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Abstract

This paper considers the instrumental variables (IV) estimation of the autore-
gressive distributed lag (ADL) model consisting of fractionally integrated regres-
sors and errors, while allowing for part of the regressors to be endogenous. The
idea of Liviatan (1963) and that of Tsay (2007) are combined to construct con-
sistent and asymptotically normally distributed multiple-differenced two-stage-
least-squares (MD-TSLS) and MD generalized method of moments (MD-GMM)
estimators for the long memory ADL model. The simulations show that the
performance of the MD-GMM estimator is especially excellent even though the
sample size is 100. The IV estimators are applied to the data of Durr, Gilmour,
and Wolbrecht (1997) on Congressional approval. As compared to the 0.08 es-
timate of the long-run effect of presidential approval on Congressional approval
based on the scalar ADL model of De Boef and Keele (2008), a stronger support
for the divided party government hypothesis is found for a class of the vector
ADL model which generates a corresponding long-run impact equal to 0.26 or
higher.
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1 Introduction

It is well documented in Hendry (1995) that a dynamic analysis should start with a

general model. This point has also been clearly spelled out in De Boef and Keele (2008)

who emphasize that restrictive specifications might be adopted without evidence that

restrictions are valid if the analysts do not start with a general model. In the context

of stationary data and weakly exogenous regressors, De Boef and Keele (2008) highly

recommend that the following autoregressive distributed lag or the ADL(p, k, l) model

fits the criteria of Hendry (1995):

yt = α0 +
p∑

i=1

ρiyt−i +
k∑

j=1

l∑
i=0

βjixj,t−i + εt = α0 +
p∑

i=1

ρiyt−i + f�
t β + εt, (1)

where xj,t are weakly exogenous such that E(xj,sεt) = 0 for all j, s, and t. The param-

eter γ� = (ρ�, β�), where ρ = (ρ1, . . . , ρp)
�, is the focus of analysis, because it can

be used to calculate the short-run or impact multipliers, the long-run effect or total

multipliers, and other important quantities of interest to political scientists. This is the

second reason why De Boef and Keele (2008) recommend the ADL model for empirical

applications, because it is flexible in relating the short-run and long-run influences of

the regressors on dependent variable yt. When searching for articles published in The

American Political Science Review, The American Journal of Political Science, and

The Journal of Politics between 1995 and 2005, De Boef and Keele (2008) document

that 73 articles use time series regression in the context of stationary data, indicating

that the ADL model helps political scientists obtain a better understanding of political

dynamics.

The ADL model has also been extensively considered in the economic literature.

One example noted in Liviatan (1963) is the distributed lag model used by Koyck

(1954) in his empirical analysis of investment:

It = aQt + b
∞∑
i=0

λiQt−1−i + ct, (2)

where It denotes the aggregate investment and Qt is the aggregate output. Defining
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rt = ct − λct−1, the model in (2) can be rewritten as:

It = aQt + (b− λa)Qt−1 + λIt−1 + rt. (3)

This happens to be a special case of the model in (1).

When l = 0, the ADL model reduces to the stochastic linear difference equation:

yt = α0 +
p∑

i=1

ρiyt−i +
k∑

j=1

βjxj,t + εt = α0 +
p∑

i=1

ρiyt−i + x�t β + εt, (4)

where xt is a (k × 1) vector of the stochastic regressors. The stochastic linear differ-

ence equation arises as a consequence of a process of partial adjustment or adaptive

expectation as explained in Harvey (1990). Although the stochastic linear difference

equation is a special case of the ADL model, the great potential in the stochastic

linear difference equation for empirical applications and the theoretical interest in its

own right stimulate a large number of estimation methods, including Durbin (1959),

Walker (1964), Amemiya and Fuller (1967), Box and Jenkins (1970), Hannan and

Nicholls (1972), and Hatanaka (1974, 1976), to name a few. Nicholls et al. (1975) and

Reinsel (1979) provide overviews about the estimation of this model. Durr, Gilmour,

and Wolbrecht (DGW hereafter, 1997) apply the stochastic linear difference equation

to explain Congressional approval.

The condition
∑p

i=1 ρi < 1 is regularly imposed in the ADL literature to ensure that

the dependent variable yt is stationary. The other important necessary condition for

the stationarity of yt often neglected in the literature is that the stochastic regressor

xj,t must be stationary for all j = 1, . . . , k as well. The model satisfying these two

conditions is named the stationary ADL model. If εt is further assumed to be serially

uncorrelated, then the ordinary least squares (OLS) estimator for γ is consistent under

the stationary ADL model assumption and suitable regularity conditions.

In the political science literature, Keele and Kelly (2005) provide several practical

suggestions on when and how to use lagged dependent variables (LDV) on the right-

hand side (RHS) of the ADL model. Essentially, the aforementioned three restrictions

are implicitly or explicitly assumed in the political science literature when conducting
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empirical studies. One drawback of these conditions is that they rule out the possibility

that some of the variables in xt might be endogenous. These conditions also restrict

the applicability of the ADL model to political science analysis, because they do not

allow the errors to be serially correlated as found in many time series analysis. In

addition, Keele and Keely (2005, p. 203) document that whatever the strengths are of

LDV, they are inappropriate with nonstationary data that have not been differenced.

Nevertheless, they do not provide any method to deal with this issue.

This paper adopts the suggestion of Keele and Keely (2005) to deal with the non-

stationary ADL model based on the multiple-differencing principle of Tsay (2007).

Indeed, the coverage of this paper is much broader than that of the nonstationary

ADL model considered in Keele and Keely (2005). It is shown that the ADL model

can be consistently estimated and effectively tested even though ft and εt in (1) are

stationary or nonstationary fractionally integrated, or I(d), processes introduced in

Granger (1980), Granger and Joyeux (1980), and Hosking (1981).

The distinguishing feature of the I(d) process is that its autocovariance function

declines at a slower hyperbolic rate, rather than the geometric rate found in station-

ary autoregressive and invertible moving-average (ARMA) processes. When d > 0,

the I(d) process is often called the long memory process. The I(d) process can dis-

play nonstationary phenomenon when d ≥ 1/2, otherwise, it is covariance stationary.

With a continuum of possible values of d, both I(0) and I(1) processes can be viewed

as special cases of the I(d) process, where the differencing parameter d is 0 and 1,

respectively. The I(d) process thus provides a unified framework for empirical applica-

tions. Without a doubt, combining the I(d) processes and the ADL literature greatly

enhances the applicability of the ADL model considered in Hendry (1995).

The rationale for considering the long memory ADL model is not only from theoret-

ical interest, but it also closely corresponds to the empirical observations in Lebo et al.

(2000, p. 40) who claim that fractional integration is extremely common among politi-

cal time series. In particular, Box-Steffensmeier and Smith (1996, 1998) use the I(d)
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process to explain the dynamics of aggregate partisanship and macroideology. Byers

et al. (2000) observe long memory phenomena in many aggregate political popularity.

Dolado et al. (2003) find long memory in Spanish opinion polls, while Lai and Re-

iter (2005) apply the autoregressive fractionally-integrated moving-average (ARFIMA)

model to study foreign policy. Clarke and Lebo (2003) employ the concept of fractional

cointegration to investigate political party support in Britain. Likewise, Davidson et

al. (2006) apply a fractionally cointegrating vector error correction model to describe

the poll data on the performance approval of prime ministers and governments in the

UK.

There are two major technical problems associated with the long memory ADL

model as found in the long memory time-series-cross-section (TSCS) data of Tsay

(2009). First, the presence of stationary long memory regressors and errors can induce

spurious regression as discussed in Tsay and Chung (2000). Second, the incorporation

of a dynamic adjustment mechanism through LDV further complicates the estimation

and inference issues concerning the long memory ADL model. One remedy to resolve

these problems is to combine the multiple-difference (MD) method of Tsay (2007)

and the intrumental variables (IV) methodology of Liviatan (1963) to construct an

MD two-stage-least-squares (MD-TSLS) estimator and an MD generalized method of

moments (MD-GMM) counterpart for the long memory ADL model. In particular, the

idea of Liviatan (1963) is to employ the lagged stochastic exogenous variables as the

IV for the LDV. The methodology developed in this paper can be further generalized

to correct the endogenous bias caused by the presence of endogenous variables at the

RHS of regression by using the remaining lagged weakly exogenous variables as the IV

for the endogenous variables

The MD estimator of Tsay (2007) essentially first-differences both the dependent

variable and the regressors M (a non-negative integer) times before running the subse-

quent IV estimator in order to ensure that the resulting IV estimator is asymptotically

normally distributed under suitable regularity conditions. Most importantly, the use of
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multiple-differencing does not always result in the efficiency loss of the MD estimator

as compared to the OLS counterpart as clearly investigated in Tsay (2007, p. 835

and p. 836), even though it can always eliminate the problem of spurious regression

associated with long memory processes.

The methodology developed in this paper can be applied to many studies concern-

ing the short-run and long-run influences of regressors on the dependent variable, even

though the data can be stationary or nonstationary long memory processes. In this

paper we apply the proposed IV estimators to the data of DGW (1997) about Con-

gressional approval where DGW (1997) do not support the divided party government

hypothesis as shown in their Table 2. The data of DGW have also been considered

in De Boef and Keele (2008). This dataset is chosen, because the I(d) processes have

been found useful for modeling Congressional approval and economic expectations in

Box-Steffensmeier and Tomlinson (2000). They also check whether these two variables

are fractionally cointegrated, implying that Box-Steffensmeier and Tomlinson (2000)

believe these two variables are endogenously determined with each other. However,

their testing results are not satisfactory as a large standard error of the fractional dif-

ferencing parameter of the residuals from the fractional cointegration analysis between

these two variables is found. Box-Steffensmeier and Tomlinson (2000) explain this large

standard error as not unexpected since there are only 80 observations.

The second reason why the dataset of DGW (1997) is chosen is that the analysis

in DGW (1997) and that in De Boef and Keele (2008) do not recognize the impacts

induced by the potential endogeneity of presidential approval and that of economic

expectations on Congressional approval. Based on the findings in De Boef and Kellstedt

(2004, p. 648), whereby “consumer confidence should not solely be used as a right-hand-

side variable in analysis of the political economy. Politics, in a variety of forms, affects

economics,” along with the implications derived from the divided party government

hypothesis, the RHS variables, economic expectations, and presidential approval in

the regression of DGW (1997) should be treated as endogenous. This point of view
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and the estimation results from the IV estimators suggest that a class of the vector

ADL model might be suitable to describe the time series properties of Congressional

approval. Interestingly, the results from the vector ADL model support the divided

party government hypothesis if the near multicollinearity resulting from the strong

similarity between economic expectations and presidential approval is carefully taken

into account.

The remaining part of this paper is arranged as follows: Section 2 and Section

3 present the MD-TSLS and MD-GMM estimators and their asymptotic properties,

respectively. Section 4 considers the generalization of the IV methods under a more

general model specification. The important issue concerning the choice of IV for the

general specifications is also taken up in this section. Section 5 verifies the theoretical

findings generated from this paper through a Monte Carlo experiment. The data of

DGW (1997) about Congressional approval are carefully analyzed in Section 6. Section

7 provides a conclusion.

2 Instrumental Variables Estimator

For expositional purposes, we focus on the stationary long memory ADL model with

p = 1 and l = 0:

yt = α0 + ρ1yt−1 + x�t β + εt, |ρ1| < 1, t = 1, . . . , T. (5)

The analytical results derived from this model can be easily extended to the ADL

model in (1) and the situation that some of the regressors are endogenous.

Define a short memory process {ηt, t = 0,±1, . . .} as a zero-mean covariance sta-

tionary process with a spectral density f(λ), which is bounded away from zero. Here,

ηt includes the stationary and invertible ARMA process as one of its special cases.

With ηt and d < 1/2, a stationary I(d) process ξt is defined as:

ξt = �−dηt, t = 0,±1, . . . , (6)
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where � = 1−L, and L is the usual lag operator. Since the cases where εt is an I(dε)

process with dε ≥ 0 are the subject of interest to empirical researchers, the focus of

this paper is on the models where dε ≥ 0. As a consequence, the model in (5) can be

displayed as:

yt = α0+ρ1yt−1+x
�
t β+εt, xh,t = I(dx,h), εt = I(dε), 0 ≤ dx,h, dε < 1/2, |ρ1| < 1,

(7)

where xh,t is the h-th element of xt.

The MD-TSLS estimator proposed in this paper contains three steps. Following

Tsay (2007), we multiple difference the data, yt and xt, before running the IV estima-

tion. The resulting multiple-differenced transformation is:

�Myt = ρ1 �M yt−1 + �Mx�t β + �Mεt, t = M + 1,M + 2, . . . , T, (8)

where M is defined as:

M =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g, if dx,h + dε < 1/2, for all h = 1, 2, . . . , k;

g + 1, if dx,h + dε ≥ 1/2, for some h ∈ {1, 2, . . . , k},
(9)

and g is a non-negative integer. By the Wold decomposition theorem, �Mxt and �Mεt

are surely covariance stationary and represented with the following MA(∞) processes:

�Mεt =
∞∑
i=0

ψiat−i, �Mxt =
∞∑
i=0

ϕibt−i, t = M + 1, . . . , T, (10)

where at and bt are assumed to satisfy the conditions in Assumption A of Robinson

(1998). This indicates that xt is weakly exogenous as regularly imposed in the ADL

literature.

As will be argued more clearly in the Mathematical Appendix concerning the theo-

retical foundation of the choice of M in (9), the idea of choosing M for the stationary

long memory ADL model is identical to that in equation (5) of Tsay (2007) for the

static time series regression model. Essentially, if the regressors and the errors are

‘known’ to be I(0) processes, then both M = 0 and M = 1 can be used. Note that the
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use of M = 1 instead of M = 0 does not necessarily generate a higher variance of the

‘over-differenced’ estimator as shown in Tsay (2007). Moreover, if dx,h, dε ≥ 0, and the

sum of dx,h and dε is less than 1/2 for each h, then M = 0 can be employed. However,

this does not imply that M = 1 or M = 2 cannot be used under this circumstance. On

the other hand, if the sum of dx,h and dε is greater than 1/2 for some h, then M ≥ 1

must be imposed to avoid the occurrence of the spurious regression problem discussed

in Tsay and Chung (2000).

The second step of the MD-TSLS method derives from the idea of Liviatan (1963)

in selecting IV to deal with the joint presence of LDV and the serially correlated dis-

turbance term. Particularly, q lagged values of �Mxt are employed as the instruments

for �Myt−1. By the weakly exogenous regressor assumption that xt and εt are uncorre-

lated at all leads and lags, �Mxt−1, �Mxt−2, . . ., and �Mxt−q are all uncorrelated with

�Mεt, but are correlated with �Myt−1, thus satisfying the fundamental requirement

as the legitimate IV. For clarity of exposition, the regressors and the corresponding IV

are denoted here:

wt =
(
�Myt−1,�Mx�t

)�
, zt =

(
�Mx�t−1,�Mx�t−2, . . . ,�Mx�t−q,�Mx�t

)�
.

(11)

Given that xt is weakly exogenous, the following orthogonally condition holds:

E(zt �M εt) = E
[
zt(�Myt − ρ1 �M yt−1 −�Mx�t β)

]
= 0. (12)

It is important to document here that, for identification purpose, only one of the qk

lagged differenced exogenous regressors is needed to deliver a consistent IV estimator

when the number of LDV in (5) is only 1. Nevertheless, more IV basically improves

the efficiency of the IV estimator. For the general ADL model in (1), the legitimate

IV for the MD-TSLS depends on the values of p, k, and l. This important issue will be

discussed in Section 5 more clearly.

We now present the formulae for IV estimation and illustrate the data arrangement.

Denote the stack of differenced dependent variable and that of differenced stochastic
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exogenous variables as:

�MY (q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�MyM+q+1

�MyM+q+2

...

�MyT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, �MX(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Mx�M+q+1

�Mx�M+q+2

...

�Mx�T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

The corresponding sample averages are denoted as �MY (q) and �MX(q), respectively.

The notations clarify that the observations used for estimation depend on the number

of lagged differenced exogenenous variables, q, and the number of differencing, M .

Similarly, the observations for wt and zt in (11) can be stacked as:

W (M, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wM+q+1

wM+q+2

...

wT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Z(M, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zM+q+1

zM+q+2

...

zT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

The corresponding sample averages from the data in (14) are denoted as W (M, q) and

Z(M, q), respectively.

Like the OLS-based MD estimator proposed in Tsay (2007), �Myt, �Myt−1, and

�Mxt in (8) are demeaned before running the estimation. One possible demean pro-

cedure is:

ỹt = �Myt −�MY (0), w̃t = wt −
(
�MY (0), �MX(0)

�)�
, (15)

i.e., all the sample means are calculated with the sample observations after multiple

differencing, i.e., t = M +1, . . . , T . Under this circumstance, the (q+1)k instrumental

variables for the (k + 1) demeaned regressors w̃t in (15) are:

z̃t = zt − iq+1 ⊗�MX(0), (16)

where iq+1 is a (q + 1) × 1 vector of ones, and ⊗ is the Kronecker product. Another

theoretically feasible demean procedure is:

ỹt = �Myt −�MY (q), w̃t = wt −W (M, q), z̃t = zt − Z(M, q). (17)

10



In other words, yt, wt, and zt are demeaned with their respective sample mean calcu-

lated from the observations truly used for estimation.

The observations ỹt, w̃t, and z̃t defined in (15) and (16), or (17) are stacked as:

Ỹ (M, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ỹM+q+1

ỹM+q+2

...

ỹT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, W̃ (M, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w̃�
M+q+1

w̃�
M+q+2

...

w̃�
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Z̃(M, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z̃�M+q+1

z̃�M+q+2

...

z̃�T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

With the data defined in (18), the MD-TSLS estimator for γ is computed as:

γ̂MD
TSLS =

{
W̃ (M, q)�P

Z̃(M,q)
W̃ (M, q)

}−1
W̃ (M, q)�P

Z̃(M,q)
Ỹ (M, q), (19)

where

P
Z̃(M,q)

= Z̃(M, q)
{
Z̃(M, q)�Z̃(M, q)

}−1
Z̃(M, q)�, (20)

provided the above inverse matrices are well defined. The associated residuals are:

et = ỹt − w̃�
t γ̂

MD
TSLS, t = M + q + 1, . . . , T. (21)

For ease of comparison, the OLS-based MD estimator is also presented here:

γ̂MD
OLS =

{
W̃ (M, q)�W̃ (M, q)

}−1
W̃ (M, q)�Ỹ (M, q), (22)

where γ̂MD
OLS is expected to be biased if �Mεt is serially correlated under the model in

(8). Note that γ̂MD
OLS actually is the MD estimator considered in Tsay (2007) where

the presence of LDV is not considered. In addition, the inference method developed

in Tsay (2007) cannot be applied to the model in (1), because the presence of LDV

makes the regularity conditions required for Robinson’s estimator unsatisfied.

The third step of the MD-TSLS approach is to employ Robinson’s (1998) long-run

variance estimator to construct the covariance matrix of γ̂MD
TSLS, i.e.:

D̂MD
TSLS = (M̂MD

TSLS)V̂
MD
TSLS(M̂

MD
TSLS)

�, (23)

where

M̂MD
TSLS = Â(M, q)B̂(M, q), (24)
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such that

Â(M, q) =

{
1

T −M − q
W̃ (M, q)�P

Z̃(M,q)
W̃ (M, q)

}−1

, (25)

B̂(M, q) =
{
W̃ (M, q)�Z̃(M, q)

} {
Z̃(M, q)�Z̃(M, q)

}−1
, (26)

with

V̂ MD
TSLS =

(T−M−q)−1∑
j=−(T−M−q)+1

(
ĉj × d̂j

)
, (27)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ĉj = (T −M − q)−1 ∑

M+q+1≤t,t+j≤T
z̃tz̃

�
t+j ,

d̂j = (T −M − q)−1 ∑
M+q+1≤t,t+j≤T

et et+j .
(28)

Clearly, the computation of D̂MD
TSLS does not involve any choice of bandwidth parameter

and kernel function. It can be easily implemented with standard statistic packages.

By (9), (12), and the assumption that the spectral density function of the product

zt �M εt is finite and positive definite, the long-run variance of zt �M εt can be consis-

tently estimated with Robinson’s (1998) method when xt and εt satisfy the conditions

in Assumption A of Robinson (1998). Accordingly, the asymptotic properties of the

MD-TSLS estimator in (19) are derived by using the results in Theorem 5 of Robinson

(1998) and presented in the following theorem.

Theorem 1. Under M being defined in (9), xt and εt satisfy the conditions in As-

sumption A of Robinson (1998), and the spectral density function of zt �M εt is finite

and positive definite; then as T → ∞, the MD-TSLS estimator defined in (19) for the

model in (5) is asymptotically distributed as (T−M−q)1/2(D̂MD
TSLS)

−1/2
(
γ̂MD

TSLS − γ
)
−→

N(0, Ik+1), where D̂MD
TSLS is defined in (23), −→ stands for convergence in distribution,

and Ik+1 is an identity matrix.

Theorem 1 reveals that γ̂MD
TSLS converges at the rate of

√
T as usually found in the

short memory stochastic linear difference equation model. Moreover, the MD-TSLS es-

timator is consistent and asymptotically normally distributed, even though the regres-

sors and errors are stationary long memory processes. Thus, the usual t-ratio statistic
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associated with the MD-TSLS estimators is tested with the critical values from the

standard normal distribution. Another important message implicit in Theorem 1 and

which has been spelled out in Tsay (2007, 2009) is that: If the range and various com-

binations of the differencing parameters in xt and that of εt are uncertain, then a larger

value of M can be picked up to ensure the differencing parameters of �Mxt and that

of �Mεt are all negative. This feature is particularly useful for empirical applications,

because the integration order of xh,t and that of εt are simply unknown in reality, and

the differencing parameters of xh,t and that of εt just cannot be accurately estimated

when the sample size is relatively moderate. For example, the observations used in the

following empirical studies of Congressional approval are only 80, which is not large

enough to promise a satisfactory estimate of the fractional differencing parameter, no

matter whether the time-domain or frequency-domain methods are employed.

3 MD-GMM Estimator

This section considers the MD-GMM estimation of the stochastic linear difference

equation in (5) by extending the preceding IV estimation framework. The MD-GMM

estimator is calculated as:

γ̂MD
GMM =

{
W̃ (M, q)�Z̃(M, q)(V̂ MD

TSLS)
−1Z̃(M, q)�W̃ (M, q)

}−1 ×
W̃ (M, q)�Z̃(M, q)(V̂ MD

TSLS)
−1Z̃(M, q)� Ỹ (M, q),

(29)

where V̂ MD
TSLS is obtained from (27). This surely indicates that the MD-GMM estimator

in (29) is a two-step GMM estimator.

Like the asymptotic covariance matrix of MD-TSLS estimator, D̂MD
TSLS, the asymp-

totic covariance matrix of MD-GMM estimator is simple to compute, i.e.:

D̂MD
GMM =

{
1

(T −M − q)2
W̃ (M, q)�Z̃(M, q)

(
V̂ MD

TSLS

)−1
Z̃(M, q)�W̃ (M, q)

}−1

. (30)

The asymptotic properties of the MD-GMM estimator presented in the following The-

orem 2 can be derived by extending the results in Theorem 1.
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THEOREM 2. Under M being defined in (9), xt and εt satisfy the conditions

in Assumption A of Robinson (1998), and the spectral density function of zt �M εt

is finite and positive definite; then as T → ∞, the MD-GMM estimator defined

in (29) for the model in (5) is asymptotically normally distributed and (T − M −
q)1/2(D̂MD

GMM)−1/2
(
γ̂MD

GMM − γ
)
−→ N(0, Ik+1), where D̂MD

GMM is defined in (30).

One particular advantage of the MD-GMM estimator over its MD-TSLS counter-

part is that it possesses a higher efficiency level if the number of IV exceeds that of

LDV. That partly explains why the GMM estimator of Hansen (1982) is popular in

the literature. Another interesting characteristic of the MD-GMM estimator is that

we can follow the literature to propose the following overidentification test statistic:

Ξ = (T −M − q)g(γ̂MD
GMM)�

(
V̂ MD

TSLS

)−1
g(γ̂MD

GMM), (31)

where

g(γ̂MD
GMM) = (T −M − q)−1Z̃(M, q)�eGMM, and eGMM = Ỹ (M, q) − W̃ (M, q)γ̂MD

GMM.

(32)

The overidentification statistic is tested with the critical values from a χ2 distribution

with a degree of freedom equal to the number of overidentifying restrictions. This

statistic is suggested by Hansen (1982) to test whether the instrumental variables

really satisfy the orthogonality conditions required for the MD-GMM estimation. In a

sense, the overidentification statistic can be viewed as a specification test to check the

appropriateness of the model used for describing the data under investigation.

The lead M-th differenced exogenous variables also can be jointly employed with

the lagged M-th differenced explanatory variables as IV. The results in Theorem 1 and

Theorem 2 remain intact under this modification. By contrast, one should be more

cautious to use the lagged or lead ‘level’ exogenous variables, xt, as IV when the model

is being MD-transformed with a positive value of M . The reason is that the fractional

differencing parameter of xt and that of �Mεt are highly likely to have an opposite

sign which might make the
√
T rate of convergence of the resulting MD-TSLS and
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MD-GMM estimators fail as shown in Tsay (2000). Furthermore, the choice of IV does

not include the non-linear function of xt or that of �Mxt for the model in (7), simply

because the analysis in Robinson (1998) does not cover this complicated situation.

4 Generalization of Theoretical Analysis

Section 2 and Section 3 illustrate the methodology for dealing with the long memory

stochastic linear difference equations. The preceding findings can be easily generalized

to the long memory ADL model. The major difference is on the selection of IV. When

l = 0, the ADL model in (1) becomes:

yt = α0 +
p∑

i=1

ρiyt−i +
k∑

j=1

βjxj,t + εt. (33)

The associate MD-transformed form is:

�Myt =
p∑

i=1

ρi �M yt−i + �Mx�t β + �Mεt. (34)

Under this set-up, the lagged values of �Mxt−j (j > 0) are the potential candidates as

IV . The major requirement is that the number of IV must be greater than or equal to

p to fulfill the identification condition.

When l �= 0, after MD-transformation the ADL model becomes:

�Myt =
p∑

i=1

ρi �M yt−i +
k∑

j=1

l∑
i=0

βji �Mxj,t−i + �Mεt. (35)

Under this circumstance, �Mxt−j (j > l) can be chosen as the IV to implement the

MD-TSLS and MD-GMM estimators. Again, the number of IV chosen must be greater

than or equal to p so as to satisfy the identification condition.

The theoretical findings can be further generalized to the cases where xt and εt are

nonstationary. As long as the regressors are weakly exogenous, this nonstationary long

memory ADL model can be estimated with a larger value of M . However, the criteria

of choosing M changes to be the one in (5) of Tsay (2007) to ensure the resulting IV

estimators are asymptotically normally distributed. This implies that the problems
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concerning the nonstationary ADL model of De Boef and Keele (2008) can be easily

resolved with the proposed IV methods.

The above considerations are based on the assumption that all the elements in

xt are weakly exogenous. If some of the regressors are suspected to be endogenous,

then the IV estimators can be modified to deal with this more general framework. The

remedy is to use the remaining lagged exogenous variables as the IV for the endogenous

variables. Specifically, if the regressors are divided into two groups, x�t = (x�a,t, x
�
b,t),

where xa,t are (k1 × 1) endogenous variables and xb,t are (k2 × 1) weakly exogenous

variables, then the lagged values of xb,t can be used as the IV for xa,t if M = 0. When

M = 1, the lagged values of �xb,t can be employed as the IV for �xa,t.

The generalization of the theoretical findings does not stop here. The ADL model

can even be generalized as the following vector ADL model:

Yt = A0 +
p∑

i=1

RiYt−i +
k∑

j=1

l∑
i=0

BjiXj,t−i + Vt, (36)

where Yt and Xt are (S × 1) vectors of observations, while Ri and Bji are the (S × S)

matrix of parameters to be estimated. When Bji are zero, the vector ADL model

reduces to the well-known vector autoregressive (VAR) model. Given that the value

of S is finite, the IV methodology developed in this paper and the modified long-run

variance estimator in (13) of Tsay (2009) can be merged to deal with the long memory

vector ADL model. Indeed, this paper is the first to apply the vector ADL model to

the data of DGW (1997). As compared to the vector ADL model in (36), the model

used in De Boef and Keele (2008) is named as the scalar ADL model.

5 Numerical Illustrations

This section assesses the finite sample performance of the MD-OLS, MD-TSLS, and

MD-GMM estimators under the long memory ADL model. Without loss of generality,

there is only one stochastic regressor considered, i.e., k = 1, and the simulations center

on the stochastic linear difference equation. Furthermore, both xt and εt are generated
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as the following ARFIMA(0, d, 0) processes:

xt = �−dXvt, εt = �−dεwt, dX ∈ (0, 1/2) , dε ∈ (0, 1/2) , (37)

where vt and wt both are generated as zero-mean normally, independently identically

distributed white noise (i.i.d.) with:

E(v2
t ) = σ2

v , E(w2
t ) = σ2

w, E(vtws) = 0, for all t, s. (38)

Terms σ2
v and σ2

w in (38) are specified to ensure the resulting variance of xt and that

of εt are both equal to 1. In addition, all the programs are written in GAUSS. In the

website, http://idv.sinica.edu.tw/wjtsay/htm/jen02a.htm, there exists a GAUSS code

for estimating the scalar ADL model. The associated estimation results are presented

in the following Table 8.

In the context of a stochastic regressor framework, 2000 replications of yt are gen-

erated with the following model:

yn
t = ρ1y

n
t−1 + β1x

n
1,t + εn

t , t = 1, 2, . . . , T, n = 1, 2, . . . , 2000, (39)

where n denotes the n-th replication of the data, and β1 is set to be 1 throughout

this section. Two hundred additional values are generated in order to obtain random

starting values. Moreover, M = 1 is chosen for the entire simulation studies, even

though M = 0 can be used for the cases where the sum of dX and dε is less than 1/2.

The flexibility of choosing M is clearly demonstrated with this experimental design.

Moreover, the demean procedures in (15) and (16) are adopted to carry out the Monte

Carlo experiment.

Like the MD-TSLS and MD-GMM estimators, the MD-OLS estimator is calculated

with the the same number of MD-transformed observations and demean procedure.

The number of observations used for these three estimators under various choices of q

is the same so as to create a fair comparison scheme. Note that the case q = 1 is not

considered in the experimental design, because the MD-TSLS estimator is equivalent
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to the MD-GMM counterpart under the model in (39) with a number of just-identified

IV.

Table 1 contains the bias from estimating ρ1 when ρ1 = 0.5 and q = 2 are selected for

the model in (39). The robustness of the results in Table 1 will be checked and discussed

later. Table 1 reveals that the MD-OLS estimator is seriously biased in estimating ρ1

and is expected, because �εt is serially correlated under the experimental design.

On the other hand, the performance of both MD-TSLS and MD-GMM estimators in

estimating ρ1 is satisfactory although T is only 100.

Both MD-TSLS and MD-GMM estimators are found to perform well in estimating

β1. The bias and RMSE from estimating β1 are not explicitly presented to shorten

the length of this paper. Instead, the performance about ρ1 is the focal point of this

section, because the coefficient of LDV is crucial for describing the short-run and long-

run dynamics of the model under consideration.

Tables 2 illustrates the RMSE of the MD-TSLS estimators in estimating ρ1 and that

of the MD-GMM counterpart when ρ1 = 0.5, q = 2, and T = 100. For expositional

purposes, RMSEξ is defined as the RMSE of the estimator ξ in estimating ρ1 of the

model in (39). Thus, the finite sample relative efficiency of the MD-GMM estimator

to its MD-TSLS counterpart is measured as:

Relative efficiency of MD-GMM to MD-TSLS estimator =
RMSEMD

TSLS

RMSEMD
GMM

. (40)

It follows that the MD-GMM estimator is more efficient than the MD-TSLS coun-

terpart in estimating ρ1 if the ratio in (40) is greater than 1. As shown in Hansen

(1982), the MD-GMM estimator is more efficient than the MD-TSLS counterpart, and

the estimation of the covariance matrix in (27) does not affect the asymptotic variance

of the MD-GMM estimator under this circumstance. Accordingly, the relative ratio in

(40) is expected to be greater than 1 as T → ∞. This phenomenon is clearly borne

out in Table 3 for all configurations therein when T ≥ 200. This implies that the

MD-GMM estimator should be recommended for empirical studies, and the following

discussions focus on the performance of the MD-GMM estimator.
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The sampling properties of the t-ratio statistic generated from the MD-GMM es-

timator are important, because inference plays an inevitable role in empirical applica-

tions. Figure 1 and Figure 2 display the empirical size of the MD-GMM t ratio statistic

in a two-tailed test at the 5% level of significance and show that the size control of the

t statistic for testing the value of ρ1 and that of β1 in (39) is very promising, respec-

tively, even though the sample size is 100. This also illustrates the power of Robinson’s

long-run variance estimator in controlling the effects of nuisance parameters on the

inference performance of the MD-GMM estimator.

The above findings are generated by experimental design, q = 2. Whether more

IV really improves the efficiency of the IV estimators is another important focal point

of this section. Table 4 presents the simulation results when the number of q in Table

2 increases to be 5. It is clear that more IV really improves the performance of both

the MD-TSLS and MD-GMM estimators in that the RMSE found in Table 4 is lower

than its corresponding value in Table 2. Moreover, the MD-GMM estimator benefits

more from the increase of IV than does the MD-TSLS counterpart, because the relative

efficiency ratio in Table 5 is bigger than the corresponding ratio in Table 3.

Can the increase of over-identified IV be cost-free? In terms of the RMSE found

in Table 6, the answer is ‘no’. The simulations indicate that the RMSE of the MD-

TSLS estimator in estimating ρ1 deteriorates when q = 10 is used as compared to

that observed in Table 4 with q = 5. Although the RMSE of the corresponding MD-

GMM estimator with q = 10 is smaller than that of Table 2 with q = 2 in 61 out

of 64 configurations considered in the experiment, the performance of the MD-GMM

estimator with q = 10 is inferior to that found in Table 4 with q = 5. The information

indicates that the number of IV cannot exceed that of endogenous regressors too much

when the sample size is not large enough. Put differently, the value (q+1)×k−(k+1) =

qk − 1 should be moderate when T is relatively small.

The first 6 tables and Figures 1 and 2 deal with the cases where ρ1 = 0.5. The

robustness of the findings generated from these tables and figures is verified by repli-
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cating the simulations in Tables 1-6 and Figures 1-2 by setting ρ1 to be 0.8. The

simulation results are qualitatively identical to those generated from Tables 1-6 and

Figures 1-2. This confirms that the simulation results from Tables 1-6 and Figures 1-2

are not sensitive to the value of the short-run dynamic parameter, ρ1. These results

can be provided upon request.

6 Re-explaining Congressional Approval

The methodology developed in this paper is motivated by combining the long memory

and the ADL literature into a unified framework. The estimators proposed in this

paper can be applied to many studies concerning the short-run and long-run influences

of regressors on the dependent variable, even though such data can be stationary or

nonstationary long memory processes. Due to the increasing importance of the I(d)

process in political science, the IV estimators are applied to re-examine the data of

DGW (1997) about Congressional approval for the period 1974:1 to 1993:4 where they

employ the stochastic linear difference equation with p = 1. As discussed previously,

this dataset is chosen, because the I(d) processes have been found useful for modeling

Congressional approval and economic expectations in Box-Steffensmeier and Tomlinson

(2000). However, their testing results are not satisfactory as a large standard error of

the fractional differencing parameter of the residuals from the fractional cointegration

analysis between these two variables is found. Box-Steffensmeier and Tomlinson (2000)

explain this large standard error as not unexpected since there are only 80 observa-

tions. Nevertheless, as will be shown later, the IV estimators still provide a reasonable

estimate of the coefficient of LDV when the data-generating processes (DGP) are I(d)

processes.

In the political science literature, Lebo (2008) also applies the multivariate ARFIMA

model and finds a strong and positive relationship between Congressional approval and

lagged presidential approval with the monthly data spanning from 1995 to 2005. Nev-

ertheless, the analysis of Lebo (2008) requires estimating the differencing parameter of
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each data under consideration. Moreover, the original data used in Lebo (2008) need to

be differenced by their respective estimated values of differencing parameter. Thus, the

inference method of Lebo (2008) is a kind of two-step procedure and might be subject

to the bias induced from estimation. On the other hand, our IV-based method can

be viewed as a one-step procedure, because it does not involve the estimation of the

differencing parameter and can test the short-run and long-run influence of regressors

on dependent variable in one step.

Although the coefficient of the variable, Presidential Approvalt, is crucial to testing

the divided party government hypothesis, this variable is not included in the final

model of Table 2 of DGW (1997), because it is insignificant based on the usual OLS

estimation procedure. The OLS estimates in Table 2 of DGW (1997) are replicated in

Table 7 for ease of comparison.

The focus of this section is to show that recognizing the variables, Presidential

Approvalt and Economic Expectationst, at the RHS of the regression model of DGW

(1997) are endogenous is the first step to test the divided party government hypothesis.

By the spirit of the divided party government hypothesis, competing parties certainly

employ various strategies to countermeasure the action of the opposite party if this

hypothesis is truly in the mind of political actors. Presidential approval and Congres-

sional approval by nature are the functions of political actions, e.g., vetoes or overriding

vetoes, undertaken by different parties and other measures beyond the control of the

president and Congress. Accordingly, the two approvals should not have a clear causal

relationship as specified in DGW (1997) and De Boef and Keele (2008).

DGW (1997, p. 186) also explain that “because citizens hold the president ac-

countable for the state of the economy, economic evaluations will affect the president’s

standing among the public. We believe the same holds for Congress.” The statement

induces them to employ economic expectations as one of the exogenous variables to

explain Congressional approval. Nevertheless, this argument does not rule out the

possibility that citizens might hold higher economic expectations if they show a better
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presidential or Congressional approval, i.e., the variable concerning economic expecta-

tions could be endogenous in explaining both presidential and Congressional approval.

These political and economic variables are complexly intertwined with each other. The

standing point of this paper resembles closely to the finding in De Boef and Kellstedt

(2004) in which consumer confidence should not solely be treated as a RHS variable

in analyzing the political economy. Politics also affects economics. As a consequence,

both the OLS estimate from the stochastic linear difference equation of DGW (1997)

and that from the scalar ADL model of De Boef and Keele (2008) are biased no matter

whether the disturbance term is serially correlated or not, if the economic expectations

and presidential approval are endogenous.

The proposed IV methods by contrast deal with the presence of endogenous vari-

ables in the ADL model easily. Specifically, when the RHS variables of Presidential

Approvalt and Economic Expectationst in DGW (1997) are modeled as endogenous,

the lagged values of NY Times Coveraget, Presidential Vetoest, Veto Overridet, Intra-

Congress Conflictt, and Major Billst are potential candidates as IV. Fortunately, the

overidentification statistic defined in (31) can be used to check whether these five vari-

ables are the legitimate IV for the aforementioned two endogenous variables.

Following DGW (1997), the impacts of the two dummy variables, Koreagate and

House Bank shown in Table 2 of DGW (1997), on Congressional approval are netted

out for all the following IV estimations. The detailed procedure is to individually

regress the dependent variable, LDV, two endogenous variables, and five exogenous

variables on a constant and the two dummies. The residuals from these regressions

are collected to implement the IV methods. Note that, if the target is the scalar

ADL model, then in a similar vein the procedure is to regress the dependent variable,

LDV, endogenous variables, and exogenous variables and the one-period lagged values

of the endogenous and those of exogenous variables, respectively, on a constant, the

aforementioned two dummies, and the one-period lagged values of these dummies.

When M ≥ 1 is adopted, all the preceding procedures remain intact except the data
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are differenced before running these regressions.

Table 7 presents the MD-GMM estimate when M = 0 and the IV are NY Times

Coveraget−1, Presidential Vetoest−1, Veto Overridet−1, Intra-Congress Conflictt−1, and

Major Billst−1. The associated overidentification statistic is tested with the critical

values from a χ2 distribution in a one-tailed test with 2 degrees of freedom. The

statistic, 0.87, shown in Table 7 indicates that the population moment condition in

(12) cannot be rejected, indicating that these five variables are the legitimate IV for

implementing the MD-GMM estimator. This finding provides theoretical justification

for using these exogenous variables as the IV for the following analysis concerning the

stochastic linear difference equation and the scalar ADL model.

Table 7 also shows that the MD-GMM estimate of ρ1 is 0.91 and the LDV is highly

significant. The remaining variables shown in Table 7 are qualitatively identical to

those generated from Table 2 of DGW (1997), except that the variable Veto Overridet

is insignificant. Nevertheless, the estimate, -0.87, is still very close to the one, -0.99,

generated from DGW (1997). Another interesting finding in Table 7 is that, similar

to the finding in DGW (1997), the important variable, Presidential Approvalt, is in-

significant based on the MD-GMM estimator with M = 0. There are two explanations

for this phenomenon. First, the sample observation is not large enough as argued in

Box-Steffensmeier and Tomlinson (2000). Second, beyond correcting the problem of

endogenous bias, we need to pay more attention to the time series properties of the

endogenous variables. The second explanation is shown to be important to the final

conclusion of the empirical analysis.

The robustness of the findings from the MD-GMM estimator with M = 0 in Ta-

ble 7 is checked when M increases to be 1. Under this circumstance, the LDV is

�Congressional Approvalt−1, and the endogenous variables are �Presidential Approvalt,

and �Economic Expectationst. We employ the first-differenced of the IV used in Ta-

ble 7 as the instruments when M = 1, i.e., �NY Times Coveraget−1, �Presidential

Vetoest−1, �Veto Overridet−1, �Intra-Congress Conflictt−1, and �Major Billst−1. The
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resulting estimate of ρ1 is 0.73 and the associated value of the overidentification statis-

tic is 1.42 which is not significant based on the critical values from a χ2 distribution

in a one-tailed test with 2 degrees of freedom, either. The testing result from the

overidentification test further demonstrates that these five exogenous variables are the

legitimate IV for the endogenous variables in explaining Congressional approval under

the stochastic linear difference equation framework. Accordingly, these five variables

are employed as the IV for the following discussions about the scalar ADL model.

The preceding analysis hinges on the stochastic linear difference equation frame-

work. This section also considers issues about the scalar ADL model of Boef and

Keele (2008) with M = 0. Under this set-up, the RHS endogenous variables are

Presidential Approvalt, Presidential Approvalt−1, Economic Expectationst, and Eco-

nomic Expectationst−1. Therefore, NY Times Coveraget−2, Presidential Vetoest−2,

Veto Overridet−2, Intra-Congress Conflictt−2, and Major Billst−2 can be chosen as the

corresponding IV. The sum of the number of LDV and that of RHS endogenous vari-

ables are the same as the number of IV, MD-TSLS, and MD-GMM estimators that

generate identical results. Table 8 shows that the new estimate for the coefficient of

LDV is 0.78 which is again very close to the one, 0.80, found in Table 2 of DGW (1997).

Like the analysis for the stochastic linear difference equation, the robustness of the

findings about the scalar ADL model in Table 8 is checked by changing the value ofM to

be 1. Under this situation, the LDV becomes �Congressional Approvalt−1, the endoge-

nous variables are �Presidential Approvalt, �Presidential Approvalt−1, �Economic

Expectationst, and �Economic Expectationst−1, and the IV employed are �NY Times

Coveraget−2, �Presidential Vetoest−2, �Veto Overridet−2, �Intra-Congress Conflictt−2,

and �Major Billst−2. The resulting MD-GMM estimate of ρ1 is 0.89.

In summary, the estimates of ρ1 are 0.91 and 0.73 from the stochastic linear dif-

ference model when M = 0 and M = 1 are used, respectively. The corresponding

estimates become 0.78 and 0.89 under the scalar ADL framework. The common fea-

ture among these four IV estimates is that they are all close to 0.825, which is the mean
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of these four estimates, no matter whether M = 0 orM = 1 is used. This indicates that

the IV estimators can deal with the endogenous bias effectively and also implies that

the population value of ρ1 should be around 0.825. Interestingly, the mean estimate

0.825 is very close to the estimate 0.80 found in DGW (1997) using the level data. This

additional information reveals that the choice of M = 0 adopted by DGW (1997) in

carrying out their OLS estimation is reasonable for describing the time series proper-

ties of Congressional approval, except that they do not consider the endogenous bias in

estimating the coefficient of economic expectations and that of presidential approval.

Accordingly, the vector ADL model in (36) based on the level data of DGW (1997) is a

good candidate to capture the time-varying feature of Congressional approval, because

it can encompass the idea of DGW (1997) and the standing point of this paper that

the three endogenous variables, economic expectations, and Congressional approval

and presidential approval should be modeled simultaneously.

Table 8 displays the OLS estimates of the vector ADL model. The OLS estimates

are found to be qualitatively similar to those presented in Table 2 of DGW (1997).

For example, the estimate of ρ1 is 0.81 and the variable Presidential Approvalt−1 is

insignificant. Why do both presidential approval and economic expectations fail to

explain Congressional approval given that DGW (1997, p. 186) argue that “economic

expectations drive both presidential and Congressional approval, and presidential ap-

proval affects Congressional approval”? One explanation is that there might exist a

strong co-movement between presidential approval and economic expectations as the

previous arguments predict.

Figure 3 illustrates the time path of presidential approval and that of economic

expectations. The data in Figure 3 have been netted out the effects of a constant,

two dummies, and the one-period lagged values of these two dummies as mentioned

previously, and the resulting values have been further demeaned and standardized to

create a clear comparison among these two variables. As expected, the time paths of

these two variables are very close to each other, supporting the argument that citizens
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hold the president accountable for the state of the economy. This also reveals that there

might exist some sort of near multicollinearity if these two variables are both included

in the regression. In fact, Figure 3 of De Boef and Kellstedt (2004) demonstrates an

obvious similarity between presidential approval and economic expectations based on

a different dataset compiled by them.

We replicate the regression based on the vector ADL model in Table 8, but delete

one of the endogenous variables at a time. The results shown in Table 9 illustrate a

new picture about the impacts of presidential approval on Congressional approval. The

divided party government hypotheis is strongly supported if Economic Expectationst−1

is deleted from the regression since the corresponding long-run effects are 0.09
1−0.85

= 0.6

and much higher than the value of 0.08 found in De Boef and Keele (2008). On the

other hand, the results of the vector ADL model in Table 9 are almost qualitatively

identical to those presented in Table 2 of DGW (1997) if Presidential Approvalt−1 is

discarded, while keeping Economic Expectationst−1 in the regression.

Since the variable of economic expectations is omitted in the regression, the 0.6

estimate of the long-run effects of presidential approval on Congressional approval

found in Table 9 is biased. Fortunately, the two regressions in Table 9 provide an

opportunity to compute the real impacts of presidential approval on Congressional

approval. Based on the explanations in Greene (2000) about the impacts of omitted

variables, X2, on the remaining variables, X1, there is a formula to link the expected

value of the OLS estimator for the coefficient of X1 to the corresponding population

parameter β1 and the slopes in the least squares regression of the corresponding column

of X2 on X1. Plugging the OLS estimates in Table 9 for the expected value of the

OLS estimator in (8.16) of Greene (2000), two set of equations are found to solve two

unobserved parameters pertaining to economic expectations and presidential approval.

With some calculations, a new estimate of 0.0532 for economic expectations and an

estimate of 0.0570 for presidential approval are obtained. As expected, these estimates

are very similar to those contained in Table 8 about the vector ADL model, supporting
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that the OLS estimator is consistent under the near multicollinearity framework as

documented in the econometric literature. Combining the estimate, 0.057, with the

two coefficient estimates of LDV in Table 9, two estimates of the long-run effects of

presidential approval on Congressional approval are observed , i.e., 0.057
1−0.85

= 0.38 and

0.057
1−0.78

= 0.26. If the 0.81 estimate of the coefficient of LDV from the vector ADL in

Table 8 is employed, then the corresponding long-run effects are 0.057
1−0.81

= 0.30. All

three estimates are several times larger than the value, 0.08, found in De Boef and

Keele (2008).

We point out here that we do not construct a theoretically justified confidence

interval to test the significance of the preceding three estimates of the long-run effect

of presidential approval on Congressional approval under the near multicollinearity

scenario. That is out of this paper’s scope and might be left for future research.

Nevertheless, one of the objectives of this section is to explore the reason why the

variable Presidential Approvalt being not included in Table 2 of DGW (1997) might be

due to the near multicollinearity problem induced by the joint presence of presidential

approval and economic expectations. This also explains why the decomposition method

along with the vector ADL model proposed in this paper provides a much stronger

support of the divided party government hypothesis than does the scalar ADL model

adopted in De Boef and Keele (2008), because the aforementioned near multicollinearity

problem is well taken into account in this paper.

7 Conclusions

A class of IV-based estimators built on the idea of Liviatan (1963) and the MD esti-

mator of Tsay (2007) is shown to be useful to deal with the estimation and inference

issues associated with a general class of the long memory ADL models. These IV

estimators are consistent and asymptotically normally distributed under suitable reg-

ularity conditions. The Monte Carlo simulation reveals that the bias control of the IV

estimators are excellent under various long memory regressors and errors considered
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in this paper even though the sample size is 100. In addition, the size control of the t

test generated from the MD-GMM estimator is satisfactory. However, the finite sam-

ple performance of the MD-GMM estimator in estimating the coefficient of LDV does

not improve monotonically with the number of over-identified IV, indicating that the

number of over-identified IV is crucial to the performance of the MD-GMM estimation

and should be cautiously selected. Although choosing an optimal number of IV for

the long memory ADL model is out of this paper’s scope, the lessons from the Monte

Carlo experiment do reveal that, when the sample size is relatively small, the number

of IV should not exceed that of endogenous regressors too much.

The proposed IV estimators are applied to the data of DGW (1997) to test the

divided party government hypothesis. The cutting-edge of the empirical study is to

point out that economic expectations and presidential approval should be treated as

endogenous variables in explaining Congressional approval. This point of view and the

findings from the IV estimators inspire us to propose a vector ADL model to re-explain

Congressional approval. The results from the vector ADL model support the argument

of Patterson and Caldeira (1990) that presidential approval does play an important role

in affecting Congressional approval after controlling the near multicollinearity induced

by the joint presence of presidential approval and economic expectations in the vector

ADL model. Most importantly, the support of the divided party government hypothesis

from the vector ADL model is at least three times stronger than that generated from

the scalar ADL model of De Boef and Keele (2008).
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Mathematical Appendix

Before discussing the method of choosing M in (9) for implementing the MD es-

timator, let us remark here that M must be big enough to ensure that the resulting

transformed regressors and transformed error terms are covariance stationary in order

to represent them with the following infinite-order MA processes:

�Mεt =
∞∑
i=0

ψiat−i, �Mxt =
∞∑
i=0

ϕibt−i, t = M + 1, . . . , T,

where at and bt are assumed to satisfy the conditions in Assumption A of Robinson

(1998).

Given the above-mentioned restrictions imposed on �Mxt and �Mεt, Robinson

(1998) shows that the long-run variance of �Mxt �M εt can be consistently estimated

if the fractional differencing parameter of �Mxt and that of �Mεt are all greater than

or equal to zero and 0 ≤ (dx,h − M) + (dε − M) < 1/2 for all h = 1, . . . , k. The-

oretically, the finding concerning Robinson’s (1998) long-run variance estimator is of

great importance to the inference of ρ1 and β in (8). One drawback, empirically, is

that the possibility that the conditions 0 ≤ (dx,h −M) + (dε −M) < 1/2 are satisfied

for all h = 1, . . . , k could be very low, especially when the values of k are relatively

large. If we further consider the difficulties that the integration orders of �Mxt and

that of �Mεt are simply unknown in reality, and the differencing parameters of the

transformed regressors �Mxt and that of transformed error term �Mεt just cannot be

estimated without bias when the sample size is relatively moderate, then we quickly

realize that it may be risky to apply Robinson’s (1998) estimator to the long memory

ADL data without modifications, not to mention that the total differencing parameters

to be estimated are k + 1.

The major advantages of using the choice of M in (9) is that: Even though we are

not sure about the range and the combinations of the k + 1 differencing parameters

inherent in (8), we still can apply the methodology developed in Robinson (1998) to

test the value of ρ1 and β in the long memory ADL model, provided that we are willing

29



to pick a larger value of M to ensure that the differencing parameters of the trans-

formed regressors and those of the transformed error terms are all negative. Moreover,

under the choice of M in (9) and suitable regularity conditions, Robinson’s (1998)

long-run variance estimator is useful to control the impacts of nuisance parameters on

the sampling properties of the propose IV methods in this paper. As a result, both

estimators are easy to implement in that the MD-TSLS and MD-GMM estimators

have a closed-form expression, and the computation of the long-run variance estimator

of Robinson (1998) involves no choice of a kernel function and bandwidth parameter.

The cost associated with Robinson’s approach is that the stochastic regressors and

errors must satisfy Assumption A of Robinson (1998). The most stringent condition

imposed in this Assumption A is that the stochastic regressors and disturbance term

must be uncorrelated at all leads and lags. This condition in fact is not restrictive at

all and is exactly the weakly exogenous regressors condition imposed in the existing

ADL literature.
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Table 1. Bias in Estimating ρ1: T = 100, ρ1 = 0.5, and q = 2

dX

dε 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.05 MD-OLS −0.440 −0.442 −0.447 −0.453 −0.472 −0.483 −0.511 −0.546

MD-TSLS −0.009 −0.017 −0.015 −0.005 −0.020 −0.014 −0.021 −0.035

MD-GMM −0.003 −0.013 −0.011 0.000 −0.014 −0.006 −0.012 −0.025

0.10 MD-OLS −0.416 −0.418 −0.425 −0.437 −0.443 −0.460 −0.485 −0.522
MD-TSLS −0.010 −0.008 −0.012 −0.018 −0.018 −0.018 −0.019 −0.022

MD-GMM −0.007 −0.004 −0.008 −0.015 −0.012 −0.012 −0.012 −0.011

0.15 MD-OLS −0.395 −0.396 −0.401 −0.406 −0.421 −0.433 −0.458 −0.498

MD-TSLS −0.021 −0.007 −0.009 −0.010 −0.014 −0.017 −0.010 −0.023
MD-GMM −0.017 −0.004 −0.007 −0.006 −0.010 −0.011 −0.004 −0.013

0.20 MD-OLS −0.363 −0.370 −0.371 −0.382 −0.389 −0.405 −0.431 −0.465

MD-TSLS −0.010 −0.006 −0.009 −0.012 −0.011 −0.010 −0.016 −0.018
MD-GMM −0.007 −0.004 −0.005 −0.008 −0.006 −0.005 −0.010 −0.011

0.25 MD-OLS −0.334 −0.338 −0.340 −0.349 −0.361 −0.372 −0.398 −0.436
MD-TSLS −0.011 −0.009 −0.010 −0.011 −0.014 −0.010 −0.018 −0.024

MD-GMM −0.009 −0.005 −0.009 −0.007 −0.011 −0.007 −0.015 −0.018

0.30 MD-OLS −0.298 −0.300 −0.307 −0.313 −0.324 −0.337 −0.360 −0.396

MD-TSLS −0.004 −0.007 −0.011 −0.009 −0.011 −0.010 −0.010 −0.014
MD-GMM −0.003 −0.005 −0.009 −0.007 −0.010 −0.008 −0.007 −0.009

0.35 MD-OLS −0.258 −0.259 −0.262 −0.271 −0.279 −0.296 −0.319 −0.352

MD-TSLS −0.007 −0.008 −0.002 −0.007 −0.009 −0.008 −0.012 −0.009
MD-GMM −0.006 −0.007 0.000 −0.006 −0.008 −0.006 −0.009 −0.006

0.40 MD-OLS −0.206 −0.204 −0.210 −0.217 −0.223 −0.239 −0.258 −0.295
MD-TSLS −0.008 −0.004 −0.005 −0.004 −0.001 −0.008 −0.006 −0.014

MD-GMM −0.007 −0.003 −0.004 −0.003 −0.001 −0.006 −0.004 −0.011

Notes: All the results are based on 2,000 replications of the simulated data defined
in (37)-(39) with M = 1 chosen for the MD-OLS, MD-TSLS, and MD-GMM estima-
tors, respectively. Bias is computed as the average estimated values minus the true
parameter value.

35



Table 2. RMSE in Estimating ρ1: T = 100, ρ1 = 0.5, and q = 2

dX

dε 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.05 MD-TSLS 0.153 0.149 0.151 0.154 0.159 0.168 0.177 0.204

MD-GMM 0.150 0.148 0.152 0.156 0.160 0.169 0.179 0.207

0.10 MD-TSLS 0.146 0.144 0.148 0.146 0.155 0.160 0.179 0.201

MD-GMM 0.147 0.144 0.149 0.145 0.153 0.160 0.181 0.204

0.15 MD-TSLS 0.142 0.141 0.143 0.147 0.149 0.151 0.164 0.193

MD-GMM 0.141 0.141 0.143 0.146 0.148 0.151 0.166 0.196

0.20 MD-TSLS 0.140 0.138 0.138 0.138 0.143 0.148 0.167 0.186
MD-GMM 0.140 0.138 0.138 0.139 0.142 0.148 0.168 0.189

0.25 MD-TSLS 0.132 0.131 0.128 0.138 0.137 0.137 0.152 0.175
MD-GMM 0.131 0.132 0.127 0.137 0.137 0.137 0.153 0.176

0.30 MD-TSLS 0.117 0.120 0.122 0.124 0.128 0.129 0.141 0.166

MD-GMM 0.118 0.119 0.121 0.124 0.127 0.129 0.142 0.167

0.35 MD-TSLS 0.108 0.108 0.112 0.113 0.115 0.124 0.129 0.149

MD-GMM 0.108 0.107 0.112 0.114 0.114 0.124 0.129 0.151

0.40 MD-TSLS 0.093 0.090 0.092 0.093 0.101 0.100 0.111 0.127
MD-GMM 0.093 0.089 0.092 0.092 0.100 0.100 0.110 0.126

Notes: All the results are based on 2,000 replications of the simulated data defined in
(37)-(39) with M = 1 chosen for the MD-TSLS and MD-GMM estimators, respectively.
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Table 3. Relative Efficiency of the MD-GMM Estimator to the MD-TSLS

Counterpart in Estimating ρ1: ρ1 = 0.5 and q = 2

dX

dε 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

T = 100

0.05 1.0162 1.0043 0.9986 0.9856 0.9959 0.9929 0.9864 0.9824

0.10 0.9971 0.9999 0.9952 1.0055 1.0104 0.9996 0.9910 0.9858
0.15 1.0056 0.9969 1.0016 1.0061 1.0066 0.9970 0.9904 0.9860

0.20 0.9993 1.0004 0.9957 0.9996 1.0041 1.0043 0.9936 0.9879
0.25 1.0038 0.9971 1.0011 1.0020 1.0066 0.9965 0.9938 0.9893

0.30 0.9901 1.0092 1.0053 0.9969 1.0096 0.9978 0.9908 0.9942
0.35 0.9988 1.0091 0.9972 0.9976 1.0056 1.0034 0.9981 0.9849

0.40 1.0021 1.0120 1.0092 1.0045 1.0030 1.0031 1.0033 1.0046

T = 200

0.05 1.0320 1.0287 1.0321 1.0172 1.0313 1.0259 1.0209 1.0203

0.10 1.0184 1.0120 1.0243 1.0201 1.0213 1.0299 1.0172 1.0057

0.15 1.0199 1.0174 1.0126 1.0132 1.0186 1.0246 1.0178 1.0042
0.20 1.0201 1.0245 1.0214 1.0154 1.0156 1.0162 1.0105 1.0125

0.25 1.0117 1.0173 1.0242 1.0140 1.0144 1.0088 1.0095 1.0032
0.30 1.0168 1.0135 1.0078 1.0159 1.0140 1.0119 1.0094 1.0036

0.35 1.0198 1.0119 1.0156 1.0107 1.0203 1.0016 1.0122 1.0090
0.40 1.0182 1.0103 1.0021 1.0015 1.0170 1.0119 1.0167 1.0123

T = 300

0.05 1.0328 1.0354 1.0426 1.0225 1.0324 1.0312 1.0181 1.0259
0.10 1.0162 1.0307 1.0252 1.0260 1.0374 1.0295 1.0358 1.0242

0.15 1.0233 1.0390 1.0222 1.0272 1.0206 1.0255 1.0231 1.0261

0.20 1.0216 1.0189 1.0176 1.0187 1.0244 1.0177 1.0281 1.0280
0.25 1.0221 1.0228 1.0240 1.0258 1.0212 1.0246 1.0257 1.0194

0.30 1.0179 1.0132 1.0169 1.0242 1.0285 1.0209 1.0244 1.0154
0.35 1.0177 1.0056 1.0243 1.0180 1.0176 1.0180 1.0153 1.0202

0.40 1.0040 1.0205 1.0098 1.0236 1.0207 1.0147 1.0141 1.0175

Notes: All the results are based on 2,000 replications of the simulated data defined in
(37)-(39) with M = 1 chosen for the MD-TSLS and MD-GMM estimators, respectively.
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Table 4. RMSE in Estimating ρ1: T = 100, ρ1 = 0.5, and q = 5

dX

dε 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.05 MD-TSLS 0.148 0.146 0.148 0.145 0.157 0.160 0.171 0.197

MD-GMM 0.134 0.134 0.135 0.133 0.141 0.143 0.151 0.175

0.10 MD-TSLS 0.141 0.138 0.144 0.145 0.151 0.155 0.170 0.194

MD-GMM 0.132 0.127 0.130 0.131 0.135 0.140 0.154 0.173

0.15 MD-TSLS 0.140 0.135 0.137 0.139 0.148 0.148 0.156 0.184

MD-GMM 0.129 0.126 0.126 0.128 0.136 0.135 0.143 0.168

0.20 MD-TSLS 0.134 0.132 0.132 0.132 0.138 0.144 0.158 0.175
MD-GMM 0.126 0.124 0.123 0.123 0.129 0.130 0.144 0.162

0.25 MD-TSLS 0.127 0.126 0.123 0.131 0.133 0.134 0.149 0.165
MD-GMM 0.119 0.118 0.115 0.122 0.126 0.125 0.139 0.153

0.30 MD-TSLS 0.111 0.115 0.118 0.119 0.123 0.122 0.134 0.158

MD-GMM 0.108 0.109 0.113 0.116 0.115 0.115 0.127 0.148

0.35 MD-TSLS 0.104 0.104 0.106 0.109 0.110 0.119 0.123 0.139

MD-GMM 0.101 0.099 0.101 0.104 0.103 0.113 0.117 0.132

0.40 MD-TSLS 0.090 0.088 0.089 0.089 0.096 0.095 0.104 0.119
MD-GMM 0.088 0.085 0.086 0.085 0.092 0.090 0.099 0.112

Notes: All the results are based on 2,000 replications of the simulated data defined in
(37)-(39) with M = 1 chosen for the MD-TSLS and MD-GMM estimators, respectively.
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Table 5. Relative Efficiency of the MD-GMM Estimator to the MD-TSLS

Counterpart in Estimating ρ1: ρ1 = 0.5 and q = 5

dX

dε 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

T = 100

0.05 1.1006 1.0883 1.0932 1.0964 1.1201 1.1241 1.1352 1.1249

0.10 1.0669 1.0883 1.1082 1.1126 1.1181 1.1028 1.1017 1.1193
0.15 1.0829 1.0725 1.0846 1.0849 1.0837 1.1002 1.0952 1.0949

0.20 1.0634 1.0646 1.0738 1.0808 1.0712 1.1061 1.0940 1.0846
0.25 1.0655 1.0625 1.0696 1.0703 1.0605 1.0700 1.0688 1.0764

0.30 1.0280 1.0519 1.0496 1.0287 1.0711 1.0633 1.0549 1.0684
0.35 1.0278 1.0488 1.0417 1.0480 1.0610 1.0528 1.0465 1.0598

0.40 1.0313 1.0331 1.0366 1.0488 1.0413 1.0565 1.0590 1.0623

T = 200

0.05 1.1176 1.1417 1.1426 1.1293 1.1657 1.1569 1.1661 1.1695

0.10 1.1068 1.0996 1.1174 1.1243 1.1304 1.1563 1.1552 1.1390

0.15 1.0923 1.0961 1.0944 1.1176 1.1241 1.1362 1.1309 1.1356
0.20 1.0867 1.0841 1.0884 1.0994 1.1112 1.1099 1.1137 1.1251

0.25 1.0569 1.0762 1.0960 1.0893 1.0835 1.1019 1.1113 1.1012
0.30 1.0673 1.0662 1.0716 1.0731 1.0754 1.0782 1.0825 1.0829

0.35 1.0521 1.0570 1.0604 1.0476 1.0881 1.0644 1.0710 1.0796
0.40 1.0447 1.0443 1.0433 1.0373 1.0719 1.0695 1.0859 1.0688

T = 300

0.05 1.1152 1.1306 1.1647 1.1362 1.1513 1.1754 1.1662 1.1935
0.10 1.1129 1.1110 1.1265 1.1339 1.1495 1.1649 1.1857 1.1677

0.15 1.0922 1.1225 1.1004 1.1290 1.1209 1.1489 1.1350 1.1425

0.20 1.0780 1.0997 1.0885 1.1130 1.1264 1.1110 1.1319 1.1398
0.25 1.0734 1.0854 1.0738 1.1036 1.1060 1.1306 1.1099 1.1174

0.30 1.0619 1.0721 1.0766 1.0682 1.0974 1.0916 1.1188 1.1044
0.35 1.0662 1.0567 1.0836 1.0628 1.0694 1.0721 1.0689 1.1049

0.40 1.0351 1.0565 1.0454 1.0771 1.0737 1.0768 1.0745 1.0979

Notes: All the results are based on 2,000 replications of the simulated data defined in
(37)-(39) with M = 1 chosen for the MD-TSLS and MD-GMM estimators, respectively.

39



Table 6. RMSE in Estimating ρ1: T = 100, ρ1 = 0.5, and q = 10

dX

dε 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.05 MD-TSLS 0.171 0.174 0.176 0.174 0.190 0.197 0.214 0.253

MD-GMM 0.144 0.147 0.147 0.143 0.153 0.159 0.169 0.203

0.10 MD-TSLS 0.163 0.162 0.170 0.175 0.179 0.189 0.207 0.238

MD-GMM 0.143 0.137 0.141 0.145 0.147 0.154 0.171 0.193

0.15 MD-TSLS 0.160 0.155 0.158 0.164 0.172 0.176 0.189 0.228

MD-GMM 0.139 0.136 0.137 0.140 0.146 0.148 0.155 0.190

0.20 MD-TSLS 0.150 0.149 0.151 0.154 0.158 0.169 0.187 0.211
MD-GMM 0.133 0.132 0.131 0.132 0.136 0.142 0.156 0.178

0.25 MD-TSLS 0.141 0.141 0.137 0.147 0.153 0.155 0.173 0.201
MD-GMM 0.128 0.126 0.122 0.129 0.135 0.135 0.150 0.170

0.30 MD-TSLS 0.123 0.127 0.131 0.132 0.136 0.140 0.153 0.180

MD-GMM 0.115 0.115 0.118 0.122 0.122 0.123 0.135 0.158

0.35 MD-TSLS 0.112 0.114 0.112 0.119 0.122 0.130 0.137 0.160

MD-GMM 0.105 0.106 0.105 0.111 0.111 0.120 0.125 0.143

0.40 MD-TSLS 0.097 0.094 0.095 0.094 0.101 0.105 0.112 0.133
MD-GMM 0.093 0.090 0.090 0.089 0.095 0.095 0.103 0.120

Notes: All the results are based on 2,000 replications of the simulated data defined in
(37)-(39) with M = 1 chosen for the MD-TSLS and MD-GMM estimators, respectively.
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Table 7. Estimates of the Data of Durr, Gilmour, and Wolbrecht (1997)

Based on the Stochastic Linear Difference Equation

OLS MD-GMM with M= 0

Variables Estimate |t-ratio| Estimate |t-ratio|

Congressional Approvalt−1 0.80 16.00∗∗∗ 0.91 5.77∗∗∗

Presidential Approvalt 0.05 0.26

Economic Expectationst 0.07 2.33∗∗ 0.05 0.41

NY Times Coveraget 0.21 3.00∗∗∗ 0.19 2.16∗∗

Presidential Vetoest 0.24 2.67∗∗∗ 0.21 2.17∗∗

Veto Overridet −0.99 1.80∗ −0.87 1.44

Intra-Congress Conflictt −0.17 1.42 −0.18 1.47

Major Billst −0.44 1.57 −0.38 1.41

Overidentification Test 0.87

Observations 79 79

Notes: The results are based on the data of DGW (1997) about Congressional approval
for the period 1974:1 to 1993:4. Other variables from the analysis are included in the
estimating equation, but omitted from the table. The results for the OLS estimation
are replicated from Table 2 of DGW (1997). The endogenous variables for the MD-
GMM estimation are Presidential Approvalt, and Economic Expectationst, while the
instrumental variables for the MD-GMM estimation are NY Times Coveraget−1, Pres-
idential Vetoest−1, Veto Overridet−1, Intra-Congress Conflictt−1, and Major Billst−1.∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels in a two-tailed test,
respectively.
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Table 8. Estimates of the Data of Durr, Gilmour, and Wolbrecht (1997)

Based on the Scalar and Vector ADL Models

Scalar ADL Vector ADL

MD-GMM with M = 0 OLS

Variables Estimate |t-ratio| Estimate |t-ratio|

Congressional Approvalt−1 0.78 1.81∗ 0.81 12.64∗∗∗

Presidential Approvalt −0.08 0.12

Presidential Approvalt−1 0.75 0.63 0.06 1.25

Economic Expectationst −0.83 0.66

Economic Expectationst−1 0.80 0.64 0.05 1.25

NY Times Coveraget 0.03 0.09 0.22 2.85∗∗∗

NY Times Coveraget−1 0.32 0.65 0.09 1.16

Presidential Vetoest 0.16 0.70 0.24 2.59∗∗∗

Presidential Vetoest−1 0.37 0.83 0.09 0.88

Observations 78 79

Notes: The results are based on the data of DGW (1997) about Congressional approval
for the period 1974:1 to 1993:4. Other variables from the analysis are included in the
estimating equation, but omitted from the table. The endogenous variables in the
MD-GMM estimation are Presidential Approvalt, Presidential Approvalt−1, Economic
Expectationst, and Economic Expectationst−1, while the instrumental variables used
for the MD-GMM estimation are NY Times Coveraget−2, Presidential Vetoest−2, Veto
Overridet−2, Intra-Congress Conflictt−2, and Major Billst−2. The standard errors for
testing the parameters of the vector ADL model are based on the usual OLS estimation
procedure. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels in a two-
tailed test, respectively.
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Table 9. Estimates of the Data of Durr, Gilmour, and Wolbrecht (1997)

Based on the Vector ADL Models with 79 Observations

OLS OLS

Variables Estimate |t-ratio| Estimate |t-ratio|

Congressional Approvalt−1 0.85 16.81∗∗∗ 0.78 12.85∗∗∗

Presidential Approvalt−1 0.09 2.27∗∗

Economic Expectationst−1 0.08 2.28∗∗

NY Times Coveraget 0.21 2.80∗∗∗ 0.23 3.05∗∗∗

NY Times Coveraget−1 0.08 1.04 0.09 1.20

Presidential Vetoest 0.22 2.39∗∗ 0.25 2.74∗∗∗

Presidential Vetoest−1 0.08 0.77 0.09 0.84

Veto Overridet −1.12 1.91∗ −1.00 1.72∗

Veto Overridet−1 0.23 0.38 0.23 0.37

Intra-Congress Conflictt −0.17 1.33 −0.15 1.14

Intro-Congress Conflictt−1 −0.06 0.43 −0.04 0.31

Major Billst −0.30 0.99 −0.49 1.61

Major Billst−1 −0.36 1.19 −0.33 1.10

Notes: The results are based on the level data of DGW (1997) about Congressional
approval for the period 1974:1 to 1993:4 with the OLS estimation procedure. ∗∗∗, ∗∗, and
∗ denote significance at the 1%, 5%, and 10% levels in a two-tailed test, respectively.
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Figure 1: Rejection percentages of t test from the MD-GMM Estimator of ρ1 at the 5% level of

significance: T = 100, ρ1 = 0.5, and q = 2. All the results are based on 2,000 replications of the

simulated data defined in (37)-(39) with M = 1 chosen for the MD-GMM estimator.
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Figure 2: Rejection percentages of t test from the MD-GMM Estimator of β1 at the 5% level of

significance: T = 100, ρ1 = 0.5, and q = 2. All the results are based on 2,000 replications of the

simulated data defined in (37)-(39) with M = 1 chosen for the MD-GMM estimator.
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Figure 3: Solid line denotes presidential approval, while dotted line denotes economic expectations.

The data have been netted out the effects of a constant, two dummies, and the one-period lagged

values of these two dummies on economic expectations and presidential approval as mentioned in

the text, and the resulting values have been further demeaned and standardized to make a clear

comparison among these two variables.
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