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Mechanism Design II : Groves Mechanism and AGV Mechansim

• I + 1 players.

– Types are drawn from independent distribution Pi on [θi, θ̄i] with strictly positive and

differentiable densities pi. The distributions are common knowledge.

– (private values) Agent i’s preferences: ui (x, ti, θi)

– Preferences are quasi-linear: For any i ∈ {1, . . . , I},

ui (x, ti, θi) = Vi (x, θi) + ti,

and either

u0 (x, t, θ) = V0 (x, θ) −
I∑

i=1

ti

(selft-interested principal) or

u0 (x, t, θ) =
I∑

i=0

V (x, θ)

(benevolent principal), where V0 (x, θ) = B0 (x, θ) − C0 (x), C0 (x) is the principal’s

monetary cost from decision x and B0 (x, θ) is nonmonetary benefit.

• An allocation y (·) is (ex post) efficient if x (θ) ∈ K for each θ and

x (θ) maximizes
I∑

i=0

Vi (x, θ) over K, for all θ

• Budget Balance:
I∑

i=1

ti (θ) ≤ −C0 (x (θ)) for all θ

• Dominant Strategy vs. Bayesian Mechanisms: Choose agent i’s transfer so that agent i’s

payoff is the same as the total surplus of all parties up to a constant.
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– Dominant-strategy mechanism: Each agent’s optimal announcement is independent of

the announcements of the other agents, i.e., IC is for each agent i = 1, . . . , I and for each

θi, θ̂i and θ−i,

ui (y (θi, θ−i) , θi) ≥ ui

(
y

(
θ̂i, θ−i

)
, θi

)
.

– Bayesian mechanism: IC is

Eθ−iui (y (θi, θ−i) , θi) ≥ Eθ−iui

(
y

(
θ̂i, θ−i

)
, θi

)

– Dominant strategy mechanism is not sensitive to beliefs that players have about each

other and it does not require players to compute Bayesian equilibrium strategies. How-

ever, focusing on dominant-strategy mechanism restricts the set of mechansims consider-

ably. Thus, implementation in dominant strategies is a nice property to have if feasible,

but it is not clear how much utility loss a principal should be willing to tolerate in order

to have dominant strategies for the agents.

– Mookherjee and Reichelstein (1989) identify a class of models in which dominant strategy

implementation involves no welfare loss relative to Bayesian implementation.

• Efficiency Theorems

– The Groves Mechanism (1973) Dominant Strategy implementation: Choose agent i’s

transfer so that agent i’s payoff is the same as the total surplus of all parties up to a

constant.

∗ Let x∗ (θ) maximizing
∑I

i=0 Vi (x, θi) denote an efficient solution for the type profile

θ.

∗ Define ti

(
θ̂
)

≡ ∑
j∈{0,...,I}

j �=i

Vj

(
x∗

(
θ̂i, θ̂−i

)
, θ̂j

)
+ τi

(
θ̂−i

)
, where τi

(
θ̂−i

)
is an

arbitrary function of θ̂−i.

∗ Show that it is optimal for agent i to announce his true type
(
θ̂i = θ

)
regardless of

the other agents’ announcements. This implies that
(
x∗

(
θ̂
)

, t
(
θ̂
))

is a dominant

strategy mechanism which yields efficient allocation. The proof is simple: Suppose

that agent i strictly prefers announcing θ̂i to announcing θi for some types θ̂−i of

2



the other agents. Then

Vi

(
x∗

(
θ̂i, θ̂−i

)
, θi

)
+

∑
j �=i

Vj

(
x∗

(
θ̂i, θ̂−i

)
, θ̂j

)

> Vi

(
x∗

(
θi, θ̂−i

)
, θi

)
+

∑
j �=i

Vj

(
x∗

(
θi, θ̂−i

)
, θ̂j

)
.

But this contradicts the fact that x∗
(
θi, θ̂−i

)
is efficient for type profile

(
θi, θ̂−i

)
.

∗ Budget balance may not be satisfied.

∗ Example: Should a bridge be built? ui = θix + ti, where x is equal to 0 or 1 and θi

is agent i’s valuation or willingness to pay for the public good. With c > 0 denoting

the cost of supplying the public good, the efficient rule is

x∗ (θ) =

⎧⎨
⎩

1 if
∑I

i=1 θi ≥ c

0 otherwise

One Groves mechanism for this example takes the following form:

ti

(
θ̂
)

=

⎧⎨
⎩

∑I
j �=i θ̂j − c if

∑I
j=1 θ̂j ≥ c

0 otherwise

and

x∗
(
θ̂
)

=

⎧⎨
⎩

1 if
∑I

i=1 θ̂i ≥ c

0 otherwise

– The AGV Mechanism: Instead of being paid the surpluses of the other agents on the

basis of their reports, each agent is paid the expected value of the other agents’ surpluses

conditional on his own report.

ti

(
θ̂
)
≡ Eθ−i

⎛
⎜⎜⎝

∑
j∈{0,...,I}

j �=i

Vj

(
x∗

(
θ̂i, θ−i

)
, θj

)
⎞
⎟⎟⎠ + τi

(
θ̂−i

)

The function τi (·) will be determined later to ensure BB.

∗ (x∗, t) is (Bayesian) incentive compatiable: θ̂i = θi must maximize

Eθ−i

⎛
⎝Vi

(
x∗

(
θ̂i, θ−i

)
, θi

)
+

∑
j �=i

Vj

(
x∗

(
θ̂i, θ−i

)
, θj

)⎞
⎠ .

But θ̂i = θi maximizes the term inside the expectation operator for all θ−i and,

therefore, maximizes the expectation.
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∗ Suppose cost C0 (x) = 0. BB requires
∑I

i=1 ti

(
θ̂
)

= 0. Let

Ei

(
θ̂i

)
≡ Eθ−i

⎛
⎝∑

j �=i

Vj

(
x∗

(
θ̂i, θ−i

)
, θj

)⎞
⎠

denote the “expected externality” for agent i when he announces θ̂i. Since Ei

(
θ̂i

)

is the first part of the transfer to agent i and τi (·) is supposed not to depend on θ̂i,

Ei

(
θ̂i

)
must be paid be other agents, i.e.,

τi

(
θ̂−i

)
= −

∑
j �=i

Ej

(
θ̂j

)

I − 1

= − 1
I − 1

∑
j �=i

Eθ−j

⎛
⎝∑

k �=j

Vk

(
x∗

(
θ̂j , θ−j

)
, θk

)⎞
⎠ .

∗ For C0 (x) > 0. BB requires
∑I

i=1 ti

(
θ̂
)
≤ −C0

(
x

(
θ̂
))

. Consider the “fictional

problem” where the agents’ utility functions are

Ṽi (x, θi) ≡ Vi (x, θi) − C0 (x)
I

and the principal’s cost is C̃0 (x) ≡ 0. We then compute the transfers t̃i (·) for this

fictional problem, and set

ti (·) = t̃ (·) − C0

(
x∗

(
θ̂
))

/I.

∗ Ex post IR may not be satisfied. Need agents to sign a contract before they learn

their types privately.

4


