

	528	CHAPTER I	7				
	Table 17	.3 α-Helix to alani	:- and β-sh ine ^a	eet stabilizin	g effects o	f amino acid	s relative
	Amino acid	Relative helix stability"		Agadir ^a		Relative β -sheet stability	
		(kcal/mol)	(kJ/mol)	(kcal/mol)	(kJ/mol)	(kcal/mol)	(kJ/mol)
	Ala	0.00	0.0	0.00	0.00	0.00	0.00
	Arg	0.17	0.7	0.06	0.25	-0.40	-1.7
	Leu	0.17	0.7	0.19	0.79	-0.45	-1.9
	$Glu(0)^d$	0.17	0.7	_		_	_
	Met	0.19	0.8	0.21	0.88	-0.90	-3.8
	Lys	0.31	1.3	0.15	0.63	-0.35	-1.5
	Тгр	0.31	1.3	0.47	1.97	-1.04	-4.2
	Gln	0.33	1.4	0.32	1.34	-0.38	-1.6
	Set	0.44	1.8	0.52	2.18	0.87	3.6
	Ile	0.43	1.8	0.35	1.46	-1.25	-5.2
	Phe	0.47	2.0	0.47	1.97	-1.08	-4.5
	Cys	0.54	2.3	0.61	2.55	-0.78	-3.3
	Asp $(0)^d$	0.54	2.3	_	_		100 M T
	Glu (_)	0.56	2.3	0.34	1.42	-0.23	-1.0
Structure and Mechanism in protein science	Tyr	0.56	2.4	0.47	1.97	1.63	-6.8
Alan Fersht	Asn	0.61	2.6	0.60	2.51	-0.52	-2.2
	Thr	0.61	2.6	0.57	2.38	-1.36	-5.7
	Val	0.63	2.7	0.51	2.13	-0.94	- 3.9
	His (0)	0.65	2.7	0.62	2.59	-0.37	-2.4
	Asp $(-)^d$	0.68	2.8	0.59	2.47	0.85	3.6
	His (+)	0.88	3.7	_	_	-	
	Gly	0.90	3.8	1.11	4.64	1.21	5.1
	Pro	3.47	14.5	2.72	11.4	>5	>20

Table 1. Metho	ds used to investiga	ate protein folding and aggregation
Property	Technique	Messmenicit
Chain packing	Intrinsic fluorescence	The orientation and environment of (predominantly) tryp- tophan side chains
	Ultraviolet absorbance Extrinsic (ANS) fluores- cence	The orientation and environment of aromatic side chains Formation and disruption of organized hydrophobic patches and clefts
	Fluorescence quenching	Isolation of tryptophan side chains from hydrophilic flu- crescence quenchers
	Cysteinyl quenching	Protection of cysteine side chains from hydrophilic reac- tants
Melecular dimensions	Fluorescence anisotropy	Tryptophan side chain mobility and overall molecular dimensions
	Fluorescence energy trans- fer	Scalar distance between tryptophan and a covalently attached fluorophone (or between two attached fluo- rophones)
	Small angle X-ray scattering/Quasi-elastic	The average radius of gyration
	NMR diffusion measure- ments	The effective hydrodynamic radius
3		

Continued					
Continued					
Secondary structure and	Far-UV circular dictmoism	Backhone conformation averaged over sequence and pop-			
Personal Agencies and	Feurier transfer infra-red Pulse labelling NMR	Backbone conformation, hydrogen bend properties Sequence specific formation of stable amide and trypto- then hydrogen bends			
	Pulse labelling mass spec- tremetry	The formation and cooperativity of persistent hydrogen bonds in discrete intermediates			
Tertiary contacts and mative structure	Biological activity	The formation of native tertiary structure at the active site			
	Interrupted folding	The unfolding rate of discrete intermediates as a probe of their stability			
	Near-UV cincular dichro- ism	Formation of stable aromatic and disulphide bond tertiary contacts			
	Real-time NMR	Formation of specific side chain tertiary contacts			
	Protein engineering	The energetic contributions of side chains to discrete intermediates			
	AFM/laser tweezers	Force required to unfold protein or region of protein			
Aggregate structure	Congo red or thioflavin flu- orescence	Existence of regular B-sheet structure			
	Birefringence with Congo red	Well-defined amyloid core structure			
	X-my fibre diffraction AFM/EM	Spacings of negatar elements of structure e.g. β -sheets Dimensions and morphology of discrete aggregates			
	Solid state NMR	Molecular conformation and intermolecular packing			

