
Appendix

Proof of Lemma 1:

First, if ys is the stock after trade in a steady state, then P (ys) = f(ys). The reason is

that in the steady state we have t((1 − µ)ys) = ys. Hence, the consumer’s arbitrage equation

f(ys)− P (ys) = ρ[f(ys)− P (t((1− µ)ys))] implies P (ys) = f(ys).

To prove that a steady state must exist, we first show that if P and f cross, then there always

is a steady state. Then we establish that P and f necessarily cross.

We claim that if S = {q : P (q) = f(q)} is non-empty then q′ = max S is a steady state. To

see this, observe that q′ is the maximum state to have acceptance price P (q′). Indeed, if there

existed q′′ > q′ with P (q′′) = P (q′), then from the definition of q′ we must have f(q′′) < f(q′).

Furthermore, since t(·) is non-decreasing, and since P (·) is non-increasing, we have P (t((1−µ)q′′)) ≤
P (t((1 − µ)q′)). This implies the contradiction P (q′′) = (1 − ρ)f(q′′) + ρP (t((1 − µ)q′′)) < (1 −
ρ)f(q′) + ρP (t((1−µ)q′)) = P (q′). Hence following the offer P (q′), all q ≤ q′ accept and all q > q′

reject. Now from P (q′) = (1−ρ)f(q′)+ρP (t((1−µ)q′)) and P (q′) = f(q′) we have P (t((1−µ)q′))

= P (q′). Thus when the state before trade is (1 − µ)q′ the monopolist’s price P (t((1 − µ)q′))

= P (q′) leads to a state after trade equal to q′, i.e. t((1− µ)q′) = q′.

Suppose now that there is a stationary equilibrium which does not have any steady state. We

claim that this implies P (q) < v for q ∈ [0, q̂] and P (q) > v for q ∈ (q̂, 1]. To see this, note that since

there is no steady state, it follows from the previous paragraph that the set S is empty, i.e. P (q) 6= v

for any q ∈ [0, q̂] and P (q) 6= v for any q ∈ (q̂, 1]. An argument similar to Fudenberg, Levine and

Tirole (1985, Lemma 2) establishes that P (q) ≥ v for all q ∈ [0, 1]. Hence we necessarily have

P (q) > v for all q ∈ (q̂, 1]. Furthermore, we cannot have P (q) > v for some q ∈ [0, q̂]. Otherwise,

since P (·) is non-increasing, we would have P (0) > v. But then P (0) = (1−ρ)v +ρP (t(0)) implies

P (t(0)) > P (0). This is a contradiction, as t(0) ≥ 0 and P (·) is a non-increasing function.

Next, we show that P (q) < v for q ∈ [0, q̂] and P (q) > v for q ∈ (q̂, 1] imply that the total stock

is increasing for q ∈ [0, q̂] and decreasing for q ∈ (q̂, 1], and that this yields a contradiction.

By the consumer’s arbitrage equation, we have v−P (q) = ρ[v−P (t((1− µ)q)] for all q ∈ [0, q̂].

Since ρ ∈ (0, 1) for all z > 0 and v − P (q) > 0, we have v − P (q) < v − P (t(1− µ)q) which implies

P (t((1 − µ)q)) < P (q) for all q ∈ [0, q̂]. Since P (·) is decreasing, we have t((1 − µ)q) > q for all

q ∈ [0, q̂].

A similar argument also establishes that t((1 − µ)(q̂ + ε)) < q̂ + ε for all ε ∈ (0, 1 − q̂]. Hence,
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limε→0 t((1−µ)(q̂ + ε)) ≤ q̂ < t((1−µ)q̂). Since T (·) is upper hemi-continuous, limε→0 t((1−µ)(q̂ +

ε)) ∈ T ((1− µ)q̂). This contradicts the definition of t(·) = min T (·). Q.E.D.

Lemma 4 If f(q) = f(q′) and P (q) = P (q′) for some q < q′ then q cannot be a steady state.

Proof : If q were a steady state, then when the state after depreciation is (1−µ)q the monopolist

will charge P (q). All buyers in ((1 − µ)q, q′] will accept this, contradicting that t((1 − µ)q) = q.

Q.E.D.

Proof of Lemma 2:

First, we show that y ∈ (q̂, 1) cannot be a steady state. Suppose not; then Lemma 1 implies

that P (y) = v. Since P (·) is a decreasing function, we have P (q) ≤ v for q ≥ y. Similar to

Fudenberg, Levine, and Tirole (1985), we have P (q) ≥ v for all q ∈ [0, 1]. Hence, P (q) = v for all

q ∈ [y, 1]. Lemma 4 then shows that y cannot be a steady state.

To prove (ii), suppose that q̂ is a steady state so that P (q̂) = v. Then since P (·) is decreasing,

and since (as shown in the proof of Lemma 1) P (y) ≤ v for y ≤ q̂, we have P (y) = v for all y ∈ [0, q̂].

Hence Lemma 4 shows that y < q̂ cannot be a steady state. We conclude that the only possible

steady state other than q̂ is 1.

To prove (iii) suppose that 0 < y∗ < q̂ is a steady state. Then we must have P (y) = v for

all y ∈ [0, y∗], so Lemma 4 implies that no y < y∗ can be a steady state, and that P (q) < v for

q ∈ (y∗, q̂] (otherwise y∗ could not be a steady state). Thus by Lemma 1 no y ∈ (y∗, q̂] can be

a steady state, leaving y = 1 as the only other possible steady state. Suppose y = 1 were not a

steady state, so P (1) > v. This would imply P (q) > v for all q ∈ (q̂, 1]. We can then use the

argument at the end of the proof of Lemma 1 to obtain a contradiction.

To prove (i), note that if there is no steady state in [0, q̂], then by the first paragraph y = 1 is

the only possible steady state. It then follows from Lemma 1 that y = 1 must be a steady state.

Q.E.D.

Proof of Theorem 1:

We start by defining µ̄. To this effect, let x̄0 = 1− µ, x̄1 = (1− µ)q̂, x̄2 = q̂v−v
v−v , and for k ≥ 3

let

x̄k = (1− µ)−1
(
x̄k−1 − (x̄k−2 − x̄k−1)

v

ρk−2(v − v)

)
. (A-1)

Let Λ = {µ ≥ 0 | ∃m < ∞ s.t. x̄m+1 < 0 ≤ x̄m and s.t. {x̄k}m
i=0 is a strictly decreasing sequence},

and define µ̄ = supΛ. Note that 0 ∈ Λ and that Λ is open in R+. It follows that µ̄ > 0. Now let
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µ2 be the solution to (1− µ)q̂ = q̂v−v
v−v . Then for µ ≥ µ2 we have x̄2 ≥ x̄1, so µ̄ ≤ µ2 < 1.

First, we show that if µ′ ∈ Λ and µ < µ′ then µ ∈ Λ, i.e. Λ = [0, µ̄). We will prove this by

showing that ∆k = (x̄k−1− x̄k) is decreasing in µ. By definition we have x̄0 = 1−µ, x̄1 = (1−µ)q̂,

x̄2 = q̂v−v
v−v , and

x̄k = (1− µ)−1
(
x̄k−1 − ak−2∆k−1

)
,

where ak = v
ρk(v−v)

. Thus d∆k

dµ < 0 for k ≤ 2 and

dx̄3

dµ
= (1− µ)−2(a1x̄1 + x̄2 − 2a1∆2)

= (1− µ)−2(a1x̄1 − x̄2 + 2(1− µ)x̄3).

Thus dx̄3
dµ > 0 and d∆3

dµ < −2(1 − µ)−1x̄3. We now prove by induction that if dx̄k−1
dµ > 0 and

d∆k−1
dµ < −(k − 2)(1 − µ)−1x̄k−1 then dx̄k

dµ > 0 and d∆k

dµ < −(k − 1)(1 − µ)−1x̄k. Indeed, ∆k =

(1− (1− µ)−1)x̄k−1 + (1− µ)−1ak−2∆k−1, so

d∆k

dµ
< −(1− µ)−2x̄k−1 + (k − 1)(1− µ)−2ak−2∆k−1 + (1− µ)−1ak−2

d∆k−1

dµ

≤ −(1− µ)−2
(
x̄k−1 − (k − 1)ak−2∆k−1 + (k − 2)ak−2x̄k−1

)

< −(1− µ)−2(k − 1)
(
x̄k−1 − ak−2∆k−1

)

< −(k − 1)(1− µ)−1x̄k,

where the third inequality follows from ak−2 > 1.

Next, we show that for µ ∈ Λ there exists a stationary equilibrium with unique steady state

ys = 1. For µ ∈ Λ define the triplet {P (·), R(·), t(·)} as follows.

P (q) =





pm for q ∈ [0, ȳm]

pk for q ∈ (ȳk+1, ȳk] and k ∈ {m− 1, ..., 0}
(A-2)

t(q) =





ȳm−1 for q ∈ [0, x̄m],

ȳk−1 for q ∈ (x̄k+1, x̄k], k ∈ {m− 1, . . . , 2}
1 for q ∈ (x̄2, 1− µ]

(A-3)

R(q) =





(ȳm−1 − q)P (ȳm−1) + δR(x̄m−1) for q ∈ [0, x̄m],

(ȳk−1 − q)P (ȳk−1) + δR(x̄k−1) for q ∈ (x̄k+1, x̄k], k ∈ {m− 1, . . . , 2}
(1− q)v + δµv

1−δ for q ∈ (x̄2, 1− µ]

(A-4)

where pk = v− ρk(v− v) and ȳk = x̄k

1−µ , for k = 0, ..., m. The sequence {x̄k}m+1
k=2 has been defined

so that when the state is x̄k the monopolist is indifferent between selecting ȳk−1 and ȳk−2, i.e.
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defining π(y;x) = P (y)(y − x) + δ R((1 − µ)y) we have π(ȳk−1; x̄k) = π(ȳk−2; x̄k). Let hk(x) =

π(ȳk−1; x) − π(ȳk−2; x); then hk(x̄k) = 0 and dhk

dx = −P (ȳk−1) + P (ȳk−2) < 0. It follows that for

x < x̄k we have π(ȳk−1; x) > π(ȳk−2; x), and for x > x̄k we have π(ȳk−1;x) < π(ȳk−2;x). Since

π(y; x) is strictly increasing in y on any of the intervals [0, ȳm], (ȳm, ȳm−1], ..., (ȳ1, 1] it follows that

that t(x) is the smallest solution to (3). It is straightforward to verify that (4) is also satisfied, so

{P (·), R(·), t(·)} is a stationary triplet for µ ∈ Λ.

Finally, consider any stationary equilibrium whose unique steady state is ys = 1, and let

{P0(·), R0(·), t0(·)} be the associated stationary triplet. We claim that {P0(·), R0(·), t0(·)} =

{P (·), R(·), t(·)}.
First, we show that P0(y) = P (y) for all y ∈ (q̂, 1]. Indeed, since q̂ is not a steady state, it

must be that P (q̂) < v. Otherwise, we would have P (q) = f(q) = v for all q ≤ q̂. But as shown in

the proof of Lemma 1, this would imply that q̂ is a steady state. Now P (q̂) < v and the existence

of ε > 0 s.t. P (q) > v for all q ∈ (q̂, q̂ + ε) would yield the same contradiction as in the last two

paragraphs of the proof of Lemma 1. We conclude that P0(q) = v for all q ∈ (q̂, 1].

Next, we claim that t0(x̄1) = 1. Indeed, P (q̂) < v and (4) applied to q = q̂ imply that

P0(t0(x̄1)) < P0(q̂). Since P0(·) is non-increasing, we therefore must have t0(x̄1) > q̂. Finally,

since P0(q) = v for all q > q̂, (3) implies t0(x̄1) = 1.

By the left-continuity of t0(·), there exists ε > 0 s.t. t0(x) = 1 for all x ∈ (x̄1 − ε, x̄0].

Furthermore, (4) implies P0(y) = ρv + (1 − ρ)v for y ∈ (ȳ1 − ε
1−µ , ȳ1]. Now define x̄2 = inf{x :

t0(x) = 1}. We claim that x̄2 = x̄2, so P0( x
1−µ ) = P ( x

1−µ ) and t0(x) = t(x) for x ∈ (x̄2, x̄1]. To

see this, recall that we shown above that π(ȳ1; x) < π(ȳ0, x) for x > x̄2, and π(ȳ1; x) > π(ȳ0, x) for

x < x̄2. Since π0(ȳ1; x) = π(ȳ1; x) and π0(ȳ0, x) = π(ȳ0, x) we must have x̄2 = x̄2.

The same argument can now be applied inductively. Suppose (A-2)-(A-4) hold for all i = 0, ..., k.

Then since we must have P0(ȳk+1) < v, we know that P0(ȳk+1) > P0(t0(x̄k+1)) and so t0(x̄k+1) >

ȳk+1. Since x̄k+1 = inf{x : t0(x) = ȳk−1} condition (A-3) implies that t0(x̄k+1) = ȳk. Similarly to

the previous paragraph, we can then use left-continuity of t0(·) to define x̄k+2 = inf{x : t0(x) = ȳk},
and conclude that x̄k+2 = x̄k+2. Q.E.D.

Proof of Corollary 1:

By the definition of x̄k, for k ≥ 3 we have limz→0 x̄k = limz→0(x̄k−1 − (x̄k−2 − x̄k−1) v
v−v ).

Hence, limz→0(x̄k−1 − x̄k) > limz→0(x̄k−2 − x̄k−1). By induction,

lim
z→0

(x̄k−1 − x̄k) > lim
z→0

(x̄k−2 − x̄k−1) > q̂ − x̄2 =
(1− q̂)v
v − v

.
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It follows that as z tends to zero, it takes the monopolist at most m̂ ≤ v−v
(1−q̂)v + 1 steps to sell to

all consumers. Q.E.D.

Proof of Theorem 2:

Let x̃0 = (1 − µ)q̂ and iteratively define the sequence {x̃k}∞k=0 by x̃k = p̃k−1x̃k−1
µv+(1−µ)p̃k−1

, where

p̃k = (1 − ρk)v + ρkv. Observe that x̃0 < x̃1 < · · · . If x∞ = limk→∞ x̃k ≥ 1 − µ, then set

m = sup{k : x̃k < 1− µ} and redefine x̃m+1 = 1− µ. Let ỹk = x̃k

1−µ , and define the triplet:

P (q) =





v ∀q ∈ [0, q̂]

p̃k ∀q ∈ (ỹk−1, ỹk] and k = 1, . . . , m + 1

t(q) =





q̂ ∀q ∈ [0, x̃1]

ỹk−1 ∀q ∈ (x̃k−1, x̃k] and k = 2, . . . , m + 1
(A-5)

R(q) =





(
δµq̂
1−δ + (q̂ − q)

)
v ∀q ∈ [0, x̃1](

µỹk−1
1−δ − (q − x̃k−1)

)
p̃k−1 ∀q ∈ (x̃k−1, x̃k] and k = 2, . . . ,m + 1

If x∞ = limk→∞ x̃k < 1−µ, define R̃(x) =
(

µx̃k−1
(1−δ)(1−µ)−(x− x̃k−1)

)
p̃k−1, for x ∈ (x̃k−1, x̃k] and

k ≥ 1. Set x∗ = max{x ∈ [(1 − µ)q̂, x∞] : R̃(x) ≥ R1(x)}, where R1(q) =
(

δµ
1−δ + (1 − q)

)
v,

and let m be such that x∗ ∈ (x̃m, x̃m+1]. To see that m exists note that R̃(x∞) − R1(x∞) =

( µx∗

(1−δ)(1−µ) − [ δµ
1−δ + (1 − x∗)])v < 0 whenever x∞ < 1 − µ, so we have x∗ < x∞. Furthermore

the definition of µ implies that x∗ ≥ (1 − µ)q̂, with strict inequality when µ > µ. Next, redefine

x̃m+1 = x∗, and define the triplet:

P (q) =





v ∀q ∈ [0, q̂]

p̃k ∀q ∈ (ỹk−1, ỹk] and k = 1, . . . , m + 1

v ∀q ∈ (ỹm+1, 1]

t(q) =





q̂ ∀q ∈ [0, x̃1]

ỹk−1 ∀q ∈ (x̃k−1, x̃k] and k = 2, . . . , m + 1

1 ∀q ∈ (x̃m+1, 1− µ]

(A-6)

R(q) =





(
δµq̂
1−δ + (q̂ − q)

)
v ∀q ∈ [0, x̃1](

µỹk−1
1−δ − (q − x̃k−1)

)
p̃k−1 ∀q ∈ (x̃k−1, x̃k] and k = 2, . . . ,m + 1

(
δµ

1−δ + (1− q)
)
v ∀q ∈ (x̃m+1, 1− µ]

Let us now show that the stationary triplets defined above satisfy (3). We will consider the case

x∞ < 1−µ; the proof for the case x∞ ≥ 1−µ is similar. Note that π(y;x) is strictly increasing in
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y on any of the intervals [0, ỹ0], (ỹ0, ỹ1], ..., (ỹm+1, 1], so T (x) ⊂ {ỹ0, ...ỹm+1, 1}. Furthermore, the

sequence {x̃k} is constructed such that when the state is x̃k the monopolist is indifferent between

selecting ỹk−1 and ỹk, i.e. π(ỹk−1; x̃k) = π(ỹk; x̃k). Let hm+1(x) = π(1; x) − π(ỹm;x), and for

k ≤ m let hk(x) = π(ỹk; x)−π(ỹk−1; x). Then hk(x̃k) = 0 for all k, dhm+1
dx = −(v− p̃k−1) > 0, and

dhk

dx = −(p̃k − p̃k−1) > 0 for k ≤ m. Hence for all k we have hk(x) ≶ 0 as x ≶ x̃k. We conclude

that t(x) solves (3). It is straightforward to verify that (4) is also satisfied, so {P (·), R(·), t(·)} is

a stationary triplet for µ ≥ µ.

Finally, let {P0(·), R0(·), t0(·)} be the triplet associated with some stationary equilibrium having

q̂ as a steady state. We will show that {P0, R0, t0} is unique, and hence must equal {P, R, t}. Define

p̆1 = sup
q>q̂

P0(q).

Suppose first that p̆1 = v. Then P0(q) = v for q ∈ (0, q̂] and P0(q) = v for q ∈ (q̂, 1], so P0(·) is

uniquely determined. Now for q > q̂ equation (4) implies (1−ρ)v+ρP0(t0((1−µ)q)) = P0(q) = v so

we must have t0(x) > q̂ for x > (1−µ)q̂. We conclude that t0(x) = 1 and R0(x) =
(

δµ
1−δ +(1−x)

)
v

for x ∈ ((1 − µ)q̂, 1 − µ]. Furthermore, since q̂ is a steady state, we also have t0(x) = q̂ and

R0(x) =
(

δµq̂
1−δ + (q̂ − q)

)
v, for x ∈ [0, (1− µ)q̂]. Hence {P0, R0, t0} is uniquely determined. Note

that this case is characterized by µ = µ, for at the state (1−µ)q̂ the monopolist must be indifferent

between selecting y = q̂ and y = 1.

Next, suppose that p̆1 > v. Then we claim that p̆1 = p̃1. To prove this claim, we will show that

there exists ε > 0 s.t. t0((1−µ)q) = q̂ for all q ∈ (q̂, q̂+ε]. Observe first that t0((1−µ)q) < q for all

q ∈ (q̂, 1] s.t. P0(q) > v. Indeed, t0((1− µ)q) ≥ q would imply that P0(t0(1− µ)q) ≤ P0(q), and so

(4) would yield P0(q) = (1−ρ) v+ρP0(t0(1−µ)q) ≤ (1−ρ) v+ρP0(q), or P0(q) ≤ v. Now pick some

q0 ∈ (q̂, 1] with P0(q0) > v and iteratively define qk = t0((1− µ)qk−1). If there existed no such ε,

then {qk} would be a decreasing sequence bounded below by q̂. Then P0(q0) = (1−ρk)v +ρkP (qk)

would yield limk→∞ P0(q0) = v, contradicting that P0(q0) > v.

Now let q̃1 = max{x ≤ 1− µ : t0(x) = q̂}; we will show that q̃1 = x̃1. There will be three cases.

First, suppose that q̃1 = 1− µ. Then P0(q) = p̃1 for all q ∈ (q̂, 1], R0(x) = R̃(x) and t0(x) = q̂

for all x ∈ [0, 1 − µ], so {P0, R0, t0} is uniquely determined. In this case we have x̃1 = 1 − µ and

m = 0.

Next, let q̃1 < 1 − µ. Define p̆2 = sup{P0(q)|q > q̃1
1−µ}, and consider the case where p̆2 = v.

Then as above, we have P0(q) = v for q ∈ ( q̃1
1−µ , 1], R0(x) = R1(x) and t0(x) = 1 for x ∈ (q̃1, 1−µ].

Since R0(x) = R̃(x) for all x < q̃1, the continuity of R0 at x = q̃1 then implies that R̃(q̃1) = R1(q̃1),

i.e. q̃1 = x∗ = x̃1.

30



Finally, let q̃1 < 1− µ and p̆2 > v. Then we claim that p̆2 = p̃2. Indeed, as above we can show

that there exists ε > 0 s.t. t0(q) = q̃1
1−µ for all q ∈ (q̃1, q̃1 + ε], establishing the claim. Next, we

show that q̃1 = x̃1. Define V (x) = π(q̂; x) − µp̃1x
(1−µ)(1−δ) . Then since t0(x) = q̂ for x ≤ q̃1, and

t0(q) = ỹ1 for all q ∈ (q̃1, q̃1 +ε], we must have V (q̃1) = 0. Furthermore, the definition of x̃1 implies

V (x̃1) = 0. Since V ′(x) < 0 we must have q̃1 = x̃1.

The same argument can now be applied inductively. Given q̃k = max{x : t0(x) = q̃k−1}, it

must be that q̃k = x̃k. In the case where q̃k = 1 − µ we have x̃k = 1 − µ and m = k − 1. When

q̃k < 1−µ and p̆k+1 = v then q̃k = x∗ = x̃k and m = k−1. Finally, when p̆k+1 > v then m > k−1

and q̃k+1 = max{x : t0(x) = q̃k}.
We conclude that in each case {P0, R0, t0} coincides with a single instance of (A-5) and (A-6).

Since each µ uniquely defines the sequence {x̃k}∞k=0, there is at most one triplet {P, R, t}, and hence

at most one triplet {P0, R0, t0} associated with any µ ≥ µ. Q.E.D.

Proof of Corollary 2:

By construction we have P (ỹk) = p̃k = (1− ρk)v + ρkv and ỹk = p̃k−1ỹk−1
µv+(1−µ)p̃k−1

, so

P (ỹk)− P (ỹk−1)
ỹk − ỹk−1

=
−ρk−1(1− ρ)(v − v)

ỹk−1(
p̃k−1

µv+(1−µ)p̃k−1
− 1)

.

Using pk−1 − v = ρk−1(v − v), this can be rewritten as

P (ỹk)− P (ỹk−1)
ỹk − ỹk−1

=
−(1− ρ)(p̃k−1 − µ(p̃k−1 − v))

µỹk−1
.

As z tends to zero, ỹk − ỹk−1 converges to zero. Hence, the above equation converges to P ′(y)y =

−λ+r
λ P (y). Solving this differential equation gives P (y) = k0y

−λ+r
λ . Since P (q̂) = v, the partic-

ular solution has k0 = vq̂
λ+r

λ . Next, upon dividing both sides by z the equation ỹk − ỹk−1 =

µỹk−1(
p̃k−1−v

µv+(1−µ)p̃k−1
) converges to ẏ = λy P (y)−v

P (y) = λy(1− v
v ( q̂

y )
λ+r

λ ). Q.E.D.

Proof of Theorem 3:

Suppose there is a stationary equilibrium with y∗ < q̂ as a steady state. Then by the proof of

Lemma 2 we have P (y) = v for all y ≤ y∗, P (y) < v for y ∈ (y∗, q̂], and P (y) = v for y ∈ (q̂, 1].

This implies that over the interval (y∗, 1) the stock is strictly increasing, i.e. t((1 − µ)y) > y (see

the argument at the end of the proof of Theorem 4). It follows that over the interval (y∗, 1] the

stationary triplet must coincide with the Coase Conjecture equilibrium triplet.

First, we show that the existence of a reputational equilibrium implies µ ∈ (µ, µ̄]. To establish

µ > µ, observe that since P (y) = v for all y ≤ y∗ we must have t((1 − µ)y) = y∗ for all y ≤ y∗,
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and hence R((1− µ)y∗) = µy∗v
1−δ . Furthermore, continuity of the function R implies that y∗ solves

ς(y) = 0, where ς(y) = µyv
1−δ −RC((1−µ)y) and RC(·) is the Coase Conjecture profit function. Now

the definition of µ implies ς(q̂) < 0 for all µ < µ. As ς(·) is strictly increasing, the existence of

y∗ < q̂ therefore requires µ > µ.

To establish that µ ≤ µ̄, we provide a proof by contradiction. Suppose that for some µ > µ̄

a reputational equilibrium exists. Define K = min{k : x̄j < x̄j−1 for j ≤ k}. Since the Coase

Conjecture equilibrium does not exist for µ > µ̄, we necessarily have x̄K > 0. Furthermore,

since x̄K+1 ≥ x̄K , when the initial state is x̄K the monopolist prefers selling to ȳK to selling to

ȳK−1, i.e. µpK ȳK + δRC(x̄K) ≥ RC(x̄K) where RC(x̄K) is given by (A-4). This implies that

ς(ȳK) = µpK ȳK

1−δ − RC(x̄K) > 0; since ς(·) is strictly increasing we would have to have y∗ < ȳK .

But this is impossible, as the construction (A-2)-(A-4) cannot be extended to initial states below

x̄K .

Second, we show that a reputational equilibrium exists for any µ ∈ (µ, µ̄]. For such µ we have

ς(q̂) > 0. Because ς(0) = −R(0) < 0, and ς(·) is strictly increasing, there exists a unique y∗ ∈ (0, q̂)

such that ς(y∗) = 0. Now let P (y) = v for y ∈ [0, y∗], and R(x) = (y∗−x)v + δ µy∗v
1−δ and t(x) = y∗

for x ∈ [0, (1− µ)y∗], and let {P,R, t} be given by (A-2)-(A-4) elsewhere. It is then easily checked

that {P,R, t} is a stationary triplet.

Next, we prove that µ̄ > µ for all δ > 0. We will establish that if µ ≤ µ then the sequence

{x̄k} is strictly decreasing and m is finite. The continuity of x̄k in µ then implies that the same

property holds in a right neighborhood of µ, so µ̄ > µ.

First, we show that x̄2 < x̄1 holds for any µ ≤ µ. Indeed, since µ ≤ µ iff µq̂v
1−δ ≤ π(ȳ0; x̄1),

we have h2(x̄1) = π(ȳ1; x̄1) − π(ȳ0; x̄1) = P (q̂)µq̂ + δπ(1; x̄1) − π(1; x̄1) ≤ P (q̂)µq̂ − (1 − δ) µq̂v
1−δ =

−(v − P (q̂))µq̂ < 0. Since h2(x̄2) = 0 and dh2
dx < 0 we must have x̄2 < x̄1.

Next, we show that there exists ∆ > 0 such that x̄3 < x̄2 −∆. Indeed, h3(x̄2) = π(ȳ2; x̄2) −
π(ȳ1; x̄2) = P (ȳ2) µx̄2

(1−µ) +δπ(ȳ1; x̄2)−π(ȳ1; x̄2) = P (ȳ2) µx̄2
(1−µ) − (1−δ)π(ȳ0; x̄1)− (1−δ)(x̄1− x̄2)v ≤

P (ȳ2) µx̄2
(1−µ) − (1 − δ) µq̂v

1−δ − (1 − δ)(x̄1 − x̄2)v < −(v − P (ȳ2)) µx̄2
(1−µ) − (1 − δ)(x̄1 − x̄2)v < 0. The

first inequality follows because µ ≤ µ, the second one because x̄2 < x̄1 = (1− µ)q̂. Since h′3(x) =

−P (ȳ2) + P (ȳ1) is independent of x, it follows that x̄2 − x̄3 = h3(x̄2)
h′3

> (1−δ)(x̄1−x̄2)v
P (ȳ2)−P (ȳ1)

= ∆ > 0.

Finally, we establish that for each k ≥ 3 we have x̄k−1 − x̄k ≥ ∆, implying m ≤ 2 + 1−x̄2
ε .

We have shown above that the result is true at k = 3. Next, we show that if the result for some

k ≥ 3 then it also holds for k + 1. Indeed, π(ȳk−1; x̄k) ≥ π(ȳ0; x̄k) = (1 − x̄k)v + δR(1 − µ) =

π(ȳ0; x̄1) + (x̄1 − x̄k)v. Therefore, following the argument in the previous paragraph, we have
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hk+1(x̄k) < −(1 − δ)(x̄1 − x̄k)v < 0. Since h′k+1(x) = −P (ȳk) + P (ȳk−1) is independent of x, and

since hk+1(x̄k+1) = 0 we obtain x̄k − x̄k+1 = hk+1(x̄k)
h′k+1

> (1−δ)(x̄1−x̄k)v
P (ȳk−1)−P (ȳk) > ∆. Q.E.D.

Proof of Lemma 3:

Define ξk = x̄k

x̄k−1
. It then follows from (A-1) that

ξk = (1− µ)−1
(
1− (ξ−1

k−1 − 1)δ−(k−2)ψk

)
, (A-7)

where ψk = v
(1−µ)k−2(v−v)

> 1. Fix µ ≤ µ̄(δ) so that ξk(δ) < 1 for all k = 1, ..., m + 1. Next,

observe that ξ2 is independent of δ. Thus, (A-7) implies that ξ3 is increasing in δ, i.e. ξ3(δ) < 1

implies ξ3(δ′) < ξ3(δ) < 1 for all δ′ < δ. Next, suppose that ξk−1(δ′) < ξk−1(δ) < 1; it then follows

from (A-7) that ξk(δ′) < ξk(δ) < 1. We conclude that if µ ≤ µ̄(δ) then µ < µ̄(δ′) for all δ′ < δ, so

µ̄ is a decreasing function of δ.

Next, we argue that µ̄(1) > 0. Indeed, when δ = 1 and µ = 0 the difference equation (A-1)

reduces to

x̄k − x̄k−1 = (x̄k−1 − x̄k−2)ψ,

where ψ = v
v−v > 1. Hence x̄k − x̄k−1 = ψk−1(x̄2 − x̄1) < 0. Let m be such that x̄m < 0 ≤ x̄m−1.

Then since x̄k is a continuous function of µ, it follows that there exists µ′ > 0 such that for all

µ ∈ [0, µ′) we have x̄k − x̄k−1 > 0 and x̄m < 0 ≤ x̄m−1. Q.E.D.

Proof of Theorem 4:

For all i = 1, ..., N − 1, analogously to the two-step case, given qi as a steady state construct a

sequence {x̃i
k}∞k=0 to the right of qi as follows. Let x̃i

0 = (1− µ) qi and let P̃ i (q) = (1− ρ) f (q) +

ρf (qi) for q ≥ qi. Given P̃ i (·), let x̃i
1 be the highest state such that the seller prefers selecting

y = qi to selecting y ∈ (qi, ỹ
i
1]. For k ≥ 2 let t̃i (q) be the seller’s optimal choice over (ỹi

k−2, ỹ
i
k−1]

and redefine P̃ i (q) = (1− ρ) f (q) + ρf
(
t̃i (q)

)
for q ≥ ỹi

k−1. Finally, let x̃i
k be the highest state

such that the seller prefers selecting y ∈ (ỹi
k−2, ỹ

i
k−1] to selecting y ∈ (ỹi

k−1, ỹ
i
k]. Let R̃i (q) be the

seller’s payoff function associated with P̃ i (q) .

Also analogously to the two-step case, given qi as a steady state construct a sequence {x̄i
k}

to the left of qi as follows. Let x̄i
0 = (1− µ) qi and let P̄ i (q) = (1− ρ) f (q) + ρf (qi) for q ≤ qi.

Given P̄ i (·), let x̄i
1 be the smallest state such that the seller prefers selecting y = qi to selecting

y ∈ (ȳi
1, qi−1]. For k ≥ 2 let t̄i (q) be the seller’s optimal choice over (ȳi

k−1, ȳ
i
k−2] and redefine

P̄ i (q) = (1− ρ) f (q) + ρf
(
t̄i (q)

)
for q < ȳi

k−1. Finally, let x̄i
k be the smallest state such that the

seller prefers selecting y ∈ (ȳi
k−1, ȳ

i
k−2] to selecting y ∈ (ȳi

k, ȳi
k−1]. Let mi be the largest value of k
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such that 0 ≤ x̄i
j < x̄i

j−1 for all j ≤ k, and let R̄i (q) be the seller’s payoff function associated with

P̄ i (q).

Let A0 = {i| limk→∞ x̃i
k ≥ 1 − µ}. If A0 = φ, let qi0 = 1. Otherwise, let i0 = min A0. Then

define P (q) = P̃ i0 (q) for q > qi0 . Also let R (q) and t (q) be the equilibrium value function and

policy function associated with P (q).

(P) Now we will construct P (q) for q ≤ qi0 . Define i1 such that limk→∞ x̃i1
k ≥ limk→∞ x̃i

k

for all i < i0. Note that limk→∞ x̃i1
k > (1− µ) qi0−1 because limk→∞ x̃i0−1

k > (1− µ) qi0−1.

If R̄i0 ((1− µ) qi0−1) < R̃i1 ((1− µ) qi0−1), let q′ be such that R̄i0 ((1− µ) q′) = R̃i1 ((1− µ) q′),

and set P (q) = P̄ i0 (q) for q ∈ (q′, qi0 ] and P (q) = P̃ i1 (q) for q ∈ (qi1 , q
′]. Now return to

(P) with i1 taking the role of i0. (P’) If R̄i0 ((1− µ) qi0−1) ≥ R̃i1 ((1− µ) qi0−1) a proof simi-

lar to the one showing µ < µ̄ in the two-step case yields x̄mi0 ≤ qi0−2. Hence, P̄ i0 (q) exists

for q ∈ (qi0−2, qi0−1]. Define i2 such that limk→∞ x̃i2
k ≥ limk→∞ x̃i

k for all i < i0 − 1. If

R̄i0−1 ((1− µ) qi0−2) < R̃i2 ((1− µ) qi0−2), let q′ be such that R̄i0−1 ((1− µ) q′) = R̃i2 ((1− µ) q′),

and set P (q) = P̄ i0−1 (q) for q ∈ (q′, qi0−1] and P (q) = P̃ i2 (q) for q ∈ (qi2 , q
′]. Now return to (P)

with i2 taking the role of i0. If R̄i0−1 ((1− µ) qi0−2) ≥ R̃i2 ((1− µ) qi0−2) then return to (P’) with

i2 taking the role of i1 and qi0−2 taking the role of qi0−1. Q.E.D.

Proof of Theorem 5:

(i) Let π∗ = maxq∈[0,1] qf(q) be the monopoly profit, and suppose that π∗ > qNf(qN ) = vN .

Define µ as the solution to the equation f(µ) = 0, where f(µ) = µπ∗

1−δ − (1− (1−µ)qN−1)vN − δµvN

1−δ .

Then since f(1) = π∗−vN

1−δ

∗
> 0 and since f(0) = −(1 − qN−1)vN < 0, we have 0 < µ < 1.

Furthermore, note that y ∈ [0, qN−1] and µ < µ imply µyf(y)
1−δ < (1− (1− µ)y)vN + δµvN

1−δ . Suppose

that µ < µ and that there existed a stationary equilibrium with steady state ys ∈ [0, qN−1]. Let ŷ

be be the largest such steady state. Then when the state is q = (1−µ)ŷ the monopolist would earn
µŷf(ŷ)
1−δ . If instead the monopolist were to select y = 1 and remain there forever after, she would

earn (1−(1−µ)ŷ)vN + δµvN

1−δ , which exceeds µŷf(ŷ)
1−δ for µ < µ. We conclude that y = 1 is the unique

steady state when µ < µ. Thus the Coase Conjecture equilibrium is the unique equilibrium.

(ii) Given a stationary triplet, we say that a steady state ys is reachable from (1− µ) q∗ if

limn→∞ gn ((1− µ) q∗) = ys, where g (x) = (1− µ) t (x). Note that a reachable steady state from

(1− µ) q∗ is the smallest steady state above q∗. Define q∗1 = min arg maxqi>q∗ qif (qi).

First we claim that there exists µ̄1 < 1, such that q∗1 cannot be a reachable steady state from

(1− µ) q∗ for any µ > µ̄. Suppose not; let P (q) be the acceptance function associated with some
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stationary equilibrium having q∗1 as a reachable steady state. Then for x ∈ [(1− µ) q∗, (1− µ) q∗1 ],

it must be the case that t (x) /∈ (q∗, q∗1). Indeed, let q∗ = qi−K < ... < qi = q∗1 , and suppose that

K > 1. Analogously to the two-step case construct a sequence {x̄k}∞k=0 starting at the steady state

q∗1 , i.e. x̄0 = (1− µ) q∗1 . First we show that t (x) 6= qi−1. If t (x) = qi−1 then by the definition

of q∗1 = qi we would have x̄1 = (1− µ) qi−1 and x̄2 = qi−1vi−1−qivi

vi−1−vi
≤ 0, yielding a contradiction

t (x) = qi. Next, for K > 2 we show that t (x) 6= qi−2. Since q∗1 is a reachable steady state, we

must have t ((1− µ) q) > q for q < q∗1 . Thus t ((1− µ) qi−2) > qi−2. Since t ((1− µ) qi−2) 6= qi−1

we have t ((1− µ) qi−2) = qi and P ((1− µ) qi−2) = (1− ρ) vi−2+ρvi. If t (x) = qi−2 then we would

have x̄1 = (1− µ) qi−2 and x̄2 = qi−2vi−2−qivi

vi−2−vi
≤ 0, a contradiction. Using a similar argument we

conclude that t (x) /∈ {qi−K+1, ..., qi−1}. Hence, P ((1− µ) q∗) = (1− ρ) vi−K + ρvi. Define µ̄1 as

the solution to x̄2 = qi−Kvi−K−qivi

vi−K−vi
= (1− µ̄1) qi−K . Note that µ̄1 = (q∗1−q∗)f(q∗1 )

q∗(f(q∗)−f(q∗1))
< 1. Then for

µ > µ̄1, (1− µ) qi−K < x̄2 and t((1− µ) qi−K) ≤ t (x̄2) ≤ qi−K , contradicting that q∗1 is a reachable

steady state from (1− µ) q∗.

Secondly given q∗1 , ..., q∗k−1 define q∗k = min arg max{qif (qi) : qi > q∗ and qi /∈ {q∗, q∗1 , ..., q∗k−1}}
and let q′ = max{qi < q∗k : qif (qi) > q∗kf (q∗k)}. Mimicking the argument above, we can show for any

x ∈ [(1− µ) q′, (1− µ) q∗k], it must be the case that t (x) /∈ (q′, q∗k). Letting µ̄k = (q′−q∗k)f(q′)
q′(f(q′)−f(q∗k))

< 1,

it follows that for any µ > µ̄k, q∗k is not a reachable steady state from (1− µ) q∗.

Since the inductive step stops after finitely many iterations, we conclude that no qi > q∗ can be

a reachable steady state from (1− µ) q∗ when µ > µ̄ = max {µ̄k}. Therefore t ((1− µ) q∗) ≤ q∗,

implying P (q∗) ≥ f (q∗). We conclude that when µ > µ̄, we have R (0) ≥ q∗f (q∗)+ δµq∗f(q∗)
1−δ . Since

the outcome path of any stationary equilibrium can always be duplicated in a rental equilibrium

by selecting an appropriating sequence of rentals, and since the rental profit is uniquely maximized

by charging f (q∗), we also must have R (0) ≤ q∗f (q∗) + δµq∗f(q∗)
1−δ . We conclude that R (0) =

q∗f (q∗) + δµq∗f(q∗)
1−δ and that t (q) = q∗ for all q ≤ (1− µ) q∗ . Thus in any stationary equilibrium

q∗ is the unique steady state reachable from 0.

(iii) We start by constructing µL ∈ (µ, µ̄) such that at µL there exists a reputational equilibrium

that results in the monopoly outcome (from q = 0). For this purpose, define the fictitious demand

curve f̃(q) = min{f(q), f(qk+1)}, where qk = q∗ for some k < N . By Theorem 4 there exists a

stationary equilibrium for the demand curve f̃ . Let g(µ) denote the profit in this equilibrium when

the initial state equals (1− µ)q∗. Note that since the equilibrium constructed in Theorem 4 is the

most profitable one, g(µ) can only jump up as µ increases, and hence is upper semicontinuous and

continuous from the right. Additionally, let h(µ) = µq∗f(q∗)
1−δ be the profit from serving replacement
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demand when monopoly is a steady state. Note that h(·) is continuous in µ, and that h(0) < g(0)

and h(1) > g(1), so Im(g) ⊂ Im(h). Define r(µ) = h−1(g(µ)). Then r : [0, 1] → [0, 1], and so by

the Lemma in Roberts and Sonnenschein (1976) has a fixed point µL. Furthermore, it follows from

right continuity that g(µ) < h(µ) in a right neighborhood of µL.

We now claim that when the demand curve is f(·) and µ = µL there exists a stationary

equilibrium in which the monopolist earns µLq∗f(q∗)
1−δ when the state is (1 − µ)q∗. Indeed, let

P (q) = (1 − ρ)f(q) + ρf(q∗) for q ≤ q∗, and for q > q∗ let P (q) be given by the one computed

in Theorem 4 for the demand curve f̃(·). Then at q = (1 − µ)q∗ the monopolist is indiffer-

ent between staying at q∗ forever and moving beyond q∗, thereby earning the continuation profit

g(µL) = h(µL) = µLq∗f(q∗)
1−δ . Meanwhile, for q > (1−µ)q∗ the profits from going to q∗ and remain-

ing there ever after fall below the profits from going forward (see the argument following (A-4)) in

the proof of Theorem 1, so the equilibrium is a reputational one.

Next, we show that there exists µH > µL such that for every µ ∈ (µL, µH) there exists a

reputational equilibrium whose smallest steady state satisfies y∗ < q∗. Let {P0(·), R0(·), t0(·)}
denote the stationary equilibrium constructed in the proof of Theorem 4 when the demand function

is f̃(·). For all q ∈ [0, 1− µ] define R1(q) = maxy>q∗{P0(y)(y − q) + δR0((1− µ)y)), the maximal

profit attainable when the demand curve is f(·), the state is q, the monopolist is constrained to

select a state y > q∗, and the equilibrium {P0(·), R0(·), t0(·)} is played thereafter. Let t1(q) denote

the minimum element of the corresponding argmax, and let P1(q) = (1− ρ)f(q)+ ρP0(t1((1−µ)q).

Let R2(q) = maxy≤q∗{P1(y)(y−q)+δR1((1−µ)y)) the maximal profit when the acceptance function

is P1, and monopolist is constrained to select y ∈ [0, q∗], and let t2(q) be the corresponding policy

function. Finally, let ỹ = max{q ∈ [0, q∗] : R2(q) ≥ R1(q)}. Then provided ỹ < q∗, the triple

{P1(·), R1(·), t1(·)} defines a stationary equilibrium for q > ỹ (see Deneckere and Liang, 2006).

We now claim that there exists µ1
H > µL and ȳ ∈ (qk−1, q

∗) such that ỹ(µ) ≤ ȳ for all µ ∈
(µL, µ1

H). Let p∗ = (1−ρ)f(q∗)+ρf(qk+1); note that p∗ is an upper bound to P1(q) for all q > qk−1.

Consequently, H(q) = (q∗− (1−µ)q)p∗+ δR1((1−µ)q∗) ≥ R2(q). Observe now that at µ = µL we

have R1((1−µL)q∗) = R0((1−µL)q∗) = g(µL) = h(µL) = µLq∗f(q∗)
1−δ = H(q∗)+µLq∗(f(q∗)−p∗) >

H(q∗). Since R1 and H are continuous in µ, there exists µ1
H > µL and ȳ ∈ (qk−1, q

∗) such that

R1(ȳ) ≥ H(ȳ) ≥ R2(ȳ), and hence ỹ ≤ ȳ for all µ ∈ (µL, µ1
H).

Finally, we establish that there exists µH ∈ (µL, µ1
H) such that µȳf(ȳ)

1−δ < R1((1 − µ)ȳ) for all

µ ∈ (µL, µH). Indeed, since R1((1−µL)q∗) = µLq∗f(q∗)
1−δ , and since R1(q) and µqf(q∗)

1−δ are decreasing

and increasing functions of q, respectively, we have µLȳf(ȳ)
1−δ < R1((1− µL)ȳ). The existence of µH
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then follows from the continuity of each of these functions in µ.

We conclude that for every µ ∈ (µL, µH) there exists a stationary equilibrium {P1(·), R1(·), t1(·)}
for states above ȳ such that R1((1 − µ)ȳ) > µȳf(ȳ)

1−δ and R1((1 − µ)q∗) < µqf(q∗)
1−δ , so there exists

y∗ ∈ (ȳ, q∗) for which R1((1−µ)y∗) = µy∗f(y∗)
1−δ . The acceptance function P (q) = (1−ρ)f(q)+ρf(y∗)

for q ≤ y∗ and P (q) = P1(q) for q > y∗ then defines a reputational equilibrium in which t(q) = y∗

for all q ≤ (1− µ)y∗ and t(q) = t1(q) for q > (1− µ)y∗.

(iv) Consider any stationary equilibrium with profit function R. Since q∗ cannot be a steady

state, we must have µq∗f(q∗)
1−δ < R ((1− µ) q∗). For q < q∗, we have µqf(q)

1−δ < µq∗f(q∗)
1−δ <

R ((1− µ) q∗) < R ((1− µ) q). Therefore no q < q∗ can be a steady state. Q.E.D.
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