Comparative statics: The stochastic case

 (Athey 2002)$$
U(x, \theta)=\int u(x, s) f(s, \theta) d \mu(s)
$$

where $\theta \in R, x \in R^{n}, s \in R^{m}, f$ is a density and μ is a product measure

- When is $x^{*}(\theta, B)=\arg \max _{x \in B} U(x, \theta) \nearrow$ in (θ, B) ?
- When is $U(x, \theta)$ log-spm in (x, θ) ? Recall: log spm $\Longrightarrow \mathrm{q}$-spm.
- Interpretation: $F: R^{2} \rightarrow R, F \geq 0$, is log-spm if for $\left(x^{\prime}, y^{\prime}\right)>(x, y)$
$F\left(x^{\prime}, y^{\prime}\right) F(x, y) \geq F\left(x^{\prime}, y\right) F\left(x, y^{\prime}\right)$ or
$F\left(x^{\prime}, y^{\prime}\right) / F\left(x, y^{\prime}\right) \geq F\left(x^{\prime}, y\right) / F(x, y)$
the relative returns $F\left(x^{\prime}, \cdot\right) / F(x, \cdot)$ are \nearrow (or $\left.F\left(x \cdot, y^{\prime}\right) / F(\cdot, y) \nearrow\right)$.
(as opposed to absolute returns for spm).

Log-spmineconomics:

- $D(p, \theta)$ is log-spm iff price elasticity is \nearrow in θ (CLS 2).
- A marginal utility $u^{\prime}(w+s)$ is log-spm in (w, s) iff u satisfies DARA or - $u^{\prime \prime}(w) / u^{\prime}(w)$ is \searrow in w.
- A c.d.f. $F(s ; \theta)$ has a hazard rate $f(s ; \theta) /[1-F(s ; \theta)]$ that is \searrow in θ iff $F(s ; \theta)$ is log-sbm.
- Random variables are affiliated if their joint density f is log-spm.
- If $\operatorname{supp} F(s, \theta)$ constant, the MLR order requires $f(s, \theta)$ log-spm or $f\left(s, \theta^{\prime}\right) / f(s, \theta) \nearrow$ in s for $\theta^{\prime}>\theta$.
- Many known densities $f(\cdot)$ are log-concave, so $f(s+t)$ is log-sbm. Same for cdf's.

Lemma $1 g(y, s)$ log-spm in $(y, s) \Longrightarrow \int g(y, s) \mathrm{d} \mu(s)$ log-spm in y.
Proof.
Lemma 2 (Ahlswed-Daykin79) $h_{1}, h_{2}, h_{3}, h_{4}: S \rightarrow R$ are ≥ 0 and s.t. $h_{1}(s) h_{2}\left(s^{\prime}\right) \leq h_{3}\left(s \vee s^{\prime}\right) h_{4}\left(s \wedge s^{\prime}\right)$ for μ-almost all $s, s^{\prime} \in S$.

Then

$$
\int h_{1}(s) d \mu(s) \cdot \int h_{2}(s) d \mu(s) \leq \int h_{3}(s) d \mu(s) \cdot \int h_{4}(s) d \mu(s)
$$

Set $h_{1}(s) \triangleq g(y, s), h_{2}(s) \triangleq g\left(y^{\prime}, s\right), h_{3}(s) \triangleq g\left(y \vee y^{\prime}, s\right)$, $h_{4}(s) \triangleq g\left(y \wedge y^{\prime}, s\right)$.

- In general, log-spm is not preserved by sums. Here it works because sums are of form $g(y, s)+g\left(y^{\prime}, s\right)$ where g is log-spm in (y, s)

Corollary $3 x^{*}(\theta, B) \nearrow$ in θ if μ and f are log-spm (then U is log-spm.)

Lemma 4 Let $A: R \rightarrow 2^{S}$ and $1_{A(t)}(s)=1$ if $s \in A(t)$ and 0 otherwise. $1_{A(t)}(s)$ is log-spm in (s, t) iff A_{t} is an ascending sublattice in t.

Proof. Must show that for $t^{\prime}>t$ and any $s^{\prime}, s \in S$,

$$
1_{A\left(t^{\prime}\right)}\left(s \vee s^{\prime}\right) 1_{A(t)}\left(s \wedge s^{\prime}\right) \geq 1_{A\left(t^{\prime}\right)}(s) 1_{A(t)}\left(s^{\prime}\right)
$$

or that $\mathrm{RHS}=1 \Longrightarrow \mathrm{LHS}=1$.

Corollary $5 f(s, \theta)$ log-spm in (s, θ)
i.e. satisfies MLR
$\Longrightarrow F(s, \theta)=\int 1_{[a, b]}(s) f(s, \theta) d s \log -s p m$ in (s, θ),
i.e. satisfies M.Prob.R.,
which \Longrightarrow FOSD
Proof. $1_{[a, b]}(s)$ is log-spm in (a, b, s). Use Lemma 4.
Corollary $6 F(s, \theta)$ log-spm in $(s, \theta) \Longrightarrow \int_{-\infty}^{a} F(s, \theta) d s$ is log-spm in (a, θ), which $\Longrightarrow S O S D$.

Applications to ratio orders (e.g. DARA):

- Let $g, h: R \rightarrow R_{+}$and $u:\{0,1\} \times R \rightarrow R_{+}$be s.t. $u(x, s)=g(s)$ if $x=1$ and $u(x, s)=h(s)$ if $x=0$. Then, if h $>0, u$ is log-spm iff $g(s) / h(s)$ is $\nearrow_{\text {in }} s$ since with $s^{\prime}>s$,

$$
u\left(1, s^{\prime}\right) u(0, s) \geq u\left(0, s^{\prime}\right) u(1, s) \Leftrightarrow g\left(s^{\prime}\right) h(s) \geq g(s) h\left(s^{\prime}\right)
$$

By Lemma 1, if f is log-spm, $g(s) / h(s)$ is \nearrow in s
$\Longrightarrow U(x, \theta)=\int u(x, \theta) f(s, \theta) d \mu(s)$ is log-spm in (x, θ) or $\frac{g(s) f(s, \theta) d s}{h(s) f(s, \theta) d s}$ is in θ, since with $\theta^{\prime}>\theta$,

$$
\begin{aligned}
& U\left(1, \theta^{\prime}\right) U(0, \theta) \geq U\left(0, \theta^{\prime}\right) U(1, \theta) \\
& \int g(s) f\left(s, \theta^{\prime}\right) d \mu \int h(s) f(s, \theta) d \mu \geq \\
& \int h(s) f\left(s, \theta^{\prime}\right) d \mu \int g(s) f(s, \theta) d \mu .
\end{aligned}
$$

- Preservation of risk aversion orders by expectations. Assume DARA (or $u^{\prime \prime}(w) / u^{\prime}(w)$ in w or $u^{\prime}(w+s)$ log-spm) and f log-spm. Then if $U(w)=\int u(w+s) f(s, \theta) d s$, we have $U^{\prime}(w+t)=\int u^{\prime}(w+t+s) f(s, \theta) d s$ and U^{\prime} is log-spm or $U^{\prime \prime} / U^{\prime}$ is \nearrow.
- MLR shifts and DARA: Assume DARA (or $u^{\prime \prime}(w) / u^{\prime}(w)$ in w or $u^{\prime}(w+s) \log$-spm) and f log-spm.
Then $\frac{U_{w w}(w, \theta)}{U_{w}(w, \theta)}=\frac{u(w+s) f(s, \theta) d s}{u(w+s) f(s, \theta) d s}$ is \nearrow in θ
- Same arguments for prudence: $-u^{\prime \prime \prime} / u^{\prime \prime}$
- Log-spm Bayesian games (Athey, Econ' 2001):

Player i has type $t_{i} \in T_{i}$ and uses strategy $s_{i}(\cdot): T_{i} \rightarrow A_{i} \subset R$.
Let $T=\Pi_{i} T_{i}$ and $h>0$ be the joint density over types, and $h_{i}\left(\cdot / t_{i}\right)$ be the conditional density of other players' types.
The utility of i is $v_{i}: A \times T \rightarrow R$.
Expected payoff is

$$
V_{i}\left(x_{i}, t_{i}\right)=\int v_{i}\left(x_{i}, s_{-i}(t-i), t\right) h_{-i}\left(t_{-i} / t_{i}\right) d t_{-i}
$$

Theorem 7

(a)Let the types be affiliated (i.e. $h(t)$ is log-spm in t). Then $s_{i}\left(t_{i}\right)=\arg \max V_{i}\left(x_{i}, t_{i}\right)$ is \nearrow if $s_{-i}(t-i)$ is
(b) There exists a PSNE if v_{i} is cont. in a and A_{i} is compact convex (in R), or if A_{i} is finite.

Applications:

- Auctions with affiliated values (Milgrom-Weber, Econ'1982)
- Bertrand competition with linear costs and incomplete information
(with affiliated costs.)
- Related: Stochastic games (Amir, GEB 1996).

