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Abstract

This paper proposes a new class of GMM estimators to increase the efficiency of
the coefficient estimate relative to the ordinary least squares (OLS) estimator when
all the error term and regressors having nonparametric autocorrelation. This class of
GMM estimators are built on the moments generated from the long difference (LD)
operator of Griliches and Hausman (1986) and those from the multiple difference
(MD) operator of Tsay (2007). Most importantly, the GMM estimator is designed
to beat both OLS and first-differenced (FD) estimators when neither OLS nor FD
estimator attains Gauss-Markov bound in that the proposed method merges the
information inherent in the moments of the OLS estimator and those of the FD one.
Thus, the GMM estimator also resolves the dilemma concerning ‘to difference or not
to difference’ in the time series literature, because both level and differenced data
are employed for the GMM estimation. The Monte Carlo experiments confirm the
theoretical findings by showing that the GMM method has very good finite-sample
power performance relative to both OLS and FD estimators.

Key words: Time series regression; GMM; Long difference; Multiple difference

∗Wen-Jen Tsay: The Institute of Economics, Academia Sinica. 128 Academia Road, Sec. 2, Taipei, Tai-

wan, R.O.C. Tel.: (886-2) 2782-2791 ext. 296. Fax: (886-2) 2785-3946. E-Mail: wtsay@econ.sinica.edu.tw

1



1 Introduction

This paper considers the regression model consisting of stationary time series processes as

follows:

Ct = γ + Z>
t β + εt, t = 1, 2, . . . , n, (1)

where γ represents a scalar finite constant, Zt is a (K×1) random vector whose j-th element

is Zt,j, and β is a (K × 1) non-stochastic vector of unknown regression coefficients to be

estimated and tested. Adaptive estimation method based on an approximate frequency-

domain generalized least squares (GLS) has been considered by Hannan (1963) when εt

in (1) is a short memory process with nonparametric autocorrelation. The methodology

of Hannan (1963) has been further extended by Hannan (1965), and Hannan and Terrel

(1972, 1973) to other interesting econometric models. Robinson and Hidalgo (1997) and

Hidalgo and Robinson (2002) also apply the frequency-domain method of Hannan (1963)

to the cases where εt and Zt are long memory processes.

The most well-known time-domain method for the model in (1) is the ordinary least

squares (OLS) estimator. The OLS estimator cannot achieve Gauss-Markov bound when ε

is not an independently identically distributed (iid) process. Thus, GLS-type approach has

been proposed to increase the efficiency of the coefficient estimate when εt admits a specific

parametric form. For example, the Cochrane and Orcutt (1949) transformation method

requires εt as an autoregressive process of order 1, or AR(1). Other authors, including

Maeshiro (1976), Chipman (1979), and Krämer (1982) and the references therein, suggest

that the first-differenced (FD) estimator can be an approximation to the GLS estimator

in estimating the coefficient of the linear trend when the error term is a highly persistent

AR(1) process. In fact, by the partial differences transformation or the Prais-Winsten

(1954) estimator, we can see that the FD estimator is an approximate GLS estimator in

the standard regression framework if the regressors are weakly stationary and εt is a highly

persistent AR(1) process. However, when εt having nonparametric autocorrelation, we

do not have a clear understanding about the relative performance between OLS and FD

estimators in estimating β. Kuo and Tsay (2008) first fill the gap of the literature by
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suggesting a time-domain semiparametric Stein-like (SPSL) estimator advocated in Judge

and Mittelhammer (2004) to increase the efficiency of the coefficient estimate relative to

both OLS and FD estimators when Zt and εt admitting nonparametric autocorrelation.

We contribute to the time series literature by proposing a new class of GMM estimators

for the model in (1) by exploiting the moments from the long difference (LD) operator of

Griliches and Hausman (1986) and those from the multiple difference (MD) operator of

Tsay (2007). Although the number of moments employed in this paper is much larger than

that considered in Kuo and Tsay (2008), the proposed estimator is easily implemented

for standard statistic packages. Furthermore, the proposed GMM estimator combines

the information contained in the moment conditions inherent in the OLS and the FD

estimators, β̂GMM is thus at least as efficient as both OLS and FD counterparts no matter

whether the error term is an iid or a highly persistent stationary process. Put differently,

the GMM estimator is designed to beat both OLS and FD estimators provided neither

OLS nor FD methods attains Gauss-Markov bound. This feature is important and cannot

be shared with the usual GMM estimators based on the moments composing of the lead or

lagged values of regressors. The simulations conducted in this paper confirm the preceding

predictions.

The remaining parts of this paper are arranged as follows: Section 2 presents the GMM

estimator and the main results. In Section 3 the theoretical findings generated from this

paper are verified through a Monte Carlo experiment. Section 4 provides a conclusion.

2 Main statistics

With a sample of size n and define HT1:T2 as the sample mean of the random variable Ht

from t = T1 to t = T2, the usual OLS estimator for the model in (1) is to solve the following

moment condition:

β̂n,OLS = Arg min
β

[
n∑

t=1

(Zt − Z1:n)εt

]> [
n∑

t=1

(Zt − Z1:n)εt

]
. (2)

When εt is an iid process, the OLS estimator attains Gauss-Markov bound. Define 4 =

1− L, where L is the usual lag operator (Lxt = xt−1), the FD estimator for the model in
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(1) is defined as:

β̂n,FD = Arg min
β

[
n∑

t=2

(
4Zt −4Z2:n

)
4εt

]> [
n∑

t=2

(
4Zt −4Z2:n

)
4εt

]
. (3)

When4εt is an iid process, the FD estimator achieves Gauss-Markov bound under suitable

regularity conditions.

The above results reveal that whether the OLS or the FD estimator attains Gauss-

Markov bound depends on the time series properties of the error term. In reality, we do

not know whether the OLS or the FD approach attains Gauss-Markov bound, thus, we do

not know whether we should difference or not-to-difference the data. This is the dilemma

frequently encountered in dealing with the time series observations.

The key insight of this paper is to merge the information contained in the moment

conditions in both OLS and FD estimators to suggest the following GMM estimator:

β̂GMM = Arg min
β

g(β)>Ŝ−1
n g(β), (6)

where

g(β)︸ ︷︷ ︸
2K×1

=




n−1
n∑

t=2

(
Zt − Z2:n

)
εt

n−1
n∑

t=2

(
4Zt −4Z2:n

)
4εt




, (7)

and Ŝn is the long-run variance estimator of
√

ng(β). It is clear that both OLS and

FD estimators belong to the special cases of the GMM estimator defined in (6). Since the

efficiency of the GMM estimator basically improves with the number of moment conditions,

β̂GMM is at least as efficient as both OLS and FD counterparts even though the error term

is an iid or a highly persistent stationary process. Accordingly, we view the use of level and

differenced moments in (7) as a kind of insurance to help us attain Gauss-Markov bound

as closely as possible even though εt can be an iid or a highly persistent stationary process.

This also indicates that the GMM method based on the moments in (7) can defeat both

OLS and FD counterparts if none of OLS and FD estimators attains Gauss-Markov bound.

There is another feature of the GMM estimator which cannot be shared with the usual

GMM estimators based on the moments generated from the lead or lagged values of re-

gressors. That is, the introduction of the GMM estimator relieves the burdens of choosing
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whether to difference or not to difference the data, because we employ both the level and

differeced data. This paper thus resolves the dilemma concerning ‘to difference or not to

difference’ in the time series literature.

Extending the above idea of combining the level and differenced moments of the model

in (1), we propose a much more general class of GMM estimators based on the moments

generated from the LD operator of Griliches and Hausman (1986) and those from the MD

operator of Tsay (2007). Particularly, we can add the second-differenced moments from

the model in (1) to the moments in (7), or even add all the M -th differenced moments

suggested by Tsay (2007) to the moments in (7) as follows:

g(β,4,M)︸ ︷︷ ︸
(M+1)K×1

=




n−1
n∑

t=M+1

(
Zt − ZM+1:n

)
εt

n−1
n∑

t=M+1

(
4Zt −4ZM+1:n

)
4εt

...

n−1
n∑

t=M+1

(
4MZt −4MZM+1:n

)
4M εt




. (8)

Accordingly, the GMM estimator based on the moments in (8) is basically more efficient

than that based on the moments (7). The notation used in g(β,4,M) clarifies that the MD

operator (4) is employed to generate moments for the GMM estimation. It also reveals

that the maximum order of differencing for the MD operators is M .

We can also generalize the moments in (7) in another direction, i.e., we add all the

M -th LD moments pioneered in Griliches and Hausman (1986) and later used in Hahn et

al. (2007) for panel data analysis to the moments in (7). These moments are presented as

follows:

g(β,5,M)︸ ︷︷ ︸
(M+1)K×1

=




n−1
n∑

t=M+1

(
Zt − ZM+1:n

)
εt

n−1
n∑

t=M+1

(
5Zt −5ZM+1:n

)
5εt

...

n−1
n∑

t=M+1

(
5MZt −5MZM+1:n

)
5M εt




, (9)

where 5M = 1−LM = (1−L)(1+L+L2 + . . .+LM−1). Because g(β,4,M) = g(β,5,M)

when M = 1, the moments in (9) reduces to be the ones in (7). Again, the GMM estimator
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based on the moments in (9) is basically more efficient than that based on the moments

(7). Furthermore, the notation used in g(β,5,M) clarifies that the LD operator (5) is

employed to generate moments for the GMM estimation. It also reveals that the maximum

order of differencing for the LD operators is M .

Following the spirit behind the moments in (8) and (9), we certainly can utilize all

the 2M distinctive moments contained in (8) and (9) to improve the efficiency of the

coefficient estimate relative to that of the GMM estimators based on the moments in (8)

or (9), respectively. These moments are stacked in the following (2MK×1) column vector:

g(β,4,5,M)︸ ︷︷ ︸
2MK×1

=




n−1
n∑

t=M+1

(
Zt − ZM+1:n

)
εt

n−1
n∑

t=M+1

(
4Zt −4ZM+1:n

)
4εt

...

n−1
n∑

t=M+1

(
4MZt −4MZM+1:n

)
4M εt

n−1
n∑

t=M+1

(
52Zt −52ZM+1:n

)
52εt

...

n−1
n∑

t=M+1

(
5MZt −5MZM+1:n

)
5M εt




. (10)

The notation used in g(β,4,5,M) clearly clarifies that both LD operator and MD oper-

ator are used to generate moments in (10) for the GMM estimation.

We now discuss the asymptotic properties of the GMM estimator based on both MD

and LD operators. Suppose that Zt and Ut in (1) are weakly stationary, Tsay (2007) shows

that the MD transformed regressors and the MD transformed errors can be represented

with the following MA(∞) processes:

4MUt =
∞∑

i=0

ψiat−i, 4MZt,j =
∞∑

i=0

ϕi,jbt−i,j, t = M + 1,M + 2, . . . , (11)

where both ψi and ϕi,j in (11) are absolutely summable. Likewise, the LD transformed

regressors and the LD transformed errors can be represented with the following MA(∞)

processes:

5MUt =
∞∑

i=0

φiat−i, 5MZt,j =
∞∑

i=0

ξi,jbt−i,j, t = M + 1,M + 2, . . . . (12)
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Because the LD operator contains a unit root when M ≥ 1, we also observe
∞∑
i=0
|φi| < ∞,

and
∞∑
i=0
|ξi,j| < ∞.

The common feature shared with the MD and the LD transformed data is that they

remain weakly stationary provided the original data are weakly stationary. Consequently,

the theoretical results established in Hansen (1982) can be directly applied to the proposed

GMM estimator. What we require is that the central limit theorem (CLT) holds for the

moments considered in (10), i.e.,

√
ng(β,4,5,M) ⇒ N(0, S), (13)

where ⇒ denotes convergence in distribution, and S is the long-run variance matrix of

√
ng(β,4,5, M) which is assumed to be finite and positive-definite. We also need to

define the following matrix:

D>
n︸︷︷︸

2MK×K

= −




n−1
n∑

t=M+1

(
Zt − ZM+1:n

)
Z>

t

n−1
n∑

t=M+1

(
4Zt −4ZM+1:n

)
4Z>

t

...

n−1
n∑

t=M+1

(
4MZt −4MZM+1:n

)
4M Z>

t

n−1
n∑

t=M+1

(
52Zt −52ZM+1:n

)
52Z>

t

...

n−1
n∑

t=M+1

(
5MZt −5MZM+1:n

)
5M Z>

t




, (14)

which is important to describe the asymptotic properties of the GMM estimator. Theorem

1 summarizes the results concerning the asymptotic properties of β̂GMM.

THEOREM 1. Under M being a finite non-negative integer, Zt and Ut in (1) be-

ing weakly dependent processes, the CLT in (13) holds, the spectral density function of

√
ng(β,4,5, M) at frequency zero being finite and positive-definite, D>

n

p−→ D>, and the

columns of D> being linearly independent, and Ŝn being a sequence of positive-definite

matrices such that Ŝn
p−→ S, then as n → ∞,

√
n(β̂GMM − β) ⇒ N(0, V ), where

V −1 = DS−1D>.

7



The results in Theorem 1 are directly derived from Proposition 14.1 of Hamilton (1994).

Theorem 1 reveals that β̂GMM converges at the rate of
√

n as usually found in the short

memory time series model. Moreover, β̂GMM is consistent and asymptotically normally

distributed, thus, the usual t-ratio statistic associated with the GMM estimator is tested

with the critical values from the standard normal distribution. Note that the preceding

results do not depend on the number of differencing M used in generating the moments

in (10) as long as the regularity conditions in Theorem 1 are satisfied. In addition, the

potential candidates for calculating Ŝn are numerous, including the methods introduced in

Newey and West (1987), Andrews (1991), and Robinson (1998).

We now check whether the GMM estimator achieves Gauss-Markov bound when εt is

an iid process. Theorem 1 shows that the asymptotic variance of the GMM estimator is

V =
(
DS−1D>

)−1
. When Zt is a univariate iid process with variance σ2

Z and εt is also a

iid process with variance σ2
ε , then D = (σ2

Z , 2σ2
Z) when M = 1 and Zt is independent of εt.

We also observe

S =




σ2
Zσ2

ε 2σ2
Zσ2

ε

2σ2
Zσ2

ε 6σ2
Zσ2

ε


 ,

thus, the associated variance of the GMM estimator is V = σ2
ε/σ

2
Z which is identical to

the normalized variance of the OLS estimator under this circumstance. When M = 2,

we also prove V = σ2
ε/σ

2
Z if the preceding conditions are fulfilled. Consequently, the

asymptotic behavior of the GMM estimator corresponds exactly to our design that the

GMM estimator achieves Gauss-Markov bound when εt is an iid process. Similarly, under

suitable regularity conditions, we can apply the above arguments to show that the GMM

estimator is as efficient as the FD counterpart if the error term is a highly persistent

stationary AR(1) process.

The methodology developed in this paper also can be applied to the long memory

regression model considered in Tsay (2007). As compared to the MD estimator of Tsay

(2007) who employs only one specific but flexible value of M for estimating a class of

long memory regression models, the GMM estimator developed in this paper efficiently

combines all the M + 1 multiple-differenced moments inherent in (8) to deliver a more
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efficient coefficient estimate. In this sense, β̂GMM estimator based on the moments in (8)

resolves the seemly arbitrary choice about the order of the MD operator in Tsay (2007),

because we now use all the feasible choice of the MD operator in (8) to increase the efficiency

of coefficient estimate. Another advantage of β̂GMM is that it employs the M + 1 long-

differenced moments in (9) which has never been considered in the time series literature.

Before moving on to the numerical investigation of the GMM estimator, we emphasize

here that the moment based on the level data should be used cautiously under the long

memory scenario, because the presence of stationary long memory regressors and errors

might induce the spurious regression as discussed in Tsay and Chung (2000).

3 Monte Carlo experiment

This section focuses on the finite sample performance of the proposed GMM estimator

β̂GMM for the regression model with stationary regressor and errors. Without loss of gener-

ality, only one regressor is considered in the experiment, i.e., we assume K = 1 throughout

this section. Moreover, γ = 0 is assumed in this section.

We use the moment conditions in (7) to implement the GMM estimator. The rationale

is that the number of moment conditions in (7) corresponds to that in (10) when M = 1,

which is the minimum positive number of differencing employed in (10). If we can find the

GMM estimator based on the moment conditions in (7) outperforms both OLS and FD

counterparts, then we expect that the GMM estimator based on the moments in (10) with

M > 1 will deliver a even better asymptotic performance than do the OLS and the FD

approaches.

We focus on the cases where εt and Zt are both generated as AR(1) processes:

(1− φεL)εt = vt, (1− φZL)Zt = wt, (15)

such that both vt and wt are zero-mean normally iid white noise processes with:

E(v2
t ) = σ2

v , E(w2
t ) = σ2

w, E(vtwt) = 0. (16)
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The value of σ2
v and σ2

w in (16) are chosen to ensure the variance of εt and Zt are both

equal to 1. The values of φε and those of φZ ranges from 0.1 to 0.9.

In the context of stochastic regressor framework, we generate 1,000 replications of Zt

and εt with the following model:

C l
t = β1Z

l
t + εl

t, t = 1, 2, . . . , n, l = 1, 2, . . . , 1000, (17)

where l denotes the l-th replication of the data. β1 can be 1 or 0.9 for investigating the

empirical powers of the GMM estimator given that the null hypothesis for β1 is always

tested as:

H0 : β1 = 1. (18)

We adopt a two-step procedure to conduct the GMM estimation. The first step of the

estimation procedure is to run the GMM estimation with Ŝ−1
n being replaced with a con-

formable identity matrix. In the second step we adopt the long-run variance estimator of

Robinson (1998) to calculate Ŝ−1
n , because it does not involve the difficult choices of kernel

function, bandwidth parameter, or lag length of AR model typically used in the literature.

Theoretically, it is legitimate to apply Robinson’s (1998) approach in this context, because

the conditions imposed in (15) and (16) satisfy Assumption A of Robinson (1998). More-

over, in the second step of GMM estimation the iteration of the GMM procedure will not

stop until it touches the maximum iteration limit, 100, or when the change of parameter

estimates is less than 10−7. Furthermore, the value of Ŝ−1
n is recursively updated during

the iterative process of the second step estimation procedure.

Table 1 contains the root of mean-squared-error (RMSE) of the OLS, FD, and GMM

estimators in estimating the regression coefficient β1. The results show that, for a given

value of φZ , the performance of the OLS estimator deteriorates with the increasing value

of φε. This phenomenon is expected, because the OLS estimator achieves Gauss-Markov

bound when the error term is a Gaussian white noise. On the other hand, the efficiency of

the FD estimator improves with the increasing value of φε. This corresponds to the findings

in Chipman (1979) and those of Krämer (1982) that the FD estimator is an approximation

to the GLS estimator when estimating the coefficient of the linear trend with a highly
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persistent AR(1) error term.

Table 1 also reveals that the difference between the RMSE of the OLS estimator and

that of the FD one can be sizable under the configurations considered in Table 1. In

particular, the RMSE of the OLS estimator is 0.129, while that of the FD estimator is

0.311 when φZ = 0.9 and φε = 0.1. This indicates the potential power gain from using the

OLS estimator relative to the FD counterpart is tremendous. On the other hand, the RMSE

of the OLS estimator is 0.098, while that of the FD estimator is only 0.034 when φZ = 0.1

and φε = 0.9. This implies the FD estimator should be used under this circumstance.

The preceding results clearly point to the dilemma concerning “to difference or not-to-

difference” in the time series literature, because the researchers might have difficulty to

decide whether to use the OLS or the FD estimator in empirical applications. This dilemma

motivates us to propose the GMM estimator.

As argued previously, the GMM estimator merges the information contained in both

OLS and FD estimators, β̂GMM thus is at least as efficient as both OLS and FD methods

although the error term is an iid or a highly persistent stationary process. This prediction

is confirmed by Table 1, because we find the RMSE of the GMM estimator is almost

equivalent to that of the FD estimator when φε is close to 0.9, i.e., when the error term

is a highly persistent stationary process. This observation is reasonable, because it is not

easy to beat the FD estimator when it almost achieves Gauss-Markov bound. On the

other hand, the RMSE of the GMM estimator is very close to that of the OLS estimator

if φε is close to 0.1, i.e., when the error term is nearly to be an iid process. Again, this

phenomenon is expected, because the OLS estimator almost attains Gauss-Markov bound

under this circumstance. Interestingly, we find the GMM estimator is more efficient than

both OLS and FD methods when φε is in the middle range of the parameter values studied

in Table 1. This finding also confirms that the GMM estimator can beat both OLS and

FD methods when neither of OLS and FD methods attains Gauss-Markov bound.

For ease of comparison, we define RMSEξ as the RMSE of the estimator ξ in estimating

β of the model in (1), and compare the finite sample relative efficiency of the OLS estimator

to its GMM counterpart as:
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Relative efficiency of GMM to OLS estimator in estimating β =
RMSEOLS

RMSE
β̂GMM

. (19)

The GMM estimator is more efficient than the OLS counterpart in estimating β if we find

the ratio in (19) is greater than 1. Similarly, we compare the finite sample relative efficiency

of the FD estimator to its GMM counterpart as:

Relative efficiency of GMM to FD estimator in estimating β =
RMSEFD

RMSE
β̂GMM

. (20)

It follows that the GMM estimator is more efficient than the FD counterpart in estimating

β if we find the ratio in (20) is greater than 1.

For clarity of exposition, Table 2 shows the relative performance of the GMM estimator

as compared to that of the OLS estimator and that of the FD one. When the values in

(19) and (20) are both greater than or equal to 1, we plot the corresponding entry in Table

2 with a value of 1, indicating that both OLS and FD estimators cannot beat the GMM

approach. Otherwise, we plot a value of 0. Table 2 clearly reveals that the finite sample

performance of the proposed GMM estimator is very satisfactory in that it is at least as

efficient as both OLS and FD approaches in most cases, even though the sample size is

100. Moreover, as expected from the asymptotic properties of the GMM estimator, we find

the relative performance of the GMM approach as compared to that of the OLS estimator

and that of the FD estimator increases with the increasing sample size. For example,

when n = 300, there are only 11 out of 81 cases where the GMM estimator is defeated by

either OLS or FD method. This phenomenon thus confirms the GMM literature that more

moments basically increase the efficiency of the GMM estimator.

The sampling properties of the t-ratio statistic generated from the GMM estimator are

important, because inference plays an inevitable role in empirical applications. Table 3

displays the empirical size of the GMM t-ratio statistic in a two-tailed test at the 5% level

of significance and shows that the size control of the t statistic for testing the value of β1

is very promising even though the sample size is moderately small. This also illustrates

the power of Robinson’s (1998) long-run variance estimator in controlling the effects of

nuisance parameters on the inference performance of the GMM estimator. It also indicates

that the empirical power analysis based on Robinson’s (1998) approach is reliable.

12



We now consider the power performance of the GMM estimator. The strategy is to

investigate the rejection percentages of t test when the simulated value of β1 is 0.9, while

the null hypothesis tested is β1 = 1. By the regression direction analysis of Davidson and

MacKinnon (1985), the GMM estimator will have a better local power than both OLS and

FD counterparts do provided that the GMM estimator is more efficient than both OLS

and FD methods. For expositional purposes, following the design in Table 2, we plot the

corresponding entry in Table 4 with a value of 1 if the power of the GMM estimator is both

greater than or equal to that of the OLS method and that of the FD estimator. Otherwise,

we plot a value of 0.

Table 4 shows that the relative performance of the GMM estimator as compared to

those of OLS and FD methods indeed improves with the sample size. Even under the

moderately small sample size as n = 100, we find 70 out of 81 cases where both OLS

and FD methods cannot beat the GMM estimator in Table 4. For the 81 configurations

considered in Table 4, we only find 3 out of 81 cases where the GMM estimator is defeated

by either OLS or FD estimator when n = 300. These 3 cases actually occur when φε is

0.1 or 0.8 which correspond to the extreme situations where either OLS or FD estimator is

close to achieve Gauss-Markov bound. On the contrary, the GMM estimator outperforms

both OLS and FD competitors if φε lies in the middle range of the parameters considered

in Table 4. This pattern is what we find in Table 1 concerning the RMSE of the OLS, FD,

and GMM estimators. By the simulation results not reported in the paper, in terms of

power performance, we find 70 of 81 configurations where the GMM estimator outperforms

both OLS and FD estimators when n = 300. All these findings strongly support that the

GMM estimator based on the MD and the LD operators is a powerful tool to increase the

efficiency of the time series regression coefficient estimates.

4 Conclusion

A general class of easily implemented GMM estimators built on the LD operator of Griliches

and Hausman (1986) and the MD operator of Tsay (2007) is shown to be useful for dealing
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with a general class of time series regression model where the error term and regressors

are allowed to have nonparametric autocorrelation. Since the proposed GMM estimator

merges the information contained in the moment conditions inherent in both OLS and FD

estimators, theoretically, β̂GMM is at least as efficient as both OLS and FD counterparts.

This also implies that the GMM estimator is likely to greatly outperform both OLS and

FD estimators when the order of differecing M adopted in (10) is larger than 1.

The GMM estimator is proven to be consistent and asymptotically normally distributed

under suitable regularity conditions. The Monte Carlo simulation reveals that the size

control of the t test associated with the GMM estimator is very satisfactory under various

AR(1) regressors and AR(1) errors considered in this paper even though the sample size

is moderately small as 100. Moreover, the GMM estimator is found to be more efficient

than both OLS and FD estimators when the persistency parameter of AR(1) error term,

φε, is in the middle range of the parameters considered in Table 1. This confirms that the

GMM estimators is more efficient than both OLS and FD approaches if neither OLS nor

FD estimator attains Gauss-Markov bound.

We do not address the issues surrounding the choice of an optimal number of M or the

moments from the LD and the MD operators. The seminal works in Andrews (1999) and

Donald and Newey (2001) are the benchmarks to develop a consistent moment selection

procedure for our GMM estimator. This task is important but out of the scope of this

paper. Furthermore, the methodology developed in this paper can be used to combine the

within estimator and the FD estimator popularly adopted in the panel data analysis to

construct a more efficient coefficient estimates. That will be left for future studies.
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Table 1. RMSE from Estimating the Regression Coefficient β1: n = 100

φZ

φε Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 OLS 0.102 0.108 0.108 0.105 0.104 0.113 0.111 0.112 0.129
FD 0.118 0.129 0.141 0.142 0.154 0.165 0.194 0.216 0.311

GMM 0.103 0.110 0.112 0.107 0.107 0.114 0.112 0.114 0.132

0.2 OLS 0.102 0.107 0.111 0.108 0.116 0.115 0.123 0.133 0.143
FD 0.115 0.115 0.121 0.132 0.140 0.159 0.181 0.209 0.283

GMM 0.101 0.103 0.107 0.107 0.114 0.112 0.123 0.131 0.145

0.3 OLS 0.106 0.106 0.112 0.114 0.120 0.119 0.127 0.142 0.148
FD 0.106 0.108 0.116 0.126 0.134 0.148 0.163 0.206 0.270

GMM 0.100 0.099 0.106 0.110 0.113 0.116 0.121 0.139 0.147

0.4 OLS 0.105 0.107 0.111 0.119 0.125 0.127 0.136 0.145 0.163
FD 0.094 0.095 0.102 0.112 0.118 0.137 0.152 0.177 0.262

GMM 0.090 0.091 0.096 0.105 0.108 0.114 0.123 0.132 0.158

0.5 OLS 0.108 0.113 0.118 0.124 0.128 0.135 0.147 0.158 0.188
FD 0.084 0.092 0.095 0.101 0.113 0.122 0.135 0.167 0.236

GMM 0.084 0.090 0.093 0.097 0.106 0.111 0.120 0.138 0.168

0.6 OLS 0.110 0.113 0.115 0.125 0.136 0.137 0.160 0.175 0.207
FD 0.074 0.080 0.085 0.090 0.099 0.103 0.125 0.153 0.206

GMM 0.074 0.078 0.084 0.087 0.097 0.097 0.120 0.138 0.176

0.7 OLS 0.107 0.114 0.124 0.130 0.148 0.154 0.171 0.193 0.223
FD 0.062 0.066 0.072 0.073 0.084 0.089 0.107 0.130 0.182

GMM 0.062 0.066 0.073 0.073 0.084 0.088 0.105 0.125 0.164

0.8 OLS 0.101 0.118 0.118 0.135 0.148 0.168 0.181 0.209 0.260
FD 0.051 0.052 0.057 0.060 0.066 0.076 0.084 0.101 0.141

GMM 0.051 0.052 0.057 0.060 0.067 0.075 0.083 0.101 0.139

0.9 OLS 0.098 0.115 0.119 0.137 0.151 0.166 0.186 0.227 0.298
FD 0.034 0.037 0.039 0.042 0.048 0.053 0.059 0.072 0.103

GMM 0.034 0.037 0.039 0.042 0.049 0.053 0.060 0.073 0.105

Notes: All the results are based on 1,000 replications of the simulated data defined in (15),
(16), (17), and β1 = 1.
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Table 2. Relative Efficiency of the GMM Estimator to both

OLS and FD Counterparts

φZ

φε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 100

0.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
0.9 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

n = 200

0.1 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000

n = 300

0.1 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000

Notes: The value of each entry equals 1 when the RMSE of the GMM estimator is not less
than that of the OLS mehtod and that of the FD one. Otherwise, it equals 0.
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Table 3. Rejection Percentages of the GMM Estimator under the Null

φZ

φε n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 100 6.40 7.60 8.20 6.70 5.70 7.10 8.00 6.40 9.90
200 4.80 5.40 6.50 6.20 4.40 5.30 6.20 7.20 8.00
300 5.30 6.60 5.80 6.80 5.80 4.70 7.00 6.20 9.00

0.2 100 7.20 6.00 7.30 7.00 7.70 6.70 7.00 9.70 10.40
200 4.50 5.40 4.90 6.00 5.40 5.90 7.20 6.50 6.90
300 5.70 6.80 6.10 5.80 5.60 6.80 6.50 6.60 7.50

0.3 100 7.60 6.70 7.40 7.10 6.70 7.60 8.00 9.50 10.50
200 5.00 5.30 5.30 6.20 6.20 5.50 4.50 7.00 6.90
300 6.00 6.80 5.50 5.40 5.20 5.10 4.70 6.70 6.60

0.4 100 5.50 5.20 5.70 6.90 6.60 7.20 6.10 8.20 9.40
200 6.40 5.60 5.40 6.70 6.80 5.20 6.30 8.30 8.00
300 7.00 4.70 5.40 5.30 6.10 6.30 6.00 6.50 6.70

0.5 100 6.70 7.50 6.90 6.40 7.20 6.50 7.10 8.10 10.20
200 7.60 5.00 5.50 6.80 6.30 5.30 7.00 6.80 8.50
300 5.70 6.10 5.00 7.00 5.10 5.70 6.50 7.10 7.10

0.6 100 6.30 6.10 7.40 5.60 6.70 5.50 8.20 8.20 9.90
200 6.00 6.10 5.30 6.50 5.70 4.90 6.20 5.70 8.90
300 5.20 4.70 5.60 6.40 5.00 5.40 5.90 5.70 8.40

0.7 100 6.50 6.30 7.30 4.70 6.10 4.90 7.50 7.10 9.90
200 5.00 6.00 5.40 6.70 5.80 6.30 5.00 6.70 8.70
300 4.20 4.70 6.00 5.50 6.20 4.80 5.00 6.10 6.60

0.8 100 6.20 5.60 6.20 5.20 5.80 6.10 5.30 5.30 7.00
200 5.10 5.50 6.90 7.00 5.70 5.30 6.10 5.40 5.30
300 4.80 5.60 4.70 4.70 5.60 5.70 5.00 5.50 5.80

0.9 100 5.80 5.10 6.20 5.40 7.60 5.70 5.90 5.70 6.90
200 5.90 6.00 5.20 6.20 5.30 4.30 4.60 6.90 6.60
300 4.90 5.30 5.40 4.50 5.90 3.70 5.30 5.50 4.70

Notes: All the results are based on 1,000 replications of the simulated data defined in (15),
(16), (17), and β1 = 1.
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Table 4. Empirical Power Performance of the GMM Estimator

Relative to both OLS and FD Counterparts

φZ

φε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 100

0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.8 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.9 1.0000 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000

n = 200

0.1 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000

n = 300

0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000
0.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Notes: The simulated value of β1 in (17) is 0.9, while the null hypothesis tested is β1 = 1.
The value of each entry equals 1 when the power of the GMM estimator cannot be defeated
by either OLS or FD estimator. Otherwise, it equals 0.
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