Line Imaging of Orion-KL at 230GHz with SMA and IRAM 30m Telescope

Siyi Feng & Henrik Beuther Max-Planck-Institut für Astronomie

Summary

Combing observational data from the Submillimiter Array (SMA) and IRAM 30m telescope, we get the chemical structures of Orion-KL with the spatial resolution of 4" Particularly, the spectrum (Fig.4) allow us to derive the column densities (Tab.2), and the spatial distribution among species vary significantly (Fig.3). One interesting molecule among is the glycolaldehyde (CH₂OHCHO), which can be as a biologically processes in-

Results

dicator. Different transition levels are firstly found in Orion-KL (Fig.5 & Tab.1).

due to missing flux). Red circles mark the peaks of hot core, compact ridge, mm2, mm3, the southern region, northern and southern parts of the jet.

Fig.2. UVPLOT shows successfully combination of the interferometer and single dish data: • Interferometer can disentangle chemical components at high spatial resolution;

• Single dish can compensate the "missing short data" problem from the interferometer, thus obtain the total flux density.

References

[1] S.Y., Feng, H.Beuther, Line Imaging of Orion-KL at 230GHz with SMA and IRAM 30m (in prep.)

Glycolaldehyde (CH₂OHCHO) is the simplest sugar, also the first intermediate product in the formose reaction. Under early Earth conditions, it begins with formaldehyde (H_2CO), and leads to the (catalyzed) formation of sugars, ultimately ribose, and the backbone of $RNA^{[2]}$.

Calculation

Column density calculated under the assumption of Local Thermodynamic Equilibrium, in Log_{10}/cm^2

- [2] Larralde, R., Robertson, M.P., & Miller, S. L., 1995, Proc. Natl. Acad. Sci., 92, 8158
- [3] Nissen, H.D, Gustasson, M., Lemaire, J.L., et.al, 2007, A&A, 466,949

Acknowledge

We acknowledge the financial support by LASSIE FP7 Marie Curie Initial Training Network (ITN). syfeng@mpia.de www.mpia.de/homes/ syfeng/home.htm

	J					J	<u> </u>	_
Species	Hotcore	mm2	mm3	Compact	South	JetN	JetS	
SO	17.0	16.9	16.7	16.7	15.3	16.0	15.0	
^{13}CS	15.1	14.7	14.5	14.7	13.5	12.8	<12.6	
$^{34}SO_2$	16.7	16.4	16.0	16.1	<14.3	<14.2	$<\!\!14.4$	
$O^{13}CS$	15.7	15.5	15.6	15.6	14.4	14.9	$<\!\!14.5$	
CH ₃ CN	16.8	16.2	16.3	16.1	<16.2	<16.3	$<\!\!16.4$	
$CH_3^{13}CN$	15.7	15.0	14.8	15.0	<13.4	<13.8	<13.9	
C_2H_3CN	16.0	15.5	15.2	15.1	<14.2	14.3	14.4	
C_2H_5CN	16.4	15.8	15.5	15.4	<14.7	<14.8	$<\!\!14.7$	
HNCO	16.2	15.6	15.4	15.5	<13.5	<14.4	<14.1	
$HC_3N(v7 = 1)$	15.5	15.1	15.2	14.5	$<\!\!15.4$	<15.3	<15.1	
$C^{18}O$	17.6	17.4	16.9	17.2	16.4	16.5	16.2	
¹³ CO	18.5	18.2	18.0	18.1	17.2	17.4	17.2	Tab.2. Columns
$H_2^{13}CO$	15.5	15.0	14.8	15.1	14.1	13.7	14.2	correspond to the
CH ₂ CO	15.6	15.2	15.3	15.4	14.4	13.7	14.1	star-marked places
CH ₃ OH	17.3	17.1	17.1	17.3	15.8	15.6	16.1	in Fig.1.
HCOOCH ₃	17.0	16.8	16.8	16.9	15.4	<15.0	<15.2	

Only the rare species are listed when multiple isotopologues are detected, uncertainty comes from the optical depth.