Comparative statics: The stochastic case (Athey 2002)

$$U(x,\theta) = \int u(x,s) f(s,\theta) d\mu(s),$$

where $\theta \in R, x \in R^n, s \in R^m$, f is a density and μ is a product measure

- ▶ When is $x^*(\theta, B) = \arg \max_{x \in B} U(x, \theta) \nearrow in (\theta, B)$?
- ▶ When is $U(x, \theta)$ log-spm in (x, θ) ? Recall: log spm \Longrightarrow q-spm.

(日) (同) (三) (三) (三) (○) (○)

▶ Interpretation: $F : R^2 \to R, F \ge 0$, is log-spm if for (x', y') > (x, y) $F(x', y')F(x, y) \ge F(x', y)F(x, y')$ or $F(x', y')/F(x, y') \ge F(x', y)/F(x, y)$ the relative returns $F(x', \cdot)/F(x, \cdot)$ are \nearrow (or $F(x \cdot, y')/F(\cdot, y) \nearrow$). (as opposed to absolute returns for spm).

Log-spmineconomics:

- $D(p, \theta)$ is log-spm iff price elasticity is \nearrow in θ (CLS 2).
- A marginal utility u'(w+s) is log-spm in (w,s) iff u satisfies DARA or -u''(w)/u'(w) is \searrow in w.
- A c.d.f. $F(s; \theta)$ has a hazard rate $f(s; \theta)/[1 F(s; \theta)]$ that is \searrow in θ iff $F(s; \theta)$ is log-sbm.
- Random variables are affiliated if their joint density f is log-spm.
- ▶ If $suppF(s, \theta)$ constant, the MLR order requires $f(s, \theta)$ log-spm or $f(s, \theta')/f(s, \theta) \nearrow$ in s for $\theta' > \theta$.
- ► Many known densities f(·) are log-concave, so f(s + t) is log-sbm. Same for cdf's.

Lemma 1 g(y,s) log-spm in $(y,s) \Longrightarrow \int g(y,s)d\mu(s)$ log-spm in y. Proof.

Lemma 2 (Ahlswed-Daykin79) $h_1, h_2, h_3, h_4 : S \to R \text{ are } \geq 0$ and s.t. $h_1(s)h_2(s') \leq h_3(s \lor s')h_4(s \land s')$ for μ -almost all $s, s' \in S$. Then

$$\int h_1(s)d\mu(s)\cdot\int h_2(s)d\mu(s)\leq \int h_3(s)d\mu(s)\cdot\int h_4(s)d\mu(s).$$

Set
$$h_1(s) \stackrel{\Delta}{=} g(y,s)$$
, $h_2(s) \stackrel{\Delta}{=} g(y',s)$, $h_3(s) \stackrel{\Delta}{=} g(y \lor y',s)$,
 $h_4(s) \stackrel{\Delta}{=} g(y \land y',s)$.

► In general, log-spm is not preserved by sums. Here it works because sums are of form g(y, s) + g(y', s) where g is log-spm in (y, s)

Corollary 3 $x^*(\theta, B) \nearrow$ in θ if μ and f are log-spm (then U is log-spm.)

Lemma 4 Let $A : R \to 2^{S}$ and $1_{A(t)}(s) = 1$ if $s \in A(t)$ and 0 otherwise. $1_{A(t)}(s)$ is log-spm in (s, t) iff A_t is an ascending sublattice in t.

Proof. Must show that for t' > t and any s' , $s \in S$,

$$1_{\mathcal{A}(t')}(s \lor s')1_{\mathcal{A}(t)}(s \land s') \geq 1_{\mathcal{A}(t')}(s)1_{\mathcal{A}(t)}(s')$$

or that $RHS = 1 \Longrightarrow LHS = 1$.

Corollary 5 $f(s,\theta)$ log-spm in (s,θ) i.e. satisfies MLR $\implies F(s,\theta) = \int 1_{[a,b]}(s)f(s,\theta)ds$ log-spm in (s,θ) , i.e. satisfies M.Prob.R., which \implies FOSD

Proof. $1_{[a,b]}(s)$ is log-spm in (a, b, s). Use Lemma 4.

Corollary 6 $F(s,\theta)$ log-spm in $(s,\theta) \Longrightarrow \int_{-\infty}^{a} F(s,\theta) ds$ is log-spm in (a,θ) , which \Longrightarrow SOSD.

Applications to ratio orders (e.g. DARA):

► Let
$$g, h: R \to R_+$$
 and $u: \{0,1\} \times R \to R_+$ be s.t.
 $u(x,s) = g(s)$ if $x = 1$ and $u(x,s) = h(s)$ if $x = 0$. Then, if $h > 0$, u is log-spm iff $g(s)/h(s)$ is \nearrow in s since with $s' > s$,
 $u(1,s')u(0,s) \ge u(0,s')u(1,s) \Leftrightarrow g(s')h(s) \ge g(s)h(s')$
By Lemma 1, if f is log-spm, $g(s)/h(s)$ is \nearrow in $s \Rightarrow U(x,\theta) = \int u(x,\theta)f(s,\theta)d\mu(s)$ is log-spm in (x,θ)
or $\frac{g(s)f(s,\theta)ds}{h(s)f(s,\theta)ds}$ is in θ , since with $\theta' > \theta$,
 $U(1,\theta')U(0,\theta) \ge U(0,\theta')U(1,\theta) \iff f(s,\theta)u(1,\theta)$

$$\int g(s)f(s, heta')d\mu \int h(s)f(s, heta)d\mu \geq \ \int h(s)f(s, heta')d\mu \int g(s)f(s, heta)d\mu.$$

- ▶ Preservation of risk aversion orders by expectations. Assume DARA (or u''(w)/u'(w) in w or u'(w + s) log-spm) and f log-spm. Then if $U(w) = \int u(w + s)f(s, \theta)ds$, we have $U'(w + t) = \int u'(w + t + s)f(s, \theta)ds$ and U' is log-spm or U''/U' is \nearrow .
- ► MLR shifts and DARA: Assume DARA (or u''(w)/u'(w) in w or u'(w + s) log-spm) and f log-spm. Then Uww(w,θ) = u(w+s)f(s,θ)ds/ds is ≯ in θ

Same arguments for prudence: -u'''/u''

Log-spm Bayesian games (Athey, Econ' 2001):

Player *i* has type $t_i \in T_i$ and uses strategy $s_i(\cdot) : T_i \to A_i \subset R$. Let $T = \prod_i T_i$ and h > 0 be the joint density over types, and $h_i(\cdot/t_i)$ be the conditional density of other players' types. The utility of *i* is $v_i : A \times T \to R$. Expected payoff is

$$V_i(x_i, t_i) = \int v_i(x_i, s_{-i}(t-i), t) h_{-i}(t_{-i}/t_i) dt_{-i}$$

Theorem 7

(a)Let the types be affiliated (i.e. h(t) is log-spm in t). Then $s_i(t_i) = \arg \max V_i(x_i, t_i)$ is \nearrow if $s_{-i}(t-i)$ is \nearrow .

(b) There exists a PSNE if v_i is cont. in a and A_i is compact convex (in R), or if A_i is finite.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Applications:

Auctions with affiliated values (Milgrom-Weber, Econ'1982)

- Bertrand competition with linear costs and incomplete information (with affiliated costs.)
- Related: Stochastic games (Amir, GEB 1996).