Kohlberg and Mertens (Econometrica 1986)
We will use the term "(game) tree" for the extensive form of a game with perfect recall (i.e., where every player remembers whatever he knew previously, including his past actions).

The agent normal form (Selten) of a tree is the normal form of the game between agents, obtained by letting each information set be manned by a different agent, and by giving any agent of the same player that player's payoff. A behavioral strategy of a player in a tree is a list of (mixed) strategies, one for each of his agents. Kuhn (1953) has shown that every mixed strategy of a player in a tree is equivalent to some behavioral strategy, in the sense that both give the same probability distribution on the endpoints whatever be the strategies of all opponents.

A sequential equilibrium (Kreps-Wilson) of an n-player tree is an n-tuple of behavioral strategies which is the limit of a sequence (σ_{m}) of completely mixed (i.e., strictly positive) behavioral strategies, such that every agent maximizes his expected payoff given the strategies of all other agents and given the limiting conditional probability distribution on his information set implied by $\left(\sigma_{m}\right)$.

An ε-perfect equilibrium of a normal form game (Selten) is a completely mixed strategy vector, such that any pure strategy which is not a best reply has weight less than E .

An ε-proper equilibrium of a normal form game (Myerson) is a completely mixed strategy vector, such that whenever some pure strategy s_{1}, is a worse reply than some other pure strategy s_{2}, , the weight on s_{1}, is smaller than ε times the weight on s_{2},.

A perfect (proper) equilibrium of a normal form game is a limit $(\varepsilon \rightarrow 0)$ of ε-perfect (proper) eqilibria.

A perfect (proper) equilibrium of a tree is a perfect (proper) equilibrium of its agent normal form.

It is evident that "proper" is a stronger requirement than "perfect." It is also easy to verify that a perfect equilibrium of a tree is sequential (Kreps-Wilson).

Existence theorems have been proved for all the above concepts (Kreps-Wilson, Myerson, Selten).

Proposition 1 For generic extensive-form games, the set of Nash equilibrium outcomes is finite and all Nash equilibrium within a given connected component induce the same outcome.

Proposition 2 Every game has at least one stable component.

1 Beer Quiche

Consider the following version of the Beer Quiche Game. First Nature selects whether player 1 , the sender, will be of the strong (s) or weak (w) type. The probability with which the strong type is selected equals $\frac{9}{10}$, and this value is common knowledge between the two players. Player 1 then sends a signal, whether to have Beer of Quiche for breakfast. Upon seeing this signal, Player 2, the receiver, then decides whether or not to challenge player 1 to a duel.

Player 1 knows that the strong type prefers beer, and that the weak type prefers quiche. More precisely, each type gets a utility of +1 from having its most preferred breakfast. Player 1 also know that each type does not like to duel. Not having to duel yields each sender type an additional utility of +2 .

Player 2 profits from challenging if and only if he faces the weak type. Thus Player 2 gets a utility of +1 if he faces the weak type and duels, and a utility of -1 if he faces the strong type and duels.

The payoffs to this signalling game are summarized in the table below:

	d	n		d	n
s	$1,-1$	3,0		s	$0,-1$
w	0,1	2,0		w	1,1
	B			Q	3,0

The attached picture draws the extensive form of this signalling game.
We can also compute the normal form of this two-player game, as follows. A strategy for the sender is a pair of signals from the set $\{B, Q\}$, the first one describing the choice of the strong sender type, and the second one describing the choice of the weak sender type. A strategy for the receiver is a pair of actions from the set $\{d, n\}$, the first one describing his choice when he sees the sender selected beer, and the second one describing his choice when he sees the sender selected quiche. Note that we are treating the sender as a single player, so the normal form computes the expected payoff of player 1 and 2 , conditional on a pure strategy profile. We then obtain:

2 Nash Equilibria of the Normal Form

We start by computing the Nash equilibria for the normal form. Observe that the strategy $d d$ for the receiver is strictly dominated by the strategy $n n$. Hence the above game is strategically equivalent to the game in which $d d$ is eliminated as a receiver strategy:

We now claim that in the remaining game the strategy $Q B$ for the sender is strictly dominated by the strategy $\frac{1}{7} B B+\frac{6}{7} Q Q$. Indeed, the latter strategy yields an expected payoff vector of $\left(\frac{27}{14}, \frac{1}{2}, \frac{31}{14}\right)$, which strictly dominates the payoff vector from using $Q B,\left(\frac{9}{5}, \frac{1}{5}, 2\right)$ that results
from using $Q B$. Hence we may again reduce the game by eliminating the strategy $Q B$ for the sender. This results in the 3×3 game:

$$
\begin{array}{cccc}
& d n\left(p_{1}\right) & n d,\left(p_{2}\right) & n n\left(p_{3}\right) \\
B B\left(q_{1}\right) & \frac{9}{10},-\frac{4}{5} & \frac{29}{10}, 0 & \frac{29}{10}, 0 \\
B Q\left(q_{2}\right) & \frac{6}{5},-\frac{9}{10} & \frac{14}{5}, \frac{1}{10} & 3,0 \\
Q Q\left(q_{3}\right) & \frac{21}{10}, 0 & \frac{1}{10},-\frac{4}{5} & \frac{21}{10}, 0
\end{array}
$$

Note that in this game no remaining strategy for the sender or the receiver is strictly dominated 1 However, the strategy $d n$ is weakly dominated for the receiver (by the strategy $n n$). Let us now find all the Nash equilibria of this 3×3 game.

Let p_{1} denote the probability with which the receiver selects $d n, p_{2}$ the probability with which the receiver selects $n d$, and $p_{3}=1-p_{1}-p_{2}$ the probability with which the receiver selects $n n$. Then the expected payoff of the sender equals

$$
\begin{array}{cc}
\text { Pure Strategy } & \text { Expected Payoff to Sender } \\
B B & \frac{9}{10} p_{1}+\frac{29}{10} p_{2}+\frac{29}{10}\left(1-p_{1}-p_{2}\right)=\frac{29}{10}-2 p_{1} \\
B Q & \frac{6}{5} p_{1}+\frac{14}{5} p_{2}+3\left(1-p_{1}-p_{2}\right)=3-\frac{9}{5} p_{1}-\frac{1}{5} p_{2} \\
Q Q & \frac{21}{10} p_{1}+\frac{1}{10} p_{2}+\frac{21}{10}\left(1-p_{1}-p_{2}\right)=\frac{21}{10}-2 p_{2}
\end{array}
$$

Therefore the sender prefers

$$
\begin{aligned}
& B B \text { to } B Q \Longleftrightarrow p_{1} \leq p_{2}-\frac{1}{2} \\
& B B \text { to } Q Q \Longleftrightarrow p_{1} \leq p_{2}+\frac{2}{5} \\
& B Q \text { to } Q Q \Longleftrightarrow \quad p_{1} \leq p_{2}+\frac{1}{2}
\end{aligned}
$$

Therefore $B B$ is a best response for the sender if and only if $p_{1} \leq p_{2}-\frac{1}{2}, B Q$ is a best response if and only if $p_{2}-\frac{1}{2} \leq p_{1} \leq p_{2}+\frac{1}{2}$, and $Q Q$ is a best response if and only if $p_{1} \geq p_{2}+\frac{1}{2}$.

Next, let q_{1} denote the probability with which the sender selects $B B, q_{2}$ the probability with which the sender selects $B Q$, and $q_{3}=1-q_{1}-q_{2}$ the probability with which the sender selects $Q Q$. Then the receiver's expected payoff equals:

$$
\begin{array}{lc}
d n & -\frac{4}{5} q_{1}-\frac{9}{10} q_{2} \\
n d & \frac{1}{10} q_{2}-\frac{4}{5}\left(1-q_{1}-q_{2}\right)=-\frac{4}{5}+\frac{9}{10} q_{2}+\frac{4}{5} q_{1} \\
n n & 0
\end{array}
$$

Therefore the receiver prefers

$$
\begin{array}{lc}
d n \text { to } n d \Longleftrightarrow & q_{1} \leq \frac{1}{2}-\frac{9}{8} q_{2} \\
d n \text { to } n n \Longleftrightarrow & q_{1}=q_{2}=0 \\
n d \text { to } n n \Longleftrightarrow & q_{1} \geq 1-\frac{9}{8} q_{2}
\end{array}
$$

Therefore $d n$ is a best response for the receiver if and only if $q_{1}=q_{2}=0, n d$ is a best response if and only if $q_{1} \geq 1-\frac{9}{8} q_{2}$, and $n n$ is a best response if and only if $q_{1} \leq 1-\frac{9}{8} q_{2}$.

To determine the Nash equilibria, we consider three cases:

[^0]1. $q_{1}=q_{2}=0$, i.e. the sender selects $Q Q$ with probability one. Then the receiver can respond with any mixture between $d n$ and $n n$, i.e. $p_{2}=0$. Given this receiver response, $Q Q$ will be a best response if and only if $p_{1} \geq \frac{1}{2}$.
2. $q_{1}>0$ or $q_{2}>0$. Then from the receiver's best response we obtain $p_{1}=0$. But when $p_{1}=0$, the sender will select $Q Q$ with probability zero, i.e. we must have $q_{1}+q_{2}=1$.
(a) $q_{1}>1-\frac{9}{8} q_{2}$. Given that $q_{1}+q_{2}=1$ this inequality is equivalent to $q_{1}<1$.

When $q_{1}>1-\frac{9}{8} q_{2}$, the receiver must use $n d$ with probability 1 , i.e. we have $p_{2}=1$. Now with $p_{2}=1$ the sender must select $B B$ with probability 1, i.e. we have $q_{1}=1$, a contradiction.
(b) $q_{1}<1-\frac{9}{8} q_{2}$. Given that $q_{1}+q_{2}=1$ this inequality is equivalent to $q_{1}>1$, a contradiction.
(c) $q_{1}=1-\frac{9}{8} q_{2}$. Given that $q_{1}+q_{2}=1$ this equality is equivalent to $q_{1}=1$, i.e. the sender selects $B B$ for sure. In this case, the receiver can mix between $n d$ and $n n$, but we must have $p_{1}=0$. The mixture between $n d$ and $n n$ must be selected so that the sender prefers $B B$ to $B Q$, i.e. $p_{2} \geq \frac{1}{2}$. We conclude that it is a Nash equilibrium for the receiver to mix with between $n d$ and $n n$, with $n d$ being selected with probability of at least $\frac{1}{2}$, and for the sender to select $B B$ with probability 1 .

We summarize this discussion as follows:
Lemma 1 In any Nash equilibrium the sender selects $Q B$ with probability zero, and the receiver selects dd with probability zero. Let q_{1} denote the probability with which the sender selects $B B$, and q_{2} the probability with which the sender selects $B Q$ (with the remaining probability allocated to $Q Q$). Also let p_{1} denote the probability with which the receiver selects $d n$, and p_{2} the probability with which the receiver selects nd (with the remaining probability allocated to $n n$). Then there are two components of Nash equilibria to the Beer Quiche game, given by: (i) $q_{1}=q_{2}=0, p_{1} \geq \frac{1}{2}$ and $p_{2}=0$; (ii) $q_{1}=1, p_{2} \geq \frac{1}{2}$ and $p_{1}=0$.

Consider the sender's expected payoff in the Nash equilibria associated with the first component, in which both sender types select Q. We have $u_{1}^{*}=\frac{21}{10}$. Meanwhile, the sender's expected utility from selecting the strategy $B B$ in these equilibria equals $\frac{9}{10} p_{1}+\frac{29}{10}\left(1-p_{1}\right)=$ $\frac{29}{10}-2 p_{1} \leq \frac{19}{10}$, and his expected payoff from selecting $B Q$ equals $\frac{6}{5} p_{1}+3\left(1-p_{1}\right)=3-\frac{9}{5} p_{1} \leq \frac{21}{10}$. Thus only strategy $B Q$ is ever a weak best response, and then only in the equilibrium where $p_{1}=\frac{1}{2}$.

Consider the sender's expected payoff in the Nash equilibria associated with the second component, in which the sender selects $B B$ and the receiver selects $n d$ with probability $p_{2} \geq \frac{1}{2}$ and $n n$ with probability $1-p_{2}$. We have $u_{1}^{*}=\frac{29}{10}$. Meanwhile, the sender's expected utility from selecting the strategy $B Q$ in these equilibria equals $\frac{14}{5} p_{2}+3\left(1-p_{2}\right) \leq \frac{29}{10}$, and his expected payoff from selecting $Q Q$ equals $\frac{1}{10} p_{2}+\frac{21}{10}\left(1-p_{2}\right) \leq \frac{21}{10}$. Thus only the strategy $B Q$ is ever a weak best response, and then only in the equilibrium in which $p_{2}=p_{3}=\frac{1}{2}$.

Now let us consider matters from the receiver's perspective. Her equilibrium utility in the Nash equilibria associated with the first component of Nash equilibria in which the sender
selects $Q Q$ equals $u_{2}^{*}=0$. Therefore there are no weak best responses other than the equilibrium responses $d n$ and $n n$.

In the Nash equilibria associated with the second component, in which the sender selects $B B$, the receiver's expected utility equals $u_{2}^{*}=0$. Therefore there are no weak best responses other than the equilibrium responses $n d$ and $n n$.

3 Stable Sets

To find the stable sets of this game, we make use of the following result, contained in KohlbergMertens: Every stable set contains a stable set of the game in which a strategy that is weakly dominated or never a weak best response to any equilibrium in the set is eliminated. We restrict attention to stable sets contained in a single component of Nash equilibria.

For equilibria associated with the component in which the sender uses $Q Q$, the strategies $B B$ and $n d$ are not a weak best response to any equilibrium in the component. The game in which these strategies have been eliminated is as follows:

$$
\begin{array}{ccc}
& d n & n n \\
B Q & \frac{6}{5},-\frac{9}{10} & 3,0 \\
Q Q & \frac{21}{10}, 0 & \frac{21}{10}, 0
\end{array}
$$

Since the strategy $d n$ is weakly dominated, it must be used with minimal probability in any equilibrium of a pertubed game. But then the sender will select $B Q$ with maximal probability, i.e. there is no equilibrium of the perturbed game near this component. We conclude that this component contains no stable set.

Next, consider equilibria associated with the component in which the sender uses $B B$. The strategies $Q Q$ and $d n$ are not a weak best response to any equilibrium in the component, and after eliminating them, we obtain the following game:

$$
\begin{array}{ccc}
& n d & n n \\
B B & \frac{29}{10}, 0 & \frac{29}{10}, 0 \\
B Q & \frac{14}{5}, \frac{1}{10} & 3,0
\end{array}
$$

In this game, the strategy $n n$ is weakly dominated, and hence will not be used in voluntarily any equilibrium of the perturbed game. But when the strategy $n d$ is used with probability 1 , the sender's best response is to select $B B$ with maximal probability. The resulting equilibrium is near the component.

However, this does not end the analysis. To actually prove that this component is stable, we need to exhibit Nash equilibria for perturbations of the full game. This will be is second place where the Cho-Sobel condition comes in. Note in particular that we cannot merely turn the equilibrium of the reduced game into an equilibrium of the full game by having all strategies other than $B B$ and $n d$ being selected with minimal probability: if the sender trembles sufficiently more on $Q Q$ than on $B Q$ then the receiver would want to use the strategy $n n$ with maximal probability. And in that case the sender can profitably deviate by selecting $B Q$ with maximal probability. A more intricate construction is needed. We illustrate this construction below.

3.1 Perturbations that can be Stabilized without Voluntary Contribution

Let $\varepsilon^{s}=\left(\varepsilon_{B B}^{s}, \varepsilon_{B Q}^{s}, \varepsilon_{Q B}^{s}, \varepsilon_{Q Q}^{s}\right)$ be a vector of trembles for the sender, i.e. a vector satisfying $\varepsilon_{i}^{s}>0$ for all $i \in S_{s} \equiv\{B B, B Q, Q B, Q Q\}$ and $\sum_{i \in S_{s}} \varepsilon_{i}^{s}<1$. Similarly, let $\varepsilon^{r}=\left(\varepsilon_{d d}^{r}\right.$, $\left.\varepsilon_{d n}^{r}, \varepsilon_{n d}^{r}, \varepsilon_{n n}^{r}\right)$ be a vector of trembles for the sender, i.e. a vector satisfying $\varepsilon_{j}^{r}>0$ for all $j \in S_{r} \equiv\{d d, d n, n d, n n\}$ and $\sum_{j \in S_{r}} \varepsilon_{j}^{r}<1$. Then the $\left(\varepsilon^{s}, \varepsilon^{r}\right)$ perturbed game is the (infinite) normal form game derived from the original game in which the sender is restricted to using completely mixed strategies $\sigma^{s}=\left(\sigma_{B B}^{s}, \sigma_{B Q}^{s}, \sigma_{Q B}^{s}, \sigma_{Q Q}^{s}\right)$ satisfying $\sigma_{i}^{s} \geq \varepsilon_{i}^{s}$ for all $i \in S_{s}$, and the receiver is restricted to using completely mixed strategies satisfying $\sigma^{r}=\left(\sigma_{d d}^{r}\right.$, $\sigma_{d n}^{r}, \sigma_{n d}^{r}, \sigma_{n n}^{r}$) satisfying $\sigma_{j}^{r} \geq \varepsilon_{j}^{r}$ for all $j \in S_{r}$.

We start by a simple observation : in any Nash equilibrium of any sufficiently small perturbed game near a component of equilibria of the unperturbed game, any strategy which is not a weak best response to any equilibrium in the component must be used with minimal probability.

Thus in any such Nash equilibrium near the component in which the sender uses $B B$ with probability one we must have

$$
\sigma_{Q B}^{s}=\varepsilon_{Q B}^{s}, \sigma_{Q Q}^{s}=\varepsilon_{Q Q}^{s}, \sigma_{d d}^{r}=\varepsilon_{d d}^{r}, \sigma_{d n}^{r}=\varepsilon_{d n}^{r}
$$

First, we consider perturbations for which there are equilibria to the perturbed game near the component in which there are no voluntary contributions. That is, we consider equilibria in which $\sigma_{B Q}^{s}=\varepsilon_{B Q}^{s}$.

For such equilibria to exist, the sender's expected payoff from using the strategy $B B$ must exceed his payoff from using $B Q$. The expected payoff from using $B B$ equals $\frac{9}{10}\left(\varepsilon_{d d}^{r}+\right.$ $\left.\varepsilon_{d n}^{r}\right)+\frac{29}{10}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}\right)$ for any allowed equilibrium strategy of the receiver. Meanwhile, the expected payoff from using $B Q$ equals $\varepsilon_{d d}^{r}+\frac{6}{5} \varepsilon_{d n}^{r}+\frac{14}{5} \sigma_{n d}^{r}+3 \sigma_{n n}^{r}$, where $\sigma_{n d}^{r}+\sigma_{n n}^{r}=$ $1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}$. Substituting in the constraint yields an expected payoff from using $B Q$ equal to $\varepsilon_{d d}^{r}+\frac{6}{5} \varepsilon_{d n}^{r}+\frac{14}{5}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\sigma_{n n}^{r}\right)+3 \sigma_{n n}^{r}$, where $\varepsilon_{n n}^{r} \leq \sigma_{n n}^{r} \leq 1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\varepsilon_{n d}^{r}$. Since this payoff is increasing in $\sigma_{n n}^{r}, B B$ will be an optimal strategy if and only if its expected payoff excceds the expected payoff from $B Q$ when $\sigma_{n n}^{r}=\varepsilon_{n n}^{r}$. Thus it is necessary that $\frac{9}{10}\left(\varepsilon_{d d}^{r}+\varepsilon_{d n}^{r}\right)+\frac{29}{10}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}\right) \geq \varepsilon_{d d}^{r}+\frac{6}{5} \varepsilon_{d n}^{r}+\frac{14}{5}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\varepsilon_{n n}^{r}\right)+3 \varepsilon_{n n}^{r}$. Straightforward algebra reduces this inequality to

$$
\frac{1}{2}-\varepsilon_{d d}^{r}-\varepsilon_{n n}^{r}+27 \varepsilon_{d n}^{r} \geq 0
$$

which always holds if the perturbation is sufficiently small.
The second condition for such equilibria to exist, is that the receiver's expected payoff from using the strategy $n d$ must exceed her expected payoff from the strategy $n n$. The receiver's expected payoff from using the strategy $n d$ equals $\frac{1}{10} \varepsilon_{B Q}^{s}-\frac{9}{10} \varepsilon_{Q B}^{s}-\frac{4}{5} \varepsilon_{Q Q}^{s}$. Meanwhile, her expected payoff from the strategy $n n$ equals zero. Hence we must have

$$
\varepsilon_{B Q}^{s}-9 \varepsilon_{Q B}^{s}-8 \varepsilon_{Q Q}^{s} \geq 0
$$

In particular, note that it is impossible for this inequality to be satisfied if $9 \varepsilon_{Q B}^{s} \geq \varepsilon_{B Q}^{s}$, as we predicted above.

We may summarize this discussion as follows:

Lemma 2 (No Voluntary Constributions) For sufficiently small perturbations, the $\left(\varepsilon^{s}, \varepsilon^{r}\right)$ perturbed game has a Nash equilibrium without voluntary contributions near the component of the original game in which the sender selects $B B$ with probability one if and only if $\varepsilon_{B Q}^{s}$ $9 \varepsilon_{Q B}^{s}-8 \varepsilon_{Q Q}^{s} \geq 0$. One such equilibrium is given by $\sigma^{s}=\left(1-\varepsilon_{B Q}^{s}-\varepsilon_{Q B}^{s}-\varepsilon_{Q Q}^{s}, \varepsilon_{B Q}^{s}\right.$, $\left.\varepsilon_{Q B}^{s}, \varepsilon_{Q Q}^{s}\right)$ and $\sigma^{r}=\left(\varepsilon_{d d}^{r}, \varepsilon_{d n}^{r}, 1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\varepsilon_{n n}^{r}, \varepsilon_{n n}^{r}\right)$.

3.2 Equilibria with Voluntary Contributions

When $\varepsilon_{B Q}^{s}-9 \varepsilon_{Q B}^{s}-8 \varepsilon_{Q Q}^{s}<0$ only Nash equilibria with voluntary contribution can be near the component of the original game in which the sender selects $B B$ with probability one. Here we document the construction of such equilibria.

For an equilibrium with voluntary contribution to exist, it must be the case that in the perturbed game the sender's expected payoff from using the strategy $B B$ equals his expected payoff from using the strategy $B Q$. Since for sufficiently small perturbations in any equilibrium near the component the receiver mus use the strategies $d d$ and $d n$ with minimal probability, the sender's expected payoff form $B B$ equals $\frac{9}{10}\left(\varepsilon_{d d}^{r}+\varepsilon_{d n}^{r}\right)+\frac{29}{10}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}\right)$. Meanwhile, as we computed above, his expected payoff from $B Q$ equals $\varepsilon_{d d}^{r}+\frac{6}{5} \varepsilon_{d n}^{r}+\frac{14}{5}\left(1-\varepsilon_{d d}^{r}-\right.$ $\left.\varepsilon_{d n}^{r}-\sigma_{n n}^{r}\right)+3 \sigma_{n n}^{r}$, where $\sigma_{n n}^{r}$ must satisfy the inequalities $\varepsilon_{n n}^{r} \leq \sigma_{n n}^{r} \leq 1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\varepsilon_{n d}^{r}$. We showed above that at $\sigma_{n n}^{r}=\varepsilon_{n n}^{r}$ the inequality $\frac{9}{10}\left(\varepsilon_{d d}^{r}+\varepsilon_{d n}^{r}\right)+\frac{29}{10}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}\right)>$ $\varepsilon_{d d}^{r}+\frac{6}{5} \varepsilon_{d n}^{r}+\frac{14}{5}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\sigma_{n n}^{r}\right)+3 \sigma_{n n}^{r}$ holds when the perturbations are sufficiently small. Meanwhile, at $\sigma_{n n}^{r} \leq 1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\varepsilon_{n d}^{r}$, the inequality $\frac{9}{10}\left(\varepsilon_{d d}^{r}+\varepsilon_{d n}^{r}\right)+\frac{29}{10}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}\right)<$ $\varepsilon_{d d}^{r}+\frac{6}{5} \varepsilon_{d n}^{r}+\frac{14}{5}\left(1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\sigma_{n n}^{r}\right)+3 \sigma_{n n}^{r}$ holds when the perturbations are sufficiently small. Thus there exists a unique value of $\sigma_{n n}^{r} \in\left[\varepsilon_{n n}^{r}, 1-\varepsilon_{d d}^{r}-\varepsilon_{d n}^{r}-\varepsilon_{n d}^{r}\right]$ such that the sender is indifferent between using $B B$ and using $B Q$. This value can be calculated to be:

$$
\sigma_{n n}^{r}=\frac{1}{2}\left(1-2 \varepsilon_{d d}^{r}+54 \varepsilon_{d n}^{r}\right)
$$

Note in particular that $\sigma_{n n}^{r} \rightarrow \frac{1}{2}$ as the perturbation vanishes, i.e. we pick up the weak Nash equilibrium in the component! This is because it is the only equilibrium in the component of the unperturbed game for which the sender is indifferent between sending $B B$ and $B Q$.

The second condition for such an equilibrium to exist is that the receiver is indifferent between sending $n d$ and $n n$ in the Nash equilibrium of the perturbed game. Since the receiver's expected payoff from using the strategy $n d$ equals $\frac{1}{10} \sigma_{B Q}^{s}-\frac{9}{10} \varepsilon_{Q B}^{s}-\frac{4}{5} \varepsilon_{Q Q}^{s}$, and her expected payoff from using $n n$ equals zero, this requires that

$$
\sigma_{B Q}^{s}=9 \varepsilon_{Q B}^{s}+4 \varepsilon_{Q Q}^{s} .
$$

We summarize this discussion as follows:
Lemma 3 (Voluntary Constributions) For sufficiently small perturbations, the $\left(\varepsilon^{s}, \varepsilon^{r}\right)$ perturbed game has a Nash equilibrium with voluntary contributions near the component of the original game in which the sender selects $B B$ with probability when $\varepsilon_{B Q}^{s}-9 \varepsilon_{Q B}^{s}-8 \varepsilon_{Q Q}^{s}<0$. This equilibrium is given by $\sigma^{s}=\left(1-10 \varepsilon_{Q B}^{s}-5 \varepsilon_{Q Q}^{s}, 9 \varepsilon_{Q B}^{s}+4 \varepsilon_{Q Q}^{s}, \varepsilon_{Q B}^{s}, \varepsilon_{Q Q}^{s}\right)$ and $\sigma^{r}=\left(\varepsilon_{d d}^{r}\right.$, $\left.\varepsilon_{d n}^{r}, \frac{1}{2}-28 \varepsilon_{d n}^{r}, \frac{1}{2}-\varepsilon_{d d}^{r}+27 \varepsilon_{d n}^{r}\right)$.

[^0]: ${ }^{1} B B$ is a best response to $n d, B Q$ is a best response to $n n$, and $Q Q$ is a best response to $d n$. Also, $d n$ is a best response to $Q Q, n d$ is a best response to $B Q$, and $n n$ is a best response to $Q Q$.

