
Imperfect durability and the Coase Conjecture

Raymond Deneckere *

and

Meng-Yu Liang**

This paper considers a market served by a monopolist who sells a durable goods that depreciates

stochastically over time. We show that there exist three types of stationary equilibria: a Coase

Conjecture equilibrium, a monopoly equilibrium and a reputational equilibrium. When the depre-

ciation rate is low, the Coase Conjecture equilibrium is the unique equilibrium. For intermediate

values of the depreciation rate, all three equilibrium types coexist. When the depreciation rate is

high, the monopoly equilibrium is the unique equilibrium. Consequently, when selling a good of

sufficiently low durability, the monopolist does not lose any of her monopoly power. Furthermore,

the steady state output in the reputational equilibrium falls below the monopoly quantity. Hence

in durable goods markets welfare losses due to monopoly power may be larger than in markets for

perishables.

1 Introduction

Durable goods make up a significant fraction of GNP and play an important role in the generation

and propagation of the business cycle. As a consequence, the special nature of durable goods

markets has drawn considerable interest from economists. One issue that has received a lot of

attention is whether a durable goods monopolist has the ability to exercise market power. Indeed,

Ronald Coase (1972) has argued that a monopoly seller of a perfectly durable good will be unable

to exercise any monopoly power unless she can precommit to a production schedule. Coase’s logic

is that a durable goods monopolist faces an irresistible temptation to keep on cutting her price in

order to further penetrate the market. Unless there is a limitation on the rate at which the good

can be produced, the competitive outcome will be achieved “in the twinkling of an eye” (Coase,
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1972).

Coase’s logic has proven to be extremely robust. Stokey (1981), Fudenberg, Levine and Tirole

(1985) and Gul, Sonnenschein and Wilson (1986) have formalized Coase’s intuition under the as-

sumption that the monopolist’s product has infinite durability. More precisely, this literature has

shown that in stationary equilibria the monopolist cannot make sales at prices significantly greater

than her marginal cost of production (or the lowest buyer valuation, whichever is higher), provided

the length of time that elapses between successive price setting periods is sufficiently small. Bond

and Samuelson (1984) have demonstrated that Coase’s logic extends to products of limited dura-

bility, by constructing a stationary equilibrium that satisfies the Coase Conjecture, even when the

durability is arbitrarily low.

Coase’s prediction presents somewhat of an empirical puzzle, as there does not seem to be any

systematic evidence that durable goods monopolists make less profits, or price at lower margins,

than their nondurable counterparts. For example, two of the most profitable monopolies in the

US, Microsoft in the market for software, and Intel in the market for microprocessors, sell durable

goods. Their prices also appear far above the marginal cost of production (which is near zero for

software).

Furthermore, if the Coase Conjecture forces significantly constrained the profitability of durable

goods manufacturers, we should observe a variety of responses aimed at restoring this profitability,

such as leasing, the adoption of most-favoured nation clauses (Butz, 1990) or significant reductions

in the durability of the product offered for sale (Bulow, 1986). While such responses do indeed

occur, their adoption seems less widespread than theory would predict.

This evidence also presents a theoretical challenge, as in markets served by durable goods mo-

nopolies or oligopolies, departures from the competitive outcome can only be explained by lack

of patience on the part of manufacturers (which seems hard to justify), the presence of myopic

consumers (which is only defensible for consumer durables, and seems to be at variance with avail-

able evidence (Chevalier and Goolsby, 2005)), the existence of commitment power (but then the

solution is time inconsistent), or the concern for reputation ((Ausubel and Deneckere (1989), Bond

and Samuelson (1987), but this requires nonstationary equilibria). Furthermore, the theoretical

prediction that the monopoly outcome obtains whenever the good is non-durable, yet the compet-

itive outcome results whenever the good is durable, no matter how quickly it depreciates, seems

unappealing.

In an interesting contribution, Karp (1996) provides a potential resolution to these puzzles.
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Karp constructs continuous time equilibria for a model with imperfect durability, and shows that

the monopolist can earn profits above the competitive level. However, since there always exists a

Coase Conjecture equilibrium in his model, proponents of Coase’s logic could still argue that there

should be no presumption that monopoly results in welfare losses, even in markets for products of

relatively low durability.

The current paper studies an infinite horizon discrete-time model of price setting by a monopolist

selling a good of finite durability. We establish that when the depreciation factor is sufficiently

high, a Coase Conjecture equilibrium never exists. More strikingly, above a certain threshold for

the depreciation factor, there is a unique stationary equilibrium, in which the monopolist charges

the monopoly price in every period. This equilibrium continues to exist even when the seller

becomes arbitrarily patient. Thus, when the product is of sufficiently low durability, the monopoly

outcome necessarily obtains. The intuition for this result runs as follows. Coase’s logic is that

with infinitely durable goods, the monopolist is always tempted to sell additional output until

every consumer has been served. However, when the product depreciates, old customers who value

the good considerably above average reenter the market whenever the product fails. When the

depreciation factor is sufficiently high, selling at a relatively high price to replacement demand is

more profitable than lowering the price in an effort to further penetrate the market.

When the good is of sufficiently high durability, we establish that the Coase Conjecture equilib-

rium is the unique equilibrium of our model. However, in this case we show that the manufacturer

has an incentive to reduce the durability of the product to a level sufficiently low to destroy the

Coase equilibrium. Thus, our model can potentially explain the empirical puzzle described above:

Either the inherent durability of the product is low enough that the manufacturer can fully exercise

his market power, or else the manufacturer can restore his margins and profitability through planned

obsolescence (or any of the other techniques described above). Indeed, the evidence suggests that

such practices are more prevalent when the inherent durability of the good is high.

For example, textbook publishers produce new editions of popular texts on an accelerated sched-

ule, in order to increase their economic depreciation (Waldman, 2003). In the software example

mentioned earlier, the physical durability of the product is essentially infinite, but sellers intro-

duce frequent new versions, which produces economic depreciation. Strong network externalities,

discontinuation of support for older versions, and the introduction of new file formats combine to

make old software essentially useless to most buyers. There is also evidence that short-term leas-

ing is prevalent for assets that are long lived (commercial aircraft, mainframe computers, copying
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machines). Finally Palacios-Huerta and Saracho (2004) report that industries selling products of

higher durability employ longer term managerial compensation schemes, that are more positively

sensitive to profits, and more negatively sensitive to sales, in order to give managers increased

commitment abilities.1

From a theoretical perspective, our paper contributes by developing a novel method for con-

structing stationary equilibria of the discrete-time game. Using this construction, we are able to

completely characterize the set of stationary equilibria for the special case where consumers’ valua-

tions take on only two possible values. We show that, depending upon the parameters, three types

of stationary equilibria can exist: a Coase Conjecture equilibrium, a monopoly equilibrium, and a

“reputational” equilibrium. The Coase Conjecture equilibrium exists for sufficiently low values of

the depreciation factor, and is characterized by a decreasing price path, and a unique steady state

equal to the competitive quantity. The monopoly equilibrium exists for sufficiently high values of

the depreciation factor, and has the seller charging the static monopoly price in every period. For in-

termediate values of the depreciation factor, all three equilibrium types coexist. In the reputational

equilibrium, the steady state quantity falls below the monopoly quantity. Were the monopolist to

increase sales beyond this level, equilibrium play would revert to the Coase Conjecture equilibrium.

An important message therefore emerges from our analysis: in markets for durable goods monopoly

power may result in higher margins and larger welfare losses than in markets for perishable goods.

For general “neoclassical” demand functions, our method for constructing stationary equilibria

still works, but a complete characterization of the set of stationary equilibria as a function of the

parameters becomes unwieldy. Nevertheless, we are able to provide an existence result, and show

that the qualitative properties of the two-step demand case generalize to this class.

Surprisingly, the literature on monopoly in markets for new products with imperfect durability

is relatively sparse, consisting mainly of contributions by Bond and Samuelson (1984,1987), Sobel

(1991) and Karp (1996). These papers overlap with ours to varying degrees, but none of them

provide a complete analysis of the set of stationary equilibria. We defer a detailed discussion of the

similarities and differences between the various models and their results to Section 6.

The rest of the paper is organized as follows. Section 2 describes a two-type model where

resale is allowed, and introduces the equilibrium concept. Section 3 characterizes the steady states
1Our results also admit an alternative interpretation of the evidence. We show that a monopoly equilibrium

always exists when players are sufficiently patient. Thus when this condition holds, durable goods producers need

not earn any less than their nondurable counterparts.
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of stationary equilibria. Section 4 describes the construction of the stationary equilibria, and

delineates when each type of equilibrium exists. Section 5 generalizes the analysis to general N-

step demand functions. Section 6 considers endogenous choice of durability. Section 7 discusses

the related literature, and Section 8 concludes. Important proofs are relegated to an Appendix; the

remaining proofs are available as a online Appendix (http://idv.sinica.edu.tw/mliang/Papers.htm).

2 The Model

Consider a market for an imperfectly durable good which depreciates stochastically along a con-

tinuous time path, but is offered for sale at discrete points in time, spaced a length of time z > 0

apart. The durable good is indivisible and provides either full services or no service at all. The

probability that the good is still working after a length of time t ∈ R+ equals e−λ t. Letting µ

denote the probability that the good depreciates within one period, we therefore have:

µ = 1 − e−λz (1)

The market is populated by a continuum of infinitely-lived consumers, indexed by q ∈ I = [0, 1].

All consumers are risk neutral and have the same discount rate r. Each consumer wishes to possess

at most one unit of the durable good.2 We assume that the flow benefit of the services consumer

q derives from owning one unit of the durable good is described by the following inverse demand

function:

F (q) =

⎧⎨
⎩

a, if q ∈ [0, q̂]

b, if q ∈ (q̂, 1]
, where a > b > 0 and 0 < q̂ < 1.

Our reason for initially focusing on the two-type case is twofold. First, in order to construct

stationary equilibria and analyze their properties, we use the method of ‘backward induction on

the state’, starting from any potential steady state. Unlike in the model without depreciation,
2We assume that a consumer’s value of posessing an extra unit is zero when the first unit is still working.

Nevertheless, consumers may still wish to hold more than one unit, so as to guard against the possibility that the

good would cease to perform before the next trading opportunity arises. However, if the length of the time period

is sufficiently small and the marginal cost of production is positive, consumers will never choose to do so. This is

because the expected value of holding a second unit converges to zero as the length of the time period shrinks to

zero.

When the lengh of the time period is large, the expected value of holding a second unit may exceed the marginal

cost of providing it. In this case, we assume that the storage cost for holding a second unit are infinite. Alternatively,

we could treat the demand for the second unit as a demand for the first unit by a fictitious consumer.
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this method only works for the finite type case. In addition, the two-type model allows us to

provide simple closed-form solutions for the equilibria, and to bring out the economics in the most

transparent way possible. We analyze the general N - type case in Section 5.

Let f(q) denote consumer q’s willingness to pay for the privilege of a one-time opportunity of

acquiring one unit of the durable good. That is,

f(q) =
∫ ∞

0

F (q)e−(λ+r)sds =

⎧⎨
⎩

v, for q ∈ [0, q̂]

v, for q ∈ (q̂, 1],
(2)

where v = a
r+λ and v = b

r+λ . Thus, if the price at time t is p, then by purchasing or selling a

unit of the durable good (and never transacting thereafter), consumer q can derive a net surplus of

e−rt(f(q) − p) or e−rt(p − f(q)), respectively.

A consumer is allowed to access the market as often as she wishes. Consumers seek to maximize

the present value of their expected net surplus over all possible trading decisions, as a function of

their holding status.

The market is served by a monopolist whose marginal cost of production, c, is constant and less

than b
r+λ . Without loss of generality, we normalize c to zero. The monopolist seeks to maximize

the net expected present value of profits, using the same discount rate as consumers, r.

Sales occur at times t = 0, z, 2z, . . . , nz, . . ., and neither the monopolist nor consumers are

allowed to trade at any time t ∈ (nz, (n + 1)z). We will refer to the time t = nz as “period n”.

The timing of play within each period is as follows. Before trade, the monopolist selects a price, p.

Then consumers can trade (buy or sell) with the monopolist at the price p, or choose not to trade.

After trade occurs, a time interval of length z elapses, after which play is repeated.

Note that the monopolist is allowed to repurchase some of the stock of the durable. However,

in the class of stationary equilibria (to which the analysis in the paper is confined) the monopolist

always has net positive sales in every time period, even when the price is rising over time. Hence,

all of our results hold for a model in which the monopolist is not allowed to buy back, and instead

a competitive second-hand market is operative at trade time in every period.3,4

3In this case, the monopolist’s maximization problem in equation (3) below becomes R(x) = maxy∈[x,1]{P (y)(y−
x) + δR((1 − µ)y)}.

4If the monopolist is not allowed to buy back, and no competitive second hand market exists, the game would be

much more complicated, as the state variable then becomes the distribution of current holdings, rather than just the

size of current stock. Importantly, the qualitative nature of the equilibria changes, as they necessarily become cyclical

whenever the good does not depreciate too quickly (Deneckere and Liang, 2005). However, the main message of the
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Following Gul, Sonnenschein and Wilson (1986), we are interested in stationary equilibria of

this game. For our context, we define a stationary equilibrium to be a subgame perfect equilibrium

in which consumers’ strategies in each period depend only on the current market price. Note that

this implies that a consumer’s decision on whether or not to hold the durable for the next period

is unrelated to his current holding status. Thus, in a stationary equilibrium a consumer’s holding

status after trade is described by a non-increasing left-continuous acceptance function P (·), with

consumer q choosing to hold a durable in the current period if and only if the monopolist’s current

price satisfies p ≤ P (q).

Since in our model the durable good depreciates randomly at the individual level, the set of

remaining buyers before trade, will (with probability one) not be an interval. However, stationarity

implies that the set of remaining buyers after trade is an interval of the form (q, 1].

The acceptance function P (·) acts as a static demand curve for the monopolist, who faces a

trade-off between less intertemporal price discrimination and delaying trade. Let x ≤ 1−µ denote

the total stock in the market before trade, and for x ∈ [0, 1 − µ] let R(x) denote the monopolist’s

net present value of profits when the acceptance behavior of consumers is governed by P (·); then

this trade-off is captured by the dynamic programming equation:

R(x) = max
y∈[0,1]

{P (y)(y − x) + δ R((1 − µ)y)} , (3)

where δ = e−rz is the discount factor between periods. To understand equation (3), note that

when the monopolist brings the state after trade to y by charging the price P (y), then her net

sales are given by y − x. The total stock in the market at the beginning of the next period will

be (1 − µ)y, since (by the law of large numbers) a fraction µ of the stock y will have depreciated.

The monopolist then receives the continuation value R((1 − µ)y)) with one period delay.

Let T (x) be the argmax correspondence in (3). By the generalized theorem of the maximum

(Ausubel and Deneckere (1989, p. 527)) and the contraction mapping theorem, there exists a

unique continuous function R(·) satisfying (3), and T (·) is a non-empty and compact-valued corre-

spondence. Furthermore, the supermodularity of the objective function in (3) implies that T (·) is a

non-increasing correspondence. Let t(x) = min T (x) denote the monopolist’s equilibrium choice.5

current paper survives: when the depreciation rate is sufficiently large monopoly is the unique equilibrium outcome,

and when the depreciation rate is sufficiently low, the Coase Conjecture equilibrium is the unique equilibrium.
5Since T (·) is non-decreasing, there are at most a countable number of points for which T (·) is multi-valued. It

follows from the consumer indifference equation (4) below that in equilibrium, in any period but the initial one, the

monopolist must select t(y), even when T (y) is not single-valued (for details, see Ausbel and Deneckere (1989)).
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Note that t(·) : [0, 1 − µ] → R+ is a left-continuous non-decreasing function.6 Let

ρ = δ(1 − µ).

In order for the consumer’s acceptance function to be consistent with consumer optimization, the

following indifference equation must hold:

f(q) − P (q) = ρ
(
f(q) − P (t((1 − µ)q))

)
, for all q ∈ [0, 1]. (4)

To interpret (4) observe that the above equation implies (1−ρ)f(q) = P (q)−ρP (t((1−µ)q)). The

right-hand side of this equation is the consumer’s cost of holding the durable for one period when

the monopolist’s current price is P (q).7 Meanwhile, for any consumer q′ the benefit of holding the

good for one period is (1 − ρ)f(q′), which is monotone in q′. Thus if q′ < q consumer q′ is willing

to hold the good for one period, while if q′ > q consumer q′ is willing to forego holding the good

for one period.

The triplet {P (·), R(·), t(·)} completely describes a stationary equilibrium. A stationary equi-

librium path has the following structure. In the initial period, the monopolist selects a price

P (y0) = P (t(0)) and all consumers q ≤ y0 purchase.8 At the beginning of the next period, a stock

x1 = (1 − µ)y0 remains, the monopolist selects a price P (y1) = P (t(x1)), and all consumers q ≤ y0

decide to hold the durable (either by purchasing, or holding on to the unit they currently hold).

This process continues until the stock reaches a steady state level ys, at which point the monopolist

ceases any attempt to further penetrate the market, and continues by fulfilling the replacement

demand µys.

3 Characterization of Steady States

Our method of constructing stationary equilibria and proving existence must overcome several

difficulties that are absent in the model with infinite durability. First, when there is depreciation,
6The left-continuity of t(·) follows from the upper hemi-continuity of T (·), the monotonicity of T (·) and the

definition of t(·).
7Indeed, if the consumer does not currently hold the good, he must purchase it at a price P (q). Next period, if

the good is still alive, which occurs with probability (1−µ), he can sell it at a price P (t((1−µ)q)). If the consumer

currently holds the good, then he could sell it at a price P (q), but by doing so would forego the opportunity of selling

it next period at the price P (t((1 − µ)q)), whenever the good is still alive. Thus, the right-hand side of (4) still

represents the correct opportunity cost of holding the good for one period.
8In the non-generic situation where T (0) is multiple valued, the monopolist may select randomly from the set

P (T (0)).
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the state need not always move forward (and indeed, in some equilibria it does not: in some periods

the monopolist sells less than the amount the stock depreciates). Secondly, there may be multiple

stationary equilibria that coexist for given values of the parameters, and even in a single equilibrium

there exist multiple steady states. Finally, the usual method of backward induction on the state

fails because given a stationary equilibrium on a subset of states, the extension to a stationary

equilibrium on the whole state space is not unique.

Our solution to these difficulties is to backward induct from a steady state, carefully keeping

track of any multiplicities in continuation that may exist. Depending on the case, backward

induction on the state leads us to extend forward in the state space, or backward in the state

space. To prove existence, we show that only three possible equilibria can arise, and characterize

the parameter values for which each type occurs.

To backward induct, we first need to characterize the set of steady states that can be associated

with any stationary equilibrium. Formally, a steady state is defined as a stock level ys > 0 satisfying

t((1 − µ)ys) = ys.9 Our first result establishes that such a steady state always exists.

Lemma 1 In any stationary equilibrium, there exists at least one steady state, i.e. there exists

ys ∈ (0, 1] such that t((1 − µ)ys) = ys. Furthermore, the steady state price must satisfy P (ys) =

f(ys).

The intuition behind the existence of a steady state is that because the monopolist’s objective

function is supermodular, the policy function t(x) is nondecreasing. As a consequence, optimal

trajectories must be monotone, which rules out cycles, and guarantees the existence of a steady

state.10

When selling a perfectly durable good, the monopolist cannot resist penetrating the market fully,

resulting in a steady state ys = 1. Indeed, if there existed a steady state ys < 1, the monopolist

could profitably deviate by cutting the price to v, thereby leading all remaining customers in the

interval (ys, 1] to purchase. However, when the good depreciates, the monopolist may choose not

to fully penetrate the market, leading to the existence of a steady state ys < 1. The reason the

monopolist may be willing to do this is that selling to replacement demand at a high price may be

more profitable than cutting the price in an effort to increase sales.
9We cannot have y = 0 as a steady state, since in any stationary equilibrium the monopolist can always guarantee

herself a positive profit by charging the price v in every period.
10Let h(x) = (1 − µ)t(x); then the optimal trajectory of the depreciated stock is {hn(x)}∞n=0. If h(x) > x, then

the sequence {hn(x)} is increasing, and if h(x) < x then it is decreasing.
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Lemma 2 below establishes that there are only three possible steady states: ys = 1, ys = q̂, and

ys = y∗ (where y∗ ∈ (0, q̂) will turn out to be uniquely defined). This considerably narrows down

our search for stationary equilibria. In particular, if ys = 1 is the smallest steady state, then we

end up with an equilibrium satisfying the Coase Conjecture. If ys = q̂ is the smallest steady state,

then from the initial state x = 0 the monopoly steady state is reached. An equilibrium with this

property will be referred to as a monopoly equilibrium. In a monopoly equilibrium, depending upon

the depreciation rate µ, there may or may not be an additional steady state at y = 1. However, we

will later establish that only one of these two possibilities can occur for any given set of parameters.

Finally, if ys = y∗ is the smallest steady state, we will obtain a reputational equilibrium.

Lemma 2 Consider any stationary equilibrium, and let S denote the associated set of steady states.

Then one of the following holds:

i) S = {1} (Coase Conjecture equilibrium);

ii) S = {q̂} or S = {q̂, 1} (Monopoly type equilibrium);

iii) S = {y∗, 1}, for some y∗ ∈ (0, q̂) (Reputational equilibrium).

The intuition for Lemma 2 is that in any given stationary equilibrium, the acceptance price at

a steady state ys must be equal to f(ys). Since there cannot exist two distinct steady states with

the same acceptance price, and since the number of steps in f equals two, at most two steady states

can coexist in equilibrium.

In the analysis of stationary equilibria below, we confine attention to the interesting case where

v < q̂v.11 When v > q̂v holds, there is a unique stationary equilibrium, in which the monopolist

charges v in every period. Indeed, the static monopoly price on the demand curve f(·) then equals

v, so a monopolist with perfect commitment power would charge v in every period. Since in any

stationary equilibrium consumers will accept the price v (see Fudenberg, Levine and Tirole (1985,

Lemma 2)), a monopolist without commitment power is then able to earn the commitment profits.

4 Characterization of Stationary Equilibria

In this section, we characterize the stationary equilibria corresponding to the three possible config-

urations of steady states enumerated in Lemma 2. We show that for a given demand curve and
11The hairline case in which v = q̂v can be handled as a limit of the case v < q̂v.
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fixed parameter values (δ, µ) there is at most one equilibrium of each type. We also characterize

the range of parameter values (δ, µ) for which each type occurs.

4.1 The Coase Conjecture Equilibrium

First, we consider equilibria in which ys = 1 is the unique steady state. In such equilibria, the

acceptance price of any buyer type with valuation v necessarily equals v.12 Furthermore, because

q̂ is not a steady state, we have t(x) = 1 for all x > (1 − µ)q̂ ≡ x̄1.13 Thus, the fact that ys = 1

is the unique steady state allows us to completely pin down the associated stationary triplet for

x ∈ (x̄1, 1 − µ] and y ∈ (q̂, 1].

*** Place Figure 1 here. Title: The Coase Conjecture Equilibrium ***

We then define a sequence of states {x̄k}m+1
k=2 such that when the state is x̄k the monopolist is

indifferent between selling to ȳk−1 = x̄k−1
1−µ at the price pk−1, and to ȳk−2 = x̄k−2

1−µ at the price pk−2,

where the sequence {pk}m+1
k=0 is defined such that the high valuation consumer is indifferent between

purchasing at pk now and waiting one period to purchase at pk−1. This construction is illustrated

in Figure 1: for y ∈ (ȳk, ȳk−1] we have P (y) = pk−1 and t((1 − µ)y) = ȳk−2. The arrows in the

figure indicate at any state y the direction of movement of the state. As illustrated, in the Coase

Conjecture equilibrium the movement is forward, i.e. t((1 − µ)y) > y.

Our proof establishes that a necessary and sufficient condition for a Coase Conjecture equilibrium

to exist is that the sequence {x̄k}m+1
k=1 be strictly decreasing and satisfy x̄m+1 < 0 ≤ x̄m. We also

establish that this condition holds if (and only if) µ falls below a threshold level µ̄. We therefore

have:

Theorem 1 There is at most one Coase Conjecture equilibrium.14 This equilibrium exists if and

only if µ < µ̄, for some 0 < µ̄ < 1.
12The intuition for why this is true is as follows. First note that if the acceptance price of type q ∈ (q̂, q̂ + ε)

exceeded v, then q would expect to make capital gains by purchasing, i.e. q would expect the price to increase next

period. Second, since q̂ is not a steady state, it must be that type q̂’s acceptance price is below v, implying that

type q̂ expects the price to go down next period. But this would mean that the price has to remain constant if the

state is q̂, which is impossible since q̂ is not a steady state.
13Since P (q̂) < v, equation (4) implies that P (q̂) > P (t((1 − µ)q̂)), and so t((1 − µ)q̂) > q̂. Since P (q) = v for

q > q̂ we have t((1 − µ)q̂) = 1.
14More precisely, there exists a unique stationary triplet supporting y = 1 as the unique steady state. Generically,

the outcome path associated with this stationary triplet is unique. Nonuniqueness of the outcome path arises only

if x̄m = 0, in which case the monopolist may randomize between selling to ȳm−1 and ȳm−2 in the initial period.
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Intuitively, the reason why a Coase Conjecture equilibrium does not exist when µ is large, is that

when the state equals x̄1, selling to replacement demand µq̂ at the price P (q̂) = p1 = (1− ρ)v + ρv

becomes preferable to fully penetrating the market and selling to replacement demand at the price

v. This is because both the replacement demand µq̂ and the replacement price P (q̂) are then large.

In a Coase Conjecture equilibrium, the seller fully penetrates the market in m periods. We

show that m has a finite limit m̂ as z approaches zero. Thus, the real time that elapses before

the price drops to v converges to zero as z approaches zero. Since a high valuation consumer who

purchases in the initial period has the option of postponing his purchase decision until time m̂z to

purchase at the price v, the initial price must be close to v. Hence we conclude:

Corollary 1 In the Coase Conjecture equilibrium, the initial price converges to the lowest buyer

valuation v as the length of the time period z vanishes.

4.2 The Monopoly Equilibrium

Next, we consider equilibria in which ys = q̂ is a steady state. In such equilibria the monopolist

initially charges the static monopoly price v in the first period, selling to all consumers q ≤ q̂. In

subsequent periods, she continues to charge the monopoly price. Hence from then on she serves

only replacement demand, which equals µq̂.

For a monopoly equilibrium to exist, it must be the case that when the state is x = (1−µ)q̂, the

monopolist prefers continuing to serve this replacement demand at the monopoly price P (q̂) = v to

penetrating the whole market by charging P (1) and continuing by serving the larger replacement

demand at the price P (1) forever, i.e. µq̂v
1−δ ≥ (1 − (1 − µ)q̂)P (1) + δµP (1)

1−δ . Since P (1) ≥ v, a

necessary condition for a monopoly equilibrium to exist is that µ ≥ µ, where µ solves the equation
µq̂v
1−δ = (1 − (1 − µ)q̂)v + δµv

1−δ . We prove that the condition µ ≥ µ is also sufficient for a monopoly

equilibrium to exist. Hence we have:

*** Place Figure 2 here. Title: The Monopoly Equilibrium ***

Theorem 2 There is at most one monopoly equilibrium. This equilibrium exists if and only if

µ ≥ µ.

The proof of sufficiency is rather subtle. We construct a strictly increasing sequence of states

{x̃k}m+1
k=0 starting at x̃0 = (1 − µ)q̂ and ending at x̃m+1 ≤ 1 − µ, such that when k ∈ {1, ..., m} and

the state is x̃k, the monopolist is indifferent between bringing the next period state to x̃k−1 < x̃k
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and staying at x̃k forever. This construction is illustrated in Figure 2: for y ∈ (ỹk−1, ỹk] we have

P (y) = p̃k and t((1 − µ)y) = ỹk−1. The backwards arrows indicate that when the state is y the

state moves backward, i.e. t((1 − µ)y) < y. Note that for every state x ∈ ((1 − µ)q̂, (1 − µ)] it

will take at most m + 1 periods for the state to return to x̃0 = (1 − µ)q̂. Upon reaching x̃0, the

monopolist then charges the monopoly price forever after.

If µ is sufficiently large, the monopolist will return to the monopoly steady state from any state

above (1 − µ)q̂, so x̃m+1 = 1 − µ. In this case there is a unique steady state, and buyers in

the interval (q̂, 1] purchase at a price exceeding their valuation, in order to make capital gains by

reselling their good in the second-hand market at some later date. This is illustrated in the left

panel of Figure 2. If µ falls below this threshold, then when the state equals x̃m+1the monopolist

is indifferent between going to x̃m, and fully penetrating the market by charging the price v, and

remain there forever after. In this case x̃m+1 < 1− µ and ys = 1 is a second steady state. This is

illustrated in the right panel of Figure 2.

In a monopoly equilibrium, from any state exceeding (1 − µ)q̂ it must take real time for the

price to rise to the monopoly price. Letting x̃ = limz→0 x̃m(z)+1, this means that over the interval

(q̂, x̃], the state must move back slowly to q̂. This explains the next Corollary.

Corollary 2 In the limit as the length of the time period z approaches zero, the monopoly equilib-

rium acceptance price converges to:

P (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v for q ∈ [0, q̂]

v( q̂
q )−

λ+r
λ for q ∈ (q̂, x̃]

v for q ∈ (x̃, 1]

.

Furthermore when x < q̂ the monopolist sells (q̂ − x), when x > x̃ she selects (1 − x), and when

x ∈ (q̂, x̃) she selects ẋ = λx(1 − v
v ( q̂

q )
λ+r

λ ).

4.3 The Reputational Equilibrium

Finally, we consider equilibria in which y∗ ≤ q̂ is a steady state. In such equilibria, starting from

the initial state x = 0 the monopolist charges the price v in the every period. She sells to all

consumers y ≤ y∗ in the first period, and provides for the replacement demand µy∗ thereafter. In

reputational equilibria, the seller’s profits therefore fall short of monopoly profits. If the seller were

to move the state beyond y∗ in an attempt to penetrate the market further, she would have to lower

her price drastically. This is because for states y beyond y∗ play occurs according to the Coase

13



Conjecture equilibrium. Consumers y > y∗ therefore expect future prices to be low, and hence are

only willing to accept prices close to v. In effect, by cutting the price, the monopolist “looses her

reputation” for pricing high. The reputational equilibrium is illustrated in Figure 3.

However, unlike the equilibria in Ausubel and Deneckere (1989), the equilibria we construct here

are stationary. In particular, since depreciation of the stock allows the state to move backwards

over time, the monopolist always has the ability to regain her reputation for toughness by keeping

sales low over a length of real time sufficient to bring the state back below y∗.15 Also, unlike in

the nonstationary equilibria of Ausubel and Deneckere (1989), the seller’s profits are a continuous

function of the state.

Continuity implies that when the state is (1 − µ)y∗, the monopolist’s replacement profits µy∗v
1−δ

are equal to the Coase Conjecture profits at y∗. Since the former are increasing in y∗ and the latter

are decreasing in y∗, we may conclude that for every value of µ there is at most one y∗ ≤ q̂ such

that y∗ is a steady state. Hence we have:

*** Place Figure 3 here. Title: The Reputational Equilibrium ***

Theorem 3 There is at most one reputational equilibrium. This equilibrium exists if and only if

µ < µ ≤ µ̄.

The reason that a reputational equilibrium exist only when a monopoly equilibrium exists is that

the profits in the steady state of a reputational equilibrium fall short of the steady state profits in a

monopoly equilibrium. Since the temptation to expand sales beyond the steady state (and thereby

earn Coase Conjecture profits) is larger in the reputational equilibrium, a reputational equilibrium

cannot exist when a monopoly equilibrium fails to exist. From Corollary 1, we conclude:

Corollary 3 Let y∗ = λv+rv
λv+rv . Then in the limit as the length of the time period z approaches zero,

the reputational equilibrium acceptance price converges to:

P (q) =

⎧⎨
⎩ v for q ∈ [0, y∗]

v for q ∈ (y∗, 1].

15However, in the reputational equilibrium of our model the monopolist never finds it optimal to regain her

reputation once it is lost: once the state moves beyond y∗ it moves forward until the second steady state ys = 1 is

reached.
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4.4 Coexistence of Stationary Equilibria

We now turn to the question of when stationary equilibria are unique and when they are not. To

settle the issue, we first need an auxiliary result:

Lemma 3 The functions µ̄(δ) and µ(δ) are decreasing, with µ̄(0) = µ(0) = (1−q̂)v
(v−v)q̂ , limδ→1 µ(δ) = 0

and limδ→1 µ̄(δ) > 0.

***Place figure 4 here. Title: Range of (δ, µ) where each equilibrium type exists ***

Figure 4 illustrates the situation. At δ = 0 a monopoly equilibrium cannot coexist with a Coase

Conjecture equilibrium. For any δ > 0 the Coase Conjecture equilibrium is the unique equilibrium

when µ < µ(δ). For µ ∈ [µ(δ), µ̄(δ)] all three equilibrium types coexist. Finally, for µ > µ̄(δ) there

is only a monopoly equilibrium. The economic force behind this result is that as the depreciation

factor increases, staying with monopoly replacement profits becomes more and more attractive

relative to further market penetration.

Another way to look at this is that for any given value of µ a monopoly equilibrium always

exists for sufficiently large δ. This is because as long as µ > 0, no matter how small, the difference

in net present value of replacement profits at y = q̂ and at y = 1 overshadows the one time gain in

capturing additional customers. We also see that when the monopolist discounts the future less,

a Coase Conjecture equilibrium is less likely to exist. This is because the acceptance price at q̂,

P (q̂) = (1 − ρ)v + ρv is increasing in δ, so staying at q̂ becomes more attractive relative to further

market penetration.

Figure 4 also reveals what happens when the length of the time period is allowed to vanish. As

z converges to 0 the point (δ, µ) then approaches the upper left corner of Figure 4 for all values of

r > 0 and λ < ∞. Since µ = 1 − e−λz = 1 − δ
λ
r , the function µ(δ) will lie below the graph of µ(δ)

when λ
r is small, and above it otherwise. The cut-off value λ0 below which the Coase equilibrium

is the unique equilibrium at z = 0 is given by λ0 = r (1−q̂)v
vq̂−v . We summarize the above discussion

in:

Corollary 4 (a) Fix any µ > µ̄(1). Then for sufficiently low r the monopoly equilibrium is the

unique equilibrium.

(b) Let λ0 = r (1−q̂)v
vq̂−v . Then in the limit as the length of the time interval converges to zero,

a Coase Conjecture equilibrium exists for all values of λ < ∞. When λ < λ0 it is the unique

equilibrium. When λ > λ0 all three types of equilibria coexist.
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The intuition for why a Coase Conjecture equilibrium always exists when the period length is

allowed to vanish, no matter how large the depreciation rate λ, is as follows. If the monopolist

instantly saturates the market with the competitive output, consumers will be willing to pay no

more than the competitive price; with such expectations, the monopolist in turn cannot do any

better than instantly saturating the market. However, Corollary 4 reveals that in order for Coase’s

conjecture to hold in a world of imperfect durability, it no longer suffices to let the discount factor

between periods converge to one. Unlike in a world of perfect durability, it matters whether this is

accomplished by letting the period length vanish, or whether this is accomplished by letting players

become infinitely patient. In the first case, replacement demand becomes very small in any given

period, whereas in the second case replacement demand can be substantial in a period. In order for

the Coase Conjecture to hold in some stationary equilibrium, the monopolist must be able to revise

his price frequently enough over any real length of time. Even when this is the case, however, a

monopoly equilibrium (and a reputational equilibrium) will still exist when the depreciation rate

λ is sufficiently high. For example, when v
v = .6, q̂ = .8, and δ = .95 then µ(δ) = 2.9% and

µ(δ) = 31.8%. Thus when the real interest rate is 5% per year the monopoly equilibrium will exist

if the turnover is less than 34 years, and will be the unique equilibrium if the turnover is less than

3 years. Figure 5 illustrates the equilibrium profits for these parameter values as a function of the

depreciation rate µ.

*** Place figure 5 here. Title: Equilibrium profits as a function of µ ***

5 The N-step Case

In this section, we analyze general “neoclassical” demand functions, for which buyers’ valuations

take on a finite number of values v1 > v2 > ... > vN > 0. Thus, letting 0 = q0 < q1 < ... < qN = 1

we have:

f(q) =

⎧⎨
⎩

v1 for q ∈ [0, q1]

vi for q ∈ (qi−1, qi], and i = 2, ..., N.

We discuss below how the techniques used to analyze the two-step demand case can be applied to

this larger class, and argue that the qualitative properties we discovered for this case are general.

Lemma 1 continues to hold as stated: in any stationary equilibrium there exists at least one

steady state ys > 0, and P (ys) = f(ys). Furthermore, the unique construction of a stationary

triplet {P, R, t} emanating from a steady state remains valid. For any stationary equilibrium, if
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the acceptance price is below the demand price near the steady state, the expectation of a drop in

the future price has to be confirmed by moving the state variable forward. We call this a declining

price path. On the other hand, if the acceptance price is above the demand price near the steady

state, the expectation of an increase in the future price has to be confirmed by moving the state

variable backward. We call this a rising price path. Thus, for generic parameter values only a

declining price path can reach a steady state from the left. However, to the right-hand of a steady

state, there are two possibilities. Either there is a declining price path that reaches the next steady

state, in which case the equilibrium is supported by concerns for reputation, or like in the monopoly

equilibrium for the two-step case, there is a rising price path that reaches the steady state from the

right. Note that compared to the two-step case, there may now be more than two (but no more

than N) steady states in a stationary equilibrium.

A typical equilibrium therefore has the following structure. There are J ≥ 1 steady states,

0 < y∗
1 < y∗

2 < ... < y∗
J . To the left of the smallest steady state, the acceptance function lies

everywhere (weakly) below the demand function. Letting h(y) = t((1 − µ)y) the monopolist

then reaches the steady state y∗
1 in m1 < ∞ steps, by successively selecting h(0) < h2(0) < ... <

hm1(0) = y∗
1 (the construction of the stationary equilibrium for states y ≤ y∗

1 is described in

detail in the proof of Theorem 4)16. If y∗
1 is supported by reputational concerns (which is the

case whenever y∗
1 ∈ (qk−1, qk) for some k), then whenever the initial state x = (1 − µ)y lies in

the interval ((1 − µ)y∗
1 , (1 − µ)y∗

2 ] the monopolist reaches the steady state y∗
2 in m ≤ m2 < ∞

steps, by successively selecting h(y) < h2(y) < ... < hm(y) = y∗
2 . Furthermore, at x = (1 − µ)y∗

1

the monopolist is indifferent between serving replacement demand at y∗
1 forever, and selling to

h(y∗
1 + ε) and continuing optimally thereafter. If y∗

1 = qk for some k < N then there exists

x̃ ∈ [(1−µ)y∗
1 , (1−µ)y∗

2) such that when the initial state x = (1−µ)y ∈ ((1−µ)y∗
1 , x̃] the monopolist

reaches the steady state y∗
1 in m′

2 < ∞ steps, by selling to h(y) > h2(y) > ... > hm′
2(y) = y∗

1 , so

market penetration decreases over time (the construction of the stationary equilibrium for states

y ∈ (y∗
1 , x̃] is described in detail in the proof of Theorem 4).17 When x ∈ (x̃, (1 − µ)y∗

2 ] the

monopolist reaches y∗
2 in a finite number of steps. For any j s.t. 2 ≤ j < J and initial states in

((1 − µ)y∗
j , (1− µ)y∗

j+1] the equilibrium between [(1− µ)y∗
j , (1− µ)y∗

j+1) can again have one of two

possible structures, depending upon whether or not y∗
j is a discontinuity point of f . Finally, for

initial states x ∈ ((1−µ)y∗
J , 1−µ] the monopolist returns to the steady state y∗

J in a finite number

16See the definition of the sequence {x̄i
k}, where x̄i

0 = (1 − µ)y∗
1 .

17See the definition of the sequence {exi
k}, where exi

0 = (1 − µ)y∗
1 .
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of steps.

In the two-step case, we established the existence of a stationary equilibrium in an indirect

way, by characterizing all values of the parameters (δ, µ) for which each type of equilibrium exists.

Because the number of possible equilibria is at least of order 2N , enumerating all possible equilibria

for the N -step case quickly becomes unwieldy, so instead we construct a stationary equilibrium for

any fixed set of parameter values. The equilibrium is constructed so that its acceptance function

dominates the acceptance function in any other possible stationary equilibrium.

Theorem 4 Let f be any demand function taking on a finite number of values. Then for any

0 ≤ δ < 1 and 0 ≤ µ < 1 there exists at least one stationary equilibrium.

From here on suppose that there is a unique monopoly quantity q∗ on the demand curve f(·)
(Note that this will generically be the case). We define a stationary equilibrium to be a Coase

Conjecture equilibrium if the smallest steady state y∗
1 = 1. As in the two-type case, such an

equilibrium is necessarily unique. We say that a stationary equilibrium is of the monopoly type if

y∗
1 = q∗. In a monopoly type equilibrium, starting from the initial state x = 0, the steady state q∗

is always reached in a single step . However, unlike in the case N = 2 several qualitatively distinct

monopoly type equilibria may now coexist for a given set of parameter values (these equilibria

thus have different acceptance functions over the interval (q∗, 1] ). Finally, we define a stationary

equilibrium to be of the reputational type if y∗
1 is not a discontinuity point of f(·).

Our next result shows that, just like in the two-step case, when the good is sufficiently durable

only a Coase Conjecture equilibrium can exist, and when the good is sufficiently perishable only

monopoly type equilibria can exist. Furthermore, reputational equilibria with a steady state below

the monopoly quantity always exist for intermediate values of the parameter µ. Importantly, as

in the two-type case, if monopoly type equilibria do not exist the equilibrium outcome will never

produces lower surplus than static monopoly surplus.

Showing that only a Coase Conjecture equilibrium can exist when durability is sufficiently high

is straightforward, as all we need to rule out is the possibility of a rising price path in a right

neighborhood of any potential steady state. For this, it suffices to check that a deviation to full

market saturation always pays. However, showing that no equilibria other than the monopoly type

equilibria exist when durability is sufficiently low is complicated, for we need to establish that any

declining price path reaching a steady state beyond the monopoly quantity q∗ cannot emanate from

a state below (1− µ)q∗. To establish the existence of reputational equilibria with y∗
1 < q∗, we first
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show there exists a value of the depreciation rate µ = µL such that at µL there is a monopoly type

equilibrium in which h(y) > y for all y ∈ (q∗, y∗
2). We then show that this “borderline” reputational

equilibrium becomes a reputational equilibrium when µ is perturbed upward.

Theorem 5 (i) For every δ < 1 there exists µ(δ) > 0 such that for µ ∈ [0, µ(δ)) the Coase

Conjecture equilibrium is the unique stationary equilibrium.

(ii) For every δ < 1 there exists µ̄(δ) < 1 such that for all µ ∈ (µ̄(δ), 1] , every stationary

equilibrium is of the monopoly type.

(iii) For every δ < 1 there exists (µL(δ), µH(δ)) ⊂ (µ(δ), µ̄(δ)) such that for all µ ∈ (µL(δ), µH(δ))

there is a reputational equilibrium whose smallest steady state falls below the monopoly quantity q∗.

(iv) If the monopoly quantity q∗ cannot be a steady state, then no q < q∗ can be a steady state

either.

6 Endogenous Choice of Durability

Suppose now that the monopolist has the ability to choose the durability of the product she sells.

For simplicity let demand be given by (2), and let production occur at a constant marginal cost

c(λ) > 0, satisfying rc(0) < b. We assume that the rental cost associated with the depreciation

rate λ, (r + λ)c(λ), is strictly increasing in λ.18,19 Since the flow benefit from the services of a

unit of the durable good is constant, the social optimum requires λ = 0, and since rc(0) < b both

consumer types are served in the social optimum.

As far as stationary equilibria are concerned, we will focus on the limiting case where z → 0.

A condition analogous to Corollary 4 (ii) then holds: there exists a unique value λ0 such that the

Coase conjecture equilibrium is the unique equilibrium whenever λ < λ0, and such that all three

types of equilibria coexist whenever λ ≥ λ0.20

First, let us consider the incentive to distort the level of durability in the Coase Conjecture

equilibrium. To guarantee that this equilibrium is necessarily played, we assume that the user cost
18This allows c(λ) to be decreasing in λ, but at a rate sufficiently low that the user cost is minimized at λ = 0.
19The monotonicity condition can be relaxed to the requirement that (r+λ)c(λ) is uniquely minimized at λ = 0. In

Proposition 1 we then need to require infλ≥λ0(r +λ)c(λ) > c̄, and in Proposition 2 we conclude that the monopolist

selects λ ≥ λ0.
20Specifically, λ0 is the unique solution to

λ = r
(b − (r + λ)c(λ))(1 − q̂)

q̂(a − (r + λ)c(λ)) − (b − (r + λ)c(λ))
.
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(r + λ0)c(λ0) is sufficiently large that the monopolist will never select a depreciation rate λ ≥ λ0.

Specifically, we require that (r + λ0) c(λ0) > c̄ ≡ aq̂−b+rc(0)
q̂ for all λ ≥ λ0.21

Proposition 1 Suppose that (r + λ0) c(λ0) > c̄. Then in the limit as z → 0 the monopolist selects

the socially optimal level of durability.

Bulow (1986) argued that a monopoly seller of an infinitely durable good has an incentive to build

in obsolescence. Indeed, the Coase Conjecture undermines the monopolist’s implicit commitment

power; reducing durability from the efficient level allows her to regain some of this commitment

power. But Bulow failed to take this argument to its logical conclusion: when the length of time

period becomes vanishingly small, according to Proposition 1 this distortion must disappear. The

reason is as follows: when z → 0 , the Coase Conjecture forces the benefit the monopolist receives

from any given reduction in durability to zero. Meanwhile, the monopolist’s cost of providing the

equilibrium stream of services (which, by the Coase Conjecture, is fixed at the competitive level)

strictly increases.

Nevertheless, our results imply that there is scope for the monopolist to distort the level of

durability below the socially optimal level when (r + λ0) c(λ0) < c̄:

Proposition 2 Suppose that (r + λ0) c(λ0) < c̄, and that the monopoly equilibrium is played for

all λ ≥ λ0. Then in the limit as z → 0 the monopolist selects λ = λ0.

The impetus behind this “planned obsolescence” is quite different from Bulow’s. In the Coase

Conjecture equilibrium, when z → 0 the durability of the good no longer affects the monopolist’s

ability to exercise her monopoly power. In contrast, by selecting λ > λ0 the monopolist can affect

her ability to exercise monopoly power, even as z → 0. Lowering durability allows the monopolist

to credibly commit to a higher steady state price, leading to a distortion in the choice of durability.

Let us now briefly address the incentive to distort durability when z > 0 . The major difference

with the limiting case is that now the monopolist is able to guarantee that the monopoly equilibrium

is played, by selecting a level of durability equal to µ̄. That such a strategy can be profitable is

illustrated in Figure 5. More generally, whenever players are sufficiently patient (i.e. for sufficiently

small r), selecting µ = µ̄ will dominate selecting any µ that leads to a Coase Conjecture equilibrium.

21Under this condition, the monopolist prefers the Coase profits at λ = 0 to the monopoly profits at λ = λ0. More

precisely, b − rc (0) > (a − (r + λ0)c (λ0))q̂.
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7 Related Literature

Sobel (1991) considers a market for an infinitely durable good in which demand grows over time.

Thus like in our model, the monopolists’ demand never dries up. However, if the monopolist

were to keep on charging the static monopoly price forever, she would accumulate a backlog of low

valuation consumers that grows as time passes on. This backlog eventually becomes so large that

it becomes attractive to lower the price. As a consequence, contrary to the depreciation case, all

stationary equilibria of Sobel’s model satisfy the Coase Conjecture.

Bond and Samuelson (1984) study a market with linear demand for an exponentially depreciating

durable good. Using a procedure similar to Stokey (1981) and Sobel and Takahashi (1983), they

construct a linear-quadratic equilibrium, and show that it satisfies the Coase Conjecture for all

finite depreciation rates. Bond and Samuelson’s analysis fails to uncover other stationary equilibria

for their model, and therefore suggests that the limiting outcome must be the competitive outcome.

Our paper shows that this is not the case.22

Bond and Samuelson (1987) revisit the linear demand example, extending Ausubel and De-

neckere’s (1989) construction of reputational equilibria to markets for products with limited dura-

bility. These equilibria are qualitatively very different from the reputational equilibria discovered

in the present paper. All of our equilibria are stationary, while Bond and Samuelson’s equilib-

ria are nonstationary. This distinction is important, for several reasons. First, nonstationary

equilibria rely on punishments for deviating from a pre-specified outcome path. In contrast, in

our reputational equilibria the seller’s profits are (Lipschitz) continuous in the state. Thus if the

seller deviates from equilibrium by expanding sales beyond the steady state level, she receives no

punishment. Secondly, stationary equilibria embody the Markovian restriction that players only

pay attention to the portion of the history that is payoff relevant, which many authors regard as

desirable.23 Finally, nonstationary equilibria permit virtually any price path to arise in equilibrium

when the length of the time period is sufficiently small, and hence have little predictive power. In

contrast, the requirement of stationarity significantly reduces the size of the equilibrium set. To
22For smooth demand curves, Theorem 5 (a) generalizes to the requirement that all stationary equilibria must

be close to the monopoly equilibrium when µ is sufficiently large. Bond and Samuelson’s equilibrium satisfies this

property. However, unlike in our monopoly equilibrium, this equilibrium approaches the competitive outcome when

the time between offers is allowed to vanish, no matter how large the depreciation rate.
23The Markovian restriction is implied by Harsanyi and Selten’s (1988) principle of subgame consistency, which

holds that behaviour in any subgame should only depend upon the structure of that subgame.
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see this, note that for the case of a “gap” analyzed in the present paper, the seller’s profit in any

stationary equilibrium is bounded below by the Coase Conjecture payoff, which is no lower than

vN . In contrast, the worst non-stationary payoff converges to zero as the length of the time period

shrinks to zero.24

The paper that is perhaps most closely related to the present work is Karp (1996). Karp

considers a continuous time model, and shows that for any positive depreciation rate there exists a

continuum of stationary equilibria, only one of which satisfies the Coase Conjecture. Our models

are similar, and our results are complementary to Karp’s. However, there are important differ-

ences. First, we analyze a discrete time model, and this allows us to uncover interesting results

that are unobtainable in Karp’s continuous time framework. For example, in our model, when

players become arbitrarily patient (i.e. the discount rate r converges to zero) and the depreciation

factor is sufficiently large, the monopoly outcome is the unique stationary equilibrium outcome.

In contrast, Karp’s model predicts that any stock below the competitive stock can be a steady

state. Secondly, Karp’s analysis is limited to strictly decreasing continuous demand functions, and

hence explicitly rules out discontinuities and flat sections in the monopolists’s demand function.

Our paper shows how these can be handled. Thirdly, and most importantly, it is well-known that

the continuous time method can introduce spurious equilibria. For example, in the durable goods

monopoly model with learning-by-doing analyzed by Deneckere and Liang (2006) the continuous

time model has a continuum of qualitatively distinct equilibria, only one of which is the limit of

the unique stationary equilibrium of the corresponding discrete time model. This raises the real

possibility that many of the equilibria uncovered by Karp (1996) are an artifact of the continuous

time approach. Indeed, our results imply that most of Karp’s “Strong Markov Perfect Equilibria”

are fragile to small perturbations in the model. More precisely, there is a continuum of qualita-

tively distinct SMPE emanating from any steady state; we show that only one of them can be the

limit of discrete time equilibria of arbitrarily fine step function approximations to the monopolist’s

demand function. Thus, we provide a method for determining which continuous time equilibria are

reasonable. Finally, our results reveal that Karp’s analysis failed to uncover an important class of

equilibria, the class of “stationary reputational equilibria.”
24As an additional illustration of this cutting power, note that the two-type model has at most three stationary

equilibria, but a continuum of nonstationary equilibria (when the length of the time period is sufficiently small).
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8 Conclusion

In this paper, we have developed a discrete-time model of a monopolist selling a new imperfectly

durable good. We characterized its stationary equilibria as a function of three parameters, the com-

mon discount rate of the seller and the consumers, the depreciation rate of the good, and the length

of the time period between successive price changes. We have shown that for any given positive

period length, there is a unique equilibrium outcome when the good is either sufficiently perishable

or sufficiently durable. In the former case, the only equilibrium outcome is the monopoly outcome,

whereas in the latter case the unique outcome is the Coase Conjecture outcome. For intermediate

values of the depreciation rate, equilibria with steady states ranging from the competitive output

to the monopoly output, and even below the monopoly output, can coexist. These results persist

even if players become arbitrarily patient; however the range of depreciation rates for which only a

Coase Conjecture equilibrium exists shrinks to zero. In the limit, a monopoly equilibrium always

exists, while a Coase Conjecture equilibrium exists only if the depreciation rate is sufficiently small.

Taken together, these results show that the equilibrium outcome set varies continuously from the

competitive outcome to the monopoly outcome as the depreciation rate varies from zero to infinity.

Furthermore, when players are very patient, the monopoly outcome can be obtained unless the

good has almost infinite durability.

To keep our model tractable, and facilitate comparison with the existing literature, we stuck

with a traditional Wicksellian formulation of the durable goods market. In particular, we assumed

that new and used durables are perfect substitutes and that there exists a perfect second-hand

market. While the second-hand market is never active along the equilibrium outcome path of a

stationary equilibrium, it is active following off-equilibrium behavior of the monopolist. Thus the

operation of the second-hand market plays an important role in sustaining equilibrium behavior.

For this reason, it would be interesting to extend our analysis to cases where the second-hand market

operates imperfectly, either because of adverse selection (as in Hendel and Lizzeri (1999a), Janssen

and Roy (2002), Johnson and Waldman (2003), House and Leahy (2004), and Hendel, Lizzeri

and Siniscalchi (2005)), or because of transaction costs (Konishi and Sandfort (2002), Stolyarov

(2002)). Relaxing the assumption of perfect substitutability between new and used durables (as

in Rust (1985), Waldman (1996), or Hendel and Lizzeri (1999b)) might also be a fruitful avenue

of research. The intuition put forth in our paper strongly suggests that our results are robust to

these variations, but a formal analysis must await future work.
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Appendix

Proof of Lemma 1:

First, if ys is the stock after trade in a steady state, then P (ys) = f(ys). The reason is

that in the steady state we have t((1 − µ)ys) = ys. Hence, the consumer’s arbitrage equation

f(ys) − P (ys) = ρ[f(ys) − P (t((1 − µ)ys))] implies P (ys) = f(ys).

To prove that a steady state must exist, we first show that if P and f cross, then there always

is a steady state. Then we establish that P and f necessarily cross.

We claim that if S = {q : P (q) = f(q)} is non-empty then q′ = maxS is a steady state. To

see this, observe that q′ is the maximum state to have acceptance price P (q′). Indeed, if there

existed q′′ > q′ with P (q′′) = P (q′), then from the definition of q′ we must have f(q′′) < f(q′).

Furthermore, since t(·) is non-decreasing, and since P (·) is non-increasing, we have P (t((1−µ)q′′)) ≤
P (t((1 − µ)q′)). This implies the contradiction P (q′′) = (1 − ρ)f(q′′) + ρP (t((1 − µ)q′′)) < (1 −
ρ)f(q′)+ ρP (t((1−µ)q′)) = P (q′). Hence following the offer P (q′), all q ≤ q′ accept and all q > q′

reject. Now from P (q′) = (1−ρ)f(q′)+ρP (t((1−µ)q′)) and P (q′) = f(q′) we have P (t((1−µ)q′))

= P (q′). Thus when the state before trade is (1 − µ)q′ the monopolist’s price P (t((1 − µ)q′))

= P (q′) leads to a state after trade equal to q′, i.e. t((1 − µ)q′) = q′.

Suppose now that there is a stationary equilibrium which does not have any steady state. We

claim that this implies P (q) < v for q ∈ [0, q̂] and P (q) > v for q ∈ (q̂, 1]. To see this, note that since

there is no steady state, it follows from the previous paragraph that the set S is empty, i.e. P (q) �= v

for any q ∈ [0, q̂] and P (q) �= v for any q ∈ (q̂, 1]. An argument similar to Fudenberg, Levine and

Tirole (1985, Lemma 2) establishes that P (q) ≥ v for all q ∈ [0, 1]. Hence we necessarily have

P (q) > v for all q ∈ (q̂, 1]. Furthermore, we cannot have P (q) > v for some q ∈ [0, q̂]. Otherwise,

since P (·) is non-increasing, we would have P (0) > v. But then P (0) = (1− ρ)v + ρP (t(0)) implies

P (t(0)) > P (0). This is a contradiction, as t(0) ≥ 0 and P (·) is a non-increasing function.

Next, we show that P (q) < v for q ∈ [0, q̂] and P (q) > v for q ∈ (q̂, 1] imply that the total stock

is increasing for q ∈ [0, q̂] and decreasing for q ∈ (q̂, 1], and that this yields a contradiction.

By the consumer’s arbitrage equation, we have v −P (q) = ρ[v −P (t((1− µ)q)] for all q ∈ [0, q̂].

Since ρ ∈ (0, 1) for all z > 0 and v − P (q) > 0, we have v − P (q) < v − P (t(1 − µ)q) which implies

P (t((1 − µ)q)) < P (q) for all q ∈ [0, q̂]. Since P (·) is decreasing, we have t((1 − µ)q) > q for all

q ∈ [0, q̂].

A similar argument also establishes that t((1 − µ)(q̂ + ε)) < q̂ + ε for all ε ∈ (0, 1 − q̂]. Hence,
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limε→0 t((1−µ)(q̂ + ε)) ≤ q̂ < t((1−µ)q̂). Since T (·) is upper hemi-continuous, limε→0 t((1−µ)(q̂ +

ε)) ∈ T ((1 − µ)q̂). This contradicts the definition of t(·) = min T (·). Q.E.D.

Lemma 4 If f(q) = f(q′) and P (q) = P (q′) for some q < q′ then q cannot be a steady state.

Proof : If q were a steady state, then when the state after depreciation is (1−µ)q the monopolist

will charge P (q). All buyers in ((1 − µ)q, q′] will accept this, contradicting that t((1 − µ)q) = q.

Q.E.D.

Proof of Lemma 2:

First, we show that y ∈ (q̂, 1) cannot be a steady state. Suppose not; then Lemma 1 implies

that P (y) = v. Since P (·) is a decreasing function, we have P (q) ≤ v for q ≥ y. Similar to

Fudenberg, Levine, and Tirole (1985), we have P (q) ≥ v for all q ∈ [0, 1]. Hence, P (q) = v for all

q ∈ [y, 1]. Lemma 4 then shows that y cannot be a steady state.

To prove (ii), suppose that q̂ is a steady state so that P (q̂) = v. Then since P (·) is decreasing,

and since (as shown in the proof of Lemma 1) P (y) ≤ v for y ≤ q̂, we have P (y) = v for all y ∈ [0, q̂].

Hence Lemma 4 shows that y < q̂ cannot be a steady state. We conclude that the only possible

steady state other than q̂ is 1.

To prove (iii) suppose that 0 < y∗ < q̂ is a steady state. Then we must have P (y) = v for

all y ∈ [0, y∗], so Lemma 4 implies that no y < y∗ can be a steady state, and that P (q) < v for

q ∈ (y∗, q̂] (otherwise y∗ could not be a steady state). Thus by Lemma 1 no y ∈ (y∗, q̂] can be

a steady state, leaving y = 1 as the only other possible steady state. Suppose y = 1 were not a

steady state, so P (1) > v. This would imply P (q) > v for all q ∈ (q̂, 1]. We can then use the

argument at the end of the proof of Lemma 1 to obtain a contradiction.

To prove (i), note that if there is no steady state in [0, q̂], then by the first paragraph y = 1 is

the only possible steady state. It then follows from Lemma 1 that y = 1 must be a steady state.

Q.E.D.

Proof of Theorem 4:

For all i = 1, ..., N − 1, analogously to the two-step case, given qi as a steady state construct a

sequence {x̃i
k}∞k=0 to the right of qi as follows. Let x̃i

0 = (1 − µ) qi and let P̃ i (q) = (1 − ρ) f (q) +

ρf (qi) for q ≥ qi. Given P̃ i (·), let x̃i
1 be the highest state such that the seller prefers selecting

y = qi to selecting y ∈ (qi, ỹ
i
1]. For k ≥ 2 let t̃i (q) be the seller’s optimal choice over (ỹi

k−2, ỹ
i
k−1]

and redefine P̃ i (q) = (1 − ρ) f (q) + ρf
(
t̃i (q)

)
for q ≥ ỹi

k−1. Finally, let x̃i
k be the highest state
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such that the seller prefers selecting y ∈ (ỹi
k−2, ỹ

i
k−1] to selecting y ∈ (ỹi

k−1, ỹ
i
k]. Let R̃i (q) be the

seller’s payoff function associated with P̃ i (q) .

Also analogously to the two-step case, given qi as a steady state construct a sequence {x̄i
k}

to the left of qi as follows. Let x̄i
0 = (1 − µ) qi and let P̄ i (q) = (1 − ρ) f (q) + ρf (qi) for q ≤ qi.

Given P̄ i (·), let x̄i
1 be the smallest state such that the seller prefers selecting y = qi to selecting

y ∈ (ȳi
1, qi−1]. For k ≥ 2 let t̄i (q) be the seller’s optimal choice over (ȳi

k−1, ȳ
i
k−2] and redefine

P̄ i (q) = (1 − ρ) f (q) + ρf
(
t̄i (q)

)
for q < ȳi

k−1. Finally, let x̄i
k be the smallest state such that the

seller prefers selecting y ∈ (ȳi
k−1, ȳ

i
k−2] to selecting y ∈ (ȳi

k, ȳi
k−1]. Let mi be the largest value of k

such that 0 ≤ x̄i
j < x̄i

j−1 for all j ≤ k, and let R̄i (q) be the seller’s payoff function associated with

P̄ i (q).

Let A0 = {i| limk→∞ x̃i
k ≥ 1 − µ}. If A0 = φ, let qi0 = 1. Otherwise, let i0 = min A0. Then

define P (q) = P̃ i0 (q) for q > qi0 . Also let R (q) and t (q) be the equilibrium value function and

policy function associated with P (q).

(P) Now we will construct P (q) for q ≤ qi0 . Define i1 such that limk→∞ x̃i1
k ≥ limk→∞ x̃i

k

for all i < i0. Note that limk→∞ x̃i1
k > (1 − µ) qi0−1 because limk→∞ x̃i0−1

k > (1 − µ) qi0−1.

If R̄i0 ((1 − µ) qi0−1) < R̃i1 ((1 − µ) qi0−1), let q′ be such that R̄i0 ((1 − µ) q′) = R̃i1 ((1 − µ) q′),

and set P (q) = P̄ i0 (q) for q ∈ (q′, qi0 ] and P (q) = P̃ i1 (q) for q ∈ (qi1 , q
′]. Now return to

(P) with i1 taking the role of i0. (P’) If R̄i0 ((1 − µ) qi0−1) ≥ R̃i1 ((1 − µ) qi0−1) a proof simi-

lar to the one showing µ < µ̄ in the two-step case yields x̄mi0 ≤ qi0−2. Hence, P̄ i0 (q) exists

for q ∈ (qi0−2, qi0−1]. Define i2 such that limk→∞ x̃i2
k ≥ limk→∞ x̃i

k for all i < i0 − 1. If

R̄i0−1 ((1 − µ) qi0−2) < R̃i2 ((1 − µ) qi0−2), let q′ be such that R̄i0−1 ((1 − µ) q′) = R̃i2 ((1 − µ) q′),

and set P (q) = P̄ i0−1 (q) for q ∈ (q′, qi0−1] and P (q) = P̃ i2 (q) for q ∈ (qi2 , q
′]. Now return to (P)

with i2 taking the role of i0. If R̄i0−1 ((1 − µ) qi0−2) ≥ R̃i2 ((1 − µ) qi0−2) then return to (P’) with

i2 taking the role of i1 and qi0−2 taking the role of qi0−1. Q.E.D.
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Title: FIGURE 1. The Coase Conjecture Equilibrium
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Deneckere and Liang, Figure 2 of 5

Title: FIGURE 2. The Monopoly Equilibrium
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v

�

�

�

�

�

�
P (q)

q

v̄

v
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Deneckere and Liang, Figure 3 of 5

Title: FIGURE 3. The Reputational Equilibrium
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Deneckere and Liang, Figure 4 of 5

Title: FIGURE 4. Range of (δ, µ) where each equilibrium type exists
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Deneckere and Liang, Figure 5 of 5

Title: FIGURE 5. Equilibrium profits as a function of µ
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