \frac{d \Delta_{k-1}}{d \mu} \\
& \leq-(1-\mu)^{-2}\left(\bar{x}_{k-1}-(k-1) a_{k-2} \Delta_{k-1}+(k-2) a_{k-2} \bar{x}_{k-1}\right) \\
& <-(1-\mu)^{-2}(k-1)\left(\bar{x}_{k-1}-a_{k-2} \Delta_{k-1}\right) \\
& <-(k-1)(1-\mu)^{-1} \bar{x}_{k}
\end{aligned}
$$

where the third inequality follows from $a_{k-2}>1$.
Next, we show that for $\mu \in \Lambda$ there exists a stationary equilibrium with unique steady state $y_{s}=1$. For $\mu \in \Lambda$ define the triplet $\{P(\cdot), R(\cdot), t(\cdot)\}$ as follows.

$$
\begin{align*}
& P(q)= \begin{cases}p_{m} & \text { for } q \in\left[0, \bar{y}_{m}\right] \\
p_{k} & \text { for } q \in\left(\bar{y}_{k+1}, \bar{y}_{k}\right] \text { and } k \in\{m-1, \ldots, 0\}\end{cases} \tag{A-2}\\
& t(q)= \begin{cases}\bar{y}_{m-1} & \text { for } q \in\left[0, \bar{x}_{m}\right], \\
\bar{y}_{k-1} & \text { for } q \in\left(\bar{x}_{k+1}, \bar{x}_{k}\right], k \in\{m-1, \ldots, 2\} \\
1 & \text { for } q \in\left(\bar{x}_{2}, 1-\mu\right]\end{cases} \tag{A-3}\\
& R(q)= \begin{cases}\left(\bar{y}_{m-1}-q\right) P\left(\bar{y}_{m-1}\right)+\delta R\left(\bar{x}_{m-1}\right) & \text { for } q \in\left[0, \bar{x}_{m}\right] \\
\left(\bar{y}_{k-1}-q\right) P\left(\bar{y}_{k-1}\right)+\delta R\left(\bar{x}_{k-1}\right) & \text { for } q \in\left(\bar{x}_{k+1}, \bar{x}_{k}\right], k \in\{m-1, \ldots, 2\} \\
(1-q) \underline{v}+\frac{\delta \mu \underline{v}}{1-\delta} & \text { for } q \in\left(\bar{x}_{2}, 1-\mu\right]\end{cases} \tag{A-4}
\end{align*}
$$

where $p_{k}=\bar{v}-\rho^{k}(\bar{v}-\underline{v})$ and $\bar{y}_{k}=\frac{\bar{x}_{k}}{1-\mu}$, for $k=0, \ldots, m$. The sequence $\left\{\bar{x}_{k}\right\}_{k=2}^{m+1}$ has been defined so that when the state is \bar{x}_{k} the monopolist is indifferent between selecting \bar{y}_{k-1} and \bar{y}_{k-2}, i.e.
defining $\pi(y ; x)=P(y)(y-x)+\delta R((1-\mu) y)$ we have $\pi\left(\bar{y}_{k-1} ; \bar{x}_{k}\right)=\pi\left(\bar{y}_{k-2} ; \bar{x}_{k}\right)$. Let $h_{k}(x)=$ $\pi\left(\bar{y}_{k-1} ; x\right)-\pi\left(\bar{y}_{k-2} ; x\right)$; then $h_{k}\left(\bar{x}_{k}\right)=0$ and $\frac{d h_{k}}{d x}=-P\left(\bar{y}_{k-1}\right)+P\left(\bar{y}_{k-2}\right)<0$. It follows that for $x<\bar{x}_{k}$ we have $\pi\left(\bar{y}_{k-1} ; x\right)>\pi\left(\bar{y}_{k-2} ; x\right)$, and for $x>\bar{x}_{k}$ we have $\pi\left(\bar{y}_{k-1} ; x\right)<\pi\left(\bar{y}_{k-2} ; x\right)$. Since $\pi(y ; x)$ is strictly increasing in y on any of the intervals $\left[0, \bar{y}_{m}\right],\left(\bar{y}_{m}, \bar{y}_{m-1}\right], \ldots,\left(\bar{y}_{1}, 1\right]$ it follows that that $t(x)$ is the smallest solution to (3). It is straightforward to verify that (4) is also satisfied, so $\{P(\cdot), R(\cdot), t(\cdot)\}$ is a stationary triplet for $\mu \in \Lambda$.

Finally, consider any stationary equilibrium whose unique steady state is $y_{s}=1$, and let $\left\{P_{0}(\cdot), R_{0}(\cdot), t_{0}(\cdot)\right\}$ be the associated stationary triplet. We claim that $\left\{P_{0}(\cdot), R_{0}(\cdot), t_{0}(\cdot)\right\}=$ $\{P(\cdot), R(\cdot), t(\cdot)\}$.

First, we show that $P_{0}(y)=P(y)$ for all $y \in(\hat{q}, 1]$. Indeed, since \hat{q} is not a steady state, it must be that $P(\hat{q})<\bar{v}$. Otherwise, we would have $P(q)=f(q)=\bar{v}$ for all $q \leq \hat{q}$. But as shown in the proof of Lemma 1, this would imply that \hat{q} is a steady state. Now $P(\hat{q})<\bar{v}$ and the existence of $\varepsilon>0$ s.t. $P(q)>\underline{v}$ for all $q \in(\hat{q}, \hat{q}+\varepsilon)$ would yield the same contradiction as in the last two paragraphs of the proof of Lemma 1 . We conclude that $P_{0}(q)=\underline{v}$ for all $q \in(\hat{q}, 1]$.

Next, we claim that $t_{0}\left(\bar{x}_{1}\right)=1$. Indeed, $P(\hat{q})<\bar{v}$ and (4) applied to $q=\hat{q}$ imply that $P_{0}\left(t_{0}\left(\bar{x}_{1}\right)\right)<P_{0}(\hat{q})$. Since $P_{0}(\cdot)$ is non-increasing, we therefore must have $t_{0}\left(\bar{x}_{1}\right)>\hat{q}$. Finally, since $P_{0}(q)=\underline{v}$ for all $q>\hat{q},(3)$ implies $t_{0}\left(\bar{x}_{1}\right)=1$.

By the left-continuity of $t_{0}(\cdot)$, there exists $\varepsilon>0$ s.t. $t_{0}(x)=1$ for all $x \in\left(\bar{x}_{1}-\varepsilon, \bar{x}_{0}\right]$. Furthermore, (4) implies $P_{0}(y)=\rho \bar{v}+(1-\rho) \underline{v}$ for $y \in\left(\bar{y}_{1}-\frac{\varepsilon}{1-\mu}, \bar{y}_{1}\right]$. Now define $\bar{x}_{2}=\inf \{x$: $\left.t_{0}(x)=1\right\}$. We claim that $\bar{x}_{2}=\bar{x}_{2}$, so $P_{0}\left(\frac{x}{1-\mu}\right)=P\left(\frac{x}{1-\mu}\right)$ and $t_{0}(x)=t(x)$ for $x \in\left(\bar{x}_{2}, \bar{x}_{1}\right]$. To see this, recall that we shown above that $\pi\left(\bar{y}_{1} ; x\right)<\pi\left(\bar{y}_{0}, x\right)$ for $x>\bar{x}_{2}$, and $\pi\left(\bar{y}_{1} ; x\right)>\pi\left(\bar{y}_{0}, x\right)$ for $x<\bar{x}_{2}$. Since $\pi_{0}\left(\bar{y}_{1} ; x\right)=\pi\left(\bar{y}_{1} ; x\right)$ and $\pi_{0}\left(\bar{y}_{0}, x\right)=\pi\left(\bar{y}_{0}, x\right)$ we must have $\bar{x}_{2}=\bar{x}_{2}$.

The same argument can now be applied inductively. Suppose (A-2)-(A-4) hold for all $i=0, \ldots, k$. Then since we must have $P_{0}\left(\bar{y}_{k+1}\right)<\bar{v}$, we know that $P_{0}\left(\bar{y}_{k+1}\right)>P_{0}\left(t_{0}\left(\bar{x}_{k+1}\right)\right)$ and so $t_{0}\left(\bar{x}_{k+1}\right)>$ \bar{y}_{k+1}. Since $\bar{x}_{k+1}=\inf \left\{x: t_{0}(x)=\bar{y}_{k-1}\right\}$ condition (A-3) implies that $t_{0}\left(\bar{x}_{k+1}\right)=\bar{y}_{k}$. Similarly to the previous paragraph, we can then use left-continuity of $t_{0}(\cdot)$ to define $\bar{x}_{k+2}=\inf \left\{x: t_{0}(x)=\bar{y}_{k}\right\}$, and conclude that $\bar{x}_{k+2}=\bar{x}_{k+2}$.
Q.E.D.

Proof of Corollary 1:

By the definition of \bar{x}_{k}, for $k \geq 3$ we have $\lim _{z \rightarrow 0} \bar{x}_{k}=\lim _{z \rightarrow 0}\left(\bar{x}_{k-1}-\left(\bar{x}_{k-2}-\bar{x}_{k-1}\right) \frac{\bar{v}}{\bar{v}-\underline{v}}\right)$. Hence, $\lim _{z \rightarrow 0}\left(\bar{x}_{k-1}-\bar{x}_{k}\right)>\lim _{z \rightarrow 0}\left(\bar{x}_{k-2}-\bar{x}_{k-1}\right)$. By induction,

$$
\lim _{z \rightarrow 0}\left(\bar{x}_{k-1}-\bar{x}_{k}\right)>\lim _{z \rightarrow 0}\left(\bar{x}_{k-2}-\bar{x}_{k-1}\right)>\hat{q}-\bar{x}_{2}=\frac{(1-\hat{q}) \underline{v}}{\bar{v}-\underline{v}}
$$

It follows that as z tends to zero, it takes the monopolist at most $\hat{m} \leq \frac{\bar{v}-\underline{v}}{(1-\hat{q}) \underline{v}}+1$ steps to sell to all consumers.
Q.E.D.

Proof of Theorem 2:

Let $\tilde{x}_{0}=(1-\mu) \hat{q}$ and iteratively define the sequence $\left\{\tilde{x}_{k}\right\}_{k=0}^{\infty}$ by $\tilde{x}_{k}=\frac{\tilde{p}_{k-1} \tilde{x}_{k-1}}{\mu \underline{v}+(1-\mu) \tilde{p}_{k-1}}$, where $\tilde{p}_{k}=\left(1-\rho^{k}\right) \underline{v}+\rho^{k} \bar{v}$. Observe that $\tilde{x}_{0}<\tilde{x}_{1}<\cdots$. If $x_{\infty}=\lim _{k \rightarrow \infty} \tilde{x}_{k} \geq 1-\mu$, then set $m=\sup \left\{k: \tilde{x}_{k}<1-\mu\right\}$ and redefine $\tilde{x}_{m+1}=1-\mu$. Let $\tilde{y}_{k}=\frac{\tilde{x}_{k}}{1-\mu}$, and define the triplet:

$$
\begin{align*}
& P(q)= \begin{cases}\bar{v} & \forall q \in[0, \hat{q}] \\
\tilde{p}_{k} & \forall q \in\left(\tilde{y}_{k-1}, \tilde{y}_{k}\right] \text { and } k=1, \ldots, m+1\end{cases} \\
& t(q)= \begin{cases}\hat{q} & \forall q \in\left[0, \tilde{x}_{1}\right] \\
\tilde{y}_{k-1} & \forall q \in\left(\tilde{x}_{k-1}, \tilde{x}_{k}\right] \text { and } k=2, \ldots, m+1\end{cases} \tag{A-5}
\end{align*}
$$

$$
R(q)= \begin{cases}\left(\frac{\delta \mu \hat{q}}{1-\delta}+(\hat{q}-q)\right) \bar{v} & \forall q \in\left[0, \tilde{x}_{1}\right] \\ \left(\frac{\mu \tilde{y}_{k-1}}{1-\delta}-\left(q-\tilde{x}_{k-1}\right)\right) \tilde{p}_{k-1} & \forall q \in\left(\tilde{x}_{k-1}, \tilde{x}_{k}\right] \text { and } k=2, \ldots, m+1\end{cases}
$$

If $x_{\infty}=\lim _{k \rightarrow \infty} \tilde{x}_{k}<1-\mu$, define $\tilde{R}(x)=\left(\frac{\mu \tilde{x}_{k-1}}{(1-\delta)(1-\mu)}-\left(x-\tilde{x}_{k-1}\right)\right) \tilde{p}_{k-1}$, for $x \in\left(\tilde{x}_{k-1}, \tilde{x}_{k}\right]$ and $k \geq 1$. Set $x^{*}=\max \left\{x \in\left[(1-\mu) \hat{q}, x_{\infty}\right]: \tilde{R}(x) \geq R_{1}(x)\right\}$, where $R_{1}(q)=\left(\frac{\delta \mu}{1-\delta}+(1-q)\right) \underline{v}$, and let m be such that $x^{*} \in\left(\tilde{x}_{m}, \tilde{x}_{m+1}\right]$. To see that m exists note that $\tilde{R}\left(x_{\infty}\right)-R_{1}\left(x_{\infty}\right)=$ $\left(\frac{\mu x^{*}}{(1-\delta)(1-\mu)}-\left[\frac{\delta \mu}{1-\delta}+\left(1-x^{*}\right)\right]\right) \underline{v}<0$ whenever $x_{\infty}<1-\mu$, so we have $x^{*}<x_{\infty}$. Furthermore the definition of $\underline{\mu}$ implies that $x^{*} \geq(1-\mu) \hat{q}$, with strict inequality when $\mu>\underline{\mu}$. Next, redefine $\tilde{x}_{m+1}=x^{*}$, and define the triplet:

$$
\begin{align*}
& P(q)= \begin{cases}\bar{v} & \forall q \in[0, \hat{q}] \\
\tilde{p}_{k} & \forall q \in\left(\tilde{y}_{k-1}, \tilde{y}_{k}\right] \text { and } k=1, \ldots, m+1 \\
\underline{v} & \forall q \in\left(\tilde{y}_{m+1}, 1\right]\end{cases} \\
& t(q)= \begin{cases}\hat{q} & \forall q \in\left[0, \tilde{x}_{1}\right] \\
\tilde{y}_{k-1} & \forall q \in\left(\tilde{x}_{k-1}, \tilde{x}_{k}\right] \text { and } k=2, \ldots, m+1 \\
1 & \forall q \in\left(\tilde{x}_{m+1}, 1-\mu\right]\end{cases} \tag{A-6}\\
& R(q)= \begin{cases}\left(\frac{\delta \mu \hat{q}}{1-\delta}+(\hat{q}-q)\right) \bar{v} & \forall q \in\left[0, \tilde{x}_{1}\right] \\
\left(\frac{\mu \tilde{y}_{k-1}}{1-\delta}-\left(q-\tilde{x}_{k-1}\right)\right) \tilde{p}_{k-1} & \forall q \in\left(\tilde{x}_{k-1}, \tilde{x}_{k}\right] \text { and } k=2, \ldots, m+1 \\
\left(\frac{\delta \mu}{1-\delta}+(1-q)\right) \underline{v} & \forall q \in\left(\tilde{x}_{m+1}, 1-\mu\right]\end{cases}
\end{align*}
$$

Let us now show that the stationary triplets defined above satisfy (3). We will consider the case $x_{\infty}<1-\mu$; the proof for the case $x_{\infty} \geq 1-\mu$ is similar. Note that $\pi(y ; x)$ is strictly increasing in
y on any of the intervals $\left[0, \tilde{y}_{0}\right],\left(\tilde{y}_{0}, \tilde{y}_{1}\right], \ldots,\left(\tilde{y}_{m+1}, 1\right]$, so $T(x) \subset\left\{\tilde{y}_{0}, \ldots \tilde{y}_{m+1}, 1\right\}$. Furthermore, the sequence $\left\{\tilde{x}_{k}\right\}$ is constructed such that when the state is \tilde{x}_{k} the monopolist is indifferent between selecting \tilde{y}_{k-1} and \tilde{y}_{k}, i.e. $\pi\left(\tilde{y}_{k-1} ; \tilde{x}_{k}\right)=\pi\left(\tilde{y}_{k} ; \tilde{x}_{k}\right)$. Let $h_{m+1}(x)=\pi(1 ; x)-\pi\left(\tilde{y}_{m} ; x\right)$, and for $k \leq m$ let $h_{k}(x)=\pi\left(\tilde{y}_{k} ; x\right)-\pi\left(\tilde{y}_{k-1} ; x\right)$. Then $h_{k}\left(\tilde{x}_{k}\right)=0$ for all $k, \frac{d h_{m+1}}{d x}=-\left(\underline{v}-\tilde{p}_{k-1}\right)>0$, and $\frac{d h_{k}}{d x}=-\left(\tilde{p}_{k}-\tilde{p}_{k-1}\right)>0$ for $k \leq m$. Hence for all k we have $h_{k}(x) \lessgtr 0$ as $x \lessgtr \tilde{x}_{k}$. We conclude that $t(x)$ solves (3). It is straightforward to verify that (4) is also satisfied, so $\{P(\cdot), R(\cdot), t(\cdot)\}$ is a stationary triplet for $\mu \geq \underline{\mu}$.

Finally, let $\left\{P_{0}(\cdot), R_{0}(\cdot), t_{0}(\cdot)\right\}$ be the triplet associated with some stationary equilibrium having \hat{q} as a steady state. We will show that $\left\{P_{0}, R_{0}, t_{0}\right\}$ is unique, and hence must equal $\{P, R, t\}$. Define $\breve{p}_{1}=\sup _{q>\hat{q}} P_{0}(q)$.

Suppose first that $\breve{p}_{1}=\underline{v}$. Then $P_{0}(q)=\bar{v}$ for $q \in(0, \hat{q}]$ and $P_{0}(q)=\underline{v}$ for $q \in(\hat{q}, 1]$, so $P_{0}(\cdot)$ is uniquely determined. Now for $q>\hat{q}$ equation (4) implies $(1-\rho) \underline{v}+\rho P_{0}\left(t_{0}((1-\mu) q)\right)=P_{0}(q)=\underline{v}$ so we must have $t_{0}(x)>\hat{q}$ for $x>(1-\mu) \hat{q}$. We conclude that $t_{0}(x)=1$ and $R_{0}(x)=\left(\frac{\delta \mu}{1-\delta}+(1-x)\right) \underline{v}$ for $x \in((1-\mu) \hat{q}, 1-\mu]$. Furthermore, since \hat{q} is a steady state, we also have $t_{0}(x)=\hat{q}$ and $R_{0}(x)=\left(\frac{\delta \mu \hat{q}}{1-\delta}+(\hat{q}-q)\right) \bar{v}$, for $x \in[0,(1-\mu) \hat{q}]$. Hence $\left\{P_{0}, R_{0}, t_{0}\right\}$ is uniquely determined. Note that this case is characterized by $\mu=\underline{\mu}$, for at the state $(1-\mu) \hat{q}$ the monopolist must be indifferent between selecting $y=\hat{q}$ and $y=1$.

Next, suppose that $\breve{p}_{1}>\underline{v}$. Then we claim that $\breve{p}_{1}=\tilde{p}_{1}$. To prove this claim, we will show that there exists $\varepsilon>0$ s.t. $t_{0}((1-\mu) q)=\hat{q}$ for all $q \in(\hat{q}, \hat{q}+\varepsilon]$. Observe first that $t_{0}((1-\mu) q)<q$ for all $q \in(\hat{q}, 1]$ s.t. $P_{0}(q)>\underline{v}$. Indeed, $t_{0}((1-\mu) q) \geq q$ would imply that $P_{0}\left(t_{0}(1-\mu) q\right) \leq P_{0}(q)$, and so (4) would yield $P_{0}(q)=(1-\rho) \underline{v}+\rho P_{0}\left(t_{0}(1-\mu) q\right) \leq(1-\rho) \underline{v}+\rho P_{0}(q)$, or $P_{0}(q) \leq \underline{v}$. Now pick some $q_{0} \in(\hat{q}, 1]$ with $P_{0}\left(q_{0}\right)>\underline{v}$ and iteratively define $q_{k}=t_{0}\left((1-\mu) q_{k-1}\right)$. If there existed no such ε, then $\left\{q_{k}\right\}$ would be a decreasing sequence bounded below by \hat{q}. Then $P_{0}\left(q_{0}\right)=\left(1-\rho^{k}\right) \underline{v}+\rho^{k} P\left(q_{k}\right)$ would yield $\lim _{k \rightarrow \infty} P_{0}\left(q_{0}\right)=\underline{v}$, contradicting that $P_{0}\left(q_{0}\right)>\underline{v}$.

Now let $\tilde{q}_{1}=\max \left\{x \leq 1-\mu: t_{0}(x)=\hat{q}\right\}$; we will show that $\tilde{q}_{1}=\tilde{x}_{1}$. There will be three cases.
First, suppose that $\tilde{q}_{1}=1-\mu$. Then $P_{0}(q)=\tilde{p}_{1}$ for all $q \in(\hat{q}, 1], R_{0}(x)=\tilde{R}(x)$ and $t_{0}(x)=\hat{q}$ for all $x \in[0,1-\mu]$, so $\left\{P_{0}, R_{0}, t_{0}\right\}$ is uniquely determined. In this case we have $\tilde{x}_{1}=1-\mu$ and $m=0$.

Next, let $\tilde{q}_{1}<1-\mu$. Define $\breve{p}_{2}=\sup \left\{P_{0}(q) \left\lvert\, q>\frac{\tilde{q}_{1}}{1-\mu}\right.\right\}$, and consider the case where $\breve{p}_{2}=\underline{v}$. Then as above, we have $P_{0}(q)=\underline{v}$ for $q \in\left(\frac{\tilde{q}_{1}}{1-\mu}, 1\right], R_{0}(x)=R_{1}(x)$ and $t_{0}(x)=1$ for $x \in\left(\tilde{q}_{1}, 1-\mu\right]$. Since $R_{0}(x)=\tilde{R}(x)$ for all $x<\tilde{q}_{1}$, the continuity of R_{0} at $x=\tilde{q}_{1}$ then implies that $\tilde{R}\left(\tilde{q}_{1}\right)=R_{1}\left(\tilde{q}_{1}\right)$, i.e. $\tilde{q}_{1}=x^{*}=\tilde{x}_{1}$.

Finally, let $\tilde{q}_{1}<1-\mu$ and $\breve{p}_{2}>\underline{v}$. Then we claim that $\breve{p}_{2}=\tilde{p}_{2}$. Indeed, as above we can show that there exists $\varepsilon>0$ s.t. $t_{0}(q)=\frac{\tilde{q}_{1}}{1-\mu}$ for all $q \in\left(\tilde{q}_{1}, \tilde{q}_{1}+\varepsilon\right]$, establishing the claim. Next, we show that $\tilde{q}_{1}=\tilde{x}_{1} . \quad$ Define $V(x)=\pi(\hat{q} ; x)-\frac{\mu \tilde{p}_{1} x}{(1-\mu)(1-\delta)}$. Then since $t_{0}(x)=\hat{q}$ for $x \leq \tilde{q}_{1}$, and $t_{0}(q)=\tilde{y}_{1}$ for all $q \in\left(\tilde{q}_{1}, \tilde{q}_{1}+\varepsilon\right]$, we must have $V\left(\tilde{q}_{1}\right)=0$. Furthermore, the definition of \tilde{x}_{1} implies $V\left(\tilde{x}_{1}\right)=0$. Since $V^{\prime}(x)<0$ we must have $\tilde{q}_{1}=\tilde{x}_{1}$.

The same argument can now be applied inductively. Given $\tilde{q}_{k}=\max \left\{x: t_{0}(x)=\tilde{q}_{k-1}\right\}$, it must be that $\tilde{q}_{k}=\tilde{x}_{k}$. In the case where $\tilde{q}_{k}=1-\mu$ we have $\tilde{x}_{k}=1-\mu$ and $m=k-1$. When $\tilde{q}_{k}<1-\mu$ and $\breve{p}_{k+1}=\underline{v}$ then $\tilde{q}_{k}=x^{*}=\tilde{x}_{k}$ and $m=k-1$. Finally, when $\breve{p}_{k+1}>\underline{v}$ then $m>k-1$ and $\tilde{q}_{k+1}=\max \left\{x: t_{0}(x)=\tilde{q}_{k}\right\}$.

We conclude that in each case $\left\{P_{0}, R_{0}, t_{0}\right\}$ coincides with a single instance of (A-5) and (A-6). Since each μ uniquely defines the sequence $\left\{\tilde{x}_{k}\right\}_{k=0}^{\infty}$, there is at most one triplet $\{P, R, t\}$, and hence at most one triplet $\left\{P_{0}, R_{0}, t_{0}\right\}$ associated with any $\mu \geq \underline{\mu}$.
Q.E.D.

Proof of Corollary 2:

By construction we have $P\left(\tilde{y}_{k}\right)=\tilde{p}_{k}=\left(1-\rho^{k}\right) \underline{v}+\rho^{k} \bar{v}$ and $\tilde{y}_{k}=\frac{\tilde{p}_{k-1} \tilde{y}_{k-1}}{\mu \underline{v}+(1-\mu) \tilde{p}_{k-1}}$, so

$$
\frac{P\left(\tilde{y}_{k}\right)-P\left(\tilde{y}_{k-1}\right)}{\tilde{y}_{k}-\tilde{y}_{k-1}}=\frac{-\rho^{k-1}(1-\rho)(\bar{v}-\underline{v})}{\tilde{y}_{k-1}\left(\frac{\tilde{p}_{k-1}}{\mu \underline{v}+(1-\mu) \tilde{p}_{k-1}}-1\right)} .
$$

Using $p_{k-1}-\underline{v}=\rho^{k-1}(\bar{v}-\underline{v})$, this can be rewritten as

$$
\frac{P\left(\tilde{y}_{k}\right)-P\left(\tilde{y}_{k-1}\right)}{\tilde{y}_{k}-\tilde{y}_{k-1}}=\frac{-(1-\rho)\left(\tilde{p}_{k-1}-\mu\left(\tilde{p}_{k-1}-\underline{v}\right)\right)}{\mu \tilde{y}_{k-1}}
$$

As z tends to zero, $\tilde{y}_{k}-\tilde{y}_{k-1}$ converges to zero. Hence, the above equation converges to $P^{\prime}(y) y=$ $-\frac{\lambda+r}{\lambda} P(y)$. Solving this differential equation gives $P(y)=k_{0} y^{-\frac{\lambda+r}{\lambda}}$. Since $P(\hat{q})=\bar{v}$, the particular solution has $k_{0}=\bar{v} \hat{q}^{\frac{\lambda+r}{\lambda}}$. Next, upon dividing both sides by z the equation $\tilde{y}_{k}-\tilde{y}_{k-1}=$ $\mu \tilde{y}_{k-1}\left(\frac{\tilde{p}_{k-1}-\underline{v}}{\mu \underline{v}+(1-\mu)}\right)$ converges to $\dot{\tilde{\tilde{p}}}=\lambda y \frac{P(y)-\underline{v}}{P(y)}=\lambda y\left(1-\frac{\underline{v}}{\bar{v}}\left(\frac{\hat{q}}{y}\right)^{\frac{\lambda+r}{\lambda}}\right)$.
Q.E.D.

Proof of Theorem 3:
Suppose there is a stationary equilibrium with $y^{*}<\hat{q}$ as a steady state. Then by the proof of Lemma 2 we have $P(y)=\bar{v}$ for all $y \leq y^{*}, P(y)<\bar{v}$ for $y \in\left(y^{*}, \hat{q}\right]$, and $P(y)=\underline{v}$ for $y \in(\hat{q}, 1]$. This implies that over the interval $\left(y^{*}, 1\right)$ the stock is strictly increasing, i.e. $t((1-\mu) y)>y$ (see the argument at the end of the proof of Theorem 4). It follows that over the interval $\left(y^{*}, 1\right]$ the stationary triplet must coincide with the Coase Conjecture equilibrium triplet.

First, we show that the existence of a reputational equilibrium implies $\mu \in(\underline{\mu}, \bar{\mu}]$. To establish $\mu>\underline{\mu}$, observe that since $P(y)=\bar{v}$ for all $y \leq y^{*}$ we must have $t((1-\mu) y)=y^{*}$ for all $y \leq y^{*}$,
and hence $R\left((1-\mu) y^{*}\right)=\frac{\mu y^{*} \bar{v}}{1-\delta}$. Furthermore, continuity of the function R implies that y^{*} solves $\varsigma(y)=0$, where $\varsigma(y)=\frac{\mu y \bar{v}}{1-\delta}-R^{C}((1-\mu) y)$ and $R^{C}(\cdot)$ is the Coase Conjecture profit function. Now the definition of $\underline{\mu}$ implies $\varsigma(\hat{q})<0$ for all $\mu<\underline{\mu}$. As $\varsigma(\cdot)$ is strictly increasing, the existence of $y^{*}<\hat{q}$ therefore requires $\mu>\underline{\mu}$.

To establish that $\mu \leq \bar{\mu}$, we provide a proof by contradiction. Suppose that for some $\mu>\bar{\mu}$ a reputational equilibrium exists. Define $K=\min \left\{k: \bar{x}_{j}<\bar{x}_{j-1}\right.$ for $\left.j \leq k\right\}$. Since the Coase Conjecture equilibrium does not exist for $\mu>\bar{\mu}$, we necessarily have $\bar{x}_{K}>0$. Furthermore, since $\bar{x}_{K+1} \geq \bar{x}_{K}$, when the initial state is \bar{x}_{K} the monopolist prefers selling to \bar{y}_{K} to selling to \bar{y}_{K-1}, i.e. $\mu p_{K} \bar{y}_{K}+\delta R^{C}\left(\bar{x}_{K}\right) \geq R^{C}\left(\bar{x}_{K}\right)$ where $R^{C}\left(\bar{x}_{K}\right)$ is given by (A-4). This implies that $\varsigma\left(\bar{y}_{K}\right)=\frac{\mu p_{K} \bar{y}_{K}}{1-\delta}-R^{C}\left(\bar{x}_{K}\right)>0$; since $\varsigma(\cdot)$ is strictly increasing we would have to have $y^{*}<\bar{y}_{K}$. But this is impossible, as the construction (A-2)-(A-4) cannot be extended to initial states below \bar{x}_{K}.

Second, we show that a reputational equilibrium exists for any $\mu \in(\underline{\mu}, \bar{\mu}]$. For such μ we have $\varsigma(\hat{q})>0$. Because $\varsigma(0)=-R(0)<0$, and $\varsigma(\cdot)$ is strictly increasing, there exists a unique $y^{*} \in(0, \hat{q})$ such that $\varsigma\left(y^{*}\right)=0$. Now let $P(y)=\bar{v}$ for $y \in\left[0, y^{*}\right]$, and $R(x)=\left(y^{*}-x\right) \bar{v}+\delta \frac{\mu y^{*} \bar{v}}{1-\delta}$ and $t(x)=y^{*}$ for $x \in\left[0,(1-\mu) y^{*}\right]$, and let $\{P, R, t\}$ be given by (A-2)-(A-4) elsewhere. It is then easily checked that $\{P, R, t\}$ is a stationary triplet.

Next, we prove that $\bar{\mu}>\underline{\mu}$ for all $\delta>0$. We will establish that if $\mu \leq \underline{\mu}$ then the sequence $\left\{\bar{x}_{k}\right\}$ is strictly decreasing and m is finite. The continuity of \bar{x}_{k} in μ then implies that the same property holds in a right neighborhood of $\underline{\mu}$, so $\bar{\mu}>\underline{\mu}$.

First, we show that $\bar{x}_{2}<\bar{x}_{1}$ holds for any $\mu \leq \underline{\mu}$. Indeed, since $\mu \leq \underline{\mu}$ iff $\frac{\mu \hat{q} \bar{v}}{1-\delta} \leq \pi\left(\bar{y}_{0} ; \bar{x}_{1}\right)$, we have $h_{2}\left(\bar{x}_{1}\right)=\pi\left(\bar{y}_{1} ; \bar{x}_{1}\right)-\pi\left(\bar{y}_{0} ; \bar{x}_{1}\right)=P(\hat{q}) \mu \hat{q}+\delta \pi\left(1 ; \bar{x}_{1}\right)-\pi\left(1 ; \bar{x}_{1}\right) \leq P(\hat{q}) \mu \hat{q}-(1-\delta) \frac{\mu \hat{q} \bar{v}}{1-\delta}=$ $-(\bar{v}-P(\hat{q})) \mu \hat{q}<0 . \quad$ Since $h_{2}\left(\bar{x}_{2}\right)=0$ and $\frac{d h_{2}}{d x}<0$ we must have $\bar{x}_{2}<\bar{x}_{1}$.

Next, we show that there exists $\Delta>0$ such that $\bar{x}_{3}<\bar{x}_{2}-\Delta$. Indeed, $h_{3}\left(\bar{x}_{2}\right)=\pi\left(\bar{y}_{2} ; \bar{x}_{2}\right)-$ $\pi\left(\bar{y}_{1} ; \bar{x}_{2}\right)=P\left(\bar{y}_{2}\right) \frac{\mu \bar{x}_{2}}{(1-\mu)}+\delta \pi\left(\bar{y}_{1} ; \bar{x}_{2}\right)-\pi\left(\bar{y}_{1} ; \bar{x}_{2}\right)=P\left(\bar{y}_{2}\right) \frac{\mu \bar{x}_{2}}{(1-\mu)}-(1-\delta) \pi\left(\bar{y}_{0} ; \bar{x}_{1}\right)-(1-\delta)\left(\bar{x}_{1}-\bar{x}_{2}\right) \underline{v} \leq$ $P\left(\bar{y}_{2}\right) \frac{\mu \bar{x}_{2}}{(1-\mu)}-(1-\delta) \frac{\mu \hat{q} \bar{v}}{1-\delta}-(1-\delta)\left(\bar{x}_{1}-\bar{x}_{2}\right) \underline{v}<-\left(\bar{v}-P\left(\bar{y}_{2}\right)\right) \frac{\mu \bar{x}_{2}}{(1-\mu)}-(1-\delta)\left(\bar{x}_{1}-\bar{x}_{2}\right) \underline{v}<0$. The first inequality follows because $\mu \leq \underline{\mu}$, the second one because $\bar{x}_{2}<\bar{x}_{1}=(1-\mu) \hat{q}$. Since $h_{3}^{\prime}(x)=$ $-P\left(\bar{y}_{2}\right)+P\left(\bar{y}_{1}\right)$ is independent of x, it follows that $\bar{x}_{2}-\bar{x}_{3}=\frac{h_{3}\left(\bar{x}_{2}\right)}{h_{3}^{\prime}}>\frac{(1-\delta)\left(\bar{x}_{1}-\bar{x}_{2}\right) \underline{v}}{P\left(\bar{y}_{2}\right)-P\left(\bar{y}_{1}\right)}=\Delta>0$.

Finally, we establish that for each $k \geq 3$ we have $\bar{x}_{k-1}-\bar{x}_{k} \geq \Delta$, implying $m \leq 2+\frac{1-\bar{x}_{2}}{\varepsilon}$. We have shown above that the result is true at $k=3$. Next, we show that if the result for some $k \geq 3$ then it also holds for $k+1$. Indeed, $\pi\left(\bar{y}_{k-1} ; \bar{x}_{k}\right) \geq \pi\left(\bar{y}_{0} ; \bar{x}_{k}\right)=\left(1-\bar{x}_{k}\right) \underline{v}+\delta R(1-\mu)=$ $\pi\left(\bar{y}_{0} ; \bar{x}_{1}\right)+\left(\bar{x}_{1}-\bar{x}_{k}\right) \underline{v}$. Therefore, following the argument in the previous paragraph, we have
$h_{k+1}\left(\bar{x}_{k}\right)<-(1-\delta)\left(\bar{x}_{1}-\bar{x}_{k}\right) \underline{v}<0$. Since $h_{k+1}^{\prime}(x)=-P\left(\bar{y}_{k}\right)+P\left(\bar{y}_{k-1}\right)$ is independent of x, and since $h_{k+1}\left(\bar{x}_{k+1}\right)=0$ we obtain $\bar{x}_{k}-\bar{x}_{k+1}=\frac{h_{k+1}\left(\bar{x}_{k}\right)}{h_{k+1}^{\prime}}>\frac{(1-\delta)\left(\bar{x}_{1}-\bar{x}_{k}\right) v}{P\left(\bar{y}_{k-1}\right)-P\left(\bar{y}_{k}\right)}>\Delta$. Q.E.D.

Proof of Lemma 3:

Define $\xi_{k}=\frac{\bar{x}_{k}}{\bar{x}_{k-1}}$. It then follows from (A-1) that

$$
\begin{equation*}
\xi_{k}=(1-\mu)^{-1}\left(1-\left(\xi_{k-1}^{-1}-1\right) \delta^{-(k-2)} \psi_{k}\right) \tag{A-7}
\end{equation*}
$$

where $\psi_{k}=\frac{\bar{v}}{(1-\mu)^{k-2}(\bar{v}-\underline{v})}>1$. Fix $\mu \leq \bar{\mu}(\delta)$ so that $\xi_{k}(\delta)<1$ for all $k=1, \ldots, m+1$. Next, observe that ξ_{2} is independent of δ. Thus, (A-7) implies that ξ_{3} is increasing in δ, i.e. $\xi_{3}(\delta)<1$ implies $\xi_{3}\left(\delta^{\prime}\right)<\xi_{3}(\delta)<1$ for all $\delta^{\prime}<\delta$. Next, suppose that $\xi_{k-1}\left(\delta^{\prime}\right)<\xi_{k-1}(\delta)<1$; it then follows from (A-7) that $\xi_{k}\left(\delta^{\prime}\right)<\xi_{k}(\delta)<1$. We conclude that if $\mu \leq \bar{\mu}(\delta)$ then $\mu<\bar{\mu}\left(\delta^{\prime}\right)$ for all $\delta^{\prime}<\delta$, so $\bar{\mu}$ is a decreasing function of δ.

Next, we argue that $\bar{\mu}(1)>0$. Indeed, when $\delta=1$ and $\mu=0$ the difference equation (A-1) reduces to

$$
\bar{x}_{k}-\bar{x}_{k-1}=\left(\bar{x}_{k-1}-\bar{x}_{k-2}\right) \psi
$$

where $\psi=\frac{\bar{v}}{\bar{v}-\underline{v}}>1$. Hence $\bar{x}_{k}-\bar{x}_{k-1}=\psi^{k-1}\left(\bar{x}_{2}-\bar{x}_{1}\right)<0$. Let m be such that $\bar{x}_{m}<0 \leq \bar{x}_{m-1}$. Then since \bar{x}_{k} is a continuous function of μ, it follows that there exists $\mu^{\prime}>0$ such that for all $\mu \in\left[0, \mu^{\prime}\right)$ we have $\bar{x}_{k}-\bar{x}_{k-1}>0$ and $\bar{x}_{m}<0 \leq \bar{x}_{m-1}$. Q.E.D.

Proof of Theorem 4:

For all $i=1, \ldots, N-1$, analogously to the two-step case, given q_{i} as a steady state construct a sequence $\left\{\tilde{x}_{k}^{i}\right\}_{k=0}^{\infty}$ to the right of q_{i} as follows. Let $\tilde{x}_{0}^{i}=(1-\mu) q_{i}$ and let $\tilde{P}^{i}(q)=(1-\rho) f(q)+$ $\rho f\left(q_{i}\right)$ for $q \geq q_{i}$. Given $\tilde{P}^{i}(\cdot)$, let \tilde{x}_{1}^{i} be the highest state such that the seller prefers selecting $y=q_{i}$ to selecting $y \in\left(q_{i}, \tilde{y}_{1}^{i}\right]$. For $k \geq 2$ let $\tilde{t}^{i}(q)$ be the seller's optimal choice over $\left(\tilde{y}_{k-2}^{i}, \tilde{y}_{k-1}^{i}\right]$ and redefine $\tilde{P}^{i}(q)=(1-\rho) f(q)+\rho f\left(\tilde{t}^{i}(q)\right)$ for $q \geq \tilde{y}_{k-1}^{i}$. Finally, let \tilde{x}_{k}^{i} be the highest state such that the seller prefers selecting $y \in\left(\tilde{y}_{k-2}^{i}, \tilde{y}_{k-1}^{i}\right]$ to selecting $y \in\left(\tilde{y}_{k-1}^{i}, \tilde{y}_{k}^{i}\right]$. Let $\tilde{R}^{i}(q)$ be the seller's payoff function associated with $\tilde{P}^{i}(q)$.

Also analogously to the two-step case, given q_{i} as a steady state construct a sequence $\left\{\bar{x}_{k}^{i}\right\}$ to the left of q_{i} as follows. Let $\bar{x}_{0}^{i}=(1-\mu) q_{i}$ and let $\bar{P}^{i}(q)=(1-\rho) f(q)+\rho f\left(q_{i}\right)$ for $q \leq q_{i}$. Given $\bar{P}^{i}(\cdot)$, let \bar{x}_{1}^{i} be the smallest state such that the seller prefers selecting $y=q_{i}$ to selecting $y \in\left(\bar{y}_{1}^{i}, q_{i-1}\right]$. For $k \geq 2$ let $\bar{t}^{i}(q)$ be the seller's optimal choice over $\left(\bar{y}_{k-1}^{i}, \bar{y}_{k-2}^{i}\right]$ and redefine $\bar{P}^{i}(q)=(1-\rho) f(q)+\rho f\left(\bar{t}^{i}(q)\right)$ for $q<\bar{y}_{k-1}^{i}$. Finally, let \bar{x}_{k}^{i} be the smallest state such that the seller prefers selecting $y \in\left(\bar{y}_{k-1}^{i}, \bar{y}_{k-2}^{i}\right]$ to selecting $y \in\left(\bar{y}_{k}^{i}, \bar{y}_{k-1}^{i}\right]$. Let m^{i} be the largest value of k
such that $0 \leq \bar{x}_{j}^{i}<\bar{x}_{j-1}^{i}$ for all $j \leq k$, and let $\bar{R}^{i}(q)$ be the seller's payoff function associated with $\bar{P}^{i}(q)$.

Let $A_{0}=\left\{i \mid \lim _{k \rightarrow \infty} \tilde{x}_{k}^{i} \geq 1-\mu\right\}$. If $A_{0}=\phi$, let $q_{i_{0}}=1$. Otherwise, let $i_{0}=\min A_{0}$. Then define $P(q)=\tilde{P}^{i_{0}}(q)$ for $q>q_{i_{0}}$. Also let $R(q)$ and $t(q)$ be the equilibrium value function and policy function associated with $P(q)$.
(P) Now we will construct $P(q)$ for $q \leq q_{i_{0}}$. Define i_{1} such that $\lim _{k \rightarrow \infty} \tilde{x}_{k}^{i_{1}} \geq \lim _{k \rightarrow \infty} \tilde{x}_{k}^{i}$ for all $i<i_{0}$. Note that $\lim _{k \rightarrow \infty} \tilde{x}_{k}^{i_{1}}>(1-\mu) q_{i_{0}-1}$ because $\lim _{k \rightarrow \infty} \tilde{x}_{k}^{i_{0}-1}>(1-\mu) q_{i_{0}-1}$. If $\bar{R}^{i_{0}}\left((1-\mu) q_{i_{0}-1}\right)<\tilde{R}^{i_{1}}\left((1-\mu) q_{i_{0}-1}\right)$, let q^{\prime} be such that $\bar{R}^{i_{0}}\left((1-\mu) q^{\prime}\right)=\tilde{R}^{i_{1}}\left((1-\mu) q^{\prime}\right)$, and set $P(q)=\bar{P}^{i_{0}}(q)$ for $q \in\left(q^{\prime}, q_{i_{0}}\right]$ and $P(q)=\tilde{P}^{i_{1}}(q)$ for $q \in\left(q_{i_{1}}, q^{\prime}\right]$. Now return to (P) with i_{1} taking the role of i_{0}. (P') If $\bar{R}^{i_{0}}\left((1-\mu) q_{i_{0}-1}\right) \geq \tilde{R}^{i_{1}}\left((1-\mu) q_{i_{0}-1}\right)$ a proof similar to the one showing $\underline{\mu}<\bar{\mu}$ in the two-step case yields $\bar{x}_{m^{i_{0}}} \leq q_{i_{0}-2}$. Hence, $\bar{P}^{i_{0}}(q)$ exists for $q \in\left(q_{i_{0}-2}, q_{i_{0}-1}\right]$. Define i_{2} such that $\lim _{k \rightarrow \infty} \tilde{x}_{k}^{i_{2}} \geq \lim _{k \rightarrow \infty} \tilde{x}_{k}^{i}$ for all $i<i_{0}-1$. If $\bar{R}^{i_{0}-1}\left((1-\mu) q_{i_{0}-2}\right)<\tilde{R}^{i_{2}}\left((1-\mu) q_{i_{0}-2}\right)$, let q^{\prime} be such that $\bar{R}^{i_{0}-1}\left((1-\mu) q^{\prime}\right)=\tilde{R}^{i_{2}}\left((1-\mu) q^{\prime}\right)$, and set $P(q)=\bar{P}^{i_{0}-1}(q)$ for $q \in\left(q^{\prime}, q_{i_{0}-1}\right]$ and $P(q)=\tilde{P}^{i_{2}}(q)$ for $q \in\left(q_{i_{2}}, q^{\prime}\right]$. Now return to (P) with i_{2} taking the role of i_{0}. If $\bar{R}^{i_{0}-1}\left((1-\mu) q_{i_{0}-2}\right) \geq \tilde{R}^{i_{2}}\left((1-\mu) q_{i_{0}-2}\right)$ then return to (P') with i_{2} taking the role of i_{1} and $q_{i_{0}-2}$ taking the role of $q_{i_{0}-1}$. Q.E.D.

Proof of Theorem 5:

(i) Let $\pi^{*}=\max _{q \in[0,1]} q f(q)$ be the monopoly profit, and suppose that $\pi^{*}>q_{N} f\left(q_{N}\right)=v_{N}$. Define $\underline{\mu}$ as the solution to the equation $f(\mu)=0$, where $f(\mu)=\frac{\mu \pi^{*}}{1-\delta}-\left(1-(1-\mu) q_{N-1}\right) v_{N}-\frac{\delta \mu v_{N}}{1-\delta}$. Then since $f(1)=\frac{\pi^{*}-v_{N}}{1-\delta}>0$ and since $f(0)=-\left(1-q_{N-1}\right) v_{N}<0$, we have $0<\underline{\mu}<1$. Furthermore, note that $y \in\left[0, q_{N-1}\right]$ and $\mu<\underline{\mu}$ imply $\frac{\mu y f(y)}{1-\delta}<(1-(1-\mu) y) v_{N}+\frac{\delta \mu v_{N}}{1-\delta}$. Suppose that $\mu<\underline{\mu}$ and that there existed a stationary equilibrium with steady state $y_{s} \in\left[0, q_{N-1}\right]$. Let \hat{y} be be the largest such steady state. Then when the state is $q=(1-\mu) \hat{y}$ the monopolist would earn $\frac{\mu \hat{y} f(\hat{y})}{1-\delta}$. If instead the monopolist were to select $y=1$ and remain there forever after, she would earn $(1-(1-\mu) \hat{y}) v_{N}+\frac{\delta \mu v_{N}}{1-\delta}$, which exceeds $\frac{\mu \hat{y} f(\hat{y})}{1-\delta}$ for $\mu<\underline{\mu}$. We conclude that $y=1$ is the unique steady state when $\mu<\underline{\mu}$. Thus the Coase Conjecture equilibrium is the unique equilibrium.
(ii) Given a stationary triplet, we say that a steady state y_{s} is reachable from $(1-\mu) q^{*}$ if $\lim _{n \rightarrow \infty} g^{n}\left((1-\mu) q^{*}\right)=y_{s}$, where $g(x)=(1-\mu) t(x)$. Note that a reachable steady state from $(1-\mu) q^{*}$ is the smallest steady state above q^{*}. Define $q_{1}^{*}=\min \arg \max _{q_{i}>q^{*}} q_{i} f\left(q_{i}\right)$.

First we claim that there exists $\bar{\mu}_{1}<1$, such that q_{1}^{*} cannot be a reachable steady state from $(1-\mu) q^{*}$ for any $\mu>\bar{\mu}$. Suppose not; let $P(q)$ be the acceptance function associated with some
stationary equilibrium having q_{1}^{*} as a reachable steady state. Then for $x \in\left[(1-\mu) q^{*},(1-\mu) q_{1}^{*}\right]$, it must be the case that $t(x) \notin\left(q^{*}, q_{1}^{*}\right)$. Indeed, let $q^{*}=q_{i-K}<\ldots<q_{i}=q_{1}^{*}$, and suppose that $K>1$. Analogously to the two-step case construct a sequence $\left\{\bar{x}_{k}\right\}_{k=0}^{\infty}$ starting at the steady state q_{1}^{*}, i.e. $\bar{x}_{0}=(1-\mu) q_{1}^{*}$. First we show that $t(x) \neq q_{i-1}$. If $t(x)=q_{i-1}$ then by the definition of $q_{1}^{*}=q_{i}$ we would have $\bar{x}_{1}=(1-\mu) q_{i-1}$ and $\bar{x}_{2}=\frac{q_{i-1} v_{i-1}-q_{i} v_{i}}{v_{i-1}-v_{i}} \leq 0$, yielding a contradiction $t(x)=q_{i}$. Next, for $K>2$ we show that $t(x) \neq q_{i-2}$. Since q_{1}^{*} is a reachable steady state, we must have $t((1-\mu) q)>q$ for $q<q_{1}^{*}$. Thus $t\left((1-\mu) q_{i-2}\right)>q_{i-2}$. Since $t\left((1-\mu) q_{i-2}\right) \neq q_{i-1}$ we have $t\left((1-\mu) q_{i-2}\right)=q_{i}$ and $P\left((1-\mu) q_{i-2}\right)=(1-\rho) v_{i-2}+\rho v_{i}$. If $t(x)=q_{i-2}$ then we would have $\bar{x}_{1}=(1-\mu) q_{i-2}$ and $\bar{x}_{2}=\frac{q_{i-2} v_{i-2}-q_{i} v_{i}}{v_{i-2}-v_{i}} \leq 0$, a contradiction. Using a similar argument we conclude that $t(x) \notin\left\{q_{i-K+1}, \ldots, q_{i-1}\right\}$. Hence, $P\left((1-\mu) q^{*}\right)=(1-\rho) v_{i-K}+\rho v_{i}$. Define $\bar{\mu}_{1}$ as the solution to $\bar{x}_{2}=\frac{q_{i-K} v_{i-K}-q_{i} v_{i}}{v_{i-K}-v_{i}}=\left(1-\bar{\mu}_{1}\right) q_{i-K}$. Note that $\bar{\mu}_{1}=\frac{\left(q_{1}^{*}-q^{*}\right) f\left(q_{1}^{*}\right)}{q^{*}\left(f\left(q^{*}\right)-f\left(q_{1}^{*}\right)\right)}<1$. Then for $\mu>\bar{\mu}_{1},(1-\mu) q_{i-K}<\bar{x}_{2}$ and $t\left((1-\mu) q_{i-K}\right) \leq t\left(\bar{x}_{2}\right) \leq q_{i-K}$, contradicting that q_{1}^{*} is a reachable steady state from $(1-\mu) q^{*}$.

Secondly given $q_{1}^{*}, \ldots, q_{k-1}^{*}$ define $q_{k}^{*}=\min \arg \max \left\{q_{i} f\left(q_{i}\right): q_{i}>q^{*}\right.$ and $\left.q_{i} \notin\left\{q^{*}, q_{1}^{*}, \ldots, q_{k-1}^{*}\right\}\right\}$ and let $q^{\prime}=\max \left\{q_{i}<q_{k}^{*}: q_{i} f\left(q_{i}\right)>q_{k}^{*} f\left(q_{k}^{*}\right)\right\}$. Mimicking the argument above, we can show for any $x \in\left[(1-\mu) q^{\prime},(1-\mu) q_{k}^{*}\right]$, it must be the case that $t(x) \notin\left(q^{\prime}, q_{k}^{*}\right)$. Letting $\bar{\mu}_{k}=\frac{\left(q^{\prime}-q_{k}^{*}\right) f\left(q^{\prime}\right)}{q^{\prime}\left(f\left(q^{\prime}\right)-f\left(q_{k}^{*}\right)\right)}<1$, it follows that for any $\mu>\bar{\mu}_{k}, q_{k}^{*}$ is not a reachable steady state from $(1-\mu) q^{*}$.

Since the inductive step stops after finitely many iterations, we conclude that no $q_{i}>q^{*}$ can be a reachable steady state from $(1-\mu) q^{*}$ when $\mu>\bar{\mu}=\max \left\{\bar{\mu}_{k}\right\}$. Therefore $t\left((1-\mu) q^{*}\right) \leq q^{*}$, implying $P\left(q^{*}\right) \geq f\left(q^{*}\right)$. We conclude that when $\mu>\bar{\mu}$, we have $R(0) \geq q^{*} f\left(q^{*}\right)+\frac{\delta \mu q^{*} f\left(q^{*}\right)}{1-\delta}$. Since the outcome path of any stationary equilibrium can always be duplicated in a rental equilibrium by selecting an appropriating sequence of rentals, and since the rental profit is uniquely maximized by charging $f\left(q^{*}\right)$, we also must have $R(0) \leq q^{*} f\left(q^{*}\right)+\frac{\delta \mu q^{*} f\left(q^{*}\right)}{1-\delta}$. We conclude that $R(0)=$ $q^{*} f\left(q^{*}\right)+\frac{\delta \mu q^{*} f\left(q^{*}\right)}{1-\delta}$ and that $t(q)=q^{*}$ for all $q \leq(1-\mu) q^{*}$. Thus in any stationary equilibrium q^{*} is the unique steady state reachable from 0.
(iii) We start by constructing $\mu_{L} \in(\underline{\mu}, \bar{\mu})$ such that at μ_{L} there exists a reputational equilibrium that results in the monopoly outcome (from $q=0$). For this purpose, define the fictitious demand curve $\widetilde{f}(q)=\min \left\{f(q), f\left(q_{k+1}\right)\right\}$, where $q_{k}=q^{*}$ for some $k<N$. By Theorem 4 there exists a stationary equilibrium for the demand curve \widetilde{f}. Let $g(\mu)$ denote the profit in this equilibrium when the initial state equals $(1-\mu) q^{*}$. Note that since the equilibrium constructed in Theorem 4 is the most profitable one, $g(\mu)$ can only jump up as μ increases, and hence is upper semicontinuous and continuous from the right. Additionally, let $h(\mu)=\frac{\mu q^{*} f\left(q^{*}\right)}{1-\delta}$ be the profit from serving replacement
demand when monopoly is a steady state. Note that $h(\cdot)$ is continuous in μ, and that $h(0)<g(0)$ and $h(1)>g(1)$, so $\operatorname{Im}(g) \subset \operatorname{Im}(h)$. Define $r(\mu)=h^{-1}(g(\mu))$. Then $r:[0,1] \rightarrow[0,1]$, and so by the Lemma in Roberts and Sonnenschein (1976) has a fixed point μ_{L}. Furthermore, it follows from right continuity that $g(\mu)<h(\mu)$ in a right neighborhood of μ_{L}.

We now claim that when the demand curve is $f(\cdot)$ and $\mu=\mu_{L}$ there exists a stationary equilibrium in which the monopolist earns $\frac{\mu_{L} q^{*} f\left(q^{*}\right)}{1-\delta}$ when the state is $(1-\mu) q^{*}$. Indeed, let $P(q)=(1-\rho) f(q)+\rho f\left(q^{*}\right)$ for $q \leq q^{*}$, and for $q>q^{*}$ let $P(q)$ be given by the one computed in Theorem 4 for the demand curve $\widetilde{f}(\cdot)$. Then at $q=(1-\mu) q^{*}$ the monopolist is indifferent between staying at q^{*} forever and moving beyond q^{*}, thereby earning the continuation profit $g\left(\mu_{L}\right)=h\left(\mu_{L}\right)=\frac{\mu_{L} q^{*} f\left(q^{*}\right)}{1-\delta}$. Meanwhile, for $q>(1-\mu) q^{*}$ the profits from going to q^{*} and remaining there ever after fall below the profits from going forward (see the argument following (A-4)) in the proof of Theorem 1, so the equilibrium is a reputational one.

Next, we show that there exists $\mu_{H}>\mu_{L}$ such that for every $\mu \in\left(\mu_{L}, \mu_{H}\right)$ there exists a reputational equilibrium whose smallest steady state satisfies $y^{*}<q^{*}$. Let $\left\{P_{0}(\cdot), R_{0}(\cdot), t_{0}(\cdot)\right\}$ denote the stationary equilibrium constructed in the proof of Theorem 4 when the demand function is $\widetilde{f}(\cdot)$. For all $q \in[0,1-\mu]$ define $R_{1}(q)=\max _{y>q^{*}}\left\{P_{0}(y)(y-q)+\delta R_{0}((1-\mu) y)\right)$, the maximal profit attainable when the demand curve is $f(\cdot)$, the state is q, the monopolist is constrained to select a state $y>q^{*}$, and the equilibrium $\left\{P_{0}(\cdot), R_{0}(\cdot), t_{0}(\cdot)\right\}$ is played thereafter. Let $t_{1}(q)$ denote the minimum element of the corresponding argmax, and let $P_{1}(q)=(1-\rho) f(q)+\rho P_{0}\left(t_{1}((1-\mu) q)\right.$. Let $R_{2}(q)=\max _{y \leq q^{*}}\left\{P_{1}(y)(y-q)+\delta R_{1}((1-\mu) y)\right)$ the maximal profit when the acceptance function is P_{1}, and monopolist is constrained to select $y \in\left[0, q^{*}\right]$, and let $t_{2}(q)$ be the corresponding policy function. Finally, let $\widetilde{y}=\max \left\{q \in\left[0, q^{*}\right]: R_{2}(q) \geq R_{1}(q)\right\}$. Then provided $\widetilde{y}<q^{*}$, the triple $\left\{P_{1}(\cdot), R_{1}(\cdot), t_{1}(\cdot)\right\}$ defines a stationary equilibrium for $q>\widetilde{y}$ (see Deneckere and Liang, 2006).

We now claim that there exists $\mu_{H}^{1}>\mu_{L}$ and $\bar{y} \in\left(q_{k-1}, q^{*}\right)$ such that $\widetilde{y}(\mu) \leq \bar{y}$ for all $\mu \in$ $\left(\mu_{L}, \mu_{H}^{1}\right)$. Let $p^{*}=(1-\rho) f\left(q^{*}\right)+\rho f\left(q_{k+1}\right)$; note that p^{*} is an upper bound to $P_{1}(q)$ for all $q>q_{k-1}$. Consequently, $H(q)=\left(q^{*}-(1-\mu) q\right) p^{*}+\delta R_{1}\left((1-\mu) q^{*}\right) \geq R_{2}(q)$. Observe now that at $\mu=\mu_{L}$ we have $R_{1}\left(\left(1-\mu_{L}\right) q^{*}\right)=R_{0}\left(\left(1-\mu_{L}\right) q^{*}\right)=g\left(\mu_{L}\right)=h\left(\mu_{L}\right)=\frac{\mu_{L} q^{*} f\left(q^{*}\right)}{1-\delta}=H\left(q^{*}\right)+\mu_{L} q^{*}\left(f\left(q^{*}\right)-p^{*}\right)>$ $H\left(q^{*}\right)$. Since R_{1} and H are continuous in μ, there exists $\mu_{H}^{1}>\mu_{L}$ and $\bar{y} \in\left(q_{k-1}, q^{*}\right)$ such that $R_{1}(\bar{y}) \geq H(\bar{y}) \geq R_{2}(\bar{y})$, and hence $\widetilde{y} \leq \bar{y}$ for all $\mu \in\left(\mu_{L}, \mu_{H}^{1}\right)$.

Finally, we establish that there exists $\mu_{H} \in\left(\mu_{L}, \mu_{H}^{1}\right)$ such that $\frac{\mu \bar{y} f(\bar{y})}{1-\delta}<R_{1}((1-\mu) \bar{y})$ for all $\mu \in\left(\mu_{L}, \mu_{H}\right)$. Indeed, since $R_{1}\left(\left(1-\mu_{L}\right) q^{*}\right)=\frac{\mu_{L} q^{*} f\left(q^{*}\right)}{1-\delta}$, and since $R_{1}(q)$ and $\frac{\mu q f\left(q^{*}\right)}{1-\delta}$ are decreasing and increasing functions of q, respectively, we have $\frac{\mu_{L} \bar{y} f(\bar{y})}{1-\delta}<R_{1}\left(\left(1-\mu_{L}\right) \bar{y}\right)$. The existence of μ_{H}
then follows from the continuity of each of these functions in μ.
We conclude that for every $\mu \in\left(\mu_{L}, \mu_{H}\right)$ there exists a stationary equilibrium $\left\{P_{1}(\cdot), R_{1}(\cdot), t_{1}(\cdot)\right\}$ for states above \bar{y} such that $R_{1}((1-\mu) \bar{y})>\frac{\mu \bar{y} f(\bar{y})}{1-\delta}$ and $R_{1}\left((1-\mu) q^{*}\right)<\frac{\mu q f\left(q^{*}\right)}{1-\delta}$, so there exists $y^{*} \in\left(\bar{y}, q^{*}\right)$ for which $R_{1}\left((1-\mu) y^{*}\right)=\frac{\mu y^{*} f\left(y^{*}\right)}{1-\delta}$. The acceptance function $P(q)=(1-\rho) f(q)+\rho f\left(y^{*}\right)$ for $q \leq y^{*}$ and $P(q)=P_{1}(q)$ for $q>y^{*}$ then defines a reputational equilibrium in which $t(q)=y^{*}$ for all $q \leq(1-\mu) y^{*}$ and $t(q)=t_{1}(q)$ for $q>(1-\mu) y^{*}$.
(iv) Consider any stationary equilibrium with profit function R. Since q^{*} cannot be a steady state, we must have $\frac{\mu q^{*} f\left(q^{*}\right)}{1-\delta}<R\left((1-\mu) q^{*}\right)$. For $q<q^{*}$, we have $\frac{\mu q f(q)}{1-\delta}<\frac{\mu q^{*} f\left(q^{*}\right)}{1-\delta}<$ $R\left((1-\mu) q^{*}\right)<R((1-\mu) q)$. Therefore no $q<q^{*}$ can be a steady state.
Q.E.D.

