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Abstract

This paper derives an analytic approximation formula for the likelihood function
of the true random effects stochastic frontier model of Greene (2005) with a time
span T = 2. Gaussian quadrature procedure and simulation-based method is not re-
quired for the closed-form approach. Combining the analytic formula with a pairwise
likelihood estimator (PLE), we easily can estimate the true random effects stochastic
frontier models with T > 2. This analytic approximation approach is also applicable
to the true fixed effects stochastic frontier model of Greene (2005) after the fixed
effects parameters are eliminated from the pairwise differencing or first differencing
operators. The Monte Carlo simulations confirm the promising performance of the
analytic methodology under all the configurations generated from the true random
effects and true fixed effects stochastic frontier models in this paper. The proposed
method is applied to the World Health Organization’s (WHO) panel data on national
health care systems.

Key words: True random effects; true fixed effects; panel stochastic frontier model

JEL classifications: C33; C4
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1 Introduction

This paper considers the estimation problems of the true random effects stochastic fron-

tier analysis (TRESFA) and the closed related true fixed effects SFA (TFESFA, here-

after) models proposed by Greene (2005). These panel SFA models preserve the feature of

the stochastic frontier model of Aigner, Lovell, and Schmidt (ALS, 1977) and accommo-

dates heterogeneity which cannot be shared with the random effects model of Pitt and Lee

(1981), in particular, the efficiency is no more a time-invariant variable in the TRESFA

and TFESFA frameworks.

Both TRESFA and TFESFA models are useful workhorses for efficiency estimation

provided that the associated estimation is not costly. However, the full likelihood function of

the TRESFA model does not admit a close-form presentation, and the maximuum likelihood

estimation (MLE) of the TFESFA model might be subject to the incidental parameters

problems when the number of cross units, N , are huge.

This paper first shows that the full likelihood function of the TRESFA model does

admit a close-form analytic approximation when the time span T = 2. The analytic

method makes the associated likelihood estimation easy and stable. When comparing to

the quadrature-based MLE suggested by Butler and Moffitt (1982), we find that the bias

and root of mean-squared-error (RMSE) performance of the analytic methodology is very

much similar to that from the quadrature approach. This is expected, because the MLE

performed by both quadrature-based and analytic methods are full MLE when T = 2.

The simulations thus confirm the accuracy of the analytic formula in approximating the

likelihood of the TRESFA models when T = 2.

Another contribution of this paper is to investigate whether the TRESFA model can be

estimated with the Gaussian quadrature procedure with T ≥ 2. Greene (2005) does not use

the quadrature method for his proposed models, instead, he employs a simulation-based

method to generate the random effects so as to form the approximate likelihood function.
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In fact, both Gaussian quadrature and simulated maximum likelihood estimator are alter-

native approximation methods for evaluating the full likelihood function of the TRESFA

models. Theoretically, the simulated MLE works for the TRESFA model if the number of

random draws approaches a huge number. The trade-off is that the computational cost

might be huge.

Using Monte Carlo experiment, this paper documents that the quadrature method

cannot be used for the TRESFA model without modification. Table 4 of this paper clearly

reveals that the RMSE from estimating some of the parameters of the TRESFA models is

not only sizable but also opposite to what normal asymptotic theory would suggest, i.e., the

RMSE does not decrease with an increasing value of T when the within group correlation

(generated by the presence of random effects) is strong. This finding is also similar to

that observed in Borjas and Sueyoshi (1994) that numerical difficulties might occur if one

applies the quadrature technique to the probit models with structural group effects where

the number of individuals in a group is large.

This paper also demonstrates that the TRESFA models with T > 2 is easily estimated

by combining the pairwise likelihood estimator (PLE) in Besag (1975) and Heagerty and

Lele (1998) and the analytic approximation. The associated computational burdens from

the PLE are still mild, because each pairwise likelihood function is effectively approxi-

mated without using numerical-integral or simulation-based procedures. Furthermore, the

pairwise nature of the proposed method naturally takes care of the unbalanced panel data

as long as two periods of observations are available for that cross unit. The simulations

conducted in this paper also confirm a satisfactory performance of the analytic approach

under the general setting.

This analytic approximation approach is also applicable to the TFESFA model after the

fixed effects parameters are eliminated from the pairwise differencing or first differencing

operators. The simulation results in the following Table 9 reveal the usefulness of the

analytic formula for the TFESFA models.
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The coverage of the developed methodology is not confined to the panel data scenario.

The analytic formula also works for the models based on grouped cross-sectional or clus-

tering data with different number of individuals in each group, because the panel random

effects model share an identical structure with the correlated grouped data frequently en-

countered in the economics and biomedical sciences. See Baltagi (2001) and Hsiao (2003)

for discussions of clustering models.

The remaining parts of this paper are arranged as follows: Section 2 presents the major

theoretical finding of this paper, and the analytic approximation formula for evaluating the

likelihood function of the TRESFA model when T = 2. The idea of pairwise likelihood

principle is also revealed in this section. Section 3 displays the approximation formula for

the TFESFA model under pairwise differencing transformation. In Section 4 we illustrate

the finite sample performance of the proposed methods for both TRESFA and TFESFA

models. We also apply the proposed method to the World Health Organization’s (WHO)

panel data on national health care systems in Section 5. We conclude in Section 6.

2 A true random effects stochastic frontier model

Consider the following true random effects stochastic frontier models:

yit = α + x>itβ + wi + vit − Suit, i = 1, 2, . . . , N and t = 1, . . . , T, (1)

where yit is the performance of firm i in period t, xit is the vector of inputs or input prices,

wi is the random firm specific effect, and S = 1 or −1, depending on the context under

investigation. vit and uit are the symmetric and one sided components to the stochastic

frontier model proposed by ALS (1977):

vit ∼ N
[
0, σ2

v

]
, uit = |Uit| where Uit ∼ N

[
0, σ2

u

] ⊥ vit. (2)

Define εit = vit − Suit and rewrite the model in (1) as:

yit = α + x>itβ + wi + εit, (3)
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the above TRESFA model is a usual random effects model with a time varying component

εit which has the asymmetric distribution as the key feature of the SFA model.

In order to evaluate the likelihood function of the TRESFA model, we note that

f(yit|wi) =
2

σ
φ

(εit

σ

)
Φ

(−Sλεit

σ

)
, εit = yit − α− x>itβ − wi = Zit − wi, (4)

where σ2 = σ2
u + σ2

v , φ(.) and Φ(.) are the probability density function (pdf) and the

cumulative distribution function (cdf) of a standard normal distribution, respectively, and

λ = σu/σv.

Conditional on wi, the T observations for firm i are independent with each other, thus,

the joint density of the T observations is:

f(yi1, . . . , yiT |wi) =
T∏

t=1

2

σ
φ

(εit

σ

)
Φ

(−Sλεit

σ

)
. (5)

It follows that the unconditional joint density is:

Li =

∫

wi

T∏
t=1

2

σ
φ

(εit

σ

)
Φ

(−Sλεit

σ

)
g(wi)dwi, (6)

where g(.) denotes some probability density function.

Assume that wi is generated as a normal distribution with a variance σ2
w as regularly

imposed in the literature, we derive from (6) that

Li =

∫ ∞

−∞

T∏
t=1

2

σ
φ

(εit

σ

)
Φ

(−Sλεit

σ

)
1

σw

φ

(
wi

σw

)
dwi. (7)

The above likelihood function can be evaluated with the Gaussian quadrature procedure

suggested by Butler and Moffitt (1982). However, Gaussian quadrature never has been

used for the TRESFA model. Instead, Greene (2005) adopts a simulation-based method to

generate the random effects so as to form the approximate likelihood function. Theoret-

ically, the simulated MLE works for the TRESFA model if the number of random draws

approaches a huge number. The trade-off is that the computational cost might be huge.

The common feature shares with the Gaussian quadrature and the simulated MLE is that
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both approaches are alternative ways to approximate the full likelihood function of the

TRESFA models.

Using simulations, Table 4 of this paper shows that the RMSE from estimating the

parameters of the TRESFA models based on quadrature method could be sizable, and

the changing pattern of the RMSE is opposite to what normal asymptotic theory would

suggest. This paper thus paves a new way for estimating the TRESFA models with an easy-

to-implement analytic approximation formula. As will be shown later, the performance of

the analytic formula is promising and almost equivalent to that from using the quadrature

approach when T = 2. We will also show that the proposed analytic method works ex-

tremely well for the cases T > 2 by combining the pairwise likelihood principle. Moreover,

the implementation of MLE based on the proposed formula is very stable according to the

Monte Carlo experiment conducted in this paper.

2.1 An analytic formula for TRESFA with T = 2

This subsection illustrates the major idea behind the analytic approximation approach.

Consider the TRESFA model with T = 2, we see from (7) that

Li
s,t =

4

σ2

∫ ∞

−∞
Φ

(−Sλεis

σ

)
Φ

(−Sλεit

σ

)
φ

(εis

σ

)
φ

(εit

σ

) 1

σw

φ

(
wi

σw

)
dwi. (8)

Define

A∗ =
4√

8π3σ2σw

, (9)

then we rewrite Li
s,t in (8) as

Li
s,t = A∗

∫ ∞

−∞
e−ν2/2σ2

we(−Z2
is+2Zisν−ν2)/2σ2

e(−Z2
it+2Zitν−ν2)/2σ2

Φ (P1ν + Q1) Φ (P2ν + Q2) dν,

(10)

where

P1 =
Sλ

σ
, Q1 =

−SλZis

σ
, P2 =

Sλ

σ
, Q2 =

−SλZit

σ
, (11)
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and Zit = yit − α − x>itβ as defined in (4) which is observable conditional the values of α

and β.

The likelihood function in (10) belongs to a subcase of the following more general

integral function:

Li
s,t = A∗Ii,s,t, (12)

where

Ii,s,t =

∫ ∞

−∞
e−q1ν2+q2ν+q3Φ (P1ν + Q1) Φ (P2ν + Q2) dν, q1 > 0, (13)

and

q1 =
1

σ2
+

1

2σ2
w

, q2 = (Zis + Zit)/σ
2, q3 = −(Z2

is + Z2
it)/2σ

2. (14)

The major task of this paper is to derive an analytic formula for the function Ii,s,t which

might be of interest in its own right, and is kept as the focus of this subsection.

To avoid any difficult implementation of numerical integral, we derive a closed-form

approximation for the function in (13). For expositional purposes, we first present the

result in (7.1.1) of Abramowitz and Stegun (1970) to define the error function as:

erf (z) =
2√
π

∫ z

0

e−t2dt = 2

∫ √
2z

0

φ (t) dt, (15)

where

erf (−x) = −erf (x) . (16)

The error function is closely related to the cdf of a standard normal distribution.

By (13), we observe that:

Ii,s,t =

∫ ∞

−∞
e−q1ν2+q2ν+q3

[∫ P1ν+Q1

−∞
φ (ζ) dζ

] [∫ P2ν+Q2

−∞
φ (ζ) dζ

]
φ (ν) dν

=

∫ ∞

−∞
e−q1ν2+q2ν+q3

[
1

2
+

1

2
erf

(
P1ν + Q1√

2

)][
1

2
+

1

2
erf

(
P2ν + Q2√

2

)]
φ (ν) dν.

If the condition −Q1/P1 < −Q2/P2 holds, then ν in (13) is located in three mutually

exclusive segments:

ν ∈
(
−∞,−Q1

P1

)
, or ν ∈

[
−Q1

P1

,−Q2

P2

)
, or ν ∈

[
−Q2

P2

,∞
)

, (17)
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such that the value of Ii,s,t is evaluated as:

Ii,s,t =

∫ −Q1/P1

−∞
e−q1ν2+q2ν+q3

[
1

2
+

1

2
erf

(
P1ν + Q1√

2

)][
1

2
+

1

2
erf

(
P2ν + Q2√

2

)]
φ (ν) dν

+

∫ −Q2/P2

−Q1/P1

e−q1ν2+q2ν+q3

[
1

2
+

1

2
erf

(
P1ν + Q1√

2

)][
1

2
+

1

2
erf

(
P2ν + Q2√

2

)]
φ (ν) dν

+

∫ ∞

−Q2/P2

e−q1ν2+q2ν+q3

[
1

2
+

1

2
erf

(
P1ν + Q1√

2

)][
1

2
+

1

2
erf

(
P2ν + Q2√

2

)]
φ (ν) dν

= A1 + B1 + C1. (18)

Following the idea in Tsay et al. (2009), we approximate the values of A1, B1, and

C1 by approximating the value of the error functions appearing in (18) with a nonlinear

function. Particularly, Tsay et al. (2009) show that erf(x) can be well approximated with

a function of the form g(x) = 1− ec1x+c2x2
if x ≥ 0:

erf(x ≥ 0) ∼ 1− ec1x+c2x2

, c1 = −1.0950081470333, and c2 = −0.75651138383854.

(19)

The values of c1 and c2 are chosen to make 1 − ec1x+c2x2
as close to erf(x) as possible.

The simulations conducted in Tsay et al. (2009) clearly reveal the power of 1− ec1x+c2x2
in

approximating erf(x). See Tsay et al. (2009) for the details.

Technically, after substituting the approximating function in (19) for the error functions

in (18), we find the integrand in each of A1, B1, and C1 of (18) as a form of e−(aν2+2bν+c).

Using (7.4.32) of Abramowitz and Stegun (1970):

∫
e−(kx2+2mx+n)dx =

1

2

√
π

k
e

m2−kn
k erf

(√
kx +

m√
k

)
+ C, k 6= 0,

where C denotes some finite constant, we obtain an analytic approximation formula for

Ii,s,t.
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Theorem 1. Given that the condition −Q1/P1 < −Q2/P2 holds, and defining a1 = P1,

b1 = Q1, a2 = P2, and b2 = Q2, Ii,s,t in (18) can be approximated by Iapp
i,s,t(a1, b1; a2, b2) as

such:

Iapp
i,s,t(a1, b1; a2, b2) =

1

8
[1− sign(a1)] [1− sign(a2)]

√
π

q1

e
q2
2/4+q1q3

q1

×
[
erf

(√
q1
−b1

a1

− q2

2
√

q1

)
+ 1

]

+
1

8
sign(a1) [1− sign(a2)]

√
π

η1

e
η2
3−η1η5

η1

×
[
erf

(√
η1
−b1

a1

+
η3√
η1

)
+ 1

]

+
1

8
[1− sign(a1)] sign(a2)

√
π

η2

e
η2
4−η2η6

η2

×
[
erf

(√
η2
−b1

a1

+
η4√
η2

)
+ 1

]

+
1

8
sign(a1)sign(a2)

√
π

η1 + η2 − q1

e
(η3+η4+q2/2)2−(η1+η2−q1)(η5+η6+q3)

η1+η2−q1

×
[
erf

(√
η1 + η2 − q1

−b1

a1

+
η3 + η4 + q2/2√

η1 + η2 − q1

)
+ 1

]

+
1

8
[1 + sign(a1)] [1− sign(a2)]

√
π

q1

e
q2
2/4+q1q3

q1

×
[
erf

(√
q1
−b2

a2

− q2

2
√

q1

)
− erf

(√
q1
−b1

a1

− q2

2
√

q1

)]

+
1

8
[1 + sign(a1)] sign(a2)

√
π

η2

e
η2
4−η2η6

η2

×
[
erf

(√
η2
−b2

a2

+
η4√
η2

)
− erf

(√
η2
−b1

a1

+
η4√
η2

)]

− 1

8
sign(a1) [1− sign(a2)]

√
π

η1

e
η2
7−η1η8

η1

×
[
erf

(√
η1
−b2

a2

+
η7√
η1

)
− erf

(√
η1
−b1

a1

+
η7√
η1

)]

− 1

8
sign(a1)sign(a2)

√
π

η1 + η2 − q1

e
(η7+η4+q2/2)2−(η1+η2−q1)(η8+η6+q3)

η1+η2−q1
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× erf

(√
η1 + η2 − q1

−b2

a2

+
η7 + η4 + q2/2√

η1 + η2 − q1

)

+
1

8
sign(a1)sign(a2)

√
π

η1 + η2 − q1

e
(η7+η4+q2/2)2−(η1+η2−q1)(η8+η6+q3)

η1+η2−q1

× erf

(√
η1 + η2 − q1

−b1

a1

+
η7 + η4 + q2/2√

η1 + η2 − q1

)

+
1

8
[1 + sign(a1)] [1 + sign(a2)]

√
π

q1

e
q2
2/4+q1q3

q1

×
[
1− erf

(√
q1
−b2

a2

− q2

2
√

q1

)]

− 1

8
[1 + sign(a1)] sign(a2)

√
π

η2

e
η2
9−η2η10

η2

×
[
1− erf

(√
η2
−b2

a2

+
η9√
η2

)]

− 1

8
sign(a1) [1 + sign(a2)]

√
π

η1

e
η2
7−η1η8

η1

×
[
1− erf

(√
η1
−b2

a2

+
η7√
η1

)]

+
1

8
sign(a1)sign(a2)

√
π

η1 + η2 − q1

e
(η7+η9+q2/2)2−(η1+η2−q1)(η8+η10+q3)

η1+η2−q1

×
[
1− erf

(√
η1 + η2 − q1

−b2

a2

+
η7 + η9 + q2/2√

η1 + η2 − q1

)]
,

where

η1 =
2q1 − c2a

2
1

2
;

η2 =
2q1 − c2a

2
2

2
;

η3 =
−√2c2a1b1 + c1sign(a1)a1 −

√
2q2

2
√

2
;

η4 =
−√2c2a2b2 + c1sign(a2)a2 −

√
2q2

2
√

2
;
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η5 =
−√2c2b

2
1 + 2c1sign(a1)b1 − 2

√
2q3

2
√

2
;

η6 =
−√2c2b

2
2 + 2c1sign(a2)b2 − 2

√
2q3

2
√

2
;

η7 =
−√2c2a1b1 − c1sign(a1)a1 −

√
2q2

2
√

2
;

η8 =
−√2c2b

2
1 − 2c1sign(a1)b1 − 2

√
2q3

2
√

2
;

η9 =
−√2c2a2b2 − c1sign(a2)a2 −

√
2q2

2
√

2
;

η10 =
−√2c2b

2
2 − 2c1sign(a2)b2 − 2

√
2q3

2
√

2
,

and P1, Q1, P2, and Q2 are defined in (11).

The derivation of Iapp
i,s,t(a1, b1; a2, b2) in Theorem 1 can be requested upon the authors.

Note that Theorem 1 is related to the condition −Q1/P1 < −Q2/P2, while on the other

hand, if −Q1/P1 ≥ −Q2/P2 holds, by symmetry, the likelihood function is calculated with

the following Theorem 2.

Theorem 2. Given that the condition −Q1/P1 ≥ −Q2/P2 holds, then Ii,s,t in (18) can

be approximated by Iapp
i,s,t(a1, b1; a2, b2) in Theorem 1 with a1 = P2, b1 = Q2, a2 = P1, and

b2 = Q1.

With Theorems 1 and 2, the approximate joint likelihood function for firm i at periods

s and t is computed as:

L̃i
s,t = A∗I

{−Q1

P1

<
−Q2

P2

}
Iapp
i,s,t(a1 = P1, b1 = Q1; a2 = P2, b2 = Q2)

12



+ A∗I
{−Q1

P1

≥ −Q2

P2

}
Iapp
i,s,t(a1 = P2, b1 = Q2; a2 = P1, b2 = Q1), (20)

where I{.} is the indicator function taking the value one if the statement in the bracket is

true and zero otherwise. We are now in a position to derive the log-likelihood function for

the entire sample.

Theorem 3. When T = 2, the log-likelihood function for the true random effects stochastic

frontier model in (1) for firm i at time s and t is approximated as:

ln Lapp
s,t =

N∑
i=1

ln L̃i
s,t,

where L̃i
s,t is defined in (20).

It is clear that Gaussian quadrature method or simulation-based procedure are not

needed when computing ln Lapp
s,t , because the error function erf(.) can be directly calcu-

lated with a standard statistic package. As a consequence, the evaluation of the analytic

formula is so straightforward that the interested researcher can easily conduct the maximum

likelihood estimator based on the proposed method.

2.2 Dealing with TRESFA with T > 2

The analytic procedure of evaluating the log-likelihood function of the model in (1)

is not feasible when T is large, but we can easily circumvent this difficulty by using the

pairwise likelihood principle. The pairwise strategy has been used for the pseudolikelihood

methods of Besag (1974) under spatial data, and Heagerty and Lele (1998) for binary

spatial data. General results concerning the consistency and asymptotic normality of the

PLE can be derived along the lines of the classical proofs in Arnold and Strauss (1991) and

Renard et al. (2004).
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In this paper we pool all pairwise log-likelihood functions under various combinations

of time s and time t for each unit i as:

ln L ∼
N∑

i=1

∑

t 6=s

ln L̃i
s,t =

∑

t6=s

ln Lapp
s,t . (21)

Clearly, the cost of conducting PLE is limited, because the computational cost of L̃i
s,t is

mild. Furthermore, the PLE can handle the unbalanced panel data naturally in that the

pairwise principle is designed to compute all the possible pairwise combinations across time

span.

Once all the parameters of the TRESFA model are in hand, we observe from (1) that

εi,t = wi + vi,t − Sui,t. (22)

At time t, we note that

εi,t = ei,t − Sui,t, ei,t ∼ N [0, σ2
w + σ2

v ], ui,t ∼ |N [0, σ2
u]|, (23)

so we can use the method of Jondrow et al. (1982) to extract the inefficiency part of the

composite error as E(ui,t|εi,t) for firm i at time t. To rank the efficiency level across firms,

we might use the average of E(ui,t|εi,t) across t.

3 A true fixed effects stochastic frontier model

This section considers the estimation of the true fixed effects SFA models as of the form in

(3):

yit = α + x>itβ + wi + εit = αi + x>itβ + εit. (24)

The major advantage of the fixed effects setting over the random effects counterpart is that

wi in (24) is not assumed to be independent of the regressors xi,t anymore. On the other

hand, if we try to eliminate the impacts of fixed effects on the estimation of the remaining

parameters by using the pairwise differencing or the first differencing operators, then we

14



cannot estimate the parameters related to time-invariant regressors. For ease of exposition,

from now on, we assume xi,t is time-varying throughout this paper.

To extract more information from the TFESFA data, we suggest using a pairwise dif-

ferencing operator as follows:

yi,s − yi,t = (xi,s − xi,t)
>β + (εi,s − εi,t). s 6= t. (25)

For a data with a time span T , the possible pairwise difference is T (T − 1)/2.

The coefficient β and the parameters characterizing the composite error εi,t can be

estimated with likelihood-based estimator if the pdf of εi,s − εi,t is known. To fulfill this

purpose, we observe that the joint density function of εi,s and εi,t is the product of their

individual densities because of their mutual independence,

f(εi,s, εi,t) =
4

σ2
φ

(εi,s

σ

)
Φ

(−Sλεi,s

σ

)
φ

(εi,t

σ

)
Φ

(−Sλεi,t

σ

)
. (26)

Using (26) and making the transformation

hi
s,t = εi,s − εi,t, (27)

the joint density function of εi,t and hi
s,t is

f(εi,t, h
i
s,t) =

4

σ2
φ

(
hi

s,t + εi,t

σ

)
Φ

(−Sλ(hi
s,t + εi,t)

σ

)
φ

(εi,t

σ

)
Φ

(−Sλεi,t

σ

)
. (28)

Thus, the marginal density function of hi
s,t is computed by

f(hi
s,t) =

4

σ2

∫ ∞

−∞
φ

(
hi

s,t + εi,t

σ

)
Φ

(−Sλ(hi
s,t + εi,t)

σ

)
φ

(εi,t

σ

)
Φ

(−Sλεi,t

σ

)
dεi,t. (29)

Without loss of clarity, we can write above marginal density function as:

f(h) =
4

σ2

∫ ∞

−∞
φ

(
h + ε

σ

)
Φ

(−Sλ(h + ε)

σ

)
φ

( ε

σ

)
Φ

(−Sλε

σ

)
dε, (30)

The integral function in (30) admits the following familiar form:

f(h) =
2

πσ2

∫ ∞

−∞
e(−h2−2hν−ν2)/2σ2

e(−ν2)/2σ2

Φ (P1ν + Q1) Φ (P2ν) dν, (31)
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or

f(h) =
2

πσ2

∫ ∞

−∞
e−ν2/σ2−hν/σ2−h2/2σ2

Φ (P1ν + Q1) Φ (P2ν) dν, (32)

where

P1 =
−Sλ

σ
, Q1 =

−Sλh

σ
, P2 =

−Sλ

σ
. (33)

That is, the function in (32) can be recast as:

f(h) =
2

πσ2

∫ ∞

−∞
e−q1ν2+q2ν+q3Φ (P1ν + Q1) Φ (P2ν) dν, q1 > 0, (34)

and

q1 =
1

σ2
, q2 =

−h

σ2
, q3 =

−h2

2σ2
. (35)

By appealing the results in Theorems 1, 2, and 3, we can estimate the parameters (β, σu,

and σv) of the TFESFA model by pooling all the possible pairwise differencing combinations

within each firm i.

Pairwise differencing makes the direct estimation of the fixed effect, αi, impossible.

However, it can be estimated as:

α̂i,TFE = yi − x>i β̂TFE +

√
2

π
σ̂u, (36)

where yi and xi are within group sample means of the dependent variable and the stochas-

tic regressors, respectively, while β̂TFE denotes the coefficient estimate from the first stage

estimation based on our analytic formula. α̂i,TFE can be used to rank the relative effi-

ciency level across firms via the Schmidt and Sickles’ (1984) method, i.e., the firm specific

inefficiency is measured as a deviation from the benchmark level:

ûi,TFE = max
i

(α̂i,TFE)− α̂i,TFE ≥ 0. (37)

The accuracy of α̂i,TFE depends on the magnitude of T . It is clear that our method is a

two-stage approach as compared to the one-step simulated MLE procedure of Greene (2005)

who proposes using brute force computation to estimate all the fixed effects parameters

along with the other ones. Nevertheless, the estimate of β using the pairwise differencing

method is not affected by the incidental parameters problems especially when N is huge.
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4 Monte Carlo experiment

This section investigates the finite sample performance of the MLE (or PLE) for both true

random effects and true fixed effects SFA models. Following Olson et al. (1980, p. 76), we

consider a set of experiments with two-regressors model:

yl
it = α + β1x

l
it + wl

i + vl
it − ul

it, uit = |Uit| (38)

where xit’s are generated from standard normal distribution, and l denotes the l-th repli-

cation of the data.

All the programs are written in GAUSS. Two hundred additional values are generated in

order to obtain random starting values. The optimization algorithm used to implement the

MLE is the quasi-Newton algorithm of Broyden, Fletcher, Goldfarb, and Shanno (BFGS)

contained in the GAUSS MAXLIK library. The maximum number of iterations for each

replication is 100.

4.1 Gaussian quadrature versus analytic approximation

for TRESFA model

It is argued in this paper that the TRESFA model can be estimated with the Gaussian

quadrature procedure, thus, it serves as a benchmark for the proposed analytic approxi-

mation method. Moreover, when T = 2, the full likelihood function can be evaluated with

both methods, so we can assess the accuracy of the analytic formula via the case T = 2.

The simulation results are contained in Table 1 and Table 2 where the true parameter

values are:

ξ = (α, β1, σu, σv, σw)> , α = β1 = 1, σw = 1, (39)

and

{σu = 2, σv = 1}, or {σu = 0.5, σv = 0.25}, or {σu = 0.4, σv = 0.2}. (40)
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Note that we estimate the parameters ξ in (39) with the following transformation func-

tion:

ξ = (α, β1, σu, σv, σw)> = κ(ξ̃), (41)

where

ξ̃ = (α, β1, ln(σu), ln(σv), ln(σw))>, (42)

are the parameters really estimated when conducting the MLE. In order to create a realistic

simulation scheme, the inverse function of the preceding transformation function calculated

at the true parameter value plus an extra (5× 1) random vector generated from N [0, 1/3]

is used as the initial values for the MLE procedure, i.e., the initial value of ξ̃ is:

ξ̃0 = κ(ξ)−1 + N [0, 1/3]. (43)

In order to maintain the accuracy of quadrature approach, we use 40 points to evaluate

the Gaussian quadrature. The first 1000 replication of normal convergence are recorded for

numerical analysis.

The results indicate that the size performance based on the analytic formula is very

similar to that of quadrature method for all configurations considered in Table 1. We

also find that the bias from both estimation methods is very small. Furthermore, Table

2 demonstrates that the finite sample performance of the MLE based on both approaches

are very satisfactory, because the RMSE from these methods decrease with the increasing

sample size N , indicating that both estimators possesses well-defined asymptotic behaviors.

All these findings support the good performance of the analytic formula and the quadrature

method in dealing with the TRESFA model when T = 2, even though it was mentioned by

Greene (2005) that close-form solution does not exist for this interesting model.

One interesting observation from Lee (2000) is that the typical numerical-integral pro-

cedure suggested by Butler and Moffitt (1982) for the random effects probit model becomes

biased when the correlation coefficient within each unit (ρ) is relatively large. Since the

random effects wi might induce a high correlation coefficient within firm or cluster i of the
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TRESFA model, accordingly, we might find it unsatisfactory in applying the quadrature

approach to the TRESFA models under certain circumstances. To shed more light on this

estimation issue, we investigate the performance of the quadrature method in Table 3 under

the setup that ρ is relatively large, i.e.,

{σu = 0.4, σv = 0.2}. (44)

The correlation between individuals within a group is ρ ≈ 0.9106 under the desgin in (44).

Note that we use N = 1000 and 200 replications for the experiments in Table 3. The choice

of N = 1000 is to ensure that the performance of the quadrature method thus derived is

not due to the small sample size. The use of 200 replications is reasonable when the number

of cross units is relatively large.

Before discussing the results in Table 3, we emphasize here that, when T > 2, the

estimation based on quadrature method is still equivalent to the full MLE of the TRESFA

models. The RMSE from the PLE with the analytic formula is thus expected to be larger

than those from the MLE generated by the quadrature approach. This conjecture, however,

is not borne out in Table 3. Indeed, the PLE is found to possess a well-defined asymptotic

behavior, because the associated RMSE decreases with the increasing sample size T . On

the contrary, we cannot observe a similar pattern from the quadrature method. This

observation leads us to further check the performance of the quadrature procedure when T

is relatively large.

Table 4 displays the performance of the quadrature method under the same data-

generating processes (DGP) used in Table 3, but T is raised to be 10, 20, and 30, re-

spectively. First, we find the bias performance from the quadrature method remains sat-

isfactory, however, the resulting RMSE from estimating the parameters σv and σw do not

decrease with an increasing value of T . This finding is opposite to what normal asymptotic

theory would imply, nevertheless, it is in line with the finding of Borjas and Sueyoshi (1994)

that some numerical difficulties occurs when they apply the quadrature technique to study

probit models with structural group effects where the number of individuals in a group
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was large. In other words, the quadrature method cannot be used for the TRESFA model

without modification, especially when T is large.

4.2 PLE with analytic formula for TRESFA models

This subsection demonstrates that the PLE based on the proposed analytic formula is

useful to estimate the TRESFA model by exploring more experiments with different choice

of λ = σu/σv. Table 5 considers the model with the following parameter values:

ξ = (α, β1, σu, σv,σw)> , α = β1 = 1, σu = σw = 1, σv = {1/2, 1, 3/2} . (45)

The result show that the analytic formula is computationally efficient in that it easily

handles the simulations with a sample size of 800 and 1000 replications. Table 5 also

reveals that the performance of the MLE improves with the value λ. This phenomenon is

typically found in the stochastic frontier literature, because the identification of σu hinges

on the asymmetric distribution of the composite error. When λ is smaller, the larger noise

generated from the symmetric disturbance vit will make the identification of the model

more difficult and will result in a larger RMSE of the estimators.

We further investigate the performance of PLE by considering 3 additional choice of

σw:

σw = {0.5, 0.7, 1.3}, (46)

under 3 different value of T :

T = {2, 4, 8}, (47)

and

α = β1 = 1, σu = 1, σv = 0.5. (48)

The simulations are contained in Tables 6, 7, and 8. As expected, the PLE works well

for these TRESFA model. The changing patterns found in these tables resemble closely
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to those found in Tables 1, 2, and 5, i.e., the performance of the PLE improves with the

increase of T or N .

4.3 Analytic formula for TFESFA models

This subsection investigates the finite sample performance of the PLE based on pairwise

differencing and our analytic formula under the following TFESFA model:

{σu = 1, σv = 0.5}, or {σu = 2, σv = 1}, σw = 1.5, α = β1 = 1, (49)

with 3 different value of T :

T = {2, 4, 8}. (50)

As discussed previously, pairwise differencing makes the estimation of time-invariant

parameters infeasible. Nevertheless, provided that xi,t is time-varying and wi is mean zero,

we can estimate the global intercept as:

α̂TFE = y − x>β̂TFE +

√
2

π
σ̂u. (51)

The last item at the right side of the above equality derives from the population mean of a

half-normal distribution, and y and x denotes the sample average of the dependent variable

and independent variables, respectively. The simulation findings are contained in Table 9.

The major feature of the results in Table 9 is similar to what we observe for the TRESFA

models. The analytic formula work very well for the TFESFA model in that the bias is

small, and the RMSE of the PLE improves with the value of T across different model

specifications as well.
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5 Empirical application to WHO health attainment

This section applies the TRESFA model to the data used in Evans et al. (2000a,b) (ETML)

and Greene (2003) about the World Health Organization’s (WHO) panel data on national

health care systems. The WHO 2000 report is a worldwide assessment of the effectiveness

of health care delivery. This study contains a rankings about the productive efficiency of

the health care systems of 191 countries based on the observations 1993-1997. As clearly

pointed out in ETML (2000a,b) and Greene (2003), the rankings were produced using a

form of the “fixed effects” stochastic frontier methodology proposed by Schmidt and Sickles

(1984).

Greene (2003) emphasizes that one criticism of the fixed effects methodology used for the

WHO 2000 report is that the model fails to distinguish between cross country heterogeneity

unrelated to inefficiency and the inefficiency itself. This findings motivates Greene (2003)

to propose the TRESFA model and TFESFA models. Thus, it is natural for us to apply

the proposed methodology to the WHO data.

Two measures of health care attainment were analyzed for the WHO panel data, dis-

ability adjusted life expectancy (DALE) and a composite measure of health care delivery

(COMP). Because several econometric studies have placed the first (DALE) study under

narrower scrutiny, we also use DALE for empirical study.

It is shown in Gravelle et al. (GJJS) (2002a,b) that 51 out of 191 countries are observed

for only one year (1997). The results from the method of Schmidt and Sickles (1984) are

based on 140 countries only. Thus, the findings of this section are generated from 700

observations spanning 1993-1997 of these 140 countries, because the method of Schmidt

and Sickles (1984) is used as the benchmark for comparison.

The production function considered in Schmidt and Sickles (1984) is denoted

yit = α + x>itβ + vit − ui, i = 1, 2, . . . , N and t = 1, . . . , T, (52)

i.e., σw is assumed to be zero, and the level of inefficiency is time-invariant. The preceding
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model is rewritten as:

yit = (α− ui) + x>itβ + vit = αi + x>itβ + vit. (53)

Under the condition that vi,t is uncorrelated with other components of the model, Schmidt

and Sickles (1984) suggest using within estimator for the model in (53), and the country

specific inefficiency is measured as a deviation from the benchmark level:

ûi = max
i

(α̂i)− α̂i ≥ 0. (54)

The advantage of Schmidt and Sickles’ (1984) method is that no parametric assumption of

the disturbance term is required. Nevertheless, their model does not distinguish between

heterogeneity and inefficiency.

Table 10 presents the descriptive statistics used for this section. Following ETML

(2000a,b) and Greene (2003), the variables HEXP, EDUC, and the square of EDUC are

included in the explanatory variables. To single out that the random effects model specifica-

tion is capable of dealing with time-invariant regressors, we include the variables TROPICS

and GDPC into the TRESFA models. The results are contained in Table 11.

We find that the sign of the estimates related to health expenditure, education, and

the square of education remains robust across the method of Schmidt and Sickles (1984)

and ours. Indeed, the magnitude of these estimates are found to be close to each other for

both methods. In addition, the variable EDUC remains significant at the 5% level across

different estimation methods. The major difference lies on the finding that the square of

EDUC are highly significant for the likelihood-method only.

Table 11 also shows that the estimated σw is much larger than the estimated σu and σv,

indicating that heterogeneity is strongly evident in the WHO’s panel data. This finding is

closely related to the the observations in GJJS (2002) that 99.8% of the variation in the log

of the DALE variable is between, rather than within the groups (countries). Nevertheless,

this message cannot be obtained from the method of Schmidt and Sickle (1984), because

their model do not allow the existence of heterogeneity.
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6 Conclusions

We consider the estimation issues of the true random effects and the true fixed effects SFA

models of Greene (2005). Since the estimation based on quadrature method is equivalent

to the full MLE of the TRESFA model, we first evaluate the effectiveness of Gaussian

quadrature via Monte Carlo experiments. The simulations reveal that the performance of

the quadrature procedure is not reliable when T is relatively large and the within group

correlation is strong as found in the panel probit literature.

On the other hand, the proposed analytic approximation method can easily deal with

the models of Greene (2005). The novelty of the proposed method is that the MLE can

be implemented without resorting to a numerical integral or a simulation-based technique.

Furthermore, the analytic strategy can be easily carried out with standard statistics pack-

ages, and its implementation for the likelihood estimation is found to be stable for the

experiments conducted in this paper. The simulations confirm the promising performance

of the analytic method for both the TRESFA and the TFESFA models. Since the struc-

ture of panel data is identical to that of clustering or grouped cross-sectional data, our

methodology is useful to the studies based on this type of data as well.

This paper also applies the TRESFA model to the data used in Evans et al. (2000a,b)

and Greene (2003) about the World Health Organization’s (WHO) panel data on national

health care systems. The estimates are robust across the method of Schmidt and Sickles

(1984) and ours, revealing the potentials of using our methodology for the WHO panel

health data.
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Table 1. Maximum Likelihood Estimation for the True Random Effects SFA Model:

α = β1 = 1, σw = 1, and T = 2

N Bias (Analytic) Bias (Quadrature)

α β1 σu σv σw α β1 σu σv σw

σu = 2 and σv = 1

100 0.0994 -0.0046 0.1266 0.0131 0.0350 0.1010 -0.0045 0.1291 0.0100 0.0339

200 0.0419 0.0003 0.0487 0.0080 0.0149 0.0430 0.0002 0.0506 0.0056 0.0149

400 0.0108 -0.0006 0.0102 0.0081 0.0075 0.0122 -0.0006 0.0126 0.0055 0.0075

800 0.0006 -0.0006 -0.0003 0.0098 0.0038 0.0021 -0.0006 0.0022 0.0071 0.0038

σu = 0.5 and σv = 0.25

100 0.1075 -0.0026 0.1372 -0.0059 0.0086 0.0834 -0.0026 0.1094 0.0088 0.0061

200 0.0755 -0.0001 0.0928 0.0003 0.0043 0.0698 -0.0003 0.0847 0.0026 0.0030

400 0.0456 0.0000 0.0551 0.0012 0.0021 0.0492 0.0000 0.0580 -0.0048 0.0019

800 0.0224 -0.0003 0.0264 0.0019 0.0010 0.0251 -0.0004 0.0299 -0.0019 0.0010

σu = 0.4 and σv = 0.2

100 0.0932 -0.0012 0.1181 -0.0071 0.0088 0.0600 -0.0013 0.0804 0.0067 0.0050

200 0.0720 -0.0003 0.0896 -0.0033 0.0041 0.0676 -0.0005 0.0846 -0.0116 0.0026

400 0.0495 0.0000 0.0605 -0.0018 0.0023 0.0669 0.0000 0.0816 -0.0226 0.0020

800 0.0226 -0.0002 0.0274 0.0016 0.0012 0.0489 -0.0002 0.0609 -0.0230 0.0014

Notes: All the results are based on 1000 replications. Bias is computed as the true param-
eter values minus the average estimated values. The simulated data are defined in (38),
(39), and (40).
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Table 2. Maximum Likelihood Estimation for the True Random Effects SFA Model:

α = β1 = 1, σw = 1, and T = 2

N RMSE (Analytic) RMSE (Quadrature)

α β1 σu σv σw α β1 σu σv σw

σu = 2 and σv = 1

100 0.4784 0.1272 0.5834 0.3016 0.1974 0.4804 0.1273 0.5865 0.2962 0.1926

200 0.3035 0.0902 0.3653 0.2117 0.1328 0.3033 0.0902 0.3650 0.2106 0.1328

400 0.1917 0.0622 0.2246 0.1483 0.0913 0.1920 0.0622 0.2250 0.1480 0.0913

800 0.1307 0.0440 0.1515 0.1038 0.0617 0.1309 0.0440 0.1519 0.1034 0.0617

σu = 0.5 and σv = 0.25

100 0.2488 0.0385 0.2857 0.1256 0.0759 0.2507 0.0402 0.2750 0.1240 0.0757

200 0.2041 0.0278 0.2402 0.1139 0.0541 0.2078 0.0288 0.2399 0.1066 0.0541

400 0.1558 0.0189 0.1841 0.0935 0.0393 0.1583 0.0192 0.1854 0.0820 0.0393

800 0.1096 0.0135 0.1297 0.0665 0.0262 0.1109 0.0135 0.1308 0.0621 0.0263

σu = 0.4 and σv = 0.2

100 0.2121 0.0311 0.2357 0.1026 0.0731 0.2109 0.0340 0.2153 0.0926 0.0734

200 0.1796 0.0224 0.2076 0.0942 0.0525 0.1826 0.0229 0.1987 0.0748 0.0526

400 0.1469 0.0153 0.1709 0.0805 0.0384 0.1551 0.0153 0.1753 0.0634 0.0383

800 0.1008 0.0109 0.1184 0.0591 0.0256 0.1158 0.0110 0.1322 0.0510 0.0257

Notes: All the results are based on 1000 replications. Bias is computed as the true param-
eter values minus the average estimated values. The simulated data are defined in (38),
(39), and (40).
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Table 3. Maximum Likelihood Estimation for the True Random Effects SFA Model

α = β1 = 1, σu = 0.4, σv = 0.2, σw = 1, and N = 1000

Bias RMSE

T = 3 α β1 σu σv σw α β1 σu σv σw

Analytic

0.0066 0.0001 0.0122 -0.0017 -0.0007 0.0557 0.0071 0.0615 0.0347 0.0228

Quadrature

0.0175 0.0000 0.0234 -0.0172 -0.0016 0.0600 0.0073 0.0379 0.0241 0.0230

T = 4

Analytic

0.0117 0.0001 0.0101 -0.0028 0.0010 0.0526 0.0056 0.0486 0.0313 0.0215

Quadrature

0.0224 0.0000 0.0169 -0.0181 -0.0021 0.0822 0.0056 0.0265 0.0216 0.0221

Notes: All the results are based on 200 replications. Bias is computed as the true parameter
values minus the average estimated values. The simulated data are defined in (38), (39),
and (44).
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Table 4. MLE for the True Random Effects SFA Model using Gaussian Quadrature

α = β1 = 1, σu = 0.4, σv = 0.2, σw = 1, and N = 1000

Bias RMSE

α β1 σu σv σw α β1 σu σv σw

T = 10 -0.0047 -0.0001 0.0071 -0.0266 -0.0331 0.2567 0.0033 0.0125 0.0272 0.0708

T = 20 -0.0065 -0.0001 0.0036 -0.0316 -0.0970 0.4619 0.0023 0.0077 0.0318 0.1678

T = 30 0.0201 0.0000 0.0017 -0.0331 -0.1245 0.5267 0.0020 0.0060 0.0333 0.2116

Notes: All the results are based on 200 replications. Bias is computed as the true parameter
values minus the average estimated values. The simulated data are defined in (38), (39),
and (44).
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Table 5. PLE for the True Random Effects SFA Model:

α = β1 = 1, σw = 1, and T = 2

N Bias RMSE

α β1 σu σv σw α β1 σu σv σw

σu = 1 and σv = 1/2

100 0.1224 -0.0023 0.1546 0.0086 0.0133 0.3730 0.0720 0.4498 0.2154 0.0968

200 0.0707 -0.0003 0.0861 0.0068 0.0054 0.2766 0.0515 0.3339 0.1728 0.0680

400 0.0290 -0.0004 0.0335 0.0052 0.0026 0.1776 0.0350 0.2116 0.1225 0.0492

800 0.0138 -0.0007 0.0158 0.0003 0.0022 0.1101 0.0251 0.1292 0.0817 0.0343

σu = 1 and σv = 1

100 0.1235 -0.0049 0.1572 0.0525 0.0155 0.5405 0.1026 0.6625 0.2390 0.1359

200 0.1341 -0.0001 0.1658 0.0126 0.0089 0.4664 0.0715 0.5767 0.1663 0.0939

400 0.0979 -0.0011 0.1222 0.0049 0.0043 0.3930 0.0495 0.4846 0.1309 0.0668

800 0.0758 -0.0009 0.0920 0.0006 0.0021 0.3241 0.0357 0.3993 0.1060 0.0476

σu = 1 and σv = 3/2

100 0.0558 -0.0045 0.0746 0.0907 0.0319 0.6781 0.1352 0.8311 0.2698 0.2197

200 0.0961 0.0003 0.1180 0.0476 0.0162 0.5925 0.0940 0.7308 0.1979 0.1420

400 0.0986 -0.0006 0.1208 0.0279 0.0084 0.5296 0.0657 0.6545 0.1559 0.0988

800 0.1085 -0.0012 0.1327 0.0141 0.0032 0.4764 0.0462 0.5855 0.1264 0.0684

Notes: All the results are based on 1000 replications. Bias is computed as the true param-
eter values minus the average estimated values. The simulated data are defined in (38) and
(45).
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Table 6. PLE for the True Random Effects SFA Model:

α = β1 = 1, σu = 1, σv = 1/2, and σw = 1/2

Bias RMSE

T = 2 α β1 σu σv σw α β1 σu σv σw

N = 50 0.0976 -0.0056 0.1267 0.0174 0.0380 0.3494 0.0883 0.4232 0.2061 0.1518

N = 100 0.0562 -0.0023 0.0713 0.0069 0.0166 0.2527 0.0636 0.3085 0.1557 0.0991

N = 150 0.0275 -0.0011 0.0324 0.0073 0.0088 0.1773 0.0505 0.2141 0.1248 0.0774

T = 4

N = 50 0.0468 0.0021 0.0564 0.0048 0.0209 0.2375 0.0598 0.2756 0.1396 0.0866

N = 100 0.0213 -0.0001 0.0263 0.0003 0.0110 0.1503 0.0417 0.1728 0.0966 0.0592

N = 150 0.0089 -0.0013 0.0117 0.0022 0.0087 0.1089 0.0340 0.1237 0.0754 0.0489

T = 8

N = 50 0.0145 -0.0007 0.0161 0.0049 0.0169 0.1486 0.0429 0.1572 0.0892 0.0686

N = 100 0.0042 -0.0006 0.0038 0.0050 0.0101 0.1009 0.0306 0.1040 0.0616 0.0465

N = 150 0.0027 -0.0004 0.0012 0.0046 0.0063 0.0783 0.0248 0.0825 0.0497 0.0372

Notes: All the results are based on 1000 replications. Bias is computed as the true param-
eter values minus the average estimated values. The simulated data are defined in (38),
(46), (47), and (48).
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Table 7. PLE for the True Random Effects SFA Model:

α = β1 = 1, σu = 1, σv = 1/2, and σw = 0.7

Bias RMSE

T = 2 α β1 σu σv σw α β1 σu σv σw

N = 50 0.1338 -0.0054 0.1741 0.0112 0.0291 0.3965 0.0931 0.4773 0.2253 0.1292

N = 100 0.0850 -0.0026 0.1074 0.0081 0.0133 0.3088 0.0677 0.3769 0.1847 0.0893

N = 150 0.0460 -0.0015 0.0556 0.0092 0.0070 0.2271 0.0538 0.2738 0.1533 0.0718

T = 4

N = 50 0.0691 0.0023 0.0837 0.0048 0.0208 0.2885 0.0620 0.3313 0.1641 0.0958

N = 100 0.0326 -0.0001 0.0404 -0.0007 0.0111 0.1854 0.0431 0.2101 0.1152 0.0666

N = 150 0.0149 -0.0011 0.0195 0.0014 0.0091 0.1345 0.0353 0.1495 0.0893 0.0549

T = 8

N = 50 0.0240 -0.0008 0.0275 0.0047 0.0187 0.1875 0.0444 0.1942 0.1058 0.0844

N = 100 0.0091 -0.0006 0.0093 0.0046 0.0112 0.1268 0.0316 0.1269 0.0733 0.0571

N = 150 0.0056 -0.0003 0.0042 0.0045 0.0071 0.0962 0.0256 0.0965 0.0590 0.0459

Notes: All the results are based on 1000 replications. Bias is computed as the true param-
eter values minus the average estimated values. The simulated data are defined in (38),
(46), (47), and (48).
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Table 8. PLE for the True Random Effects SFA Model:

α = β1 = 1, σu = 1, σv = 1/2, and σw = 1.3

Bias RMSE

T = 2 α β1 σu σv σw α β1 σu σv σw

N = 50 0.2123 -0.0049 0.2789 0.0056 0.0321 0.5087 0.1019 0.5953 0.2672 0.1578

N = 100 0.1564 -0.0026 0.1971 0.0058 0.0146 0.4224 0.0745 0.5030 0.2356 0.1110

N = 150 0.1187 -0.0012 0.1455 0.0078 0.0081 0.3615 0.0592 0.4301 0.2156 0.0890

T = 4

N = 50 0.1318 0.0029 0.1612 0.0028 0.0259 0.4108 0.0641 0.4509 0.2130 0.1450

N = 100 0.0811 0.0001 0.1014 -0.0057 0.0143 0.3052 0.0443 0.3405 0.1607 0.1021

N = 150 0.0451 -0.0009 0.0580 -0.0032 0.0116 0.2286 0.0364 0.2509 0.1272 0.0836

T = 8

N = 50 0.0626 -0.0008 0.0743 0.0013 0.0268 0.3098 0.0453 0.3046 0.1448 0.1404

N = 100 0.0296 -0.0007 0.0330 0.0015 0.0159 0.2045 0.0322 0.1970 0.1036 0.0958

N = 150 0.0183 -0.0002 0.0177 0.0023 0.0103 0.1559 0.0259 0.1411 0.0834 0.0771

Notes: All the results are based on 1000 replications. Bias is computed as the true param-
eter values minus the average estimated values. The simulated data are defined in (38),
(46), (47), and (48).
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Table 9. PLE for the True Fixed Effects SFA Model

α = β1 = 1, σw = 1.5, and N = 1000

Bias RMSE

α β1 σu σv α β1 σu σv

σu = 1 and σv = 0.5

T = 2 0.1445 -0.0003 0.1760 -0.0225 0.3447 0.0235 0.4250 0.1860

T = 4 0.0434 0.0003 0.0517 -0.0138 0.1613 0.0135 0.1996 0.0928

T = 8 0.0271 0.0008 0.0334 -0.0144 0.1015 0.0093 0.1140 0.0585

σu = 2 and σv = 1

T = 2 0.2688 0.0003 0.3325 -0.0426 0.6567 0.0469 0.8182 0.3670

T = 4 0.0847 0.0005 0.1029 -0.0275 0.3169 0.0269 0.3973 0.1855

T = 8 0.0533 0.0016 0.0669 -0.0288 0.1861 0.0186 0.2282 0.1169

Notes: All the results are based on 200 replications. Bias is computed as the true parameter
values minus the average estimated values. The simulated data are defined in (38), (49),
and (50). The estimate for α is based on the formula in (51).
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Table 10. Descriptive Statistics for Variables, 1997 Observations

Mean Std. Dev.

Variable

Dale 56.83 12.29
(Disability adjusted life expectancy)

HEXP 445.37 616.36
(Health expenditures per capita in 1997 PPP$)

EDUC 6.00 2.62
(Average year of schooling)

TROPICS 0.508 0.501
(Dummy variable for tropical location)

DGPC 6609.4 7614.8
(Per capita GDP in 1997 PPP$)

Notes: Data are taken from Greene (2003).

37



Table 11. Health Care Outcome Analysis

Schmidt-Sickles’ (1984) Method TRESFA

Variable

HEXP 0.1342 (3.433) 0.1177 (1.331)

EDUC 2.2111 (4.897) 4.1358(7.128)

EDUC2 -0.0344 (0.859) -0.1801(3.238)

DGPC - 0.4708 (3.308)

TROPICS - -3.7600 (2.602)

Constant - 37.8239 (2.221)

σu - 0.0009 (0.000)

σv - 0.4795 (24.164)

σw - 6.6862 (16.282)

Notes: Data are defined in Table 10. DALE is the dependent variable. HEXP is divieded
by 100, and GDPC is divided by 1000 before estimation. The number in parathesis denotes
the absolute value of t ratio statistic. The t ratio of the TRESFA model is computed from
the covariance matrix estimators outlined in (5) and (6) of Kuk and Nott (2000).
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