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Abstract

This paper presents a generalized autoregressive distributed lag (GADL) model
for conducting regression estimations that involve mixed-frequency data. As an
example, we show that daily asset market information - currency and equity mar-
ket movements - can produce forecasts of quarterly commodity price changes that
are superior to those in the previous research. Following the traditional ADL lit-
erature, our estimation strategy relies on a Vandermonde matrix to parameterize
the weighting functions for higher-frequency observations. Accordingly, infer-
ences can be obtained using ordinary least squares principles without Kalman
�ltering, non-linear optimizations, or additional restrictions on the parameters.
Our �ndings provide an easy-to-use method for conducting mixed data-sampling
analysis as well as for forecasting world commodity price movements.
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1 Introduction

This paper proposes a generalized autoregressive distributed lag (GADL) model for estimat-

ing and testing regressions that involve data of di¤erent frequencies (MIxed DAta Sampling

or "MIDAS" regressions).1 Using this methodology, we revisit the conclusion in Chen, Rossi,

and Rogo¤(2010a, hereinafter CRR) where they show that lagged quarterly exchange rate re-

turns from key commodity-exporting countries can predict subsequent quarterly movements

of world commodity prices. While their result is generally con�rmed in Groen and Pesenti

(2011) for example, the predictive power of quarterly exchange rate returns is shown to have

declined over the mid-2008 market crisis.2 One previously unexplored question is whether

higher-frequency information from the markets can be incorporated to improve quarterly

forecasts, especially over crisis periods where each day unveils signi�cant new information.

Using the GADL model, we show that the answer is a¢ rmative.

When one forecasts using predictors of matched frequencies, such as predicting quar-

terly returns with lagged quarterly variables, one implicitly assumes that higher frequency

�uctuations within each quarter receive equal weights in delivering the forecast. The equal-

weight assumption may be innocuous during tranquil periods, but, intuitively, one can easily

imagine that in general, more recent data re�ect a larger information set and thus should be

1After we circulated the �rst draft of this manuscript, we were noti�ed that the Almon (1965) lag weight-
ing function proposed in our GADL model is identical to eq.(2.17) in the "MATLAB Toolbox for MIDAS"
by Sinko, Sockin, and Ghysels (2011). As will be made clear, GADL is a one-step closed-form procedure
for estimating aggregate impact parameters in the mixed frequency context; it does not require any restric-
tions on the weighting coe¢ cients for higher-frequency data, nor does it require re-scaling of the weighting
parameters (as stated on p.7 of Sinko et al. 2011).

2See CRR Appendix III Sec. D. In addition, Groen and Pesenti (2010) use data up to 2009Q2 and �nd
that the forecast superiority of exchange-rate based models vary over either the random walk or autoregressive
benchmarks depending on the forecast horizons.

1



more useful in predicting the future. Our paper explores this possibility. We adopt an easy-

to-implement method based on ordinary least squares (OLS) that allows higher frequency

information in the predictors - certain daily exchange rates and equity prices in this case -

to have di¤erential impact on subsequent lower frequency (here quarterly) commodity price

movements. Our results show that while the forecast performance of the same-frequency ap-

proach declines after the 2008 crisis, the mixed-frequency GADL model continues to deliver

superior forecasts over the standard benchmarks.

Estimation using mixed-data sampling is recently popularized by the in�uential MIDAS

literature, pioneered by Ghysels, Santa-Clara, and Valkanov (2004, 2006). This rapidly

expanding literature typically assumes a Beta distribution or exponential Almon lag poly-

nomial to model the weighting structure for higher frequency data; the estimation is then

carried out using non-linear least squares (NLS).3 As discussed extensively in Bai, Ghysels,

and Wright (2010), under certain conditions, NLS-MIDAS regressions can be viewed as a

reduced-form alternative to the Kalman �lter state space approach for mixed frequency data

estimations.4 Our GADL framework is motivated by the vast body of NLS-MIDAS research,

yet our approach follows more closely the classical ADL literature of Almon (1965). We ap-

proximate the distributed lag coe¢ cients on the higher-frequency data with simple low-order

3As noted in footnote 1, Sinko et al. (2011) mentions Almon (1965) lag polynomials as an option, which
would allow the MIDAS models to be estimated via OLS. However, the literature so far has not discussed
the relative estimation advantages of the OLS-based approach over the NLS-MIDAS models; rather, most
papers adopt the NLS approach directly in various applications. It is thus one of the objectives of this paper
to highlight this comparison.

4The state space models typically involve a system of equations, and treat the lower frequency data
as having missing values. NLS-MIDAS regressions on the other hand rely on a single equation. As a
consequence, NLS-MIDAS regressions may be less e¢ cient but they are also less prone to speci�cation
errors. In cases where the MIDAS regression is only an approximation, Bai et al. (2010) show that the
approximation errors tend to be small.
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polynomials (hence the name "Generalized" ADL), allowing the mixed-frequency regressions

to be estimated by OLS. One of the goals of this paper is to provide a comparison between

the OLS-based GADL and NLS-based MIDAS approaches in the context of mixed-frequency

data regressions.

Merging ADL into the MIDAS literature, GADL o¤ers two main advantages over pre-

vious approaches. First, standard NLS-MIDAS typically imposes a positive restriction on

the weights for the higher frequency data and requires that they sum up to one.5 The

weights are then commonly parameterized as an order-2 exponential polynomial.6 GADL,

on the other hand, parameterizes the coe¢ cients on higher-frequency data with Almon�s

(1965) polynomial distributed lags and does not impose any restrictions on them. Since

the positive weights imposed in NLS-MIDAS may not always be appropriate, we view the

Vandermonde matrix in our GADL setup as an e¢ cient and more robust instrument for ex-

tracting information content from higher frequency data. This generality can be especially

valuable in empirical studies where theory does not o¤er much guidance on the shape of

weights.7

A second major advantage of GADL over NLS-MIDAS is its simplicity - both in es-

tablishing identi�cation and in computation. Conceptually, GADL constitutes a one-step

procedure for obtaining the "aggregate impact" slope parameters, which come out straight

5Under the OLS option mentioned in Sinko et al. (2011), the positive restriction on the weights is relaxed
but they then require the sum of the weights to be non-zero: "Once the weights are estimated via OLS, one
can always rescale them to obtain a slope coe¤cient (assuming the weights do not sum up to zero)"(p.7).
GADL does not need this assumption.

6In Section 3, we present the popular two-parameter exponential polynomial setup; see also Ghysels,
Sinko, and Valkanov (2007) for a detailed discussion on the �exibility of this functional form. Alternative
weights are discussed in the literature as well, such as in Sinko et al. (2011).

7While imposing restrictions that are wrong can sometimes deliver better out-of-sample forecast perfor-
mance via increased e¢ ciency, in general, there is no a priori reason to favor such restrictions.
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from the OLS estimations, as in the classical ADL models. The MIDAS literature, on

the other hand, builds upon a setup that delineates between aggregate impact parameters

from individual weights on higher frequency data. To achieve identi�cation, it thus needs

additional assumptions, such as that the weights sum up to one. The simplicity of the

GADL framework stems from the fact that it does not require any of these assumptions;

one simply sums up the estimated OLS coe¢ cients, transformed using the Vandermonde

matrix, to obtain the "aggregate impact" slope parameters (see Sec.2 for details). Com-

putationally, GADL o¤ers signi�cant advantage over NLS-MIDAS, and also over the state

space approach. By approximating the weights with a simple polynomial, estimations and

inferences under GADL can be carried out using OLS. In higher dimensional estimations

involving multiple sets of high-frequency data, OLS clearly dominates approaches that en-

tail non-linear optimizations over a large set of parameters. An OLS-framework such as

GADL can also incorporate higher order polynomials to allow for more �exibility without

adding computational complexity.8 We thus view GADL as a simple and robust comple-

mentary methodology to the existing NLS-MIDAS and state space Kalman �lter procedures

for conducting mixed-frequency estimations.

The next section describes GADL and its asymptotic properties. Section 3 presents

Monte Carlo simulation results for GADL and shows that it delivers excellent and superior

results even when the true data-generating process (DGP) is NLS-MIDAS. In Section 4, we

apply the GADL method to forecast quarterly aggregate world commodity prices using daily

8We recognize that the practical gain of this �exibility isn�t always relevant under small data samples
and limited degrees of freedom, but in principle, higher order polynomials can improve estimation e¢ ciency.
While the non-linear exponential framework can also include higher orders, the estimation would be consid-
erably more cumbersome.
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exchange rates (as in CRR 2010a) and daily stock market returns (as in CRR 2010b) from the

commodity currency economies. We �rst con�rm the CRR (2010a) �nding that the same-

frequency model using quarterly data su¤ers a deterioration of its forecasting power after

the structural break of 2008Q2. We then show that information from the daily movements

of exchange rates and equity prices delivers better forecasts even through the crisis period.

2 Mixed Data Sampling (MIDAS) Regressions

Mixed frequency sampling models aim to extract information content from high frequency

indicators to help forecast target variables observed at lower frequency. The chapter in

Oxford Handbook on Economic Forecasting by Andreou et al. (2010a) provides a good

survey on how these models have been used extensively to forecast various macroeconomic

indicators as well as �nancial series. As mentioned earlier, two approaches have been

popular in the literature. The state space approach is adopted in Harvey and Pierse (1984),

Bernanke, Gertler, and Watson (1997), Mariano and Murasawa (2003), Proietti and Moauro

(2006), Aruoba, Diebold, and Scotti (2009), for example. These models have a measurement

equation that links observed series to a latent state process, and a state equation that

describes the dynamics of the state variables. By treating low-frequency series as having

missing observations, the system can be estimated with the Kalman �lter. A second approach

is represented by the recent literature on NLS-MIDAS proposed by Ghysels, Santa-Clara

and Valkanov (2002, 2006). NLS-MIDAS di¤er from mixed frequency state space models

as they typically use a smaller set of predicting indicators. Using exponential polynomial
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lags or a Beta function, NLS-MIDAS regressions combine high frequency indicators with

the low frequency target variable. We refer readers to Bai, Ghysels, and Wright (2010)

for a comparison between the two approaches, and note that one can view NLS-MIDAS

regressions as a reduced-form approximation for the larger Kalman �lter state space systems.

We present below the OLS-based GADL model, which can be viewed a simpler alternative to

NLS-MIDAS. (As noted in the earlier footnotes, Sinko et al. (2011) also mentions conducting

MIDAS regressions using Almon weights and OLS. There are nevertheless some conceptual

di¤erences between GADL and their "OLS-MIDAS", as we will make clear in Section 2.3

below. In addition, we also provide a comparison between the OLS- and the NLS-based

approaches in Section 3, which to our knowledge has not been done previously.)

2.1 Identifying the Aggregate Impact Parameters under MIDAS

A key set of variables of interest in the MIDAS regression framework is the "aggregate

impact" parameters that measure the total contribution from each set of high frequency

data; here we de�ne what they are. For ease of exposition, we �rst consider a mixed-

frequency model with only one predictor x1. We follow the notation in Ghysels et al. (2007)

and consider the following h-period ahead predictive regression:

yt = �0 + �1W (L
1=m; �)x

(m)
1;t�h + "t; where (1)

W (L1=m; �) =

KX
k=1

b(k; �)L(k�1)=m; Ls=mx
(m)
1;t = x

(m)
1;t�s=m (2)
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Here t denotes the basic time unit for the lower frequency data (from 1 to T ), m and x(m)

indicate higher sampling frequency and observations, which we index from 1 to K (where

K is �nite).9 L1=m is the lag operator in frequency-m space, and b(k; �) is the weight on

each of the K lagged higher frequency predictors. "t is a white noise process. (All of

the parameters of the MIDAS model depend on the predictive horizon h, even though we

suppress it in the notation.)

In line with the notation above, a traditional ADL model with matched-frequency data

can be expressed as follows:

yt = �0 +W (L
1; �)x1;t�h + "t; (3)

We note that when the explanatory variable and the dependent variable are sampled at the

same frequency, the parameter �1 in eq.(1) is not needed. If one were to express eq.(3) as a

MIDAS-like representation with a �1, one would then need to impose additional restrictions

to identify it:

yt = �0 + �1W (L
1; �)x1;t�h + "t: (4)

As done in Ghysels et al. (2002) and the subsequent NLS-MIDAS literature, one intuitive

way to identify �1 is to restrict the sum of weights, b(k; �); in the lag polynomial W (:)

to be 1. Under this restriction, parameter �1 can then be interpreted as a measure for

the "aggregate impact" of current and lagged x1 on y. As we demonstrate below, this

9This paper does not address the optimal selection of K; though in practice one may be able to adopt
testing procedures similar to Ng and Perron�s (1995) general-to-speci�c method to pick K.
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identi�cation condition is actually not needed under the GADL framework. However, to

keep the comparisons clear, we �rst present GADL using the same MIDAS notations in the

next section. In Section 2:3, we show that GADL o¤ers a more general framework for

specifying and estimating mixed-frequency data regressions.

2.2 Generalized ADL (GADL) Model using MIDAS Notations

Generalizing eq.(1), we express a regression with q sets of mixed-frequency predictors as

follows:

yt = �0 + �1W1(L
1=m; �1)x

m
1;t�h + �2W2(L

1=m; �2)x
m
2;t�h +

� � �+ �qWq(L
1=m; �q)x

m
q;t�h + "t where (5)

Wi(L
1=m; �i) =

KX
k=1

bi(k; �i)L
(k�1)=m; Ls=mx

(m)
i;t = x

(m)
i;t�s=m;8i = 1::q (6)

where parameters �1, �2,: : : ; �q measure the aggregate impact of predictors x1;t�h, x2;t�h,: : : ;

xq;t�h on yt, respectively, provided that the sum of the weighting polynomial inW1(L
1=m; �1),

W2(L
1=m; �2), : : : ;Wq(L

1=m; �q), are all normalized to 1.

Following the rationale in the traditional ADL literature, GADL characterizes the weight-

ing coe¢ cients bi(k; �i) (or bi(k;�i) in our notation below) with aK�n Vandermonde matrix
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of Almon (1965):

V =

2666666666666664

1 11 12 � � � 1n�1

1 21 22 � � � 2n�1

1 31 32 � � � 3n�1

...
...

... � � � ...

1 K1 K2 � � � Kn�1

3777777777777775
: (7)

The procedure assumes that each lag coe¢ cients can be approximated by a polynomial of

degree n� 1 < K;thereby reducing the number of parameters to be estimated from 1 +Kq

to 1 + nq: To illustrate this, we note that the GADL model, eq.(5), can be represented

succinctly as follows:

Y = �0 + �1X1V �1 + �2X2V �2 + � � �+ �qXqV �q + " (8)

= 
0 + Z1
1 + � � �+ Zq
q + "

= Z
 + "; where

Y =

2666666666666664

y1

y2

y3

...

yT

3777777777777775
; Xi =

2666666666666664

xi;1�h xi;1�h�1=K xi;1�h�2=K � � � xi;1�h�(K�1)=K

xi;2�h xi;2�h�1=K xi;2�h�2=K � � � xi;2�h�(K�1)=K

xi;3�h xi;3�h�1=K xi;3�h�2=K � � � xi;3�h�(K�1)=K

...
...

... � � � ...

xi;T�h xi;T�h�1=K xi;T�h�2=K � � � xi;T�h�(K�1)=K

3777777777777775
: (9)

Here Z = XV is a T � (nq + 1) matrix, and 
 =
�
�0; 


>
1 ; : : : ; 


>
q

�>
is a (nq + 1) � 1 vector
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of parameters to be estimated. Note also that each �i in eq.(8) is an n � 1 vector where

n � K.

The use of a simple low order (n�1) polynomial (of k) to approximate the K distributed

lag coe¢ cients bi(k;�i) is the key characteristics of the Almon (1965) method. Estimating

GADL can now be carried out using OLS on the transformed variable Z, instead of the orig-

inal X; signi�cantly reducing the dimensions. We note that the same dimension-reduction

strategy is implemented in the NLS-MIDAS literature of Ghysels et al. (2004, 2006), but

they employ a two-parameter exponential Almon lag polynomial instead, as described in

Section 3 below, which require their estimation to be carried out using NLS.

The OLS estimators for GADL, as represented in eq.(8), have been extensively used in the

estimations of distributed lag models (see Amemiya and Morimune 1974). In particularly,

for given n and K, 
 can be consistently and e¢ ciently estimated as:

b
 = (Z>Z)�1Z>Y: (10)

Provided that the regularity conditions in Theorem 5:17 of White (2001) are satis�ed in the

GADL model and that "t is a white noise process, we know that as T !1,

bD�1=2T 1=2(b
 � 
) d! N(0; Inq+1); (11)

where d! denotes convergence in distribution, bD = b�2(T�1Z>Z)�1, b�2 = (T�nq�1)�1PT
t=1 e

2
t

with et being the OLS residuals, and Inq+1 is an (nq + 1) � (nq + 1) identity matrix. The

GADL model can be estimated with OLS under a wide range of n � K. Its computational
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simplicity o¤ers a major advantage over NLS-MIDAS with exponential Almon weights, which

can become computationally-demanding when the set of predictors q are large.

The GADL framework allows us to test the signi�cance of the aggregate impact parameter

�i in a straight-forward fashion. As discussed in Section 2:1 above, by restricting the weights

on the higher frequency data to sum up to 1, we can identify �1; : : : ; �q: In GADL, this means

letting 1>V �i = 1, i = 1; : : : ; q, and we obtain:

b�i = 1>(V b
i); i = 1; : : : ; q: (12)

var(b�i) = 1>V var(b
i)V >1 (13)

2.3 Comparing GADL and MIDAS

The previous section derives the properties of the GADL estimators using the MIDAS setup

where we separate out the aggregate impact parameters �0is from the weighting coe¢ cients

b0is for higher frequency data. This section clari�es a fundamental di¤erence between the

MIDAS approach and the GADL approach: under GADL, this separation is unnecessary.

From the perspective of the classical ADL literature, each �iV �i (i = 1 to q) in eq.(8)

represents the impact of di¤erent lags of Xi on Y . The sum of �iV �i; expressed as 1
>�iV �i

or 1>V �i�i, then measures the aggregate impact of all the lagged Xi on Y . To estimate it,

11



we note that eq.(8) can be re-written as follows:

Y = �0 +X1V �1�1 +X2V �2�2 + � � �+XqV �q�q + "

= �0 +X1V �
�
1 +X2V �

�
2 + � � �+XqV �

�
q + " (14)

= Z
 + "

where 
 =
�
�0; �

�>
1 ; : : : ; �

�>
q

�>
so 
i = �

�
i for i 6= 0: One can then use eqs.(10) and (11) for

the estimation of 
. Since 
i = �i�i, the aggregate impact parameter for Xi on Y is simply

1>V 
i. This demonstrates that eq.(12) can be applied directly to obtain the aggregate

impacts of lagged Xi on Y without the need for separating out �
0
is versus b

0
is in the MIDAS-

style speci�cations (eqs.5 & 6). In other words, under GADL, any restrictions imposed on

b0is are extraneous.

To generalize this further, rather than eq.(5), the GADL model can be more naturally

expressed as:

yt = �0 +
KX
k=1

b�1(k;�1)L
(k�1)=mxm1;t�h +

KX
k=1

b�2(k;�2)L
(k�1)=mxm2;t�h +

� � �+
KX
k=1

b�q(k;�q)L
(k�1)=mxmq;t�h + "t; (15)

where the �0is and the b
0
is in the MIDAS speci�cation are combined into free parameters b

�0
i s.

These free coe¢ cients can then be parameterized with the Vandermonde matrix as in eq.(14)

to deliver OLS-estimates of the aggregate impact parameters. Thus, GADL constitutes a

one-step procedure that automatically embeds the identi�cation condition for �i; the typical

12



weight restrictions or rescaling procedure required in the MIDAS models - linear or non-linear

- is not needed. This is why we name our framework, "Generalized ADL", to distinguish

it from (OLS) MIDAS; its idea and derivations follow more naturally the traditional ADL

literature. The straight-forward structure of eq.(12) also allows us to conduct inferences on

�i using the asymptotic distribution in eq.(11). The Monte Carlo experiments in the next

section con�rm these theoretical properties.

In the traditional ADL literature, the Almon lag polynomial is well-known to o¤er useful

approximations for a variety of weighting functions, provided that n is large enough. This

indicates that eq.(12) can deliver consistent estimates of the aggregate impact parameters

under a wide range of true underlying weighting functions. The Monte Carlo experiments in

Section 3 demonstrate that even when the true weighting function is an exponential Almon

lag polynomial, the GADL models produce accurately estimated aggregate impact parame-

ters.

As a parallel to the discussion in Ghysels et al. (2006b) and Clements and Galveao (2008),
we further note that GADL can also be extended easily, such as to include general AR(p)

dynamics. As an illustration, we generalize eq.(8) in Section 4 to the following AR(1)-GADL

model:

Y = �Y�1 + Z
 + "; (16)

where Y�1 is the one-period lagged dependent variable. We then follow the modeling strategy

proposed in Clements and Galveao (2008) and use:
Y = �Y�1 + Z
 � �Z�1
 + "; (17)
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so that the response of the dependent variable to the regressors remains nonseasonal. We

note that the inclusion of AR dynamic in either of these two ways can both be estimated

easily with the proposed OLS-based method.

3 Monte Carlo Experiments

3.1 Aggregate Impact Parameter Estimation

This section examines the properties of the GADL estimators, eq.(12), for di¤erent low

frequency sample sizes, T , and aggregation horizons, K. We assume the underlying DGP is

based on the NLS-MIDAS process of Ghysels et al. (2002, 2006), and show that the GADL

estimators deliver excellent performance in accordance with eq.(11). We note that while

the idea of an OLS-based MIDAS model is mentioned previously in Sinko et al. (2011), its

relative performance, compared to the NLS-MIDAS models that dominate the literature,

has not been examined.

Following Andreou et al. (2010) Section 6, we set up the following DGP for our Monte

Carlo experiments:

yt = �0 + �1xt(�) + ut; t = 1; 2; :::; T (18)

where xt(�) = W (L1=m; �)x
(m)
1;t=m with m = 1:::K;and ut � N:i:i:d:(0; 0:125): Note that ut

is sampled at low frequency with sample size T; whereas the regressor x(m)1;t=m is sampled K

times between t and t � 1 from N:i:i:d:(0; 1) such that the higher frequency sample size is

KT: The high frequency data fx(m)1;t=mgKm=1 are projected onto the low frequency data xt(�),

14



using a two-parameter exponential Almon lag polynomial:

wm(�1; �2) =
expf�1m+ �2m2gPK
m=1 expf�1m+ �2m2g

: (19)

Parameter values are set to be v = [�0; �1; �1; �2] = [0:5; 1:5; 7 � 10�4;�5 � 10�2], as in

Andreou et al. (2010), for our simulations. In the next sub-section, we provide a robustness

check using �1 = 0:6:as well. All the programs are written in GAUSS. Two hundred

additional values are generated in order to obtain random starting values. The optimization

algorithm used to implement the NLS-MIDAS estimation is the quasi-Newton algorithm of

Broyden, Fletcher, Goldfarb, and Shanno (BFGS) contained in the GAUSSMAXLIK library.

The maximum number of iterations for each replication is 100. The �rst 1000 replication of

normal convergence are recorded for numerical analysis.

Table I shows our simulation results for T = 100; 300; 500; K = 14; 34; 54;and n = 3 and

4. We report both the mean and the root mean squared errors (RMSE) of the estimated

coe¢ cients, b�0 and b�1; over 1000 replications. We make the following observations:
� Even though we are using GADL - a linear polynomial distributed lag model - to esti-

mate data generated by a non-linear exponential Almon lag model, the mean estimates

show very little bias even under low T and high aggregation K.

� As sample size T increases, RMSE declines in accordance to asymptotic theory (eq.

11).

� While RMSEs increase with higher K; the degree of Almon lag polynomial (n = 3
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versus n = 4) makes little di¤erence to the estimations.10

� Overall, GADL works well.

INSERT TABLE I

3.2 Comparing GADL with a Non-Linear Approach

We next compare estimations results obtained under GADL and NLS-MIDAS. We again

use simulated data generated by the NLS-MIDAS model described above, with the exception

that we now set �1 = 0:6 instead of 1:5: We initialize the NLS estimation using values that

are a small deviation from the true values. Speci�cally, we set:

v0 = v + �; where � � N(0; 1)=
p
20:

Table II reports estimation results for �1 over 1000 simulations: the mean estimates,

biases, and the RMSEs under GADL (both n = 3 and n = 4) and NLS-MIDAS. The last

two rows also report the relative RMSEs of GADL over NLS-MIDAS. We note the following:

� Even though the true DGP is NLS-MIDAS, we observe the non-linear estimation can

show signi�cant bias when the initial values used for NLS involve a small random

deviation from the true values.11 As T increases, the RMSEs in the estimations do not

10As K gets larger, the extra �exibility o¤ered by n = 4 may provide slightly better �t, but it would
depend on the underlying DGP. The NLS-MIDAS literature reports that the Beta function can be more
appropriate for aggregating time lags larger than 20 (K > 20)while the expotential Almon weights are more
appropriate for small number of lags.
11Seperate unreported results show that if we start the NLS at exactly the true values, the estimation

works very well showing less bias than GADL. Of course, in actuality, one never knows what the true values
are, and the devations we consider here are very small.
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decline very much.

� GADL continues to works well: the biases are at least an order of magnitude smaller

than those obtained under NLS, and the RMSEs are also signi�cantly lower than those

for the NLS estimates. For larger T , we see RMSEs declining. Again, given this

particular DGP, we observe little di¤erences in estimation results using n = 3 vs. 4:

These observations suggest that in more general setups where the true DGP di¤ers from

the exponential Almon lag NLS-MIDAS model (eqs.18 and 19), one may need additional

re�nements in order to obtain good estimates under NLS-MIDAS.12 While there are methods

to raise estimation speed and e¢ ciency in NLS optimization, it should be apparent that the

OLS-based GADL is a viable alternative for its ease of implementation. This advantage is

especially relevant in estimations involving multiple sets of high-frequency predictors, as in

the application we explore below. We thus conduct the rest of our empirical analyses using

GADL (with n = 3).

INSERT TABLE II

4 Forecasting Aggregate Commodity Price Index

Building upon the concept of commodity currencies developed in Chen and Rogo¤ (2003)

and the forward-looking nature of nominal exchange rates, CRR (2010a) demonstrate that

quarterly changes in a few key exchange rates - the Australian dollar, the Canadian dollar, the

12For example, the actual weighting function may involve some negative numbers.

17



Chilean peso, the New Zealand dollar, and the South African rand - can predict subsequent

quarterly movements in aggregate world commodity prices. This conclusion is generally

con�rmed in Groen and Pesenti (2011), and CRR (2010b) extend the idea and use the

equity indexes from these major commodity-exporting countries to predict world agricultural

commodity price movements.13 As discussed in more details in CRR (2010a), the mechanism

for these predictive ability follows directly from the present value formulation of asset prices

discussed in Campbell and Shiller (1987) and Engel and West (2005). For countries that

rely heavily on primary commodity production, global commodity price movements a¤ect

the valuation of a substantial share of their productions and exports, and thereby in�uencing

their currency and equity valuation. Knowing this connection, when market participants

foresee a future commodity price shock, its anticipated impact on future asset values will

be priced into the current asset prices, thus resulting in the predictability link. As each of

these countries�currency and equity valuations embody information about the future price

prospects of their relevant commodity exports, by combining them we can obtain forecasts

for price movements in the aggregate commodity market.

One common issue concerning testing out-of-sample forecast performance is the possibil-

ity of structural breaks or parameter instability. As CRR (2010a) showed, the 2008 Financial

Crisis led to a change in the predictive relationship between quarterly exchange rate returns

and subsequent commodity price movements. We con�rm this "forecast breakdown" below,

and show that by using GADL and allowing more recent exchange rate and stock market

13Using data covering the �nancial crisis period, Groen and Pesenti (2011) note that the choice of com-
modity indices, forecast horizons, and comparison benchmarks can all play a role in determining the exact
speci�cations that produce the best forecast.
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data within a quarter to play a bigger role, we obtain more accurate forecasts than under

the time-aggregated approaches. The reason is intuitive. When there is a break at time

t, both exchange rates and commodity prices are a¤ected, and the new development would

only be re�ected in the more recent data. If one uses exchange rates averaged over the full

past three months, the relevant information would be washed out.14

The data we use for the empirical analysis below are obtained from the Global Financial

Data and the IMF. The commodity price series is the IMF non-fuel commodity price index,

and the daily exchange rates and equity prices are daily closing values covering 1984Q1 to

the end of 2010Q3. We look at exchange rates from Australia, Chile, Canada, and New

Zealand, and equity indexes from Australia, Canada, and New Zealand only.15

4.1 Matched-Frequency Forecasts and the 2008 Crisis

Here we follow the exact setup in CRR(2010a) and test whether exchange rate changes

�st can predict commodity price movements �cpt+1out of sample, using matched frequency

quarterly data up to 2008Q2, and also up to 2010Q3. We adopt a rolling forecast scheme

based on the following two commodity currency-based equations:

Et�cpt+1 = �0 + �1�s
AUS
t + �2�s

CAN
t + �3�s

CHI
t + �4�s

NZ
t (20)

Et�cpt+1 = �0 + ��cpt + �1�s
AUS
t + �2�s

CAN
t + �3�s

CHI
t + �4�s

NZ
t (21)

14Andreou et al.(2010c) use NLS-MIDAS regressions to predict quarterly real economic activity. They
reach the same conclusion concerting model performance over the crisis period.
15The Chilean Equity Index is excluded due to many missing observations.
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We refer to the �rst one as "CRR", and the second one as "AR-CRR" in our reporting in

Table III. We compare their forecast performance relative to two time-series benchmarks:

an AR(1) model and a driftless random walk (RW):16

Et�cpt+1 = 
0 + 
�cpt (22)

Et�cpt+1 = 0 (23)

We generate a sequence of 1-step-ahead forecasts using the standard rolling window out-

of-sample procedure for each of the above four models. Motivated by discussion in Rossi and

Inoue (2011), we report forecast comparison results using several alternative rolling window

sizes (w = 60; 76; and 92) for all our empirical analyses in order to check the robustness of

our conclusions.17 Table III Panel A reports the RMSEs produced under eqs. (20)-(23).

Panel B shows two sets of forecast comparison results: RMSE ratios and the p-values for

forecast comparison based on either the Diebold-Mariano (1995) or the Clark-West (2006)

tests. (If the two models under comparison are nested, e.g. any models over the RW, we

use the Clark-West statistics, and for comparing CRR and AR, which are not nested, we use

the Diebold-Mariano statistics.18)

16The order of the benchmark autoregressive model is selected by the Bayesian information criterion in
CRR (2010a).
17The �rst regression uses the �rst w quarterly observations and makes a forecast for the commodity price

change at w + 1, where w is the rollwing window size. The second regression moves forward over time by
one quarter and make another forecast, and so on. At the end of the rolling process, we calculate the RMSE
for our model, and compare it with the RMSE produced by a drift-less random walk and by the AR model.
Additional results are available for window sizes of 68 and 84.
18Under the null of equal predictability, the sample RMSE of the larger model is expected to be greater

than those of the more restricted models (AR or RW). The Clark and West (2006) test statistic adjusts for
this upward shift in the sample RMSEs.
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For forecast comparisons covering the pre-crisis period (1984Q1 to 2008Q2), we see in

Table III Panel B that the exchange-rate based CRR and AR-CRR models overall generate

smaller RMSEs than the two benchmarks, and the Clark-West statistics reject the null

hypothesis of equal predictability in favor of the CRR and AR-CRR speci�cations. These

�ndings are consistent with the results reported in CRR (2010a). The right-hand side

columns of Table III reports results using a longer sample period, up to 2010Q3. We see

that the superior forecast performance of the exchange rate-based speci�cations are no longer

as robust. In fact, most RMSE ratios now around 1. As discussed in CRR (2010a) Appendix

III, this forecast breakdown is most likely attributable to the 2008 Financial Crisis.

INSERT TABLE III

4.2 GADL Forecasts

We next implement the same set of forecast comparisons with daily exchange rates instead,

using the GADL and AR-GADL speci�cations described in eqs.(5) and (17) to replace the

matched-frequency regressions eqs.(20) and (21). Table III report results based on sam-

ple period 1984Q1 � 2010Q3: Panel A shows the RMSEs for GADL and AR-GADL under

di¤erent aggregations K and rolling window sizes. Panel B provides RMSE ratio compar-

isons with benchmark models as well as the p-values for testing the null hypothesis of equal

predictability. We note the following results:

� For K small, GADL produces superior forecasts (smaller RMSEs) relative to RW, AR,

as well as to the matched-frequency forecast of CRR, suggesting that using newer
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information from within a quarter can deliver sharper forecast results.

� For K = 54;we don�t see much advantage of using GADL over the other models. This

result may not be surprising, as the number of (trading) days within a quarter is

slightly over 60 in our data set, using K = 54; we are essentially including the whole

quarter of data into the regressions. Under the view that more recent data contain

stronger signal for forecasting, as demonstrated by the K = 14 and 34 results, using

a full quarter of data may be diluting the signal. Relative to CRR (which weight all

daily information equally over the full quarter), GADL with K = 54 can introduce

additional estimation noise as well.

� Adding the AR term does not improve the pure exchange-rate based GADL fore-

casts. Even though the Clark-West (2006) test of equal predictability mostly favors

AR-GADL over RW and AR, the RMSEs produced under AR-GADL do not show a

consistent pattern in out-performing the benchmarks.

Overall, GADL regressions using a small set of recent daily exchange rates, such as a few

weeks to over a month of data, can consistently forecast better than the benchmarks even

over the sample period that includes the 2008 Financial Crisis. This �nding supports the

view that in forecasting the future, more up-to-date data should be allowed to play a more

important role.

INSERT TABLE IV
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4.3 Forecast Combination

This section considers forecast combination under GADL, which is an alternative way to

exploit the information content in the daily exchange rates while avoiding running mul-

tivariate regressions in our small samples. The approach involves computing a weighted

average of di¤erent forecasts, each obtained from a single exchange rate-based GADL regres-

sion. Speci�cally, we estimate the following four GADL regressions and generate one-step

ahead world commodity price forecasts:

Et�cp
i
t+1 = �0;i + �1;iWi(L

1=m; �i)�s
(m)
i;t where i = AUS;CAN;CHI;NZ: (24)

Similarly, we produce forecasts using single-exchange rate-based AR-GADL regressions for

each of the four countries. The forecast combination literature has proposed various meth-

ods to weigh individual forecasts, yet it is well known that simple combination schemes

tend to work best (Stock and Watson 2004 and Timmermann 2006.) We thus consider

equal weighting here, and compare our combined forecasts with the RW and AR benchmark

forecasts.

Table V reports results for three sets of combined forecasts:

� FC1 is the equal-weighted average of the four individual GADL forecasts: (� bcpAUSt+1 +

� bcpCANt+1 +� bcpCHIt+1 +� bcpNZt+1)=4:
� FC2 is the average of the above four individual forecasts as well as the AR forecasts.

� FC3 is the equal-weighted average of the four individual AR-GADL forecasts.

23



We observe in Table V patterns similar to what we found in the Table IV.19 The GADL

approach in forecast combination comparisons outperforms the benchmarks for K = 14

and 34. But when we include almost a full-quarter of daily information (K = 54); GADL

shows similar conclusions as we saw in Table III under matched-frequency analyses: using

data up to 2010Q3, exchange-rate based forecasts perform similarly to the benchmarks. To

summarize, forecast combinations support the conclusion that newer data within a quarter

are more relevant for forecasting, but when they are averaged out with older data, their

predictive content gets diluted.

INSERT TABLE V

4.4 Forecasts using Equity Indexes

As discussed in CRR (2010b), the net-present-value relationship with commodity prices

should extend to other assets whose valuations depend on world commodity prices. The

equity market indexes in major commodity-producing economies thus constitute another

set of candidate predictors with daily observations. We replace the daily exchange rates

in the GADL models above with equity prices from Australia, Canada, and New Zealand,

and compare their forecast performance with AR and RW. Table VI report the results for a

multivariate GADL estimation using all three sets of daily equity indexes, and for two forecast

combination schemes involving: 1) (equal-weighted) combined forecasts of the three single-

country GADL regressions as in eq.(24); 2) (equal-weighted) combined forecasts of the three

19To judge the signi�cance of forecast combinations, we used critical values based on Diebold and Mariano
(1995).
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single-country GADL regressions and the AR prediction. We see that the equity-index based

forecasts produce smaller RMSEs than the two statistical benchmarks very consistently. In

addition, we note that unlike the exchange rate-based results, forecast superiority may be

increasing when more daily data is used (K is large). While the di¤erences may not be

statistically signi�cant, the pattern may also be due to the fact that equity prices are overall

more noisy in re�ecting the commodity price signal, and as such, one needs a larger set of

data to re�ect the underlying linkage with commodity prices. Overall, we note that GADL

using daily equity index movements can also forecast commodity prices.

INSERT TABLE VI

5 Conclusion

This paper presents a generalized autoregressive distributed lag model for conducting regres-

sion estimations that involve mixed-frequency data. The motivation and setup of GADL

merge the pioneering work on NLS-MIDAS by Ghysels et al. (2002) and the classic work of

Almon (1965) of approximating distributed lag coe¢ cients with simple low-order polynomi-

als. GADL inherits the ease of estimation from the ADL literature; in one step, it delivers

estimates for the "aggregate impact" parameters emphasized in the MIDAS literature and

their asymptotic properties.

Although the idea of using Vandermonde matrix and the associated OLS estimation has

been independently mentioned in the Matlab Toolbox for MIDAS by Sinko et al. (2011),

this paper demonstrates that the GADL framework is conceptually more general; it does not
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impose any restrictions on, nor require any re-scaling of, the weights on the higher frequency

data. This paper also o¤ers a comparison of the relative performance between the OLS-based

GADL speci�cations and the NLS-MIDAS models. The Monte Carlo simulations reveal that

the GADL approach delivers good �nite-sample performance and is much easier to implement

than methods proposed in previous research. We view our results as indicative of the great

potential for using OLS-based setups to conduct empirical studies involving mixed frequency

data estimations.

As an application, we show that daily asset market information - currency and equity

market movements - can produce forecasts of quarterly commodity price changes that are

superior to those shown in the previous literature. Speci�cally, the superior forecasting

ability relative to standard benchmarks is robust to the 2008 �nancial crisis.
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TABLES
Table I. GADL Estimations for a NLS-MIDAS Model

�0 = 0:5; �1 = 1:5; �
2 = 0:125

Time span: T 100 300 500
True �i 0:5 1:5 0:5 1:5 0:5 1:5

Aggregation K = 14

Mean b�iGADL;n=3 0:500 1:501 0:500 1:502 0:500 1:503
BiasGADL;n=3 0:000 �0:001 0:000 �0:002 0:000 �0:003

RMSEGADL;n=3 0:037 0:138 0:021 0:076 0:016 0:059

Mean b�iGADL;n=4 0:500 1:502 0:500 1:502 0:500 1:503
BiasGADL;n=4 0:000 �0:002 0:000 �0:002 0:000 �0:003

RMSEGADL;n=4 0:037 0:138 0:021 0:076 0:016 0:058

Aggregation K = 34

Mean b�iGADL;n=3 0:499 1:492 0:501 1:504 0:501 1:503
BiasGADL;n=3 0:001 0:008 �0:001 �0:004 �0:001 �0:003

RMSEGADL;n=3 0:047 0:272 0:026 0:157 0:020 0:121

Mean b�iGADL;n=4 0:500 1:492 0:501 1:500 0:501 1:501
BiasGADL;n=4 0:000 0:008 �0:001 0:000 �0:001 �0:001

RMSEGADL;n=4 0:040 0:229 0:022 0:132 0:018 0:101

Aggregation K = 54

Mean b�iGADL;n=3 0:501 1:506 0:499 1:502 0:500 1:507
BiasGADL;n=3 �0:001 �0:006 0:001 �0:002 0:001 �0:007

RMSEGADL;n=3 0:054 0:418 0:032 0:233 0:024 0:185

Mean b�iGADL;n=4 0:501 1:506 0:499 1:506 0:500 1:507
BiasGADL;n=4 �0:001 �0:006 0:001 �0:006 0:000 �0:007

RMSEGADL;n=4 0:044 0:335 0:026 0:191 0:020 0:150

Note: The DGP for the Monte Carlo exercise is the NLS-MIDAS model described in Sec.
3. All the results are based on 1000 replications. Bias is computed as the true parameter
values minus the average estimated values.
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Table II: NLS vs. OLS-GADL Estimates of the Aggregate Impact Parameter
�1 = 0:6; �

2 = 0:125

Aggregation K 14 34 54
Time span: T 100 300 500 100 300 500 100 300 500

Mean c�1NLS 0:486 0:470 0:466 0:423 0:403 0:405 0:439 0:428 0:419
BiasNLS 0:114 0:130 0:134 0:177 0:197 0:195 0:161 0:172 0:181

RMSENLS 0:302 0:287 0:284 0:359 0:348 0:343 0:344 0:328 0:335

Mean c�1GADL;n=3 0:615 0:605 0:602 0:602 0:598 0:602 0:601 0:600 0:598
BiasGADL;n=3 �0:015 �0:005 �0:002 �0:002 0:002 �0:002 �0:001 0:000 0:002

RMSEGADL;n=3 0:134 0:076 0:058 0:229 0:129 0:096 0:295 0:171 0:135

Mean c�1GADL;n=4 0:615 0:604 0:602 0:607 0:600 0:602 0:598 0:600 0:601
BiasGADL;n=4 �0:015 �0:004 �0:002 �0:007 0:000 �0:002 0:002 0:000 �0:001

RMSEGADL;n=4 0:135 0:076 0:058 0:220 0:126 0:091 0:281 0:161 0:127

RMSEGADL;n=3

RMSENLS
0:44 0:26 0:20 0:64 0:37 0:28 0:86 0:52 0:40

RMSEGADL;n=4

RMSENLS
0:45 0:26 0:21 0:61 0:36 0:27 0:82 0:49 0:38

Note: Simulated data is generated using the NLS-MIDAS model described in Sec. 3.
OLS estimates are obtained using Generalized ADL estimations. All the results are based
on 1000 replications. Bias is computed as the true parameter values minus the average
estimated values. Each NLS estimations are initiated at the true values + �, where � is
drawn from N(0; 1)=

p
20, and reported numbers are computed using only iterations with

normal convergence.
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Table III. Out-of-Sample Forecast Performance
Using Matched Frequency Data

Pre-Crisis Sample: Full-Sample:
1984Q1 to 2008Q2 1984Q1 to 2010Q3

Window Size: 60 76 92 60 76 92
# of Forecasts: 37 21 5 46 30 14

A) RMSEs

RW 0:0512 0:0616 0:0758 0:0742 0:0886 0:1149
AR 0:0501 0:0595 0:0736 0:0756 0:0887 0:1159

CRR� 0:0492 0:0557 0:0677 0:0752 0:0878 0:1168
AR-CRR 0:0485 0:0561 0:0686 0:0769 0:0890 0:1186

B) RMSE Ratios

CRR/RW 0:95 0:90 0:89 1:01 0:99 1:02
p-value�� 0:00 0:00 0:01 0:04 0:04

AR-CRR/ RW 0:96 0:91 0:91 1:04 1:00 1:03
p-value 0:00 0:00 0:01 0:03 0:03

CRR/AR 0:97 0:94 0:92 0:99 0:99 1:01
p-value 0:04

AR-CRR/AR 0:98 0:94 0:93 1:02 1:00 1:02
p-value 0:03 0:02 0:01

Note: CRR refers to matched frequency (quarterly) forecasts based on:
Et�cpt+1= �0+

P
i �i�s

i
t and AR- CRR: Et�cpt+1= �0+��cpt+

P
i �i�s

i
t where i =

AUS, CAN, CHI, and NZ. The p-values are for tests of equal predictability based on Diebold-
Mariano (1995) statistics (for non-nested models) or the Clark-West (2006) test if the models
are nested. P -values > 0.10 are not reported. See text for details
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Table IV: Out-of-Sample Performance: Generalized ADL & Mixed Frequency Data
(1984Q1 - 2010Q3)

K = 14 K = 34 K = 54
Window Size: 60 76 92 60 76 92 60 76 92
# of Forecasts: 46 30 14 46 30 14 46 30 14

A) RMSEs

GADL� 0:0683 0:0806 0:0983 0:0737 0:0819 0:1043 0:0817 0:0919 0:1208
AR-GADL� 0:0778 0:0865 0:1063 0:0796 0:0867 0:1092 0:0834 0:0932 0:1232

B) RMSE Ratios

GADL/RW 0:92 0:91 0:86 0:99 0:92 0:91 1:10 1:04 1:05
p-value� 0:03 0:03 0:00 0:05 0:05 0:02 0:10

AR-GADL/ RW 1:05 :98 :93 1:07 0:98 0:95 1:13 1:05 1:07
p-value 0:03 0:03 0:01 0:05 0:05 0:03 0:06 0:1

GADL/AR 0:90 0:91 0:86 0:98 0:92 0:90 1:08 1:04 1:05
p-value 0:02

AR-GADL/AR 1:03 0:98 0:92 1:05 0:98 0:94 1:10 1:05 1:06
p-value 0:10 0:07 0:02 0:09 0:08

GADL/CRR 0:91 0:92 0:84 0:98 0:93 0:89 1:09 1:05 1:03
p-value 0:03 0:07

AR-(GADL/CRR) 1:01 0:97 0:90 1:04 0:97 0:92 1:09 1:05 1:03
p-value

Note: GADL and AR-GADL are mixed frequency versions of CRR and AR-CRR from
Table III, using daily exchange rates. The order of polynomial in the Almon weight (n)
is set to 3. The p-values are for tests of equal predictability based on Diebold-Mariano
(1995) statistics (for non-nested models) or the Clark-West (2006) test (for nested models).
P -values > 0.10 are not reported. See text for details.
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Table V: Out-of-Sample Performance: Forecast Combinations
(1984Q1 - 2010Q3)

K = 14 K = 34 K = 54
Window Size: 60 76 92 60 76 92 60 76 92
# of Forecasts: 46 30 14 46 30 14 46 30 14

A) RMSEs

FC1� 0:0698 0:0830 0:1078 0:0702 0:0821 0:1082 0:0753 0:0880 0:1152
FC2 0:0706 0:0838 0:1092 0:0707 0:0830 0:1095 0:0750 0:0880 0:1151
FC3 0:0733 0:0854 0:1111 0:0740 0:0852 0:1114 0:0775 0:0895 0:1175

B) RMSE Ratios

FC1/ RW 0:94 0:94 0:94 0:95 0:93 0:94 1:02 0:99 1:00
p-value 0:01 0:00 0:00 0:01 0:01 0:00

FC2/AR 0:93 0:95 0:94 0:94 0:94 0:95 0:99 0:99 0:99
p-value 0:07 0:01 0:04

FC3/AR 0:97 0:96 0:96 0:98 0:96 0:96 1:03 1:01 1:01
p-value

Note: FC1 is the average of single-country GADL forecasts; FC2 is the average of single-country
GADL and AR forecasts; FC3 is the average of single country AR-GADL forecasts. The p-values
are for tests of equal predictability based on Diebold-Mariano (1995) statistics. P -values > 0.10
are not reported.
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Table VI: Out-of-Sample Performance Using Equity Indexes
Generalized ADL & Mixed Frequency Data

(1984Q1 - 2010Q4)

K = 14 K = 34 K = 54

Window Size: 60 76 92 60 76 92 60 76 92
# of Forecasts: 47 31 15 47 31 15 47 31 15

A) RMSEs

RW 0:0752 0:0895 0:1147 0:0752 0:0895 0:1147 0:0752 0:0895 0:1147
AR 0:0755 0:0882 0:1138 0:0755 0:0883 0:1138 0:0755 0:0882 0:1138

GADL� 0:0759 0:0880 0:1130 0:0740 0:0848 0:1029 0:0737 0:0853 0:1033
FC1� 0:0737 0:0858 0:1112 0:0718 0:0833 0:1072 0:0728 0:0842 0:1078
FC2� 0:0737 0:0861 0:1116 0:0721 0:0841 0:1085 0:0728 0:0847 0:1089

B) RMSE Ratios

GADL/RW 1:01 0:98 0:98 0:98 0:94 0:88 0:97 0:94 0:89
p-value� 0:06 0:03 0:02 0:07 0:03 0:00 0:04 0:02 0:02

FC1/RW 0:97 0:96 0:96 0:95 0:92 0:92 0:96 0:93 0:93
p-value 0:00 0:03 0:07 0:01 0:00 0:07 0:01 0:02

FC2/ RW 0:98 0:96 0:97 0:96 0:94 0:94 0:97 0:94 0:94
p-value 0:02 0:09 0:07 0:01 0:00 0:10 0:02 0:02

FC1/AR 0:96 0:95 0:96 0:93 0:92 0:91 0:94 0:93 0:92
p-value 0:07 0:08 0:02 0:08 0:03

FC2/AR 0:96 0:96 0:97 0:94 0:94 0:93 0:95 0:94 0:94
p-value 0:07 0:08 0:02 0:08 0:03

Note: GADL is the mixed frequency model: Et�cpt+1= �0+
P

i �iWi(L
1=m; �i)�Equity

Indexit�m where i = AUS, CAN, and NZ. FC1 is the average of single country forecasts; FC2 is
the average of single country and AR forecasts. The p-values are for tests of equal predictability
based on Diebold-Mariano (1995) statistics (for non-nested models) or the Clark-West (1996) test
if the models are nested. P -values > 0.10 are not reported. See text for details.
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