
Comparative statics: The stochastic case
(Athey 2002)

U(x , θ) =

∫
u(x , s) f (s, θ)dµ(s),

where θ ∈ R, x ∈ Rn, s ∈ Rm, f is a density and µ is a product
measure

I When is x∗(θ,B) =arg maxx∈BU(x , θ) ↗ in (θ,B) ?

I When is U(x , θ) log-spm in (x , θ)? Recall: log spm =⇒q-spm.

I Interpretation: F : R2 → R, F ≥ 0, is log-spm if for
(x ′, y ′) > (x , y)
F (x ′, y ′)F (x , y) ≥ F (x ′, y)F (x , y ′) or
F (x ′, y ′)/F (x , y ′) ≥ F (x ′, y)/F (x , y)
the relative returns F (x ′, ·)/F (x , ·) are ↗ (or
F (x ·, y ′)/F (·, y)↗).
(as opposed to absolute returns for spm).



Log-spmineconomics:

I D(p, θ) is log-spm iff price elasticity is ↗ in θ (CLS 2).

I A marginal utility u′ (w + s) is log-spm in (w , s) iff u satisfies
DARA or —u′′(w)/u′(w) is ↘ in w .

I A c.d.f. F (s; θ) has a hazard rate f (s; θ)/[1− F (s; θ)] that is
↘ in θ iff F (s; θ) is log-sbm.

I Random variables are affiliated if their joint density f is
log-spm.

I If suppF (s, θ) constant, the MLR order requires f (s, θ)
log-spm or f (s, θ′)/f (s, θ) ↗ in s for θ′ > θ.

I Many known densities f (·) are log-concave, so f (s + t) is
log-sbm. Same for cdf’s.



Lemma 1 g(y , s) log-spm in (y , s) =⇒
∫

g(y , s)dµ(s) log-spm in

y .
Proof.

Lemma 2 (Ahlswed-Daykin79) h1, h2, h3, h4 : S → R are ≥ 0 and
s.t. h1(s)h2(s

′
) ≤ h3(s ∨ s

′
)h4(s ∧ s ′) for µ-almost all s, s

′ ∈ S .
Then∫

h1(s)dµ(s) ·
∫

h2(s)dµ(s) ≤
∫

h3(s)dµ(s) ·
∫

h4(s)dµ(s).

Set h1(s)
∆
= g(y , s), h2(s)

∆
= g(y

′
, s), h3(s)

∆
= g(y ∨ y

′
, s),

h4(s)
∆
= g(y ∧ y

′
, s).

I In general, log-spm is not preserved by sums. Here it works
because sums are of form g(y , s) + g(y ′, s) where g is
log-spm in (y , s)



Corollary 3 x∗(θ,B) ↗ in θ if µ and f are log-spm (then U is
log-spm.)

Lemma 4 Let A : R → 2S and 1A(t)(s) = 1if s ∈ A(t) and 0
otherwise. 1A(t)(s) is log -spm in (s, t) iff At is an ascending
sublattice in t .

Proof. Must show that for t ′ > t and any s ′ , s ∈ S ,

1A(t′)(s ∨ s ′)1A(t)(s ∧ s ′) ≥ 1A(t′)(s)1A(t)(s ′)

or that RHS = 1 =⇒ LHS = 1.



Corollary 5 f (s, θ) log -spm in (s, θ)
i .e. satisfies MLR
=⇒ F (s, θ) =

∫
1[a,b](s)f (s, θ)ds log -spm in (s, θ),

i .e. satisfies M.Prob.R.,
which =⇒ FOSD

Proof. 1[a,b](s) is log-spm in (a, b, s). Use Lemma 4.

Corollary 6 F (s, θ) log -spm in (s, θ) =⇒
∫ a
−∞ F (s, θ)ds is

log -spm in(a, θ), which =⇒ SOSD.



Applications to ratio orders (e.g. DARA):

I Let g , h : R → R+ and u : {0, 1} × R → R+ be s.t.
u(x , s) = g(s) if x = 1 and u(x , s) = h(s) if x = 0. Then, if h
> 0, u is log-spm iff g(s)/h(s) is ↗in s since with s

′
> s,

u(1, s
′
)u(0, s) ≥ u(0, s

′
)u(1, s)⇔ g(s

′
)h(s) ≥ g(s)h(s

′
)

By Lemma 1, if f is log-spm, g(s)/h(s) is ↗ in s
=⇒ U(x , θ) =

∫
u(x , θ)f (s, θ)dµ(s) is log-spm in (x , θ)

or g(s)f (s,θ)ds
h(s)f (s,θ)ds is in θ, since with θ′ > θ,

U(1, θ′)U(0, θ) ≥ U(0, θ′)U(1, θ) ⇐⇒∫
g(s)f (s, θ

′
)dµ

∫
h(s)f (s, θ)dµ ≥∫

h(s)f (s, θ′)dµ

∫
g(s)f (s, θ)dµ.



I Preservation of risk aversion orders by expectations. Assume
DARA (or u′′(w)/u′(w) in w or u′(w + s) log-spm) and f
log-spm. Then if U(w) =

∫
u(w + s)f (s, θ)ds, we have

U ′(w + t) =
∫

u′(w + t + s)f (s, θ)ds and U ′ is log-spm or
U ′′/U ′ is ↗ .

I MLR shifts and DARA: Assume DARA (or u
′′

(w)/u
′
(w) in w

or u
′
(w + s) log-spm) and f log-spm.

ThenUww (w ,θ)
Uw (w ,θ) =u(w+s)f (s,θ)ds

u(w+s)f (s,θ)ds is↗ in θ

I Same arguments for prudence: −u
′′′
/u

′′



I Log–spm Bayesian games (Athey, Econ’ 2001):

Player i has type ti ∈ Ti and uses strategy
si (·) : Ti → Ai ⊂ R.
Let T = ΠiTi and h > 0 be the joint density over types, and
hi (·/ti ) be the conditional density of other players’ types.
The utility of i is vi : A× T → R.
Expected payoff is

Vi (xi , ti ) =
∫

vi (xi , s−i (t − i), t)h−i (t−i/ti )dt−i



Theorem 7

(a)Let the types be affiliated (i .e. h(t) is log -spm in t).
Then si (ti ) = arg max Vi (xi , ti ) is↗ if s−i (t − i) is ↗ .

(b) There exists a PSNE if vi is cont. in a and Ai is compact
convex (in R), or if Ai is finite.



Applications:

I Auctions with affiliated values (Milgrom-Weber, Econ’1982)

I Bertrand competition with linear costs and incomplete
information
(with affiliated costs.)

I Related: Stochastic games (Amir, GEB 1996).


