NCU Microeconomics classnote 3

Mechanism Design I

Suppose that there are $I+1$ players:

- a principal (player 0) with no private information
- I agents $(i=1, \ldots, I)$ with types $\theta=\left(\theta_{1}, \ldots, \theta_{I}\right)$ in some set Θ.

Step 1: the principal designs a "mechanism," or "contract," or "incentive scheme."
Step 2: the agents simultaneously accept or reject the mechanism.
Step 3: the agents who accept the mechanism play the game specified by the mechanism. (send message $m(\theta) \in M$)

Principal chooses an allocation $y(m)=\{x(m), t(m)\}$.

- a decision $x \in X$, where X is a compact, convex and nonempty set
- a transfer $t=\left(t_{1}, \ldots, t_{I}\right)$ from the principal to each agent

Player $i(i=0, \ldots, I)$ has a von Neumann-Morgenstern utility $u_{i}(y, \theta) . \quad u_{i}(i=1, \ldots, I)$ is increasing in t_{i}. u_{0} is decreasing in each t_{i}. These functions are twice continuously differentiable.

- Agents: $U_{i}\left(\theta_{i}\right)=E_{\theta_{-i}}\left[u_{i}\left(y\left(\theta_{i}, \theta_{-i}\right), \theta_{i}, \theta_{-i}\right) \mid \theta_{i}\right]$
- Principal: $E_{\theta} u_{0}\left(y^{*}(\theta), \theta\right)$

Revelation Principle: The principal can content herself with "direct" mechanism, in which the message spaces are the type spaces, all agents accept the mechanism in step 2 regardless of their types, and the agents simultaneously and truthfully announce their types in step 3 . (Gibbard (1973), Green and Laffont (1977), Dasgupta et al (1979) and Myerson (1979)).

Therefore we consider $y(\theta)$ instead of $y(m)$.
Goal: Find $y^{*}(\theta)$ such that y^{*} solves the principal's maximization problem

$$
\max _{y} E_{\theta} u_{0}(y(\theta), \theta)
$$

subject to

- IC constraints (Truth telling: Each agent's optimal choice is to report his own type θ_{i})

$$
u_{i}\left(y\left(\theta_{i}, \theta_{-i}\right), \theta\right) \geq u_{i}\left(y\left(\hat{\theta}_{i}, \theta_{-i}\right), \theta\right) \text { for }\left(\theta_{i}, \hat{\theta}_{i}\right) \in[\underline{\theta}, \bar{\theta}] \times[\underline{\theta}, \bar{\theta}], \text { and } i=1, \ldots, I
$$

- IR constraints (participation constraint)

$$
u_{i}\left(y\left(\theta_{i}, \theta_{-i}\right), \theta\right) \geq \underline{u}_{i} \text { for all } \theta_{i}, i=1, \ldots, I
$$

Examples of Mechanism Design:

Nonlinear Pricing:

A monopolist produces a good at constant marginal cost c and sells an amount $q \geq 0$ of this good to a consumer.

Here, $I=1, y=(q, T),(x=q, t=T)$.
Agent's utility $u_{1}(q, T, \theta) \equiv \theta V(q)-T$, where $V(0)=0, V^{\prime}>0$ and $V^{\prime \prime}<0$.
Suppose $\theta=\left\{\begin{array}{ll}\bar{\theta} & \text { with probability } p \\ \underline{\theta} & \text { with probability } 1-p\end{array}\right.$.
Thus we need to find $\{(\underline{q}, \underline{T}),(\bar{q}, \bar{T})\}$ such that
Principal maximizes her expected utility $E u_{0}=(1-p)(\underline{T}-c \underline{q})+p(\bar{T}-c \bar{q})$ subject to IR and IC.

$$
\begin{aligned}
& \underline{\theta} V(\underline{q})-\underline{T} \geq 0 \\
& \bar{\theta} V(\bar{q})-\bar{T} \geq 0 \\
& \underline{\theta} V(\underline{q})-\underline{T} \geq \underline{\theta} V(\bar{q})-\bar{T} \\
& \bar{\theta} V(\bar{q})-\bar{T} \geq \bar{\theta} V(\underline{q})-\underline{T}
\end{aligned}
$$

We can be reduced these inequalities to the following two equations

$$
\begin{aligned}
\underline{\theta} V(\underline{q})-\underline{T} & =0 \\
\bar{\theta} V(\bar{q})-\bar{T} & =\bar{\theta} V(\underline{q})-\underline{T}
\end{aligned}
$$

Plug $\underline{T}=\underline{\theta} V(\underline{q})$ and $\bar{T}=\bar{\theta} V(\bar{q})-(\bar{\theta}-\underline{\theta}) V(\underline{q})$ into the objective function. The first-order conditions are

$$
\begin{aligned}
& \underline{\theta} V^{\prime}(\underline{q})=\frac{c}{1-\frac{p(\bar{\theta}-\underline{\theta})}{(1-p) \underline{\theta}}}>c \\
& \bar{\theta} V^{\prime}(\bar{q})=c
\end{aligned}
$$

Suppose that the seller sells to both types:
Properties of the optimal mechanism $\left(q^{*}, T^{*}\right)$

- \bar{q} is socially optimal quantity for the high-demand consumer.
- \underline{q} is less than the socially optimal quantity for the low-demand consumer
- High-demand consumer enjoys information rent $(\bar{\theta}-\underline{\theta}) V(\underline{q})$
- Low-demand consumer has zero surplus.

Seller-buyer example: Myerson and Satterthwaite (JET, 1983):
Suppose that the seller's cost and the buyer's valuation have differentiable, strictly positive densities on $[\underline{c}, \bar{c}]$ and $[\underline{v}, \bar{v}]$, that there is a positive probability of gains from trade $(c<\bar{v})$, and that there is a positive probability of no gains from trade $(\bar{c}>\underline{v})$. Then there is no efficient trading outcome that satisfies individual rationality, incentive compatibility and budget balance.

Model: The seller can supply one unit of a good at cost c drawn from distribution $P_{1}(\cdot)$ with differentiable, strictly positive density $p_{1}(\cdot)$ on $[\underline{c}, \bar{c}]$. The buyer has unit demand and valuation v drawn from distribution $P_{2}(\cdot)$ on $[\underline{v}, \bar{v}]$ with differentiable, strictly positive density $p_{2}(\cdot)$.

Principal: the social planner
agents: $I=2$, seller and buyer
$x(c, v) \in[0,1]$ the probability of trade
$t(c, v)$ the transfer from buyer to the seller (so $t_{1} \equiv t$ and $t_{2} \equiv-t$)
To find the optimal mechanism $y=\{x(c, v), t(c, v)\}$, let us define the followings:
$X_{1}(c) \equiv E_{v}[x(c, v)]$
$X_{2}(v) \equiv E_{c}[x(c, v)]$
$T_{1}(c) \equiv E_{v}[t(c, v)]$
$T_{2}(v) \equiv-E_{c}[t(c, v)]$
$U_{1}(c) \equiv T_{1}(c)-c X_{1}(c)$
$U_{2}(v) \equiv v X_{2}(v)+T_{2}(v)$
Note that it can be shown that IR and IC conditions can be rewritten as

$$
\begin{aligned}
& U_{1}(c)=U_{1}(\bar{c})+\int_{c}^{\bar{c}} X_{1}(\gamma) \mathrm{d} \gamma \\
& U_{2}(v)=U_{2}(\underline{v})+\int_{\underline{v}}^{v} X_{2}(\nu) \mathrm{d} \nu
\end{aligned}
$$

Substituting for $U_{1}(c)$ and $U_{2}(v)$ and adding up the above two equations yields

$$
T_{1}(c)+T_{2}(v)=c X_{1}(c)-v X_{2}(v)+U_{1}(\bar{c})+U_{2}(\underline{v})+\int_{c}^{\bar{c}} X_{1}(\gamma) \mathrm{d} \gamma+\int_{\underline{v}}^{v} X_{2}(\nu) \mathrm{d} \nu
$$

But budget balance $\left(t_{1}(c, v)+t_{2}(c, v)=0\right)$ implies that

$$
E_{c} T_{1}(c)+E_{v} T_{2}(v)=0
$$

Therefore

$$
\begin{array}{r}
0=\int_{\underline{c}}^{\bar{c}}\left(c X_{1}(c)+\int_{c}^{\bar{c}} X_{1}(\gamma) \mathrm{d} \gamma\right) p_{1}(c) \mathrm{d} c+U_{1}(\bar{c}) \\
+\int_{\underline{v}}^{\bar{v}}\left(\int_{\underline{v}}^{v} X_{2}(v) \mathrm{d} v-v X_{2}(v)\right) p_{2}(v) \mathrm{d} v+U_{2}(\underline{v}) \\
U_{1}(\bar{c})+U_{2}(\underline{v})=-\int_{\underline{c}}^{\bar{c}}\left(c+\frac{P_{1}(c)}{p_{1}(c)}\right) X_{1}(c) p_{1}(c) \mathrm{d} c \\
+\int_{\underline{v}}^{\bar{v}}\left(v-\frac{1-P_{2}(c)}{p_{2}(v)}\right) X_{2}(v) p_{2}(v) \mathrm{d} v \\
U_{1}(\bar{c})+U_{2}(\underline{v}) \\
=\int_{\underline{c}}^{\bar{c}}\left(\int_{\underline{v}}^{\bar{v}}\left(v-\frac{1-P_{2}(v)}{p_{2}(v)}\right)-\left(c+\frac{P_{1}(c)}{p_{1}(c)}\right)\right) x(c, v) p_{1}(c) p_{2}(v) \mathrm{d} c \mathrm{~d} v \tag{1}
\end{array}
$$

Consider the example in note $1: v, c$ are uniformly distributed on $[0,1]$. Then (1) becomes

$$
\begin{aligned}
0 & \leq \int_{0}^{1} \int_{0}^{1}(2 v-1-2 c) x(c, v) \mathrm{d} c \mathrm{~d} v \\
& =2 \int_{0}^{1} \int_{0}^{1}\left(v-c-\frac{1}{2}\right) x(c, v) \mathrm{d} c \mathrm{~d} v
\end{aligned}
$$

Hence, conditional on the individuals reaching an agreement to trade, the expected difference in their valuations must be at least $\frac{1}{2}$.

Note: the linear strategies in the double auction (note 1) imply that $x(c, v)=1$ iff $v-c \geq \frac{1}{4}$ and $x(c, v)=0$ otherwise. Hence, the density on the trading area is $\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4}=\frac{9}{32}$. Conditional on the individuals reaching an agreement to trade, the expected difference in their valuations is $\int_{\frac{1}{4}}^{1} \int_{0}^{v-\frac{1}{4}} \frac{32}{9}(v-c) \mathrm{d} c \mathrm{~d} v=\frac{1}{2}$ which satisfying the requirement.

However, the ex post efficiency requires that conditional on the buyer's valuation being higher than the seller's, the expected differences $v-c$ would be only

$$
\int_{0}^{1} \int_{0}^{v} 2(v-c) \mathrm{d} c \mathrm{~d} v=\frac{1}{3}
$$

Hence, the smallest lump-sum subsidy required from an outside party to create a Bayesian incentivecompatible mechanism which is both ex post efficient and individually rational is $\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$.

