Meng-Yu Liang

IO (I) 323 M2510 Homework #3

Two players are deciding whether to invest. There is a safe action β (not invest); there is a risky action α (invest) which gives a higher payoff if the other player invests. Payoffs are given by the following matrix.

	Invest (α)	Not Invest (β)
Invest (α)	θ, θ	$\theta - 1, 0$
Not Invest (β)	$0, \theta - 1$	0, 0

If there were complete information about θ , there would be three cases to consider.

• If $\theta > 1$, each player has a dominant strategy to invest.

• If $\theta \in [0, 1]$, there are two pure strategy Nash equilibria: both invest and both not invest.

• If $\theta < 0$, each player has a dominant strategy not to invest.

 Using the notation in Carlsson and van Damme (EM 1993), find the following Intervals : G^γ, D^α_i, D^β_i, R^α, R^β, and G⁺_i.

Suppose there is incomplete information about θ . Player *i* observes a private signal $x_i = \theta + \varepsilon_i$. Each ε_i is independently uniformly distributed over the interval $[-\varepsilon, \varepsilon]$. We assume that θ is randomly drawn from the interval [a, b], with each realization equally likely.

- 2. For a = -1, b = 2 and $\varepsilon \leq \frac{1}{8}$, find $S_i^{\varepsilon,n}$, $A_i^{\varepsilon,n+1}$ and $B_i^{\varepsilon,n+1}$ for $n = 1, 2, \ldots, \infty$.
- 3. For a = -1, b = 1 and $\varepsilon \leq \frac{1}{8}$, find $S_i^{\varepsilon,n}$, $A_i^{\varepsilon,n+1}$ and $B_i^{\varepsilon,n+1}$ for $n = 1, 2, \ldots, \infty$.
- 1. For $a = -\frac{1}{2}$, $b = \frac{3}{2}$ and $\varepsilon = 1$, find $S_i^{\varepsilon,n}$, $A_i^{\varepsilon,n+1}$ and $B_i^{\varepsilon,n+1}$ for $n = 1, 2, \ldots, \infty$.