NTU Homework 03: Durable Goods Monopoly

Q: Consider the durable goods monopoly selling problem as in class. Suppose

$$
f(q)=\left\{\begin{array}{cc}
10, & \text { if } q \in[0,0.8] \\
2, & \text { if } q \in(0.8,1]
\end{array}, \text { and } c=0\right.
$$

Find the stationary subgame perfect equilibrium of this game. Show that $\lim _{\delta \rightarrow 1} P_{\delta}(0)=2$.

Ans: Since the lowest price that the monopolist will charge in equilibrium is $f(1)=2$, we know the consumer's acceptance function must be $P(q)=\left\{\begin{array}{cc}2 & \text { for } q \in(0.8,1] \\ 10(1-\delta)+2 \delta & \text { for } q \in\left(\bar{q}_{1}, 0.8\right]\end{array}\right.$, where \bar{q}_{1} is such that the monopolist is indifferent between charging $P(0.8)$ and $P(1)$. Hence, we have

$$
\begin{aligned}
P(0.8)\left(0.8-\bar{q}_{1}\right)+0.2 \delta P(1) & =P(1)\left(1-\bar{q}_{1}\right) \\
(10(1-\delta)+2 \delta)\left(0.8-\bar{q}_{1}\right)+0.4 \delta & =2\left(1-\bar{q}_{1}\right) \\
\bar{q}_{1} & =0.75
\end{aligned}
$$

Therefore, we obtain $t(q)=\left\{\begin{array}{cc}1 & \text { for } q \in(0.75,1] \\ 0.8 & \text { for } q \in\left[\bar{q}_{2}, 0.75\right]\end{array}\right.$, and $P(q)=10(1-\delta)+\delta P(0.8)=10(1-$ $\left.\delta^{2}\right)+2 \delta^{2}$ for $q \in\left(\bar{q}_{2}, 0.75\right]$, where \bar{q}_{2} is such that the monopolist is indifferent between charging $P(0.75)$ and $P(0.8)$. Hence, we have :

$$
P(0.75)\left(0.75-\bar{q}_{2}\right)+\delta R(0.75)=P(0.8)\left(0.8-\bar{q}_{2}\right)+\delta R(0.8)
$$

$$
\begin{aligned}
& R(0.75)=P(1)(1-0.75)=0.5 \\
& R(0.8)=P(1)(1-0.8)=0.4 \\
& \qquad \begin{aligned}
\left(10\left(1-\delta^{2}\right)+2 \delta^{2}\right)(0.75-q)+0.5 \delta & =(10(1-\delta)+2 \delta)(0.8-q)+0.4 \delta \\
\bar{q}_{2} & =0.75-\frac{0.0625}{\delta}
\end{aligned}
\end{aligned}
$$

$$
P(q)=10\left(1-\delta^{3}\right)+2 \delta^{3} \text { for } q \in\left(\bar{q}_{3}, \bar{q}_{2}\right] . \quad R\left(\bar{q}_{2}\right)=\left(10\left(1-\delta^{2}\right)+2 \delta^{2}\right)\left(\frac{0.0625}{\delta}\right)+0.5 \delta=\frac{0.625}{\delta}
$$

$$
\left(10\left(1-\delta^{3}\right)+2 \delta^{3}\right)\left(0.75-\frac{0.0625}{\delta}-\bar{q}_{3}\right)+0.625=\left(10\left(1-\delta^{2}\right)+2 \delta^{2}\right)\left(0.75-\bar{q}_{3}\right)+0.5 \delta
$$

$$
\bar{q}_{3}=0.75-\frac{7.8125 \times 10^{-2}}{\delta^{3}}-\frac{0.0625}{\delta}
$$

Using the same arguments as in the classnote, we obtain $\bar{q}_{k-1}-\bar{q}_{k}=\left(\hat{q}-\bar{q}_{1}\right)\left(\frac{\bar{v}}{\bar{v}-\underline{v}}\right)^{k-1} \delta^{-k(k-1) / 2}=$ $0.05\left(\frac{5}{4}\right)^{k-1} \delta^{-k(k-1) / 2}$ for $k \geq 2 . \quad P(q)=10\left(1-\delta^{k}\right)+2 \delta^{k}$ for $q \in\left(\bar{q}_{k}, \bar{q}_{k-1}\right]$

Let m be the minimum number such that $\sum_{k=1}^{k=m}\left(\bar{q}_{k-1}-\bar{q}_{k}\right)>1$, i.e., $m=\min \left\{k: \bar{q}_{k}<0, k \in \boldsymbol{N}\right\}$ Since $\bar{q}_{k-1}-\bar{q}_{k} \geq 0.05$, we have $m \leq \frac{0.75}{0.05}+1 \leq 16$.

Given $\left\{\bar{q}_{k}\right\}_{k=1}^{m}$ is well defined, we can write down the stationary subgame perfect equilibrium as follows:

Buyers' strategy:
If the current price p is in $\left[0, P\left(\bar{q}_{i}\right)\right]$, then the consumers who are still in the market and satisfy $q \in\left[0, \bar{q}_{i}\right]$ buy one unit of goods and the rest consumers choose not to buy.

The monopolist strategy:
In the first period, choose $p_{1}=P\left(\bar{q}_{m-2}\right)$ if $\bar{q}_{m-1}>0$ and choose $p_{1}=\pi P\left(\bar{q}_{m-2}\right)+(1-$ $\pi) P\left(\bar{q}_{m-3}\right)$ for any $\pi \in[0,1]$ if $\bar{q}_{m-1}=0$.

If the histry at period i satisfies $p_{i-1}=P\left(\bar{q}_{k+1}\right)$, then $p_{i}=P\left(\bar{q}_{k}\right)$.
If $p_{i-1} \in\left(P\left(\bar{q}_{k+1}\right), P\left(\bar{q}_{k}\right)\right)$ then $p_{i}=P\left(\bar{q}_{k}\right)$ with probability π and $p_{i}=P\left(\bar{q}_{k-1}\right)$ with probability $1-\pi$, where π satisfies $p_{i-1}=10(1-\delta)+\delta\left[\pi P\left(\bar{q}_{k}\right)+(1-\pi) P\left(\bar{q}_{k-1}\right)\right]$

If $p_{i-1}>P(0)$, then $p_{i}=P\left(\bar{q}_{m-2}\right)$.

To show that $\lim _{\delta \rightarrow 1} P_{\delta}(0)=2$, observe that $\lim _{\delta \rightarrow 1} P_{\delta}(0) \leq \lim _{\delta \rightarrow 1} P_{\delta}\left(\bar{q}_{m-1}\right) \leq \lim _{\delta \rightarrow 1}(10(1-$ $\left.\left.\delta^{16}\right)+2 \delta^{16}\right)=2$. Since $P_{\delta}(q) \geq 2$ for all q, we conclude that $\lim _{\delta \rightarrow 1} P_{\delta}(0)=2$.

