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• Example 1: Find the conditions such that the optimal 
a*(s) is increasing in s.
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First order condition:

Suppose the second order condition is satisfied, i.e.,  
Take the total derivative of F.O.C we have
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If Fa is increasing in s, i.e. Fas >0, then a*(s) is increasing in s.

Or if a and s are complement then more s leads to more a.
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To guarantee that a*(s) is increasing in s, we need

i) Fas >0    ii) h (s) and g (s) are increasing in s
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Lattice Theory
Let X be a partially order set, with the transitive, reflexive, 

antisymmetric order relation ≥.
X is a lattice if for every pair of x and y in X, we have 
• :  the least upper bound, or join, of x and y, 
• :  the greatest lower bound, or meet, of x and y
exist in X.
Example: the component-wise order in

(1,2) ≥ (0,-3),  
but no component-wise order for (1,2) and  (3,1)
(1,2) ∨(3,1)=(3,2), (1,2) ∧(3,1)=(1,1) 
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Cardinal complementarity notions
S is a poset and A is a lattice.

• f : A → R is supermodular (spm) if∀a, a’ ∈ A, 
f (a ∨ a’) + f (a ∧ a’) ≥ f (a) + f (a’).

• If f is C2, f  spm ⇔∂2f(a)/∂ai∂aj ≥ 0, ∀i ≠ j
(all nondiagonal elements of the Hessian matrix of f are ≥ 0.)

• f : A × S → R has increasing differences in 
(a , s) if ∀a’ > a, s’ > s
f (a’, s’) − f (a, s’) ≥ f (a’, s) − f (a, s), 
or if the difference f (a’, ·) − f (a, ·) is increasing.



Spm and Increasing differences
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• If f is C2, Incr. Diffs⇔∂2f(a,s) / ∂ai ∂sj ≥ 0, for all i, j.
(no restrictions on partials ∂2f / ∂ai ∂aj or ∂ 2f / ∂si ∂sj .)

• Special case (common in applications) A = S = R:
spm in (a, s)⇔ incr. diffs in (a, s) 

⇔ ∂2f / ∂a ∂s ≥ 0.

• Both properties can be checked via pairwise relations only.
• Spm and incr. diffs treat relevant variables symmetrically.

• Interpretation of spm or incr. diffs
(Edgeworth) complementarity: higher values in any variables 
increase the marginal returns to higher values in the remaining 
variables.



Theorem 1: Assume
1. F is supermodular in a for each fixed s,
2. F has increasing differences in (s,a), and
3.

are increasing functions with 
Then the maximal and minimal selections of a*(s) are 

increasing functions.  
Furthermore, if 2) is strict, then every selection of a*(s) 

is increasing.
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Example: Assortative matching 
(Becker 1973)



Ordinal Complementarity Condition

• Theorem 2: The conclusions of Theorem 1 
holds if supermodularity is replaced by 
quasi-supermodularity and (strict) 
increasing differences by the (strict) 
single-crossing property 



quasi-supermodularity (q-spm) and 
single-crossing property (SCP)

• F : A → R is q-spm, if ∀a, a’ ∈ A,
F(a) − F(a ∧ a’) ≥ (>)0 ⇒

F(a ∨ a’) − F(a’) ≥ (>)0
• F : S × A → R has the SCP in (a; s) if
∀a’ > a, s’ > s,
F(a’, s) − F(a, s) ≥(>) 0 ⇒

F(a’, s’) − F(a, s’) ≥ (>) 0 .
• The SCP is strict if

F(a’, s) − F(a, s) ≥ 0 ⇒ F(a’, s’) − F(a, s’) >0 .



Economic interpretation of SCP

• limited complementarity: If a given 
increase in a is profitable when s is low, 
the same increase will be profitable when 
s is high.

• F may have SCP in (s; a) but not in (a; s) : 
one-way complementarity.

• F spm ⇒ F q-spm
• F has incr. diffs in (s, a) ⇒ F has SCP in (s; 

a) and in (a; s).



Properties on spm, q-spm and SCP

• F q-spm and g strictly incr⇒ g ◦ F q-spm
• F has SCP and g strictly incr⇒ g ◦ F has SCP.
• If h(·) str. incr. and h ◦ F is spm (incr. diffs), then F is 

q-spm (SCP)
• Not all q-spm functions are = h ◦ G, with h ↗ and G 

spm.
• F(·) concave ⇔ F(x - y) is spm in (x, y) ⇔ F’’≤ 0.
• F(x - y) is spm in (x, y) and g(·) ↗ and convex ⇒ g ◦

F spm in (x, y).



Log-supermodularity
• F : A → R is log-spm iff log F is spm or

F(a ∨ a’)F(a ∧ a’) ≥ F(a)F(a’), ∀a, a’ ∈ A.
• F : R2 → R, F ≥ 0, is log-spm if for (x’, y’) > (x, y)

F(x’, y’)F(x, y) ≥ F(x’, y)F(x, y’) or
F(x’, y’)/F(x, y’) ≥ F(x’, y)/F(x, y)

• the relative returns F(x’, ·)/F(x, ·) are ↗
(or F(·, y’)/F(·, y) are ↗ ).
(as opposed to absolute returns for spm).

• F spm and F log-spm are not comparable.
• F spm and F log-spm ⇒ F q-spm. 
• Log-spm survives multiplication, but not addition.
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Spence-Mirrlees condition (SM)
(Milgrom and Shannon 1994)

Theorem: Let F: R3→R be continuously differentiable 
and F2(a,b,s)≠ 0.

• F(a,h(a),s) satisfies the SCP in (a;s) for all 
functions h: R → R 
if and only if

F1(a,b,s)/ | F2(a,b,s)| is increasing in s.
• F(a,h(a),s) satisfies the strict SCP in (a;s) for all 

functions h: R → R 
if F1(a,b,s)/ | F2(a,b,s)| is strictly increasing in 
s.





Comparative Statics of Equilibrium Points 

Theorem: Assume that
1. For each s∈S ⊂ R, the game is smp, and
2. Fi has increasing differences in (ai,s) for each 

a-i.

. Then the extremal equilibia of the game are 
increasing functions of s.
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Parametric Optimization under Uncertainty 
( Susan Athey 2002)
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