

The table below gives a list of common solvents and the minimum wavelength from which they may be used in a 1 cm cell.

Solvent	Minimum Wavelength (nm)
acetonitrile	190
water	191
cyclohexane	195
hexane	195
methanol	201
ethanol	204
ether	215
methylene chloride	220
chloroform	237
carbon tetrachloride	257

Solvent effect in absorption spectrum

The solvent in which the absorbing species is dissolved also has an effect on the spectrum of the species. Peaks resulting from $n \rightarrow \pi^*$ transitions are shifted to shorter wavelengths (*blue shift*) with increasing solvent polarity. This arises from increased solvation of the lone pair, which lowers the energy of the *n* orbital. Often (but *not* always), the reverse (i.e. *red shift*) is seen for $\pi \rightarrow \pi^*$ transitions. This is caused by attractive polarisation forces between the solvent and the absorber, which lower the energy levels of both the excited and unexcited states. This effect is greater for the excited state, and so the energy difference between the excited and unexcited states is slightly reduced - resulting in a small red shift. This effect also influences $n \rightarrow \pi^*$ transitions but is overshadowed by the blue shift resulting from solvation of lone pairs.

612 CIRCULAR DICHROISM OF PERTIDES AND PROTEINS
21.4.4 Computer Programs
Some of the computer programs, available in the public domain, for estimating seconday structure fractions from protein CD are given below. They can be downloaded from the interact or requested from the authors.
 SELCON3 [76] (self-consistent method, version 3). Contact: stoeram@lamar.colostate.edu or rww@lamar.colostate.edu Intervet: http://lamar.colostate.edu/~steeram/SELCON3 CDsstr [72] (uses an extremely flexible basis set). Contact: infrareferencement.edu
 CONTIN [55] (ridge regression method). Internet: http://www.provenchet.de/contin-ed/html CDNN [62] (backpropagation neural network method). Internet: http://disinf.dei.abs/doi/10.1016/j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.
 K2D [64] (Kohonen neural network method). K2D [64] (Kohonen neural network method). Intervet: http://www.embi-beide/bere/dc/-amtrade/k2d hero)
 Varselec [57] (variable selection method). Context: johnsowedjenes and edu.
 CCA [60] (convex constraint analysis). Internet: http://www2.chem.else.hu/erotein/resonants/con/
 Prot CD [77] (DEFCLASS, tartiary class determination, and CONTIN, Varselex, CDEstima).
Contact: vettyarnin@mayo.edu 9. BELOK [5k] (two-sup tidge regression method). Contact: inhio@glas.apc.org

The disadvantage of this method is that although these basis sets are easily determined by direct measurement, they do not always agree from one lab to another. In addition, chain length and aggregation effect the basis set spectra. However, this method is usually accurate to within 10% for α -helix content.

Technique	Secondary Structure	carboxypeptid ase	α- chymotrypsin	myoglobin
	α	23%	8%	68%
X-ray	β	18%	22%	0%
	RC + other	59%	70%	32%
	α	13%	12%	68%
CD using (Lys) _n Basis Sets	β	31%	23%	5%
	RC + other	56%	65%	27%

Table 1 Absor	bance of vari	nus salt and	buffer substa:	nces in the fa	r-LIV region"	
Compound	ipound No absorbance Absorbanc above: in a 0.7 cm		car of a 0.01 M solution n cell at:			
			210mm	200mm	190nm	190 nn
		170 am	a	٥	Ъ.	0
MaCIO.		176 am	Ċ	0	0	0
Mar, Nr		THE OWN	ā	0	0	C
Boncacou		205 nm	c	0.02	> 0.5	0.5
NaL:		210 nm	ē	0.05	0.3	> 0.5
		195 mm	G	0	0.01	0,75
Nan ² LO ⁴		220.000	C.03	0,17	> 0.5	> 0.5
Na states		270 am	C.03	0.1	> 0.5	> 0.5
GMC:00		240 mm	0.4	> 0.5	> 0.5	> 0.5
Destudyenting	17 اشم	230 nm	≥ 0.5	> 2	> 2	> 2
NUCIT a de américa bilat	∩H nH41	200 חחד	Q	C	0.09	0.3
BIOLIC STOC LAS	NH 8 5	230 nm	0.22	0.44	> 0.5	> 0.5
Indire	oH 8 O	220 mm	0.02	0.13	0.24	> 0.5
MS	pH 0.0	230 mm	0.37	0.5	> 0.5	> 0.5
Nedes	oH 7 0	230 am	0.20	0.49	0.29	> 0.5
Pripes	oH 7.0	230 mm	0.10	0.34	0.28	> 0.5
1980-00-20	οH 60	230 000	0.07	0.29	0.2 9	> 0.5
4865	hundre	340	0.01	0 70	0.22	> 0.5

Substituted aromatic hydrocarbons:

- 1. Internal heavy atom effect: the presence of heavy atom are substitutents of aromatic molecules (e.g. Br, I) results in fluorescence quenching because of the increased probability of intersystem crossing
- 2. Electron-donating substituents (-OH, -OR, -NH2, -NHR, -NR2) induce an increase in the molar absorption coefficient and a shift in both absorption and fluorescence spectra. They become broad and structureless.
- 3. Sulfonate: The solubility of many fluorophores is achieved by grafting sulfonate groups. It causes small red-shift in fluorescence spectrum and a slight decrease in fluorescence quantum yield.

	Φ_{T}	k_{inc}/s^{-1}	ውም	τ1/5
Naphthalene	0.55	1.6×10^6	0,051	2.3
I-Pluomnaphfiskne	0.84	5.7×10^{5}	0.056	1.5
I-Chlororaphthalene	0.058	$4.9 > 10^{7}$	0.30	0.29
-Bromunaphtholene	0.0016	1.9×10^{4}	0.27	0.02
Linderaphthalene	< 0.0005	$>6 \times 10^{4}$	0.38	0.007

Tab. 3.3. Heavy atom effect on emissive properties of naphthalene (from Wehry, 1990).

Effect of local environment

★ Aromatic residues (especially Tryptophan) are naturally occurring fluorophores which are good probes of folding.

A tryptophan side-chain in a hydrophobic core has a high fluorescence intensity (not always)and a blue-shifted (shorter wavelength) emission maximum.

Exposed tryptophans (or tryptophans from unfolded proteins) have low fluorescence intensity (not always) and a red-shifted longer wavelength) emission maximum.

Fluorescence Polarization (FP)

Fluorescence polarization measurements provide information on molecular orientation and mobility and processes that modulate them, including receptor–ligand interactions, proteolysis, protein–DNA interactions, membrane fluidity and muscle contraction

Figure 1. Physical basis of fluorescence polarization assays. Dye molecules with their absorption transition vectors (arrows) aligned parallel to the electric vector of linearly polarized light (along the vertical page axis) are selectively excited. For dyes attached to small, rapidly rotating molecules, the initially photoselected orientational distribution becomes randomized prior to emission, resulting in low fluorescence polarization. Conversely, binding of the low molecular weight tracer to a large, slowly rotating molecule results in high fluorescence polarization. Fluorescence polarization therefore provides a direct readout of the extent of tracer binding to proteins, nucleic acids and other biopolymers.

http://www.probes.com/handbook/boxes/1572.html

position. The G factor is the ratio of sensitivities of detection system for vertically and horizontally polarized light G = Ihv/Ihh.

How does the FluoroTectTM System Work?

The FluoroTect[™] Green_{Lys} in vitro Translation Labeling System uses a charged lysine tRNA molecule labeled with the fluorophore BODIPY[®]-FL at the -amino acid position of lysine (Figure 1). The BODIPY[®]-FL fluorophore, with an absorbance at 502nm and an emission at 510nm, was developed to be compatible with widely used excitation sources and common optical filter sets. The labeled FluoroTect[™] tRNA is added directly to the translation reaction, and the labeled lysine is incorporated into the sunthesized protein

Recently, a method using BODIPY®-FL-labeled methionine was shown to be able to detect nanogram levels of protein using laser-based fluorescent gel scanning. For the FluoroTect[™] System, lysine was chosen as the labeled amino acid because it is one of the more frequently used amino acids, comprising, on average, 6.6% of protein's amino acids. This compares to 1.7% for methionine.

Characteristic FTIR bands

Antiparallel β -sheet and aggregates	1675-95 cm ⁻¹
3 ₁₀ -helix	1660-70
α-helix	1648-60
unordered	1640-48
β-sheet	1625-40
Aggregates	1610-28

- These ranges are only guidelines, general rules.
- Other factors like solvent effects, distortion of 2° elements, prosthetic groups can alter frequencies

Stopped Flow: how does it work?

Standard stopped flow schematic

- Under pneumatic drive activation, the two small volumes of solutions are driven from high performance syringes through a high efficiency mixer.
- The resultant mixture passes through a measurement flow cell and into a stopping syringe.
- Just prior to stopping, a steady state flow is achieved.
- As the solution fills the stopping syringe, the plunger hits a block, causing the flow to be stopped instantaneously.
- Using appropriate techniques, the kinetics of the reaction can be measured in the cell.

