NTU Homework Solutions 02: Equilibrium Refinements

Q: Consider the following extensive form game.

1. Write down each player's decision nodes.

Ans: Player 1's decision nodes: $\left\{t_{1}, t_{2}\right\}$. Player 2's decision nodes: $\{A, B, X, Y\}$.
2. Write down each player's information sets.

Ans: Player 1's information sets: $\left\{t_{1}\right\}$ and $\left\{t_{2}\right\}$. Player 2's information sets: $\{A, B\}$ and $\{X, Y\}$.
3. Write down each player's strategy space.

Ans: Player 1's strategy space: $\sigma_{1}\left(t_{1}\right) \times \sigma_{1}\left(t_{2}\right)=\{L L, L R, R L, R R\}$. Player 2's strategy space: $\sigma_{2}(\{A, B\}) \times \sigma_{2}(\{X, Y\})=\{u u, u d, d u, d d\}$.
4. Write down the normal form of this game

Ans:

Player 2

		$u u$	$u d$	$d u$	$d d$
Player 1	$L R$	$1.2,0.2$	$2,2.6$	$1.6,0$	$2.4,2.4$
	$L L$	$2,1.8$	$2,1.8$	$0.8,0.8$	$0.8,0.8$
	$R L$	$2,2.2$	$1.6,1.6$	$0.4,1.4$	$0,0.8$
	$R R$	$1.2,0.6$	$1.6,2.4$	$1.2,0.6$	$1.6,2.4$

5. Write down the agent normal form of this game.

Ans:

Player 2

		$u u$	$u d$	$d u$	$d d$
Player 1 at t_{1}	L	$1,1.8,2$	$1,1.8,2$	$4,0.8,0$	$4,0.8,0$
	R	$2,2.2,2$	$0,1.6,2$	$2,1.4,0$	$0,0.8,0$
			L	(player 1 at t_{2})	

Player 2

uu ud du dd

Player 1 at t_{1}	L	$1,0.2,1$	$1,2.6,2$	$4,0,1$	$4,2.4,2$
	R	$2,0.6,1$	$0,2.4,2$	$2,0.6,1$	$0,2.4,2$
			R	(player 1 at $\left.t_{2}\right)$	

6. Find all the Nash Equilibria of this game.

Ans:

- pure strategy Nash equilibrium: $\{(L L, u u),(R L, u u),(L L, u d),(L R, u d)\}$.
- Observe that the strategy $d u$ for player 2 is strictly dominated by the strategy $u d$. Hence the original game is strategically equivalent to the game in which $d u$ is eliminated. Now, we claim that in the remaining game the strategy $R R$ for player 1 is strictly dominated by the mixed strategy $x L L \oplus(1-x) L R, \forall x \in(0,3 / 4)$. Hence we may again reduce the game by eliminating the strategy $R R$ for player 1 . Clearly, in the remaining game the strat-
egy $d d$ for player 2 is strictly dominated by the strategy $u d$. Finally, we have a 3×2 game.

	Player 2		
		$u u$	$u d$
	$L L$	$2,1.8$	$2,1.8$
Player 1	$L R$	$1.2,0.2$	$2,2.6$
	$R L$	$2,2.2$	$1.6,1.6$

Let q_{1} denote the probability with player 1 selects $L L, q_{2}$ the probability with player 1 selects $L R$, and $q_{3}=1-q_{1}-q_{2}$ the probability with player 1 selects $R L$. Let p_{1} denote the probability with player 2 selects $u u$, and $p_{2}=1-p_{1}$ the probability with player 2 selects $u d$. Then the expected payoff of player 1 equals

pure strategy	expected payoff to p
$L L$	2
$L R$	$2-0.8 p$
$R L$	$0.4 p_{1}+1.6$

Therefore $L L$ is a best response for player 1 iff $p_{1} \in[0,1], L R$ is a best reponse iff $p_{1}=0$, and $R L$ is a best response for player 1 iff $p_{1}=1$.
Next, the expected payoff of player 2 equals

$$
\begin{array}{cc}
u u & 2.2-0.4 q_{1}-2 q_{2} \\
u d & 1.6+0.2 q_{1}+q_{2}
\end{array}
$$

Therefore $u u$ is a best response for player 2 iff $q_{1}<1-5 q_{2}, u d$ is a best response for player 1 iff $q_{1}>1-5 q_{2}$.

To determine the Nash equlibria, we consider three case:
Case 1: If $q_{1}<1-5 q_{2}$, then the best response for player 2 is $u u$. In that case, the best reponse for player 1 is a mixed strategy $q_{1} L L \oplus\left(1-q_{1}\right) R L, q_{2}=0$. If player 1 selects complete mixed strategy $q_{1} L L \oplus\left(1-q_{1}\right) R L$, which $q_{2}=0$ and $q_{1} \in[0,1)$, it follows that $q_{1}<1-5 q_{2}$.

Case 2: If $q_{1}>1-5 q_{2}$, then the best response for player 2 is $u d$. In that case, the best
response for player 1 is a mixed strategy $q_{1} L L \oplus q_{2} L R, q_{1}+q_{2}=1$. If $q_{1}<1$, then $q_{1}<1-5 q_{2}$ is true.
Case 3: If $q_{1}=1-5 q_{2}$, then the best reponse for player 2 is a mixed strategy puu $\oplus(1-$ $\left.p_{1}\right) u d, p_{1} \in(0,1)$. In that case, the best reponse for player 1 is $L L$, and then it follows that $q_{1}=1-5 q_{2}$ is true.

We summarize the discussion above and yield three Nash equilibrium as follows:

$$
\begin{aligned}
& N E_{1}:\left\{\begin{array}{lll}
q_{1}>0 & q_{2}=0 & q_{3}=1-q_{1}-q_{2}>0 \\
p_{1}=1 & p_{2}=1-p_{2}=0
\end{array}\right. \\
& N E_{2}:\left\{\begin{array}{lll}
q_{1}>0 & q_{2}>0 & q_{3}=0 \\
p_{1}=0 & p_{2}=1
\end{array}\right. \\
& N E_{3}:\left\{\begin{array}{lll}
q_{1}=1 & q_{2}=0 & q_{3}=0 \\
p_{1}>0 & p_{2}>0
\end{array}\right.
\end{aligned}
$$

7. Classify the Nash equilibrium outcomes by the following equilibrium concepts:
(a) outcomes that can be supported by perfect equilibrium of the normal form of this game Ans:

Check the pure Nash equilibrium ($L L, u u$). Given player 1's strategy is ($\left(1-\epsilon_{1}-\epsilon_{2}-\right.$ $\left.\left.\varepsilon_{3}\right) L L \oplus \epsilon_{1} L R \oplus \epsilon_{2} R L \oplus \varepsilon_{3} R R\right)$ and player 2's strategy is $\left(\left(1-\epsilon_{1}^{\prime}-\epsilon_{2}^{\prime}-\varepsilon_{3}^{\prime}\right) u u \oplus \epsilon_{1}^{\prime} u d \oplus\right.$ $\left.\epsilon_{2}^{\prime} d u \oplus \varepsilon_{3}^{\prime} d d\right) . \quad L L$ is a best response for player 1 for small enough $\varepsilon,: u u$ is a best response for player 2 for small enough ε^{\prime}

There are three pure Nash equilibrium can be supported by perfect equlibrium of the normal form of this game: $\{(L L, u u),(L L, u d)\},(L R, u d)$..
(b) outcomes that can be supported by proper equilibrium of the normal form of this game Ans:
Check the pure Nash eqilibrium ($L L, u u$). Given player 1's strategy is $\left(\left(1-\epsilon-2 \epsilon^{2}\right) L L \oplus\right.$ $\epsilon^{2} L R \oplus \epsilon R L \oplus \epsilon^{2} R R$) and player 2's strategy is ($\left(1-\epsilon-2 \epsilon^{2}\right) u u \oplus \epsilon u d \oplus \epsilon^{2} d u \oplus \epsilon^{2} d d$), $L L$ and $u u$ are both best responses for play 1 and player 2 , respectively.

There are three pure strategy Nash equilibria can be supported by proper equlibrium of the normal form of this game: $\{(L L, u u),(L L, u d)\},(L R, u d)$.
(c) outcomes that can be supported by subgame perfect

Ans: Since there is no proper subgame, all pure Nash equilibrium can be supported by subgame perfect equilibrium.
(d) outcomes that can be supported by sequential equilibrium of this game

Ans:
Case 1: Check the Nash equilibrium ($L L, u u$).
Take $\sigma_{1}^{\varepsilon}\left(t_{1}\right)=(1-5 \varepsilon, 5 \varepsilon)$ and $\sigma_{1}^{\varepsilon}\left(t_{2}\right)=(1-\varepsilon, \varepsilon)$. Hence, player 2's belief μ_{2} is given by $\lim _{\varepsilon \rightarrow 0} \mu_{2}^{\varepsilon}(A)=0.2, \lim _{\varepsilon \rightarrow 0} \mu_{2}^{\varepsilon}(B)=0.8, \lim _{\varepsilon \rightarrow 0} \mu_{2}^{\varepsilon}(X)=\frac{5}{9}$ and $\lim _{\varepsilon \rightarrow 0} \mu_{2}^{\varepsilon}(Y)=\frac{4}{9}$. Given system belief μ_{2}, u is a best response for player 2 at both $\{A, B\}$ and $\{X, Y\}$. Given player 2's strategy, $L L$ is a best response for player 1.

Case 2: Check the Nash equilibrium ($R L, u u$).
$\mu_{2}(A)=0, \mu_{2}(B)=1, \mu_{2}(X)=1, \mu_{2}(Y)=0$. Given μ_{2}, u is a best response for player 2 at both $\{A, B\}$ and $\{X, Y\}$. Given player 2's strategy, $R L$ is a best response for player 1 .

Case3: Check the Nash equilibrium ($L L, u d$).
Take $\sigma_{1}^{\varepsilon}\left(t_{1}\right)=(1-\varepsilon, \varepsilon)$ and $\sigma_{1}^{\varepsilon}\left(t_{2}\right)=(1-\varepsilon, \varepsilon)$. Hence, player 2's belief μ_{2} is given by $\lim _{\varepsilon \rightarrow 0} \mu_{2}^{\varepsilon}(A)=0.2, \lim _{\varepsilon \rightarrow 0} \mu_{2}^{\varepsilon}(B)=0.8, \lim _{\varepsilon \rightarrow 0} \mu_{2}^{\varepsilon}(X)=\frac{1}{5}$ and $\lim _{\varepsilon \rightarrow 0} \mu_{2}^{\varepsilon}(Y)=\frac{4}{5}$. Given system belief μ_{2}, u and d are best responses for player 2 at $\{A, B\}$ and $\{X, Y\}$, respectively. Given player 2's strategy, $L L$ is a best response for player 1.

Case 4: Check the Nash eqilibrium ($L R, u d$).
$\mu_{2}(A)=1, \mu_{2}(B)=0, \mu_{2}(X)=0, \mu_{2}(Y)=1$. Given system belief μ_{2}, u and d are best responses for player 2 at $\{A, B\}$ and $\{X, Y\}$, respectively. Given player 2's strategy, $L R$ is a best response for player 1 .

There are four pure strategy Nash equilibria can be supported by sequential equlibrium of this game: $\{(L L, u u),(R L, u u),(L L, u d),(L R, u d)\}$.
(e) outcomes that can be supported by perfect equilibrium of this game

Ans:
Case 1: Check the Nash equilibrium ($L L, u u$).
Let player 2's strategy be $\left(\left(1-\epsilon_{1}\right) u \oplus \epsilon_{1} d\right)$ at $\{A, B\}$ and $\left(\left(1-\epsilon_{2}\right) u \oplus \epsilon_{2} d\right)$ at $\{X, Y\} . L L$ is
a best response for player 1 if $\varepsilon_{2}+2 \varepsilon_{1} \leq 1$. Given player 1's strategy is $\left(\left(1-\epsilon_{3}\right) L \oplus \epsilon_{3} R\right)$ at t_{1} and $\left(\left(1-\epsilon_{4}\right) L \oplus \epsilon_{4} R\right)$ at t_{2}. Player 2's belief at $\{X, Y\}$ is $\mu_{2}(X)=\frac{\epsilon_{3}}{\epsilon_{3}+4 \epsilon_{4}}$ and $\mu_{2}(Y)=\frac{4 \epsilon_{4}}{\epsilon_{3}+4 \epsilon_{4}} . \quad u$ is a best response for player 2 at $\{X, Y\}$ iff $\varepsilon_{3} \geq 4 \varepsilon_{4} .$.

Case 2: Check the Nash equilibrium ($R L, u u$).
Let player 2's strategy be $\left(\left(1-\epsilon_{1}\right) u \oplus \epsilon_{1} d\right)$ at $\{A, B\}$ and $\left(\left(1-\epsilon_{2}\right) u \oplus \epsilon_{2} d\right)$ at $\{X, Y\}$. R is a best response for player 1 at $t_{1} \mathrm{iff} \varepsilon_{1}+\varepsilon_{2}<0$, which is not possible.

Case3: Check the Nash equilibrium ($L L, u d$).
Let player 2's strategy be $\left(\left(1-\epsilon_{1}\right) u \oplus \epsilon_{1} d\right)$ at $\{A, B\}$ and $\left(\left(1-\epsilon_{2}\right) d \oplus \epsilon_{2} u\right)$ at $\{X, Y\} . L L$ is a best response for player 1 iff $2 \varepsilon_{1} \leq \varepsilon_{2}$. Given player 1 's strategy is $\left(\left(1-\epsilon_{3}\right) L \oplus \epsilon_{3} R\right)$ at t_{1} and $\left(\left(1-\epsilon_{4}\right) L \oplus \epsilon_{4} R\right)$ at t_{2}. Player 2's belief at $\{X, Y\}$ is $\mu_{2}(X)=\frac{\epsilon_{3}}{\epsilon_{3}+4 \epsilon_{4}}$ and $\mu_{2}(Y)=\frac{4 \epsilon_{4}}{\epsilon_{3}+4 \epsilon_{4}} . d$ is a best response for player 2 at $\{X, Y\}$ iff $\varepsilon_{3} \leq 4 \varepsilon_{4} .$.

Case 4: Check the Nash eqilibrium ($L R, u d$).
Given player 2's strategy is $\left(\left(1-\epsilon_{1}\right) u \oplus \epsilon_{1} d\right)$ at $\{A, B\}$ and $\left(\epsilon_{2} u \oplus\left(1-\epsilon_{2}\right) d\right)$ at $\{X, Y\} . L$ is a best response for player 1 at t_{1}. R is a best response for player 1 at t_{2} iff $\epsilon_{2}-2 \epsilon_{1}<0$. Given player 1's strategy is $\left(\left(1-\epsilon_{3}\right) L \oplus \epsilon_{3} R\right)$ at t_{1} and $\left(\epsilon_{4} L \oplus\left(1-\epsilon_{4}\right) R\right)$ at t_{2}. Player 2's belief at $\{X, Y\}$ is $\mu_{2}(X)=\frac{\epsilon_{3}}{\epsilon_{3}+4\left(1-\epsilon_{4}\right)}$ and $\mu_{2}(Y)=\frac{4\left(1-\epsilon_{4}\right)}{\epsilon_{3}+4\left(1-\epsilon_{4}\right)}$. d is a best response for player 2 at $\{X, Y\}$ iff $\varepsilon_{3}+4 \varepsilon_{4} \leq 4$.

There are four pure Nash equilibria can be supported by perfect equlibrium of this game: $\{(L L, u u),(L L, u d),(L R, u d)\}$.

