1. (50 points) Similar to the nonlinear-prices example in class, a monopolist offers a menu of bundles $\{q, T\}$ to consumers, where q is the quantity sold and T is the fixed fee. Consumers with type θ receive utility $\theta \sqrt{q}-T(q)$ if they pruchase a quantity q and 0 otherwise. Suppose $\left(q_{1}, T_{1}\right)$ is directed at type- θ_{1} consumers (in proportion $\lambda)$, and $\left(q_{2}, T_{2}\right)$ is directed at type- θ_{2} consumers(in proportion $\left.1-\lambda\right)$. The unit cost of producing the good is 1 . Suppose $\theta_{1}=1$ and $\theta_{2}=4$.
(a) (10 points) Is it possible that the monopolist's best strategy is to sell to type- θ_{1} only?
(b) (10 points) If the monopolist only sells to type $-\theta_{2}$ consumers, what is the optimal budle $\left(q_{2}^{*}, T_{2}^{*}\right)$?
(c) (10 points) If the monopolist sells to both types, what are the optimal bundles $\left(q_{1}^{*}, T_{1}^{*}\right)$ and $\left(q_{2}^{*}, T_{2}^{*}\right)$?
(d) (10 points) What is monopolist optimal decision?
(e) (10 points) Suppose θ is uniformly distributed over $[1,4]$. Find the optimal nonlinear price (q, T).

Ans:
(a) IR constrants for consumers:

$$
\begin{aligned}
& \mathrm{IR}_{1}: \theta_{1} \sqrt{q}-T \geq 0 \\
& \mathrm{IR}_{2}: \theta_{2} \sqrt{q}-T \geq 0
\end{aligned}
$$

Since $\mathrm{IR}_{2}>\mathrm{IR}_{1}$, it is impossible for the monopolist to sell the goods to type- θ_{1} consumers only.

The Monopolist's profit maximization problem:

$$
\max _{\{q, T\}} E \pi=\lambda\left[T_{1}-c q_{1}\right]+(1-\lambda)\left[T_{2}-c q_{2}\right]
$$

subject to:

$$
\begin{gathered}
\mathrm{IR}_{1}: \theta_{1} \sqrt{q_{1}}-T_{1} \geq 0 \\
\mathrm{IR}_{2}: \theta_{2} \sqrt{q_{2}}-T_{2} \geq 0 \\
\mathrm{IC}_{1}: \theta_{1} \sqrt{q_{1}}-T_{1} \geq \theta_{1} \sqrt{q_{2}}-T_{2} \\
\mathrm{IC}_{2}: \theta_{2} \sqrt{q_{2}}-T_{2} \geq \theta_{2} \sqrt{q_{1}}-T_{1}
\end{gathered}
$$

There are only IR_{1} and IC_{2} binding.
Proof. If IR_{1} is non-binding, we have $\theta_{2} \sqrt{q_{2}}-T_{2} \geq \theta_{2} \sqrt{q_{1}}-T_{1}>\theta_{1} \sqrt{q_{1}}-T_{1}>0$. Contradiction could occur when we rise T_{1} and T_{2} simultaneously. According to the discussion above, we can conclude that IR_{1} is binding. If IR_{1} is binding, then $\theta_{2} \sqrt{q_{2}}-T_{2} \geq \theta_{2} \sqrt{q_{1}}-T_{1}>\theta_{1} \sqrt{q_{1}}-T_{1}>0$. That is, IR_{2} is non-binding. If IC_{2} is non-binding, we have $\theta_{2} \sqrt{q_{2}}-T_{2}>\theta_{2} \sqrt{q_{1}}-T_{1}>0$. Contradction could occur when rising T_{2} can make profit. Now we can conclude that IC_{2} is binding. If IC_{2} is binding, we have $\theta_{1}\left[\left(\sqrt{q_{1}}-\sqrt{q_{2}}\right) /\left(T_{2}-T_{1}\right)\right]<\theta_{2}\left[\left(\sqrt{q_{1}}-\sqrt{q_{2}}\right) /\left(T_{2}-T_{1}\right)\right]=1$. That is, IC_{1} is non-binding.
Substituting $T_{1}=\sqrt{q_{1}}$ and $T_{2}=4 \sqrt{q_{2}}-3 \sqrt{q_{1}}$ into objective function, we have:

$$
\max _{q} E \pi=\lambda\left[\sqrt{q_{1}}-q_{1}\right]+(1-\lambda)\left[4 \sqrt{q_{2}}-3 \sqrt{q_{1}}-q_{2}\right]
$$

FOC:

$$
\frac{\partial E \pi}{\partial q_{1}}=\lambda\left[\frac{1}{2 \sqrt{q_{1}}}-1\right]+(1+\lambda)\left[-\frac{3}{2 \sqrt{q_{1}}}\right]=0
$$

$\Rightarrow \sqrt{q_{1}}=\frac{4 \lambda-3}{2 \lambda}$
if $\sqrt{q_{1}}>0 \Rightarrow \lambda>\frac{3}{4} \Rightarrow q_{1}^{*}=\left(\frac{4 \lambda-3}{2 \lambda}\right)^{2} \Rightarrow T_{1}^{*}=\frac{4 \lambda-3}{2 \lambda}$
if $\sqrt{q_{1}} \leq 0 \Rightarrow \lambda \leq \frac{3}{4} \Rightarrow q_{1}^{*}=0 \Rightarrow T_{1}^{*}=0$

$$
\frac{\partial E \pi}{\partial q_{2}}=\frac{2}{\sqrt{q_{2}}}-1=0
$$

$q_{2}^{*}=4$ and $T_{2}^{*}=8-3 T_{1}^{*}$.
(b) $q_{2}^{*}=4, T_{2}^{*}=8$.
(c) If $\lambda>3 / 4$, then $\left(q_{1}^{*}, T_{1}^{*}\right)=\left(\left(\frac{4 \lambda-3}{2 \lambda}\right)^{2}, \frac{4 \lambda-3}{2 \lambda}\right)$ and $\left(q_{2}^{*}, T_{2}^{*}\right)=\left(4,8-3 \frac{4 \lambda-3}{2 \lambda}\right)$. If $\lambda \leq 3 / 4$, then $\left(q_{1}^{*}, T_{1}^{*}\right)=(0,0)$ and $\left(q_{2}^{*}, T_{2}^{*}\right)=(4,8)$.
(d) If the number of type- θ_{1} consumers is large enought $(\lambda>3 / 4)$, monopolist's optimal decision is to discriminate between type- θ_{1} and type $-\theta_{2}$ consumers, otherwise it seizes all type- θ_{2} consumers' surplus only.
(e) Monopolist's profit maximization problem:

$$
\max _{T, q} \int_{\underline{\theta}}^{\bar{\theta}}[T(q(\theta))-c(q(\theta))] f(\theta) d \theta
$$

subject to:

$$
\begin{gathered}
\text { IR: } \theta \sqrt{q(\theta)}-T(q(\theta)) \geq 0, \forall \theta \in \Theta \\
\text { IC: } u(\theta)=\theta \sqrt{q(\theta)}-T(q(\theta)) \geq \theta \sqrt{q\left(\theta^{\prime}\right)}-T\left(q\left(\theta^{\prime}\right)\right), \forall \theta^{\prime} \in \Theta
\end{gathered}
$$

Let θ_{0} be the highest type such that the IR constraint is binding. That is , for all $\theta \in\left[\underline{\theta}, \theta_{0}\right]$ we have $\theta \sqrt{q(\theta)}-T(q(\theta))=0$. For all $\theta \in\left[\theta_{0}, \bar{\theta}\right]$, consumer's IC constraint requires that

$$
u(\theta)=\theta \sqrt{q(\theta)}-T(\theta)=\max _{\alpha \in \Theta} \theta \sqrt{q(\alpha)}-T(q(\alpha))
$$

Using the Envelop theorem, we have

$$
\frac{d u}{d \theta}=\sqrt{q(\theta)}
$$

Integrating above eqution and the fact that $u(\theta)=\theta \sqrt{q(\theta)}-T(q(\theta))$, we have the relationship between $T(q(\theta))$ and $q(\theta)$:

$$
T(q(\theta))=\theta \sqrt{q(\theta)}-\int_{\theta_{0}}^{\theta} \sqrt{q(t)} d t
$$

Now we can rewrite monopolist's optimal problem as:

$$
\max _{q(\theta)} \int_{\theta_{0}}^{\bar{\theta}}\left[\theta \sqrt{q(\theta)}-\int_{\theta_{0}}^{\theta} \sqrt{q(t)} d t-q(\theta)\right] f(\theta) d \theta
$$

Integrating by parts:

$$
\begin{gathered}
\max _{q(\theta)} \int_{\theta_{0}}^{4}\left\{\frac{1}{3}[\theta \sqrt{q(\theta)}-q(\theta)]-\sqrt{q(\theta)}\left(1-\frac{\theta-1}{3}\right)\right\} d \theta \\
\max _{q(\theta)} \frac{1}{3} \int_{\theta_{0}}^{4}[(2 \theta-4) \sqrt{q(\theta)}-q(\theta)] d \theta
\end{gathered}
$$

First, let us look at the optimal q for each θ.

$$
\max _{q}(2 \theta-4) \sqrt{q}-q
$$

If $2 \theta-4<0$, then choosing $q=0$ is the optimal. Therefore, we know that $\theta_{0}=2$
For $\theta \in[2,4]$, FOC implies that

$$
\frac{1}{2}(2 \theta-4) \frac{1}{\sqrt{q}}=1
$$

$\Rightarrow q(\theta)=(\theta-2)^{2}$
$\Rightarrow T(q)=\theta \sqrt{q(\theta)}-\int_{2}^{\theta} \sqrt{q(t)} d t=\theta(\theta-2)-\int_{2}^{\theta}(t-2) d t=\frac{1}{2} \theta^{2}-2=\frac{1}{2}(\sqrt{q}+2)^{2}-2=\frac{1}{2} q+2 \sqrt{q}$
Hence, the monopolist should offer $(q, T(q))=\left(q, \frac{1}{2} q+2 \sqrt{q}\right)$ and $q \in[0,4]$.

