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Abstract

This paper considers the estimation and inference problems of a general class
of time-series-cross-section (TSCS) models consisting of stationary or nonsta-
tionary long memory regressors and errors, while allowing for cross-correlations
and serial correlations in cross-section and time dimensions, respectively. Al-
though the applicability of this class of TSCS models is far-reaching, we show
that each regression coefficient of these models can be easily tested with the
critical values from the standard normal distribution based on the approach pro-
posed in this paper. Furthermore, our approach is built on Robinson’s (1998)
long-run variance estimator and thus does not involve the difficult problems of
choosing a kernel function or a bandwidth parameter. We also demonstrate
that, under various combinations of long memory processes and cross-section
dimensions, the finite sample performance of our method for this class of long
memory TSCS models is promising even though the time span is only 20. We
then apply this method to re-examine the welfare spending studies of Hicks
and Swank (1992). The testing results are different from the findings in Hicks
and Swank (1992) and those in Beck and Katz (1995), because we find a weak
but significant positive voter turnout effects when the number of differencing
is equal to 1.
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1 Introduction

This paper considers the estimation and inference problems associated with the

temporally-dominated time-series-cross-section (TSCS) models where a fixed num-

ber of N units is observed for a period of time T . The TSCS model is a special case

of the seemingly unrelated regressions (SURE) model proposed by Zellner (1962).

The estimation of the SURE model has been considered in Parks (1967), Kmenta

(1971), and Guilkey and Schmidt (1973), to name a few. Empirical studies based

on the TSCS model are far-reaching in social science, including economics, sociology,

and political science. Beck and Katz (1995) provide a list of 14 papers using TSCS

data. Five of them are published in the American Political Science Review.

Before the publication of Beck and Katz (1995), the generalized least squares

(GLS) method of Parks (1967) had been the most popular method for handling the

TSCS model. Beck and Katz (1995) show that Parks’ method can produce a mislead-

ing standard error that underestimates variability by 50% or more. Beck and Katz

(1995) therefore suggest a panel-corrected standard errors (PCSE) estimator when

the errors of the TSCS model are assumed to be contemporaneously correlated and

panel heteroscedastic. As clearly spelled out in page 634 of their paper, Beck and

Katz (1995) offer the PCSE estimator that is both “easier to implement and produces

accurate standard errors”, and their strategy is to retain the ordinary least squares

(OLS) parameter estimates, but replace the OLS standard errors with PCSE.

The common feature shared by Parks (1967) and Beck and Katz (1995) is that

they only consider the weakly dependent or I(0) processes. When the data-generating

processes (DGP) are the unit root, or I(1), processes, there is no well accepted infer-

ence method for the TSCS model consisting of I(1) processes. This leads Beck (2001,

p. 280) to document: But we know little about nonstationary TSCS data.

The presence of the well-known autoregressive fractionally-integrated moving av-

erage (ARFIMA), or I(d), process in many time series seems to incur an even more

complicated structure within the TSCS models. The I(d) process is first introduced

by Granger (1980), Granger and Joyeux (1980), and Hosking (1981). Many data are
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found to be well described with the I(d) processes, including the level of Nile River,

ex post real interest rate, inflation, and forward premium. Baillie (1996) provides an

overview about the empirical applications of the I(d) process in the economics and

finance literature.

The I(d) process also has been observed in the political science time series. Box-

Steffensmeier and Smith (1996, 1998) use the I(d) process to explain the dynamics of

aggregate partisanship and macroideology. Dolado et al. (2003) find that pure frac-

tional process fits the Spanish opinion polls well. Moreover, Davidson et al. (2006)

use a fractionally cointegrating vector error correction model to describe the poll data

on approval of the performance of prime ministers and governments in the UK. Rec-

ognizing the increasing importance of the I(d) process in political science, Electoral

Studies (2000, vol. 19) devotes a special issue to address the recent advances in the

analysis of political time series with I(d) processes, including the dynamics of the

aggregate political popularity studied by Byers et al. (2000) and the discussions in

Box-Steffensmeier and Tomlinson (2000) about the potential of the I(d) process to

unify and simplify time series analysis. In that issue, Lebo et al. (2000, p. 32)

point out that I(d) processes “are by no means rare and need to be accounted for in

their models.” Indeed, many time series data of interest to political scientists can be

characterized by I(d) processes – in particular, the macropartisanship, presidential

approval, the monthly and quarterly indices of consumer sentiment, and percentage

liberalism in Supreme Court decision making. Furthermore, Lebo et al. (2000, p.

40) claim that Robinson’s and Sowell’s estimator agree that fractional integration is

extremely common among political time series.

The distinguishing feature of the I(d) process is that its autocovariance function

declines at a slower hyperbolic rate, instead of the geometric rate found in conven-

tional stationary and invertible ARMA processes. When d > 0, the I(d) process is

often called the long memory process. The I(d) process can display nonstationary

phenomenon when d ≥ 1/2, otherwise, it is covariance stationary. As a consequence,

with a continuum of possible values of d, both I(0) and I(1) processes can be viewed
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as special cases of the I(d) process, where the differencing parameter d is 0 and

1, respectively. The I(d) process therefore provides a unified and flexible modeling

framework for empirical applications.

Given that fractional integration is extremely common among political time series

and empirical studies based on the TSCS model are far-reaching in social science, we

combine the long memory and TSCS literature into a unified framework. Clearly, the

coverage of the long memory TSCS model includes the usual TSCS model with the

AR(1) process as one of its special cases. The nonstationary TSCS processes discussed

in Beck (2001) are also subsumed with the long memory TSCS data. To deal with the

estimation and inference issues concerning the long memory TSCS model, we follow

the spirit of Beck and Katz (1995, p. 634) to offer a new method that is both easier

to implement and produces accurate standard errors for the long memory TSCS

data. This method combines a nonparametric inference method based on the MD

(multiple-differenced) estimator of Tsay (2007) and the long-run variance estimator

of Robinson (1998). We thus name this procedure as the MD standard errors (MDSE)

estimator. The MDSE method not only can deal with the aforementioned comment

of Beck (2001, p. 280) about nonstationary TSCS data, but also can handle the

complicated structure of TSCS data consisting of AR, MA, unit root, and stationary

and nonstationary I(d) processes in all the regressors and errors, provided that the

regularity conditions outlined in the following Theorem 1 are satisfied. Consequently,

the case of cointegration also can be taken care of with the MDSE estimator. On

the other hand, the standard cointegration techniques cannot be applied to the long

memory TSCS data easily due to the presence of I(d) processes in the data. Even

though we can generalize the standard cointegration techniques to the long memory

TSCS data, the resulting OLS estimator generally has a non-standard distribution

which is difficult to use in inference, because we need to simulate different sets of

critical values for the complicated combinations of different I(d) regressors and errors

within and across cross units, and at various sample sizes under this circumstance.

The MD estimator of Tsay (2007) essentially first-differences both the dependent
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variable and the regressors M (a positive integer) times before running the subsequent

OLS estimator in order to control the impacts of the fixed effect on the estimation

results and to ensure that the resulting MD estimator is asymptotically normally

distributed under suitable regularity conditions. The idea behind the MDSE is similar

to the one used in Beck and Katz (1995) who retain the OLS parameter estimates,

but replace the OLS standard errors with PCSE. The MDSE estimator retains the

MD parameter estimates and applies the long-run variance estimator of Robinson

(1998) to calculate the MDSE based on the residuals from the MD estimation. Most

importantly, the use of multiple-differencing does not always result in the efficiency

loss of the MD estimator as compared to the OLS counterpart as clearly investigated

in Tsay (2007, p. 835 and p. 836), even though it can always eliminate the impacts

of the fixed effect on the regression coefficient estimates.

There are at least four distinguished advantages of using the MDSE estimator for

the long memory TSCS data. First of all, the use of multiple-differencing when imple-

menting the MDSE estimator can resolve the spurious regression problems induced

by the stationary or nonstationary long memory processes. The well-known spuri-

ous effect has been considered in Granger and Newbold (1974) and Phillips (1986)

when considering the relationship between independent I(1) processes. However, the

spurious regression effect might happen more often than that documented in Phillips

(1986), because Tsay and Chung (2000) find that when we regress a long memory

I(d1) process on another independent long memory I(d2) process, no matter whether

these processes are stationary or not, as long as their orders of integration sum up to

a value greater than 1/2, the usual t-ratio statistic becomes divergent and spurious

effects occur.

Second, the MDSE method can successfully handle the huge number of various

I(d) processes inherent in the TSCS data under suitable regularity conditions. In par-

ticular, when there are K stochastic regressors in each cross unit, the total number

of differencing parameters in the regressors and the errors is N × (K + 1). Moreover,

the typical observations used for TSCS data are relatively small in time-dimension,
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indicating that the estimation of the AR, MA and the fractional differencing parame-

ters cannot be accurate with the usual time-domain and frequency-domain estimation

methods under this circumstance. However, this huge number of differencing param-

eters is not a problem to the MDSE method, because these differencing parameters

are not estimated when calculating the MDSE. In addition, there is no problem con-

cerning the selection of the number of AR and that of MA parameters with the

MDSE method either, because these parameters are not estimated when implement-

ing the MDSE estimator. Section 3 demonstrates the superior ability of the MDSE

estimator in controlling the impacts of AR, MA, and fractional differencing parame-

ters on the testing performance concerning the regression coefficients in the following

Monte Carlo experiment even though the time span is only 20 and the regressors are

nonstationary processes.

Third, the MDSE method is powerful enough to deal with the model allowing

for cross-correlations and serial correlations in both cross-section and time dimen-

sions. This is important in the TSCS literature, because it is well-known that many

regressors in the TSCS model may be serially and contemporaneously correlated.

Fourth, the implementation of MDSE estimator is straightforward, and each re-

gression coefficient of the long memory TSCS models can be tested with the critical

values from the standard normal distribution. No restriction is imposed on the rela-

tive magnitude between N and T as long as the MD estimator for the long memory

TSCS model can be implemented.

The remaining parts of this paper are arranged as follows: Section 2 presents the

test statistics and the main results. In Section 3 the theoretical findings generated

from the following Theorem 1 are verified through a Monte Carlo experiment. Section

4 applies the MDSE method to the welfare spending data of Hicks and Swank (1992).

Section 5 provides a conclusion.

6



2 The models and main results

Consider the generic TSCS model as:

yi,t = x>i,tβ + ui,t, i = 1, . . . , N, t = 1, . . . , T, (1)

where yi,t is a scalar observation on the i-th dependent variable at time t, xi,t

is a (K × 1) vector of observations for the stochastic regressors, β is a (K × 1)

vector of unknown regression coefficients to be estimated and tested, and ui,t is

a scalar random disturbance with mean zero. For expositional purposes, denote

yi = (yi,1, yi,2, . . . , yi,T )> as the column vector containing the observations on the

i-th dependent variable from time 1 to T , while x>i = (xi,1,xi,2, . . . ,xi,T ) represents

the corresponding (K × T ) matrix of observations for the stochastic regressors, and

ui = (ui,1, ui,2, . . . , ui,T )> is similarly defined. The observations for yi, xi, and ui

across i can be further stacked as:

Y =



y1

y2

...

yN


, X =



x1

x2

...

xN


, U =



u1

u2

...

uN


, and Y = Xβ + U. (2)

When xi is non-stochastic and ui is contemporaneously correlated but not serially

correlated, the method of Zellner (1962) can be used to estimate the model in (1).

Under the same conditions, though ui,t in each equation is relaxed to be the AR(1)

process, the GLS estimator of Parks (1967) had been widely adopted in the litera-

ture. Based on Monte Carlo simulations, Beck and Katz (1995) demonstrate that,

under some circumstances, Parks’ method might produce a misleading standard error

that underestimates variability by 50% or more. Beck and Katz (1995) propose an

alternative PCSE estimator for testing the value of β, the major interest of research,

in (1) with the critical values from the standard normal distribution given that ui are

contemporaneously correlated and panel heteroscedastic. In other words, the PCSE

estimator of Beck and Katz (1995) is not designed for the TSCS data consisting of
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stationary or nonstationary I(d) processes, including the unit root which is the special

case of the nonstationary I(d) process.

This paper extends the MD-based method of Tsay (2007) to resolve the inference

problems associated with the long memory TSCS data. Before illustrating the details

of the proposed method, we define the underlying process clearly. Adapting the

notation of Robinson (2005), we denote a short memory process {ηt, t = 0,±1, . . .}

as a zero-mean covariance stationary process with spectral density f(λ), which is

bounded and bounded away from zero. Thus, the short memory process ηt includes

the stationary and invertible ARMA process as its special case.

With ηt and d < 1/2, we define the corresponding stationary I(d) process ξt as:

ξt = 4−dηt, t = 0,±1, . . . , (3)

where4 = 1−L, and L is the usual lag operator. The associated truncated ξt process

is computed as:

ξ#
t = ξt1(t ≥ 1), t = 0,±1, . . . , (4)

where 1 is the indicator function. Based on the process ξ#
t in (4), for q ≥ 0, we define

its corresponding Type I I(q + d) process as:

Wt = 4−qξ#
t , t = 0,±1, . . . . (5)

This Type I I(q + d) process has been used by Tsay (2000, 2007) and Velasco and

Robinson (2000), among others. See Robinson (2005) about the comparison between

Type I and Type II nonstationary processes.

Given the preceding I(d) and its associated Type I nonstationary I(q+d) (q ≥ 1)

process, we generalize the model in (1) as:


yi,t = fi + x>i,tβ + ui,t, x

h
i,t = I(dx,i,h), ui,t = I(du,i), max

1≤h≤K
dx,i,h = dx,i,

dx,i > du,i, if dx,i ≥ 1/2, for any i = 1, 2, . . . , N,

(6)

where fi is the fixed-effect for unit i, and xh
i,t is the h-th element of xi,t. The first

notable feature of the model is that it does not assume xi,t to be non-stochastic as
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commonly adopted in the previous research done for the TSCS data, because it is

natural and more reasonable to assume that the regressors are dependent observations

when the errors are modeled to be serially correlated. For example, the regressors

may contain the political popularity of the government which is frequently modeled

as a random variable, including the research in Box-Steffensmeier and Smith (1996,

1998) and Byers et al. (2000). In so doing, the number of potentially different I(d)

processes in (6) can be as large as N × (K + 1), and this model can be viewed as the

direct extension of the model in (4) of Tsay (2007) to the TSCS context. See Tsay

(2007) about detailed discussions on the restrictions imposed in (6) when N = 1.

We note here that no restriction is imposed on the relative magnitude of dx,i and

du,i in (6), if each component of xi,t and ui,t is stationary for all i = 1, 2, . . . , N .

When the maximum value of the differencing parameter of the regressors xi,t, i.e.,

dx,i, is greater than or equal to 1/2, then we only require that dx,i > du,i so as to

ensure that the probability order of magnitude of xi,t dominates that of ui,t for each

i = 1, 2, . . . , N . This condition is routinely imposed in the regression models involving

nonstationary processes, indicating that the long memory TSCS data subsumes the

standard cointegration model as one of its special cases.

Second, in sharp contrast with the typical TSCS model where ui,t is assumed to

be the simple AR(1) process or its variants, xi,t and ui,t in (6) belong to the more

general I(d) processes.

Third, the idiosyncratic errors ui,t are allowed to be serially and contempora-

neously correlated. The same conditions also apply to the regressors in each cross

unit. As a result, the applicability of the model in (6) is much broader than that

considered in Zellner (1962), Parks (1967), Kmenta and Gilbert (1970), Guilkey and

Schmidt (1973), and Beck and Katz (1995).

Despite the general framework covered by the long memory TSCS model in (6),

we show that this model can be easily estimated and tested with the MDSE provided

that we can employ the long-run variance estimator of Robinson (1998) in controlling

the effects of nuisance parameters in the DGP on the inference problems associated
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with the parameter β. We thus require xi,t and uj,t in (6) to satisfy the conditions

in Assumption A of Robinson (1998) for all i, j = 1, . . . , N . The most stringent

condition imposed in Assumption A of Robinson (1998) is that xi,t and uj,t must be

uncorrelated at all leads and lags for all i, j = 1, . . . , N . However, this condition is

still much weaker than the one where xi,t is fixed or strongly exogenous as frequently

encountered in the previous TSCS literature.

One is aware that, when the regressors and errors are nonstationary, the OLS

estimator can be consistent even though xi,t and uj,t are correlated, but the MD

estimator may result in an inconsistent estimate under this circumstance. Thus,

similar to the standing point taken in Tsay (2007, p. 829), the objective of this paper

is not to present a method which can “efficiently” estimate the long memory TSCS

model in (6), but it proposes a unified testing methodology that can conveniently

deal with the inference problems of the long memory TSCS model when the regularity

conditions in the following Theorem 1 are fulfilled. This strategy also mimics the idea

of Beck and Katz (1995, p. 634) who offer the PCSE estimator that is both “easier

to implement and produces accurate standard errors”.

The MDSE method consists of two steps. First, we multiple-difference the data,

yi,t and xi,t, before we run the subsequent pooled OLS estimation for β, denoted as

β̂MD, or MD estimator. In other words, we employ the multiple-differenced (M -th

differenced as compared to the usual first-differenced) transformation:

4Myi,t = 4Mx>i,tβ +4Mui,t, t = M + 1,M + 2, . . . , T, (7)

where M must be a positive integer in order to eliminate the impacts of fixed effect

fi in (6) on the estimation of β. The fractional differencing parameter of 4Mxh
i,t

is dx,i,h − M , while that of 4Mui,t is du,i − M under this circumstance. We then

employ these M -th differenced dependent variables and M -th differenced regressors

to estimate β with the following MD estimator:

β̂MD =

[
N∑

i=1

T∑
t=M+1

(4Mxi,t −4MX)4M x>i,t

]−1

N∑
i=1

T∑
t=M+1

(4Mxi,t −4MX)4M yi,t,

(8)
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where S denotes the sample average of the random vector Si,t across i and t as

observed in the data. The associated residuals from the MD estimator are:

ei,t = (4Myi,t −4MY)− (4Mxi,t −4MX)>β̂MD,

i = 1, . . . , N, t = M + 1, . . . , T.
(9)

Note that when M = 0, β̂MD reduces to be the usual OLS estimator, but the

choice of M = 0 will not be used in this paper, because of the presence of fixed effect

fi in (6). This also implies that the PCSE estimator of Beck and Katz (1995) should

not be employed if there is a fixed effect inherent in the TSCS data.

We now present the criteria for choosing M in (7):

M =



g + 1, if dx,i,h = du,i = 0, for i = 1, 2, . . . , N , h = 1, 2, . . . , K;

g + 1, if dx,i,h < 0, du,i < 0, for i = 1, 2, . . . , N , h = 1, 2, . . . , K;

g + 1 + max ([dx,i], [du,i]) , otherwise,

(10)

where g is a non-negative integer, and [G] represents the integer part of G. The rule

of choosing M is indeed identical to that outlined in Tsay (2007). The only difference

is that M ≥ 1 is always required in (10), because of the presence of fixed-effect fi in

(6). As will be argued more clearly in the Mathematical Appendix concerning the

theoretical foundation of the choice of M , the message within (10) is that we simply

pick a large enough M to ensure that the differencing parameters of the transformed

regressors and those of the transformed error terms are all negative if we can only

vaguely guess the range of the N × (K + 1) differencing parameters. For example,

if we “know” the regressors and the errors are I(0) processes, then M = 1 can be

used. When there is only one regressor but 0 < dx,i, du,i < 1 for all i = 1, 2, . . . , N ,

then M = 1 can be chosen as well. Please note that we still can use M = 2 in this

set-up and not necessarily increase a higher variance of the MD estimator as shown

in Tsay (2007, p. 835 and p. 836). Another example is that, if we suspect some

regressors are I(1) processes, but the unit root or stationarity tests cannot tell us

whether the differencing parameter of the data is 0 or 1, then we simply adopt M = 2

to implement our difference-based method if we are sure that max
i,j∈{1,...,N}

([dx,i], [du,j]) is
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less than 2. It is clear that the great flexibility enjoyed with our method in choosing

M is invaluable in empirical applications.

Calculating the variance matrix estimator of β̂MD, D̂MD, serves as the second step

of the MDSE method, i.e.:

D̂MD = M̂−1
MDV̂MDM̂

−1
MD, (11)

where

M̂MD =
1

T −M

N∑
i=1

T∑
t=M+1

(4Mxi,t −4MX)4M x>i,t, (12)

V̂MD =
N∑

i=1

N∑
j=1

(T−M)−1∑
q=−(T−M)+1

(
ĉi,j,q × d̂i,j,q

)
, (13)

and
ĉi,j,q = (T −M)−1 ∑

M+1≤t,t+q≤T
(4Mxi,t −4MX)(4Mxj,t+q −4MX)>,

d̂i,j,q = (T −M)−1 ∑
M+1≤t,t+q≤T

ei,t ej,t+q.

(14)

It is evident in (11), (12), (13), and (14) that the computation of D̂MD is extremely

straightforward, because it is based on Robinson’s (1998) elegant long-run variance

estimator which completely avoids any choice of an autoregressive lag length, a kernel

function, or a bandwidth parameter. Moreover, these formulae clearly show that we

do not “estimate” the AR, MA, and fractional differencing parameters, but instead we

employ the nonparametric estimator of Robinson (1998) to control the impacts of AR,

MA, and fractional differencing parameters on the testing performance concerning

the regression coefficients β. In the Mathematical Appendix we offer a more detailed

explanation about the rational behind the computation of D̂MD.

As will be shown in the following Theorem 1 and the simulations in Section 3, the

use of V̂MD can effectively control the impacts of the nuisance parameters in the DGP

of4Mxi,t and that of4Muj,t on the inference performance concerning β. The proof of

Theorem 1 is omitted in that the results in Theorem 1 can be derived from extending

the findings in Theorem 1 of Tsay (2007) or those of Theorem 5 of Robinson (1998).

12



Theorem 1. Under M being defined in (10) and for every pair of i, j ∈ {1, 2, . . . N},

4Mxi,t and 4Muj,t satisfy the conditions in Assumption A of Robinson (1998), and

the spectral density function of the product 4Mxi,t 4M uj,t is finite and positive def-

inite; as T → ∞, the MD estimator for the model in (6) is asymptotically normally

distributed and

(T −M)1/2D̂
−1/2
MD

(
β̂MD − β

)
d−→ N(0, IK),

where D̂MD is defined in (11),
d−→ stands for convergence in distribution, and Ik is a

(K ×K) identity matrix.

Theorem 1 reveals that β̂MD converges at the rate of
√
T , demonstrating the

temporally-dominated nature of the long memory TSCS data. We thus predict that

the precision of the MD estimator increases with the increasing value of T , other things

being equal. Theorem 1 also indicates that the MD-based methodology provides

a unified framework to handle the complicated combination of different orders of

integration in the regressors and errors within and across unit i. Under the conditions

in Theorem 1, each element of β can be tested with the usual t ratio statistic even

though the DGP belong to the stationary or nonstationary long memory processes.

Denoting β0,h as the h-th element of a column vector β0, the null hypothesis for

each element of β can be tested as:

H0 : βh = β0,h, h = 1, 2, . . . , K. (15)

These K individual t-ratio statistics are jointly named as the tMD test, and the t-ratio

statistic for the h-th regressor xh
i,t is:

tMD,h ≡
√
T −M

(
β̂MD,h − β0,h

)
√
D̂h,h

MD

, for h = 1, 2, . . . , K, (16)

where β̂MD,h is the h-th element of the β̂MD estimator, and D̂h,h
MD denotes the row h,

column h element of D̂MD in Theorem 1. When the absolute value of tMD,h in (16)

is greater or equal to 1.96, the null hypothesis βh = β0,h is rejected at the 5% level

of significance. Certainly, a Wald-type statistic can be used to test the value of β

jointly.
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Theorem 1 also shows that the convergence rate of β̂MD does not depend on N ,

which is the number of cross units. This implies that pooling more cross units does

not help achieve a more efficient regression coefficient estimator, and this prediction is

clearly shown in the simulation results presented in the following Table 1. Theorem 1

also presents that the complicated structure induced by more cross units can be easily

controlled with the variance estimator D̂MD built on Robinson’s (1998) estimator.

3 Monte Carlo experiment

In this section we assess the finite sample performance of the MDSE method for the

long memory TSCS model. Following Beck and Katz (1995), we choose K = 1. In

the context of a stochastic regressor framework, we generate 1,000 replications of xi,t

and ui,t based on the following model:

yl
i,t = β0 + β1x

l
i,t + ul

i,t, i = 1, 2, . . . , N, t = 1, 2, . . . , T, l = 1, 2, . . . , 1000, (17)

where l denotes the l-th replication of the data, β0 is fixed at 1, and β1 can be 1, 0.9,

or 0.8 for investigating the empirical powers of the MDSE estimator given that the

value of β0,h in (15) is always set to be 1.

We first consider the cases where xi,t and ui,t are generated as the ARFIMA(0,d,0)

processes. To demonstrate the coverage of Theorem 1, xi,t can be stationary or non-

stationary, while ui,t are always set to be stationary, i.e., the differencing parameters

of ui,t are less than 1/2 for all configurations considered in this section.

When xi,t and ui,t are stationary, they are generated as:

xi,t = 4−dx,ivi,t, ui,t = 4−du,iwi,t, (18)

where dx,i ∈ (0, 1/2) , du,i ∈ (0, 1/2), and vi,t and wi,t all are zero-mean normal and

independently identically distributed (i.i.d.) processes with:

E(v2
i,t) = σ2

v,i, E(w2
j,t) = σ2

w,j, E(vi,twj,s) = 0, for all i, j, t, and s. (19)

To characterize the heterogeneity across the regressors, variances of the first half of

the units are set to be 1, i.e., σ2
v,i = 1 for the first half of the units, while the variances
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of the second half of the units are set to be 1/4. Moreover, vi,t are generated so that

all pairs of units are equally cross-correlated with a value of 1/2. Likewise, wi,t is

generated with the same cross-correlation characteristics.

When xi,t is modeled as a nonstationary I(1+d) process, we just partial sum a cor-

responding stationary I(d) process based on the definition of the Type I nonstationary

process. Since the maximum value of dx,i considered in the Monte Carlo experiment

is 1.4, M = 2 is chosen for the entire simulation studies, even though M = 1 is large

enough to handle the cases where the regressor and error term are stationary. Thus,

the flexibility of choosing M is clearly demonstrated with our experiment.

Table 1 contains the finite sample performance of the β̂MD estimator when β1 = 1 is

used. For all specifications considered in Table 1, the simulations reveal that the pat-

tern in the root-mean-squared error (RMSE) is consistent with the prediction made in

Theorem 1, i.e., the precision of the MD estimator increases with the increasing value

of T , other things being equal. In addition, Table 1 reveals that pooling more cross

units does not necessarily achieve a lower value of RMSE. This finding is consistent

with the analytical results presented in Theorem 1 in that the convergence rate of

β̂MD does not depend on N , which is the number of finite cross units.

Tables 2 and 3 illustrate the sampling properties of the tMD test at the 5% level

of significance. To better understand the finite sample performance of the tMD test,

we follow Davidson and MacKinnon (1985) and Tsay (2007) to assess the asymptotic

local power of the tMD test when the DGP is a sequence of the form:

4Myi,t = 4Mx>i,tβ0 +4Mx>i,t(δ0/
√
T −M)+4Mui,t, t = M +1,M +2, . . . , T, (20)

where δ0 is a (K × 1) finite constant. Given that the true value of βh is generated as

β0,h + (T −M)−1/2δ0,h, then asymptotically:

tMD,h
d−→ N(D

−1/2
h,h δ0,h, 1), (21)

where Dh,h is the row h, column h element of the asymptotic value of D̂MD in Theorem

1, and δ0,h is the h-th element of δ0. This implies that the power of the tMD,h test
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increases with the increasing value of |δ0,h| for a fixed sample size T and a fixed Dh,h.

When δ0,h = 0, the power of the tMD,h test is equivalent to its own size.

Since β0,h in (15) is always set to be 1 in the experimental study, the simulation

results correspond exactly to the size of the tMD test when the data are generated with

β1 = 1. Table 2 and Table 3 show that the size control of the tMD test is quite well

even though the time span is only 20, because the worst distortion found within these

tables is less than 7% (under the configuration dx,i = 0.2, du,i = 0.4 in Table 2 with

N = 10, T = 20). The size performance improves as T increases, clearly supporting

the findings in Theorem 1 in that β̂MD is asymptotically normally distributed and

converges at a rate of
√
T under the conditions in Theorem 1.

We now consider the power performance of the tMD,h test under two alternatives,

i.e., β1 = 0.8 and 0.9. According to the local power analysis of the tMD,h test discussed

above, we note that (T −M)−1/2δ0,1 = −0.1 when β1 = 0.9, and (T −M)−1/2δ0,1 =

−0.2 when β1 = 0.8, Thus, for a fixed alternative (β1 = 0.9, or 0.8), ceteris paribus,

the value of |δ0,1| increases with an increasing value of T , indicating that the power

of the tMD,h test improves as T becomes larger. This is basically what we observe in

these tables. Indeed, this prediction is completely supported in Tables 2 and 3 for all

N considered in the experiment when β1 = 0.8 and T ≥ 20.

To check the robustness of the preceding findings, we replicate the above simula-

tions by generating xi,t and ui,t as the following ARFIMA(1,d,1) processes:

(1− φx,iL)4dx,i xi,t = (1 + θx,iL)vi,t, (1− φu,iL)4du,i ui,t = (1 + θu,iL)wi,t, (22)

where

φx,i = θx,i = φu,i = θu,i =
1

2
, i = 1, . . . , N. (23)

Tables 4 and 5 display the sampling properties of the tMD test at the 5% level of

significance with the aforementioned more general ARFIMA(1, d, 1) processes. These

tables show that the size control of the tMD test is much better than those from the

ARFIMA(0, d, 0) processes, although the time span is only 20, because the worst

distortion found within these tables is only 3% (under the configuration dx,i = 0.2,
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du,i = 0.4 in Table 4 with N = 40, T = 20). The size performance also improves

as T increases and clearly confirms the findings in Theorem 1. We also find that

the power of the tMD,h test improves as T becomes larger in Tables 4 and 5 for all

N considered in the experiment when β1 = 0.8 and T ≥ 20. As a consequence,

the superior ability of the MDSE estimator in controlling the impacts of nuisance

parameters within the error terms and regressors on the testing performance of the

tMD test is clearly supported in Tables 2-5.

4 Empirical application

The methodology developed in this paper is motivated by combining the long memory

and TSCS literature into a unified framework, because the applicability of the long

memory TSCS model is enormous in social science. Due to the increasing importance

of the I(d) process in political science, we apply the MD-based approach to a real

dataset from the political time series in this section.

We re-examine the data of Hicks and Swank (1992) about welfare spending in

18 advanced industrial countries for the period 1960-82, as Beck and Katz (1995)

do. The dependent variable used in Hicks and Swank (1992) is welfare spending

as a proportion of gross domestic product. Hicks and Swank (1992) use a variety

of political, institutional, and economic independent variables, including electoral

turnout, the natural log of gross domestic product, and the price level. The general

findings from Hicks and Swank (1992) based on Parks’ (1967) method are that most

of the t-ratios are above 4 as has been pointed out in Beck and Katz (1995). When

applying the PCSE estimator to re-examine the data of Hicks and Swank (1995), Beck

and Katz (1995) find that the “evidence for positive voter turnout effects is pervasive

and robust” in Hicks and Swank (1992) changes as being marginally insignificant.

This paper focuses on four independent variables in the analysis of Hicks and

Swank (1992), i.e., the electoral turnout, the natural log of gross domestic product,

the price level, and the proportion of the population that is elderly. These variables
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are chosen, because they are important in explaining the welfare spending study of

Hicks and Swank (1992). The second reason is that their movements are more like

smooth time series data as required in the conditions imposed in Theorem 1. Another

reason is that we suspect some of these variables might be stationary or nonstationary

I(d) processes. For example, the price level is usually taken as a nonstationary process

and has been tested to be an I(d) process in Baum et al. (1999). This implies that the

estimation results in both Hicks and Swank (1992) and Beck and Katz (1995) could

be problematic if some regressors are really stochastic I(d) processes. Importantly,

with a short time span of 23, there is no way to test the exact order of integration of

time series processes with confidence. This also explains why we propose the MDSE

method for the inference of long memory TSCS models without exactly knowing

whether the regressors or errors in each cross unit are stationary or not. We also

document that what has been done here is not to replicate the work of Hicks and

Swank (1992) or that of Beck and Katz (1995), but rather to signify that the potential

presence of stationary or nonstationary I(d) processes in the TSCS model is influential

in affecting the testing results concerning welfare spending and other similar variables.

Following Hicks and Swank (1992), we control for a possible post-1973 shift in

welfare effort. Our procedure is to regress the dependent variable and the four inde-

pendent variables on a constant and a post-1973 dummy, respectively. The residuals

from these five regressions are collected to implement the MDSE estimator. Note

that, when M = 0, the post-1973 dummy equals 1 for 1973 and later, otherwise 0.

To adapt to the use of first-differencing when M = 1, the post-1973 dummy equals 1

for 1973, otherwise 0.

Table 6 contains the estimation and testing results from two different values of M ,

i.e., M = 0, and 1. As shown previously, the presence of fixed effects prevents us from

using M = 0 in implementing the MD estimator. Moreover, we highly suspect that

the price level data are nonstationary processes. Thus, M = 0 should not be used in

carrying out the MD estimator under this circumstance. The appearance of M = 0

in Table 6 is purely used as the benchmark to demonstrate the effects of ignoring the
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possible presence of stochastic I(d) regressors on the testing results. We find that all

these four independent variables in Table 6 are highly significant in explaining the

movement of welfare spending when M = 0 is used.

The MD estimate for the variable Turnout is 4.1122 when M = 1. This estimate is

almost identical to the OLS-AR1 estimate of 4.1 in Table 6 of Beck and Katz (1995).

However, based on the MDSE estimator, the variable Turnout is significant at the 5%

level in a one-tailed test when M = 1. Therefore, the results from using the MDSE

estimator with M = 1 actually reveal a weak but significant positive effect of voter

turnout on welfare spending. This finding does not strongly support the pervasive

and robust positive voter turnout effects observed in Hicks and Swank (1992). It is

also different from the observation in Beck and Katz (1995) who document that the

evidence for positive voter turnout effects changes as being insignificant when using

their PCSE method .

For the testing results concerning the remaining three variables, and not the vari-

ables of interest to Hicks and Swank (1992) and Beck and Katz (1995), we find that

the absolute value of the t-ratios associated with these three variables greatly de-

creases as compared to those obtained with M = 0. This implies that these three

variables might also be highly persistent time series or even nonstationary processes.

Again, we cannot be sure about their orders of integration with the short time span

available at hand, but we still can test the value of these regression coefficients with

the MDSE method developed in this paper.

5 Conclusions

A general class of long memory TSCS models is suggested to combine long memory

and TSCS models into one unified framework. Although the coverage of this class

of long memory TSCS models is broad, we show that they still can be easily esti-

mated with a unified procedure proposed in this paper. This approach is built on the

MD-based method of Tsay (2007) in order to resolve the spurious effect induced by
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the long memory processes, and it eliminates the need to simulate different sets of

critical values for the complicated combinations of different I(d) regressors and errors

within and across cross units, and at various sample sizes. This feature is especially

valuable in empirical applications, because the fractional differencing parameters of

the regressors and those of the error terms cannot be estimated without bias when

the sample size is relatively small as found in the typical TSCS data.

The computational cost of the proposed procedure is extremely mild and can

be conducted with standard statistics packages, because it is built on the easy-to-

implement but powerful long-run variance estimator of Robinson (1998). Further-

more, there is no restriction imposed on the relative magnitude between N and T

provided that the MD estimator for the TSCS model can be implemented.

The simulations conducted in this paper reveal that the size control of our method

is very promising under various combinations of cross-section, time dimensions, and

stationary and nonstationary long memory processes, although T is only 20. The

pattern of the finite sample power performance of our method is highly consistent with

the theoretical findings generated from an asymptotic local power analysis. Therefore,

the proposed method has great potential to successfully deal with a general class of

long memory TSCS data which have never been explicitly considered in the literature.

We also apply our method to re-examine the data of Hicks and Swank (1992) about

the determinants of welfare spending, because some of the data used in Hicks and

Swank (1992) might be I(d) processes. The testing results from the MDSE method

with M = 1 reveal a weak but significant positive effect of voter turnout on welfare

spending. This finding is in the middle of the results in Hicks and Swank (1992)

and those in Beck and Katz (1995). It also signifies that the potential presence of

stationary or nonstationary I(d) processes in the TSCS model is influential in affecting

the testing results concerning welfare spending.
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Mathematical Appendix

In this appendix we consider the theoretical foundation of choosing M for imple-

menting the MD estimator and the associated modified long-run variance estimator

of Robinson (1998).

Before discussing the method of choosing M in (10) for implementing the MD

estimator, let us remark here that the choice of M must be big enough to ensure

that the resulting transformed regressors and transformed error terms are covariance

stationary in order to represent them with the following infinite-order MA processes:

4Mxi,t =
∞∑

n=0

ϕi,nai,t−n, 4Muj,t =
∞∑

n=0

ψj,nbj,t−n, t = M + 1, . . . , T,

where ai,t and bj,t satisfy the conditions in Assumption A of Robinson (1998) as

required previously. Note that each element of ai,t is allowed to be correlated with

each other so as to capture the major feature of TSCS data. Moreover, ai,t or bi,t can

be also contemporaneously correlated across i, respectively, for the similar argument,

as long as xi,t and uj,t are uncorrelated at all leads and lags for all i, j = 1, . . . , N as

discussed previously.

Given the above-mentioned restrictions imposed on 4Mxi,t and 4Muj,t, Robin-

son (1998) shows that the long-run variance of 4Mxi,t 4M uj,t can be consistently

estimated if the fractional differencing parameter of 4Mxi,t and that of 4Muj,t are

all greater than or equal to zero and 0 ≤ (dx,i,h − M) + (du,j − M) < 1/2 for all

i, j = 1, . . . , N and h = 1, . . . , K. Theoretically, the finding concerning Robinson’s

(1998) long-run variance estimator is of great importance to the inference of β based

on the MD estimator defined in (8). One drawback, empirically, is that the possi-

bility that the conditions 0 ≤ (dx,i,h −M) + (du,j −M) < 1/2 are satisfied for all

i, j = 1, . . . , N and h = 1, . . . , K could be very low, especially when the values of N

and K are relatively large. If we further consider the difficulties that the integration

orders of 4Mxi,t and that of 4Muj,t are simply unknown in reality, and the differenc-

ing parameters of the transformed regressors 4Mxi,t and that of transformed error

term 4Muj,t just cannot be estimated without bias when the sample size is relatively
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moderate, then we quickly realize that it may be risky to apply Robinson’s (1998)

estimator to the long memory TSCS data without modifications, not to mention that

the total differencing parameters to be estimated are N × (K + 1).

The major advantages of using the choice of M in (10) is that: Even though we

are not sure about the range and the combinations of the N × (K + 1) differencing

parameters inherent in (6), we still can apply the methodology developed in Robinson

(1998) to test the value of β in the long memory TSCS model, provided that we are

willing to pick a larger value of M to ensure that the differencing parameters of

the transformed regressors and those of the transformed error terms are all negative.

There are two reasons behind this choice of M . First, under suitable regularity

conditions, we prove that the asymptotic covariance matrix of β̂MD can be consistently

estimated with the help of Robinson’s (1998) method under this circumstance. It

follows that our choice of M is theoretically justified. Furthermore, if the differencing

parameter of4Mxh
i,t and that of4Muj,t have opposite signs, then the spectral density

function of 4Mxh
i,t 4M uj,t may degenerate to be zero based on Lemma A.1 of Tsay

(2000), implying that the
√
T convergence rate of the MD estimator presented in

Theorem 1 may not hold, and the theoretical foundation of using the critical values

from the standard normal distribution for testing the value of β is problematic under

this situation. This motivates us to select a larger value of M to ensure that the

differencing parameters of 4Mxi,t and that of 4Muj,t are all negative in order to

result in an asymtotically normally distributed MD estimator defined in (8).

The second reason for the choice of M is more empirically oriented, i.e., we may

not be sure about the exact value of the fractional differencing parameter of the time

series under consideration. However, it is much easier for us to pick up a large enough

M to ensure that the differencing parameters of the transformed regressors and those

of the transformed error terms are all negative with the help of the semiparametric

estimators developed in Robinson (1995). These arguments together explain why

we want to and can propose a unified testing procedure for the long memory TSCS

model.
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We now discuss the rational behind the computation of D̂MD in (11). Under M

being defined in (10), the model in (6) becomes the one in (7), because M ≥ 1 is

imposed in (10). For simplicity and without loss of generality, assuming that we know

the mean of 4Mx>i,t and that of 4Mui,t are all zero, we can represent the associated

pooled OLS estimator for β as:

β̂MD − β =

 N∑
i=1

T∑
t=M+1

4Mxi,t 4M x>i,t

−1
N∑

i=1

T∑
t=M+1

4Mxi,t 4M ui,t. (8′)

Here, V̂MD in (13) is employed to consistently estimate the N2 values of the long-run

variances of 4Mxi,t4M uj,t from the value of
N∑

i=1

T∑
t=M+1

4Mxi,t 4M ui,t in (8′). The

design of V̂MD reflects the defining feature of Robinson’s estimator and that of TSCS

data. Since the condition that N is finite is always satisfied for the basic set-up of

TSCS data, the pooling of the finite N cross units will not change the convergence rate

of the MD estimator in (8). Moreover, V̂MD in (13) reduces to be the corresponding

counterpart considered in Tsay (2007) where N = 1.
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Table 1. RMSE of the MD Estimator for the Long Memory TSCS Data

T 10 20 30 40 50 60

dx,i = 0.4, du,i = 0.2 for all i = 1, 2, . . . , N

N = 10 0.2565 0.1672 0.1381 0.1194 0.1044 0.0982

N = 20 0.2214 0.1527 0.1278 0.1099 0.0993 0.0884

N = 30 0.2241 0.1479 0.1282 0.1082 0.0971 0.0890

N = 40 0.2137 0.1420 0.1251 0.1040 0.0962 0.0894

dx,i = 0.2, du,i = 0.4 for all i = 1, 2, . . . , N

N = 10 0.2316 0.1521 0.1253 0.1081 0.0942 0.0888

N = 20 0.1988 0.1373 0.1160 0.0994 0.0898 0.0798

N = 30 0.2017 0.1340 0.1154 0.0974 0.0881 0.0804

N = 40 0.1926 0.1284 0.1135 0.0941 0.0869 0.0808

dx,i = 1.4, du,i = 0.2 for all i = 1, 2, . . . , N

N = 10 0.3882 0.2431 0.2029 0.1764 0.1558 0.1461

N = 20 0.3443 0.2318 0.1862 0.1626 0.1487 0.1320

N = 30 0.3425 0.2210 0.1944 0.1650 0.1425 0.1328

N = 40 0.3302 0.2098 0.1808 0.1535 0.1426 0.1325

dx,i = 1.2, du,i = 0.4 for all i = 1, 2, . . . , N

N = 10 0.3644 0.2303 0.1919 0.1669 0.1472 0.1381

N = 20 0.3214 0.2181 0.1765 0.1537 0.1401 0.1247

N = 30 0.3214 0.2080 0.1829 0.1550 0.1350 0.1253

N = 40 0.3079 0.1986 0.1719 0.1453 0.1348 0.1253

Notes: The results are all based on 1,000 replications with M = 2. The data are
generated based on (17), (18), (19), and β0 = β1 = 1. RMSE denotes the root of
mean-squared-errors.
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Table 2. Empirical Power of the tMD Test at the 5% Level of Significance
with ARFIMA(0, d, 0) Processes and Stationary Regressor

T Alternatives 10 20 30 40 50 60

dx,i = 0.4, du,i = 0.2 for all i = 1, 2, . . . , N

N = 10 β1 = 1.0 20.40 11.00 8.80 8.00 7.30 6.40
β1 = 0.9 23.40 18.30 17.80 19.50 19.40 22.10
β1 = 0.8 31.60 33.10 42.40 46.30 52.40 58.30

N = 20 β1 = 1.0 19.60 10.00 9.80 8.00 7.20 7.20
β1 = 0.9 22.10 17.10 18.30 20.90 22.10 24.70
β1 = 0.8 32.80 37.60 44.60 52.80 56.60 62.40

N = 30 β1 = 1.0 20.10 10.80 9.20 8.40 7.60 6.50
β1 = 0.9 22.00 18.10 17.80 22.60 22.00 26.40
β1 = 0.8 34.60 35.70 44.50 51.50 61.60 66.20

N = 40 β1 = 1.0 19.80 11.60 9.40 8.20 7.10 8.20
β1 = 0.9 26.40 20.04 20.08 22.80 23.50 25.60
β1 = 0.8 36.10 37.90 43.90 53.40 60.10 70.20

dx,i = 0.2, du,i = 0.4 for all i = 1, 2, . . . , N

N = 10 β1 = 1.0 21.10 11.90 8.70 8.50 7.20 6.80
β1 = 0.9 24.30 19.70 19.60 21.70 21.70 24.20
β1 = 0.8 33.50 36.90 46.70 52.60 60.50 66.70

N = 20 β1 = 1.0 20.00 9.70 10.40 8.00 7.20 6.70
β1 = 0.9 24.00 18.50 21.50 23.40 25.70 28.40
β1 = 0.8 37.60 42.90 50.20 59.90 64.10 69.90

N = 30 β1 = 1.0 19.80 10.80 8.90 8.50 7.90 7.00
β1 = 0.9 24.20 20.60 20.40 25.60 25.90 30.70
β1 = 0.8 39.20 41.10 52.60 59.10 67.90 75.70

N = 40 β1 = 1.0 20.50 11.40 9.60 7.90 7.00 8.10
β1 = 0.9 27.50 23.80 22.80 25.60 26.80 28.90
β1 = 0.8 40.10 43.70 52.10 62.00 67.80 77.40

Notes: The results are all based on 1,000 replications with M = 2. The data are
generated based on (17), (18), and (19). The null hypotheses in (15) are β0,1 = 1.
The rejection percentages for the alternative, β1 = 1, represent the empirical size of
the tMD tests.
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Table 3. Empirical Power of the tMD Test at the 5% Level of Significance
with ARFIMA(0, d, 0) Processes and Nonstationary Regressor

T Alternatives 10 20 30 40 50 60

dx,i = 1.4, du,i = 0.2 for all i = 1, 2, . . . , N

N = 10 β1 = 1.0 16.80 8.20 8.10 7.00 7.00 6.70
β1 = 0.9 17.50 12.10 11.90 13.90 12.00 13.80
β1 = 0.8 20.60 20.70 24.60 26.40 29.40 31.90

N = 20 β1 = 1.0 17.00 9.50 7.00 7.00 7.10 6.00
β1 = 0.9 16.20 11.30 12.10 14.10 12.90 15.60
β1 = 0.8 21.60 22.60 26.50 29.20 32.60 34.00

N = 30 β1 = 1.0 16.70 8.30 8.70 7.00 6.10 6.40
β1 = 0.9 17.10 13.40 12.30 12.30 13.10 15.70
β1 = 0.8 20.30 21.60 25.00 29.50 33.80 37.10

N = 40 β1 = 1.0 17.40 9.00 8.10 7.10 7.10 7.80
β1 = 0.9 19.80 15.90 12.90 13.30 14.10 14.90
β1 = 0.8 24.80 22.60 24.00 31.70 33.80 39.30

dx,i = 1.2, du,i = 0.4 for all i = 1, 2, . . . , N

N = 10 β1 = 1.0 18.20 9.50 7.80 7.10 6.80 7.00
β1 = 0.9 19.00 13.30 13.20 15.50 13.30 14.70
β1 = 0.8 22.40 22.40 26.30 29.20 31.30 35.60

N = 20 β1 = 1.0 17.30 10.00 7.20 7.00 7.50 6.00
β1 = 0.9 17.20 12.10 12.50 14.90 14.10 16.50
β1 = 0.8 22.60 24.70 29.20 32.20 35.10 38.00

N = 30 β1 = 1.0 17.70 8.80 8.70 7.20 6.20 6.10
β1 = 0.9 18.70 14.40 12.90 14.00 13.90 16.80
β1 = 0.8 21.90 23.30 27.10 32.40 37.20 39.70

N = 40 β1 = 1.0 17.60 9.20 8.40 7.60 7.40 7.80
β1 = 0.9 21.10 16.20 13.60 15.10 14.50 15.90
β1 = 0.8 26.90 24.60 26.10 34.70 36.70 43.30

Notes: The results are all based on 1,000 replications with M = 2. The data are
generated based on (17), (18), and (19). The null hypotheses in (15) are β0,1 = 1.
The rejection percentages for the alternative, β1 = 1, represent the empirical size of
the tMD tests.
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Table 4. Empirical Power of the tMD Test at the 5% Level of Significance
with ARFIMA(1, d, 1) Processes and Stationary Regressor

T Alternatives 10 20 30 40 50 60

dx,i = 0.4, du,i = 0.2 for all i = 1, 2, . . . , N

N = 10 β1 = 1.0 13.10 7.00 6.70 7.00 5.70 5.70
β1 = 0.9 14.70 12.10 13.50 15.60 15.10 17.20
β1 = 0.8 20.10 26.30 32.60 36.70 41.30 50.50

N = 20 β1 = 1.0 13.40 7.30 5.40 6.20 6.80 6.70
β1 = 0.9 12.70 11.80 14.20 15.90 17.00 19.70
β1 = 0.8 21.90 29.50 35.00 42.10 46.70 53.80

N = 30 β1 = 1.0 12.20 7.90 7.90 7.20 5.50 5.10
β1 = 0.9 14.70 13.50 14.50 17.30 18.70 21.10
β1 = 0.8 22.00 28.70 35.00 41.50 51.20 55.70

N = 40 β1 = 1.0 13.20 6.90 6.10 6.80 7.30 6.80
β1 = 0.9 16.90 15.80 13.70 17.50 18.20 21.70
β1 = 0.8 25.70 29.40 34.20 47.00 49.80 59.70

dx,i = 0.2, du,i = 0.4 for all i = 1, 2, . . . , N

N = 10 β1 = 1.0 13.50 7.20 7.10 7.00 5.80 5.40
β1 = 0.9 15.70 12.80 13.60 16.50 16.20 18.00
β1 = 0.8 22.00 28.70 33.90 38.70 43.50 52.80

N = 20 β1 = 1.0 13.70 7.40 5.80 6.50 7.10 6.50
β1 = 0.9 13.70 12.20 14.20 16.90 17.70 19.80
β1 = 0.8 23.70 31.30 37.10 44.30 48.60 55.70

N = 30 β1 = 1.0 12.40 7.90 7.30 7.00 6.10 5.30
β1 = 0.9 15.70 14.00 15.30 17.70 18.70 22.90
β1 = 0.8 23.10 31.20 36.40 44.00 53.20 57.60

N = 40 β1 = 1.0 14.00 8.00 6.20 6.40 7.50 7.30
β1 = 0.9 18.20 17.40 15.00 19.10 19.40 22.10
β1 = 0.8 26.20 31.60 36.10 47.40 52.50 62.60

Notes: The results are all based on 1,000 replications with M = 2. The data are
generated based on (17), (19), and (22). The null hypotheses in (15) are β0,1 = 1.
The rejection percentages for the alternative, β1 = 1, represent the empirical size of
the tMD tests.
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Table 5. Empirical Power of the tMD Test at the 5% Level of Significance
with ARFIMA(1, d, 1) Processes and Nonstationary Regressor

T Alternatives 10 20 30 40 50 60

dx,i = 1.4, du,i = 0.2 for all i = 1, 2, . . . , N

N = 10 β1 = 1.0 6.60 4.30 5.40 4.70 4.30 4.80
β1 = 0.9 8.60 10.70 15.50 15.70 19.90 22.40
β1 = 0.8 16.00 30.20 40.70 50.00 55.10 63.60

N = 20 β1 = 1.0 7.50 4.30 4.20 4.90 4.70 4.70
β1 = 0.9 9.20 12.50 14.20 19.80 24.20 27.40
β1 = 0.8 19.20 32.90 44.20 53.60 60.80 70.90

N = 30 β1 = 1.0 6.90 4.50 6.10 6.40 3.50 3.90
β1 = 0.9 11.10 14.80 15.20 21.00 23.70 27.40
β1 = 0.8 20.60 34.90 45.50 57.50 64.10 72.40

N = 40 β1 = 1.0 7.50 4.30 3.40 4.00 4.60 5.70
β1 = 0.9 11.60 16.90 18.60 21.20 22.10 28.50
β1 = 0.8 23.00 35.30 43.80 59.70 65.30 74.60

dx,i = 1.2, du,i = 0.4 for all i = 1, 2, . . . , N

N = 10 β1 = 1.0 7.70 5.20 5.50 5.40 4.30 4.80
β1 = 0.9 9.30 10.40 14.40 14.30 16.30 19.10
β1 = 0.8 15.60 27.80 35.00 42.00 47.00 55.20

N = 20 β1 = 1.0 8.40 5.00 4.40 4.30 5.10 5.30
β1 = 0.9 9.90 12.30 13.50 17.20 21.60 23.10
β1 = 0.8 19.30 29.70 38.80 46.90 53.60 61.70

N = 30 β1 = 1.0 8.50 5.80 7.60 6.90 4.50 4.90
β1 = 0.9 11.40 13.30 14.90 18.50 19.70 23.30
β1 = 0.8 19.70 29.70 38.40 48.90 57.20 63.00

N = 40 β1 = 1.0 8.50 5.20 4.20 5.00 5.50 6.10
β1 = 0.9 12.60 15.00 16.00 18.60 18.80 23.70
β1 = 0.8 22.40 31.20 36.90 51.40 57.60 66.60

Notes: The results are all based on 1,000 replications with M = 2. The data are
generated based on (17), (19), and (22). The null hypotheses in (15) are β0,1 = 1.
The rejection percentages for the alternative, β1 = 1, represent the empirical size of
the tMD tests.
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Table 6. Estimates of the Hicks and Swank Data with the MDSE Method

M = 0 M = 1

Variables Estimate t-ratio Estimate t-ratio

Turnout 19.5944 12.3269∗∗∗ 4.1122 1.7104∗

lnGDP 1.5000 2.4337∗∗ 0.3549 0.3146

Price level 0.0583 4.3347∗∗∗ 0.0545 2.7440∗∗∗

×100

Aged share 113.8592 10.4161∗∗∗ 82.8911 2.5354∗∗

of population

Notes: The results are based on the data of Hicks and Swank (1992) about welfare
spending in 18 advanced industrial countries for the period 1960-82. Turnout is the
electoral turnout, lnGDP is the natural log of gross domestic product, Price level
is the consumer price index, and Aged share of population is the proportion of the
population who are elderly. See Hicks and Swank (1992) about the detailed definition
of these independent variables. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and
10% levels in a two-tailed test, respectively.
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