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Abstract

As vividly demonstrated in Maddala (1983), limited and qualitative data have

been widely employed in modern econometric analysis. However, analytical meth-

ods for evaluating technical efficiency of stochastic frontier analysis can only be

applied to continuous dependent variable. This paper provides closed form formu-

lae for evaluating the technical efficiency of stochastic frontier analysis with limited

and qualitative dependent variable. Monte Carlo experiments reveal that the finite

sample performances of our formulae are promising.
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1 Introduction

This paper proposes analytical formulae for evaluating the technical efficiency (TE, here-

after) of stochastic frontier analysis (SFA, hereafter) with limited and qualitative depen-

dent variable (LSFA, hereafter). As pointed out by Kumbhakar (1990), measuring TE of

individual observation is one of the main focus of SFA. In the large and growing SFA lit-

erature, the formula proposed by Jondrow, Lovell, Materov, and Schmidt (1982) (JLMS,

hereafter) and Battese and Coelli (1988) (BC, hereafter) for evaluating TE are widely

used in empirical applications. However, these two formulae are only applicable to the

models with continuous dependent variable as proposed by Aigner, Lovell, and Schmidt

(1977)1. When the dependent variable contains limited or qualitative observations, it is

inappropriate to apply conventional JLMS and BC efficiency estimates without modifi-

cation. Nevertheless, there exists no analytic method which can evaluat TE analytically

under this circumstance. We intend to fill the gap of the literature to generalize JLMS

and BC’s methods for the SFA with limited or qualitative dependent variables.

We propose two efficiency estimates, JLMS interval efficiency estimate and BC interval

efficiency estimate. Apparently, the potential applications of the proposed estimation

method is far reaching. First, many of the survey data are interval or qualitative data.

In particular, Tsay and Fu (2016) suggest an analytic formula for evaluating the likelihood

function of the SFA model with an interval dependent variable when the inefficient term

follows a half-normal distribution as considered in ALS (1977). Second, observed wage is

usually censored due to the existence of the regulation of minimum wage. Many research

have applied SFA framework to analyze the wage frontier model. Following the job

search mechanism considered in Hofler and Murphy (1992, 1994), we can model the wage

determination process in a stochastic frontier framework,

wi = wr
i + ui = x′

iβ + vi + ui,

where xi are the reservation wage (wr
i ) determinants with coefficient β. The two-sided

random error vi denotes statistical noise and the non-negative ui ≥ 0 represents the

1See Greene (1997) and Kumbhakar and Lovell (2000) for thoroughly literature reviews.
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degree by which the worker’s observed wage exceeds the reservation wage. Following this

job search framework, Tsay, Huang, Fu, and Ho (2013) apply SFA framework to analyze

the wage frontier model. The data-generating process (DGP) in Tsay et al. (2013) is:
w∗

i = x′
iβ + vi + ui,

wi = w∗
i , if w∗

i > wmin,

wi = wmin, if w∗
i ≤ wmin,

where wmin denotes the minimum wage and serves as the censoring points for the observed

wage wi.

The remaining parts of this paper are arranged as follows: Section 2 presents the pro-

posed formulae for evaluating TE and their properties. Section 3 considers Monte Carlo

experiments to show the finite sample performance of the proposed interval efficiency

estimates. Section 4 provides the conclusion.

2 Limited and Qualitative Stochastic Frontier Anal-

ysis

Consider a conventional SFA regression in logarithm form:

yi = x′
iβ + εi, (1)

where yi and εi are the ith observation of dependent variable and the composite random

error, respectively; x′
i is a 1 × k vector of the ith observation on k regressors; and β is a

k × 1 vector of unknown parameters to be estimated. We adopt the notation of Greene

(2005) and specify the composite random error εi as:

εi = vi + Sui,

vi ∼ N
(
0, σ2

v

)
,

ui ∼ N+
(
0, σ2

u

)
, ui > 0,

(2)
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where vi denotes the random noise, ui denotes the technical efficiency.2 S is a pre-

specified number, which is equal to −1 if the frontier describes production or 1 if the

frontier describes cost. vi and ui are independent of each other, and are independent of

xi. Aigner et al. (1977) show that, under these distribution assumptions, the probability

density function (pdf) of the composite error εi = vi + Sui can be denoted as:

fS (εi) =
2

σ
ϕ
(εi
σ

)
Φ
(
Sλ

εi
σ

)
, (3)

where σ2 = σ2
u + σ2

v , λ =
σu

σv

, ϕ (.) and Φ (.) denote the pdf and the cumulative density

function (cdf) of standard normal distribution, respectively. This distribution is also

known as skew-normal distribution (Azzalini, 1985). For notation conveniency, we define

fS (.) and FS (.) represent pdf and cdf of skew-normal distribution with the pre-specified

S, respectively.

Following the definition in Aigner et al. (1977), we express the TE of observation i in

Eq. (1), namely TEi, as:

TEi = exp (−ui) . (4)

2.1 JLMS interval efficiency estimate

Since the inefficiency term ui is unobservable, JLMS (1982) suggest that the conditional

expectation of ui given εi can be used as an estimator of ui. Given that ui follow a half

normal distribution, the corresponding JLMS efficiency estimate is:

TEJLMS
i = exp (−ûi) , (5)

where

ûi = E (ui|εi) = S
σ2
u

σ2
εi +

σuσv

σ

ϕ
(
λ
εi
σ

)
Φ
(
Sλ

εi
σ

) . (6)

2There are many candidates for the distribution assumption of the efficiency component. Greene
(1990) employed cross-sectional data to estimate a stochastic cost frontier and reported that the estimated
TE from four different distribution assumptions, half normal, exponential, truncated normal and gamma,
are quite similar. Ritter and Simar (1997) also argue that we should use relatively simple distribution,
such as half normal or exponential, rather than truncated normal or gamma. Since the half normal
assumption has been used most frequently in the literature (Bauer, 1990), we only consider half normal
case here.
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The formulae in Eq. (5) and Eq. (6) have been widely applied in empirical work.

However, when the dependent variable is limited or qualitative variable, the difficulty

arises since εi is limited to be within the corresponding interval.

Without loss of generality, we assume the censoring interval of dependent variable is

at (A,B),

y∗i = x′
iβ + εi, i = 1, 2, . . . , N ;

yi = y∗i , if A < y∗i < B;

yi = A, if y∗i ≤ A;

yi = B, if y∗i ≥ B,

(7)

where y∗i denotes the actual dependent variable which is only observable when its value

fall into the range (A,B).

In the case with either censored or interval data, A and B in Eq. (7) is clearly defined

by data. In the case with qualitative data, A and B can be consistently estimated through

maximum likelihood estimation.

Given the DGP in Eq. (7), we can directly transform the estimator in Eq. (6) as:

ûi = E (ui|A− x′
iβ < εi < B − x′

iβ) ≡ E (ui|ai < εi < bi) (8)

For convenience, we suppress notation i hereafter. By law of iterated expectation, we

express the censored conditional expectation in Eq. (8) as:

E (u|a < ε < b)

=
1

FS (ε)
b
a

∫ b

a

E (u|ε) fS (ε) dε

=
1

FS (ε)
b
a

∫ b

a

S
σ2
u

σ2
ε+

σuσv

σ

ϕ
(
λ
ε

σ

)
Φ
(
Sλ

ε

σ

)
( 2

σ
ϕ
( ε
σ

)
Φ
(
Sλ

ε

σ

))
dε

=
1

FS (ε)
b
a

[∫ b

a

S
σ2
u

σ2
εϕ
( ε
σ

)
Φ
(
Sλ

ε

σ

)
dε+

∫ b

a

2σuσv

σ2
ϕ
( ε
σ

)
ϕ
(
λ
ε

σ

)
dε

]
= E1 + E2,

(9)

where FS (ε)
b
a denotes FS (b) − FS (a). It follows that the analysis centers on evaluating
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E1 and E2 in the above equation.

We first rewrite E1 in Eq. (9) as:

E1 =
1

FS (ε)
b
a

Sσ2
u

σ2

∫ b

a

εfσ,λ (ε)dε

=S
σ2
u

σ2
E (ε|a < ε < b) .

(10)

As we can see, the integral part in E1 is a censored conditional expectation of fS (ε)

given that ε ∈ (a, b). Using Proposition 1 in Flecher, Allard and Naveau (2009), we can

evaluate E1 as:

E1 = S
σ2
u

σ

{
−σ

[fS(ε)]
b
a

[FS(ε)]
b
a

+
2λ√
2πλ∗

[
Φ
(
Sλ∗

σ
ε
)]b

a

[FS(ε)]
b
a

}
, (11)

where λ∗ =
√
1 + λ2.

We can also recast E2 in Eq. (9) as:

E2 =
2σuσv

σ2

1

FS (ε)
b
a

∫ b

a

ϕ
( ε
σ

)
ϕ
(
λ
ε

σ

)
dε

=
2σuσv

σ2

1

FS (ε)
b
a

∫ b

a

1

2π
exp

[
−1

2

( ε
σ

)2]
exp

[
−λ2

2

( ε
σ

)2]
dε

=
σuσv

πσ2

1

FS (ε)
b
a

∫ b

a

exp

(
−λ∗2ε2

2σ2

)
dε.

(12)

To evaluate the last term of Eq. (12), we introduce Eq. (7.4.32) of Abramowitz and

Stegun (1970):∫
exp

[
−
(
kx2 + 2mx+ n

)]
dx =

1

2

√
π

k
exp

(
m2 − kn

k

)
erf

(√
kx+

m√
k

)
+ C,(13)

where k ̸= 0, C denotes a finite constant, and erf(.) denotes the error function which

can be expressed as:

erf (z) =
2√
π

∫ z

0

exp
(
−t2
)
dt = 2

∫ √
2z

0

ϕ (t) dt. (14)
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Combining Eq. (13) with Eq. (12), we derive E2 as:

E2 =
σuσv

πσ2

1

FS (ε)
b
a

1
2

√
π
λ∗2

2σ2

erf

(
λ∗
√
2σ

ε

)b

a

=
σuσv√
2πσλ∗

[
erf

(
λ∗
√
2σ

ε

)]b
a

[FS (ε)]
b
a

.

(15)

With the results in Eq.(11) and Eq. (15), we now obtain the JLMS interval efficiency

estimate.

Proposition 2.1.1. Under v ∈ N (0, σ2
v) and u ∈ N+ (0, σ2

u), E (u|a < ε < b) in Eq. (8)

can be expressed as:

S σ2
u

σ

{
−σ [fS (ε)]

b
a +

2λ√
2πλ∗

[
Φ
(
Sλ∗

σ
ε
)]b

a

}
+ σuσv√

2πλ∗σ

[
erf

(
λ∗
√
2σ
ε
)]b

a

FS (ε)
b
a

. (16)

where λ∗ =
√
1 + λ2.

Proposition 2.1.1 extends the estimation method of JLMS (1982) to the limited and

qualitative dependent variable cases. This analytic formula can be easily computed with

standard statistic packages, except for the term in the denominator, FS (ε)
b
a. Neverthe-

less, this term is easy to compute once we know how to calculate the cdf of skew-normal

distribution. Indeed, this problem has been touched upon in Tsay et al. (2013) where

they provide an analytical formula which approximate FS (εi) well. The Monte Carlo ex-

periment conducted in the next section reveals the promising performance of the formula

in Proposition 2.1.1.

By construction, the results in Proposition 2.1.1 are identical to those in JLMS (1982)

when the censoring interval degenerate to 0. As a corollary, we prove this results in the

next Proposition.

Proposition 2.1.2. Given Proposition 2.1.1, c and ξ are any finite constant,

lim
ξ→0

E (u|c < ε < c+ ξ) → E (u|ε = c)
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where E (u|ε = c) is the formula in JLMS (1982).

Proof of Proposition 2.1.2 is in the Appendix.

2.2 BC interval efficiency estimate

It is well known in the literature that an alternative estimation method of TE is BC

efficiency estimate:

TEBC = E [exp (−u) |ε] =

[
1− Φ

(
σuσv−Sλε

σ

)
Φ
(
Sλ ε

σ

) ]
exp

(
−S

εσ2
u

σ2
+

1

2

σ2
uσ

2
v

σ2

)
. (17)

This subsection considers the interval BC efficiency estimate when the DGP is Eq. (7),

E [exp (−u) |a < ε < b]

=
1

FS (ε)
b
a

∫ b

a

E [exp (−u) |ε] f (ε) dε

=
2

σFS (ε)
b
a

∫ b

a

1− Φ

(
σuσv − Sλε

σ

)
Φ
(
Sλ

ε

σ

)
 exp

(
−S

εσ2
u

σ2
+

σ2
uσ

2
v

2σ2

)
ϕ
( ε
σ

)
Φ
(
Sλ

ε

σ

)
dε

=
2

√
2πσFS (ε)

b
a

∫ b

a

[
1− Φ

(
σuσv − Sλε

σ

)]
exp

(
−S

εσ2
u

σ2
+

σ2
uσ

2
v

2σ2
− ε2

2σ2

)
dε.

(18)

There is no closed form solution for the above integral. Nevertheless, we will show that

it can be well approximated with an analytical formula.

Following Eq. (14), it’s straightforward to transform Φ(x) as 1
2
+ 1

2
erf

(
x√
2

)
. Then

we can rewrite the last term of Eq. (18) as:

2
√
2πσFS (ε)

b
a

∫ b

a

[
1

2
− 1

2
erf

(
σuσv − Sλε√

2σ

)]
exp

(
−S

εσ2
u

σ2
+

σ2
uσ

2
v

2σ2
− ε2

2σ2

)
dε (19)

Since there exists no analytical form of the erf function, the integral in Eq. (19) cannot

be calculated analytically. To solve this problem, we follow the method in Tsay et al.

(2013) to approximate the erf function in Eq. (19). Particularly, Tsay et al. (2013)

show that, for all x ≥ 0, erf(x) can be well approximate with a nonlinear function,

erf(x) = 1− exp(c1x+ c2x
2), (20)
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where c1 = −1.0950081470333 and c2 = −0.75651138383854. Tsay et al. (2013) demon-

strate that this approximation has promising finite sample performance. For more detail,

see Tsay et al. (2013).

When we apply the approximation method in Eq. (20) to Eq. (19), it requires σuσv−Sλε√
2σ

in the erf function to be positive. To handle this restriction, we apply the property of the

error function, erf(−x) = −erf(x), and discuss the case S = 1 and S = −1 separately.

Proposition 2.2.1. Given that τ = −σuσv

λ
and S = −1, under vi ∈ N (0, σ2

v) and

ui ∈ N+ (0, σ2
u), E (exp (−u) |a < ε < b) in Eq. (17) can be approximated as:

Case 1. If τ < a < b,

1

2
√
2σ

1√
k1

1

FS (ε)
b
a

exp

(
m2

1 − k1n1

k1

)[
erf

(√
k1b+

m1√
k1

)
− erf

(√
k1a+

m1√
k1

)]
.

Case 2. If a < τ < b,

1√
2σ

1√
k2

1

FS (ε)
b
a

exp

(
m2

2 − k2n2

k2

)[
erf

(√
k2τ +

m2√
k2

)
− erf

(√
k2a+

m2√
k2

)]
− 1

2
√
2σ

1√
k3

1

FS (ε)
b
a

exp

(
m2

3 − k3n3

k3

)[
erf

(√
k3τ +

m3√
k3

)
− erf

(√
k3a+

m3√
k3

)]
+

1

2
√
2σ

1√
k1

1

FS (ε)
b
a

exp

(
m2

1 − k1n1

k1

)[
erf

(√
k1b+

m1√
k1

)
− erf

(√
k1τ +

m1√
k1

)]
.

Case 3. If a < b < τ ,

1√
2σ

1√
k2

1

FS (ε)
b
a

exp

(
m2

2 − k2n2

k2

)[
erf

(√
k2b+

m2√
k2

)
− erf

(√
k2a+

m2√
k2

)]
− 1

2
√
2σ

1√
k3

1

FS (ε)
b
a

exp

(
m2

3 − k3n3

k3

)[
erf

(√
k3b+

m3√
k3

)
− erf

(√
k3a+

m3√
k3

)]
,

where
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k1 =
1− c2λ

2

2σ2
,

m1 = −2σ2
u + 2c2σ

2
u +

√
2c1λσ

4σ2
,

n1 = −
σ2
uσ

2
v

(
1 + c2 +

√
2c1σ

σuσv

)
2σ2

,

k2 =
1

2σ2
,

m2 = − σ2
u

2σ2
,

n2 = −σ2
uσ

2
v

2σ2
,

k3 =
1− c2λ

2

2σ2
,

m3 = −2σ2
u + 2c2σ

2
u −

√
2c1λσ

4σ2
,

n3 = −
σ2
uσ

2
v

(
1 + c2 −

√
2c1σ

σuσv

)
2σ2

.

Proposition 2.2.2. Given that τ = −σuσv

λ
and S = 1, under vi ∈ N (0, σ2

v) and ui ∈
N+ (0, σ2

u), E (exp (−u) |a < ε < b) in Eq. (17) can be approximated as:

Case 1. If −τ < a < b,

1√
2σ

1√
k1

1

FS (ε)
b
a

exp

(
m2

1 − k1n1

k1

)[
erf

(√
k1b+

m1√
k1

)
− erf

(√
k1a+

m1√
k1

)]
− 1

2
√
2σ

1√
k2

1

FS (ε)
b
a

exp

(
m2

2 − k2n2

k2

)[
erf

(√
k2b+

m2√
k2

)
− erf

(√
k2a+

m2√
k2

)]
,

Case 2. If a < −τ < b,

1√
2σ

1√
k1

1

FS (ε)
b
a

exp

(
m2

1 − k1n1

k1

)[
erf

(√
k1b+

m1√
k1

)
− erf

(
−
√
k1τ +

m1√
k1

)]
− 1

2
√
2σ

1√
k2

1

FS (ε)
b
a

exp

(
m2

2 − k2n2

k2

)[
erf

(√
k2b+

m2√
k2

)
− erf

(
−
√
k2τ +

m2√
k2

)]
+

1

2
√
2σ

1√
k3

1

FS (ε)
b
a

exp

(
m2

3 − k3n3

k3

)[
erf

(
−
√

k3τ +
m3√
k3

)
− erf

(√
k3a+

m3√
k3

)]
,

Case 3. If a < b < −τ ,

1

2
√
2σ

1√
k3

1

FS (ε)
b
a

exp

(
m2

3 − k3n3

k3

)[
erf

(√
k3b+

m3√
k3

)
− erf

(√
k3a+

m3√
k3

)]
,

10



where

k1 =
1

2σ2
,

m1 =
σ2
u

2σ2
,

n1 = −σ2
uσ

2
v

2σ2
,

k2 =
1− c2λ

2

2σ2
,

m2 =
2σ2

u + 2c2σ
2
u −

√
2c1λσ

4σ2
,

n2 = −
σ2
uσ

2
v

(
1 + c2 −

√
2c1σ

σuσv

)
2σ2

,

k3 =
1− c2λ

2

2σ2
,

m3 =
2σ2

u + 2c2σ
2
u +

√
2c1λσ

4σ2
,

n3 = −
σ2
uσ

2
v

(
1 + c2 +

√
2c1σ

σuσv

)
2σ2

.

The derivations of Proposition 2.2.1 and 2.2.2 are in the Appendix.

3 Monte Carlo Experiment

In this section we consider the finite sample performance of the Proposition 2.1.1 and

2.2.1 at different censoring percentiles and true parameters when the DGP is Eq. (7).3

Our Monte Carlo experiment design is similar to that of Kumbhakar and Lothgren

(1998). The error terms εi = vi + Sui are obtained by 10 million random draws of ui

and vi from N+ (0, σ2
u) and N (0, σ2

v), respectively4. We control the variance of two

error terms, σu and σv, and the variance ratio, λ, that reflects the contribution of

the variance of u to the total variance of the error term ε. In particular, 3 differ-

ent variance ratios λ = 0.5, 1, 2 and 6 censoring percentiles5 of ε, (a, b) = (0, 0.01),

3All programs are written in MATLAB, and are available upon request.
4The results of S = 1 case are symmetric to what we observe for S = −1, so we only report S = −1

case here.
5We focus on censoring percentiles for expositional purpose, the application of our methods to cen-

soring intervals is straightforward and are available upon request.
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(0.01, 0.05) , (0.05, 0.15) , (0.85, 095) , (0.95, 0.99), and (0.99, 1), are considered.

The propositions in last section can estimate the TE of LSFA analytically. As men-

tioned previously, the cdf of skew-normal distribution FS (εi) in the denominator of the

formula can’t be evaluated analytically. To solve this problem, we adopted the approxi-

mating method proposed by Tsay and Fu (2016) to approximate the value of the cdf. Tsay

and Fu (2016) demonstrate this approximation has promising finite sample performance.

Column 2-4 of Table 1 show the Monte carlo results of Proposition 2.1.1. For various

choices of censoring percentiles and true parameters of λ, σu and σv, the maximum abso-

lute difference ratio between the value calculated by Proposition 2.1.1 and the true value

generated by simulation based on the Monte Carlo experiments is about 0.54 percent.

However, this value becomes much smaller when the percentiles do not lie at the edge of

the distribution. Furthermore, the absolute difference ratio exhibits no apparent pattern

either at the censoring percentiles (a, b), or the values of specified parameters λ, σu, and

σv.

Column 5-7 of Table 1 present the results of Proposition 2.2.1. The results are also

very promising except when the data is censored at (0.99, 1), which is the extremely

censoring point. But since the extremely censoring case is rarely encountered in the

empirical studies, we think this problem shouldn’t downsize the contribution of this paper

too much.

4 Conclusion

This paper is the first to extend the analytic formulae proposed by JLMS (1982) and

BC (1988) to evaluate technical efficient in the limited and qualitative stochastic frontier

framework, because limited and qualitative data have been widely employed in modern

econometric analysis and could be of value to the future studies of the stochastic frontier

analysis. The proposed formulae are easy to compute and the Monte Carlo experiments

show that the closed form formulae have promising finite sample performance.
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5 Appendix

5.1 Proof of Proposition 2.1.2

We can express the limit of proposition 2.1.1 as:

lim
δ→0

E (u|c < ε < c+ ξ) = lim
δ→0

S
σ2
u

σ

{
−σ

[fS (ε)]
c+δ
c

[FS (ε)]
c+δ
c

+
2λ√
2πλ∗

[
Φ
(
Sλ∗

σ
ε
)]c+δ

c

[FS (ε)]
c+δ
c

}

+ lim
δ→0

σuσv√
2πσλ∗

[
erf

(
λ∗

√
2σ2 ε

)]c+δ

c

[FS (ε)]
c+δ
c

= lim
δ→0

S
σ2
u

σ

−2Sλ
σ
ϕ
(
c+δ
σ

)
ϕ
(
λ c+δ

σ

)
− 2c

σ2ϕ
(
c+δ
σ

)
Φ
(
λ c+δ

σ

)
fS (c+ δ)

+ lim
δ→0

S
σ2
u

σ2

2Sλ√
2π

ϕ
(
λ∗ c+δ

σ

)
fS (c+ δ)

+ lim
δ→0

2√
2π

σuσv

σ2

ϕ
(
λ∗ c+δ

σ

)
fS (c+ δ)

= S
σ2
u

σ2
c−

2S2λ
σ

ϕ
(
c
σ

)
ϕ
(
λ c

σ

)
− 2S2λ√

2πσ
ϕ
(
λ∗ c

σ

)
fS (c)

+
2√
2π

σuσv

σ2

ϕ
(
λ∗ c

σ

)
fS (c)

= S
σ2
u

σ2
c+

σuσv

σ

ϕ
(
λ c

σ

)
Φ
(
Sλ c

σ

) ,
where the second equality is based on L’hospital Rule, the fourth equality follows from

the observation that ϕ
(
c+δ
σ

)
ϕ
(
λ c+δ

σ

)
= 1√

2π
ϕ
(
λ∗ c+δ

σ

)
.
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5.2 Derivation of Proposition 2.2.1:

Given that S = −1 and τ = −σuσv

λ
, we divide the censoring interval into three cases:

Case 1. τ < a < b

In this case, σuσv+λε√
2σ

in the erf function in Eq. (19) is always positive in the censoring

interval and we can adopt the approximation method in Eq. (20) and rewrite Eq.(19) as:

2
√
2πσFS (ε)

b
a

∫ b

a

{
1

2
− 1

2

[
1− exp

(
c1

(
σuσv + λε√

2σ

)
+ c2

(
σuσv + λε√

2σ

)2
)]}

× exp

(
εσ2

u

σ2
+

σ2
uσ

2
v

2σ2
− ε2

2σ2

)
dε

=
1

√
2πσFS (ε)

b
a

∫ b

a

exp

[
c1

(
σuσv + λε√

2σ

)
+ c2

(
σ2
uσ

2
v + λ2ε2 + 2λσuσvε

2σ2

)]
× exp

(
εσ2

u

σ2
+

σ2
uσ

2
v

2σ2
− ε2

2σ2

)
dε

=
1

√
2πσFS (ε)

b
a

∫ b

a

exp

[
−
(
1− c2λ

2

2σ2

)
ε2
]
exp

[
−2

(
−2σ2

u + 2c2σ
2
u +

√
2c1λσ

4σ2

)
ε

]

× exp

−

−σ2
uσ

2
v

(
1 + c2 +

c1
√
2σ

σuσv

)
2σ2

 dε.

(21)

Following Eq. (13), we can solve the last term in Eq. (21) as:

1

2
√
2σ

1√
k1

1

FS (ε)
b
a

exp

(
m2

1 − k1n1

k1

)[
erf

(√
k1b+

m1√
k1

)
− erf

(√
k1a+

m1√
k1

)]
,(22)

where

k1 =
1− c2λ

2

2σ2
,

m1 = −2σ2
u + 2c2σ

2
u +

√
2c1λσ

4σ2
,

n1 = −
σ2
uσ

2
v

(
1 + c2 +

√
2c1σ

σuσv

)
2σ2

.
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Case 2. a < τ < b

In this case, σuσv+λε√
2σ

is positive when τ < ε and negative when ε < τ . For the τ < ε

part, we follow the same method in Case 1 to obtain:

1

2
√
2σ

1√
k1

1

FS (ε)
b
a

exp

(
m2

1 − k1n1

k1

)[
erf

(√
k1b+

m1√
k1

)
− erf

(√
k1τ +

m1√
k1

)]
,(23)

where

k1 =
1− c2λ

2

2σ2
,

m1 = −2σ2
u + 2c2σ

2
u +

√
2c1λσ

4σ2
,

n1 = −
σ2
uσ

2
v

(
1 + c2 +

√
2c1σ

σuσv

)
2σ2

.

For ε < τ part, by applying the property of error function, erf (−x) = −erf (x), we

can rewrite Eq. (19) as:

2
√
2πσFS (ε)

b
a

∫ b

a

[
1

2
+

1

2
erf

(
−σuσv + λε√

2σ

)]
exp

(
εσ2

u

σ2
+

σ2
uσ

2
v

2σ2
− ε2

2σ2

)
dε. (24)

Since −σuσv+λε√
2σ

in the erf function of Eq. (24) is positive when ε < τ , so we can adopt

the approximation and recast Eq. (24) as:
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2
√
2πσFS (ε)

b
a

∫ b

a

{
1

2
+

1

2

[
1− exp

(
c1

(
−σuσv − λε√

2σ

)
+ c2

(
−σuσv − λε√

2σ

)2
)]}

× exp

(
εσ2

u

σ2
+

σ2
uσ

2
v

2σ2
− ε2

2σ2

)
dε

=
2

√
2πσFS (ε)

b
a

∫ b

a

exp

(
εσ2

u

σ2
+

σ2
uσ

2
v

2σ2
− ε2

2σ2

)
dε

− 1
√
2πσFS (ε)

b
a

∫ b

a

exp

[
c1

(
−σuσv − λε√

2σ

)
+ c2

(
σ2
uσ

2
v + λ2ε2 + 2λσuσvε

2σ2

)]
× exp

(
εσ2

u

σ2
+

σ2
uσ

2
v

2σ2
− ε2

2σ2

)
dε

=
2

√
2πσFS (ε)

b
a

exp

[
−
(
ε2 − 2σ2

uε− σ2
uσ

2
v

2σ2

)]
− 1

√
2πσFS (ε)

b
a

∫ b

a

exp

[
−
(
1− c2λ

2

2σ2

)
ε2
]
exp

[
−2

(
−2σ2

u + 2c2σ
2
u −

√
2c1λσ

4σ2

)
ε

]

× exp

−

−σ2
uσ

2
v

(
1 + c2 − c1

√
2σ

σuσv

)
2σ2

 dε.

(25)

Following Eq. (13), we can solve the last term of Eq. (25) as:

1√
2σ

1√
k2

1

FS (ε)
b
a

exp

(
m2

2 − k2n2

k2

)[
erf

(√
k2τ +

m2√
k2

)
− erf

(√
k2a+

m2√
k2

)]
− 1

2
√
2σ

1√
k3

1

FS (ε)
b
a

exp

(
m2

3 − k3n3

k3

)[
erf

(√
k3τ +

m3√
k3

)
− erf

(√
k3a+

m3√
k3

)]
,

(26)

where

k2 =
1− c2λ

2

2σ2
,

m2 =
2σ2

u + 2c2σ
2
u −

√
2c1λσ

4σ2
,

n2 = −
σ2
uσ

2
v

(
1 + c2 +

√
2c1σ

σuσv

)
2σ2

,

k3 =
1− c2λ

2

2σ2
,

m3 =
2σ2

u + 2c2σ
2
u +

√
2c1λσ

4σ2
,

n3 = −
σ2
uσ

2
v

(
1 + c2 +

√
2c1σ

σuσv

)
2σ2

.
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Case 3. τ < a < b

In this case, σuσv+λε√
2σ

in the erf function in Eq. (19) is always negative in the censoring

interval. Therefore, we can follow the same strategy as the ε < τ part in Case 2 to obtain:

1√
2σ

1√
k2

1

FS (ε)
b
a

exp

(
m2

2 − k2n2

k2

)[
erf

(√
k2b+

m2√
k2

)
− erf

(√
k2a+

m2√
k2

)]
− 1

2
√
2σ

1√
k3

1

FS (ε)
b
a

exp

(
m2

3 − k3n3

k3

)[
erf

(√
k3b+

m3√
k3

)
− erf

(√
k3a+

m3√
k3

)]
,

(27)

where

k2 =
1

2σ2
,

m2 = − σ2
u

2σ2
,

n2 = −σ2
uσ

2
v

2σ2
,

k3 =
1− c2λ

2

2σ2
,

m3 = −2σ2
u + 2c2σ

2
u −

√
2c1λσ

4σ2
,

n3 = −
σ2
uσ

2
v

(
1 + c2 −

√
2c1σ

σuσv

)
2σ2

.

5.3 Derivation of Proposition 2.2.2:

The derivation of Proposition 2.2.2 is similar to that of Proposition 2.2.1. We omit the

details, but the results can be provided upon request.
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Table 1. Monte Carlo results for Proposition 2.1.1 and 2.2.1
at various censoring percentiles and true parameters

JLMS BC

Percentiles P1 True1
|P1−True1|

True1
P2 True2

|P2−True2|
True2

λ = 1.50 (σv = 0.50, σu = 0.75, εi = vi − ui)

(0.00, 0.01) 0.1645 0.1644 0.0006 0.1821 0.1820 0.0005

(0.01, 0.05) 0.2532 0.2531 0.0004 0.2773 0.2772 0.0004

(0.15, 0.45) 0.4936 0.4938 0.0004 0.5291 0.5290 0.0002

(0.55, 0.85) 0.6728 0.6729 0.0002 0.6990 0.6984 0.0009

(0.95, 0.99) 0.8024 0.8024 0.0000 0.8189 0.8155 0.0041

(0.99, 1.00) 0.8440 0.8428 0.0014 0.8801 0.8521 0.0328

λ = 1.00 (σv = 1.00, σu = 1.00, εi = vi − ui)

(0.00, 0.01) 0.1287 0.1294 0.0054 0.1667 0.1674 0.0041

(0.01, 0.05) 0.2058 0.2061 0.0015 0.2579 0.2577 0.0008

(0.15, 0.45) 0.4011 0.4006 0.0012 0.4621 0.4626 0.0011

(0.55, 0.85) 0.5509 0.5509 0.0000 0.6005 0.6004 0.0002

(0.95, 0.99) 0.6847 0.6850 0.0004 0.7259 0.7165 0.0131

(0.99, 1.00) 0.7361 0.7350 0.0015 0.8003 0.7662 0.0445

λ = 0.50 (σv = 2.00, σu = 1.00, εi = vi − ui)

(0.00, 0.01) 0.2407 0.2407 0.0000 0.3155 0.3161 0.0019

(0.01, 0.05) 0.3026 0.3031 0.0016 0.3785 0.3803 0.0047

(0.15, 0.45) 0.4167 0.4168 0.0002 0.4901 0.4889 0.0025

(0.55, 0.85) 0.5015 0.5015 0.0000 0.5608 0.5639 0.0055

(0.95, 0.99) 0.5902 0.5909 0.0012 0.6439 0.6403 0.0056

(0.99, 1.00) 0.6296 0.6318 0.0035 0.6946 0.6745 0.0297

Notes: P1 and P2 are computed based on Proposition 2.1.1 and 2.2.1, respectively. True1
and True2 are simulated from the Accept-Reject algorithm based on 10 million indepen-
dent draws of the distribution exp (E (u|ε)) and E (exp (u) |ε), respectively.
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