NTU Homework 4_solution

Meng-Yu Liang

Due May 20, 2009

- 1. (50 points) Similar to the nonlinear-prices example in class, a monopolist offers a menu of bundles $\{q, T\}$ to consumers, where q is the quantity sold and T is the fixed fee. Consumers with type θ receive utility $\theta\sqrt{q} T(q)$ if they pruchase a quantity q and 0 otherwise. Suppose (q_1, T_1) is directed at type- θ_1 consumers (in proportion λ), and (q_2, T_2) is directed at type- θ_2 consumers(in proportion 1λ). The unit cost of producing the good is 1. Suppose $\theta_1 = 1$ and $\theta_2 = 4$.
 - (a) (10 points) Is it possible that the monopolist's best strategy is to sell to type- θ_1 only?
 - (b) (10 points) If the monopolist only sells to type- θ_2 consumers, what is the optimal budle (q_2^*, T_2^*) ?
 - (c) (10 points) If the monopolist sells to both types, what are the optimal bundles (q_1^*, T_1^*) and (q_2^*, T_2^*) ?
 - (d) (10 points) What is monopolist optimal decision?
 - (e) (10 points) Suppose θ is uniformly distributed over [1, 4]. Find the optimal nonlinear price (q, T).

Ans:

(a) IR constrants for consumers:

IR₁:
$$\theta_1 \sqrt{q} - T \ge 0$$

IR₂: $\theta_2 \sqrt{q} - T \ge 0$

Since $IR_2 > IR_1$, it is impossible for the monopolist to sell the goods to type- θ_1 consumers only.

The Monopolist's profit maximization problem:

$$\max_{\{q,T\}} E\pi = \lambda [T_1 - cq_1] + (1 - \lambda)[T_2 - cq_2]$$

subject to:

$$IR_1: \ \theta_1 \sqrt{q_1} - T_1 \ge 0$$
$$IR_2: \ \theta_2 \sqrt{q_2} - T_2 \ge 0$$
$$IC_1: \ \theta_1 \sqrt{q_1} - T_1 \ge \theta_1 \sqrt{q_2} - T_2$$
$$IC_2: \ \theta_2 \sqrt{q_2} - T_2 \ge \theta_2 \sqrt{q_1} - T_1$$

There are only IR_1 and IC_2 binding.

Proof. If IR₁ is non-binding, we have $\theta_2\sqrt{q_2} - T_2 \ge \theta_2\sqrt{q_1} - T_1 > \theta_1\sqrt{q_1} - T_1 > 0$. Contradiction could occur when we rise T_1 and T_2 simultaneously. According to the discussion above, we can conclude that IR₁ is binding. If IR₁ is binding, then $\theta_2\sqrt{q_2} - T_2 \ge \theta_2\sqrt{q_1} - T_1 > \theta_1\sqrt{q_1} - T_1 > 0$. That is, IR₂ is non-binding. If IC₂ is non-binding, we have $\theta_2\sqrt{q_2} - T_2 > \theta_2\sqrt{q_1} - T_1 > 0$. Contradiction could occur when rising T_2 can make profit. Now we can conclude that IC₂ is binding. If IC₂ is binding, we have $\theta_1[(\sqrt{q_1} - \sqrt{q_2})/(T_2 - T_1)] < \theta_2[(\sqrt{q_1} - \sqrt{q_2})/(T_2 - T_1)] = 1$. That is, IC₁ is non-binding.

Substituting $T_1 = \sqrt{q_1}$ and $T_2 = 4\sqrt{q_2} - 3\sqrt{q_1}$ into objective function, we have:

$$\max_{a} E\pi = \lambda [\sqrt{q_1} - q_1] + (1 - \lambda) [4\sqrt{q_2} - 3\sqrt{q_1} - q_2]$$

FOC:

$$\frac{\partial E\pi}{\partial q_1} = \lambda [\frac{1}{2\sqrt{q_1}} - 1] + (1 + \lambda)[-\frac{3}{2\sqrt{q_1}}] = 0$$

 $\begin{array}{l} \Rightarrow \sqrt{q_1} = \frac{4\lambda - 3}{2\lambda} \\ \text{if } \sqrt{q_1} > 0 \Rightarrow \lambda > \frac{3}{4} \Rightarrow q_1^* = (\frac{4\lambda - 3}{2\lambda})^2 \Rightarrow T_1^* = \frac{4\lambda - 3}{2\lambda} \\ \text{if } \sqrt{q_1} \le 0 \Rightarrow \lambda \le \frac{3}{4} \Rightarrow q_1^* = 0 \Rightarrow T_1^* = 0 \end{array}$

$$\frac{\partial E\pi}{\partial q_2} = \frac{2}{\sqrt{q_2}} - 1 = 0$$

 $q_2^* = 4$ and $T_2^* = 8 - 3T_1^*$.

- (b) $q_2^* = 4, T_2^* = 8.$
- (c) If $\lambda > 3/4$, then $(q_1^*, T_1^*) = ((\frac{4\lambda 3}{2\lambda})^2, \frac{4\lambda 3}{2\lambda})$ and $(q_2^*, T_2^*) = (4, 8 3\frac{4\lambda 3}{2\lambda})$. If $\lambda \le 3/4$, then $(q_1^*, T_1^*) = (0, 0)$ and $(q_2^*, T_2^*) = (4, 8)$.
- (d) If the number of type- θ_1 consumers is large enought($\lambda > 3/4$), monopolist's optimal decision is to discriminate between type- θ_1 and type- θ_2 consumers, otherwise it seizes all type- θ_2 consumers' surplus only.
- (e) Monopolist's profit maximization problem:

$$\max_{T,q} \int_{\underline{\theta}}^{\overline{\theta}} [T(q(\theta)) - c(q(\theta))] f(\theta) d\theta$$

subject to:

$$\begin{split} \text{IR: } \theta \sqrt{q(\theta)} - T(q(\theta)) &\geq 0, \forall \theta \in \Theta \\ \text{IC: } u(\theta) &= \theta \sqrt{q(\theta)} - T(q(\theta)) \geq \theta \sqrt{q(\theta')} - T(q(\theta')), \forall \theta' \in \Theta \end{split}$$

Let θ_0 be the highest type such that the IR constraint is binding. That is, for all $\theta \in [\underline{\theta}, \theta_0]$ we have $\theta \sqrt{q(\theta)} - T(q(\theta)) = 0$. For all $\theta \in [\theta_0, \overline{\theta}]$, consumer's IC constraint requires that

$$u(\theta) = \theta \sqrt{q(\theta)} - T(\theta) = \max_{\alpha \in \Theta} \theta \sqrt{q(\alpha)} - T(q(\alpha))$$

Using the Envelop theorem, we have

$$\frac{du}{d\theta} = \sqrt{q(\theta)}.$$

Integrating above equation and the fact that $u(\theta) = \theta \sqrt{q(\theta)} - T(q(\theta))$, we have the relationship between $T(q(\theta))$ and $q(\theta)$:

$$T(q(\theta)) = \theta \sqrt{q(\theta)} - \int_{\theta_0}^{\theta} \sqrt{q(t)} dt.$$

Now we can rewrite monopolist's optimal problem as:

$$\max_{q(\theta)} \int_{\theta_0}^{\theta} [\theta \sqrt{q(\theta)} - \int_{\theta_0}^{\theta} \sqrt{q(t)} dt - q(\theta)] f(\theta) d\theta.$$

Integrating by parts:

$$\begin{aligned} \max_{q(\theta)} \int_{\theta_0}^4 \{ \frac{1}{3} [\theta \sqrt{q(\theta)} - q(\theta)] - \sqrt{q(\theta)} (1 - \frac{\theta - 1}{3}) \} d\theta. \\ \max_{q(\theta)} \frac{1}{3} \int_{\theta_0}^4 [(2\theta - 4)\sqrt{q(\theta)} - q(\theta)] d\theta \end{aligned}$$

First, let us look at the optimal q for each θ .

$$\max_{q}(2\theta - 4)\sqrt{q} - q$$

If $2\theta - 4 < 0$, then choosing q = 0 is the optimal. Therefore, we know that $\theta_0 = 2$ For $\theta \in [2, 4]$, FOC implies that

$$\frac{1}{2}(2\theta - 4)\frac{1}{\sqrt{q}} = 1$$

 $\Rightarrow q(\theta) = (\theta - 2)^2$ $\Rightarrow T(q) = \theta \sqrt{q(\theta)} - \int_2^{\theta} \sqrt{q(t)} dt = \theta(\theta - 2) - \int_2^{\theta} (t - 2) dt = \frac{1}{2} \theta^2 - 2 = \frac{1}{2} (\sqrt{q} + 2)^2 - 2 = \frac{1}{2} q + 2\sqrt{q}$ Hence, the monopolist should offer $(q, T(q)) = (q, \frac{1}{2}q + 2\sqrt{q})$ and $q \in [0, 4]$.