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Abstract

Using an ARFIMA model made of an Markov-switching fractional differencing pa-
rameter, we find that sudden oil price shocks are important in shaping the paths of U.S.
inflation. The estimation results also support that U.S. inflation is a mean-reverting
long memory process.
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1 Introduction

This paper considers the time series properties of the aggregate price level which is well known

as one of the most important variables in explaining the macroeconomy. Many studies have

been devoted to investigate how aggregate prices respond to shocks. Nelson and Schwert

(1977), Barsky (1987), and Ball and Cecchetti (1990) find that inflation contains a unit root.

Hassler and Wolters (1995) and Baillie et al. (1996) by contrast show that there exists a

mean-reverting long memory in the inflation rates of G7 countries. Because level shifts are

likely for inflation, Bos et al. (1999) further examine whether evidence for long memory in
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the inflation of G7 countries is spurious or exaggerated due to the presence of level shifts.

Their testing results reveal that allowing for level shifts has a huge effect on the degrees of

fractional integration, because a considerable lower degree of fractional integration is found

as compared to the no break case.

Bos et al. (1999) point out that a drawback inherent in their methodology is that the

break points are exogenously fixed. We aim to remedy this shortcoming by allowing the

number and timing of the break points of inflation to be determined endogenously. Another

notable contribution of this paper is to address the possibility that fractional integration

of inflation is likely to change under different regimes, too. For example, sudden oil price

shocks might change the persistency of inflation, because the public might possess different

inflation expectation under a higher oil price regime, or the central bank of each country

might try very hard to control the potential negative impacts of oil price shocks on the

macroeconomy and thus affect the time series properties of the inflation rates. We thus apply

the Markov-switching autoregressive fractionally integrated moving average (MS-ARFIMA)

model of Tsay and Härdle (2008) to re-examine the long memory properties of the U.S. price

deflator, because this MS-ARFIMA model can estimate the order of fractional integration of

inflation which might be subject to level shifts and persistency changes simultaneously.

2 MS-ARFIMA model

Before presenting the MS-ARFIMA model, let us illustrate the definition of an Markov

chain and that of an ARFIMA process. Let {st}T
t=1 be the latent sample path of an N -state

Markov chain. Each time st can assume only an integer value of 1, 2, · · · , N , and its transition

probability matrix is:

P ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p21 · · · pN1

p12 p22 · · · pN2

...
...

. . .
...

p1N p2N · · · pNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where pij = P (st = j | st−1 = i) and
∑N

j=1 pij = 1 for all i.

An I(d) process, xt, is defined as:

(1 − L)dxt = ht,
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where L is the lag operator (Lkt = kt−1) and ht is a short memory process. When d > 0, the

I(d) process is often called the long memory process, because its autocovariance function is

not summable so as to capture the long range dependence of a time series. In addition, the

I(d) process is nonstationary when d ≥ 1/2, otherwise, it is covariance stationary. Note that

the I(d) process is mean-reverting when d < 1.

The MS-ARFIMA model of Tsay and Härdle (2008) offers a rich dynamic mixture of an

Markov chain and an I(d) process and is expressed as:

wt = μstI{t ≥ 1} + (1 − L)−dstσstztI{t ≥ 1} = μstI{t ≥ 1} + yt, (1)

where wt is the observed inflation rate at time t, I{.} is the indicator function, and zt is a

stationary ARMA process with mean zero and bounded positive spectral density fz(λ) ∼ Gz

as λ → 0 at each possible regime. The role of I{.} is to truncate the influence of the

infinite past observations of zt on wt, because we allow dst to be greater than or equal to 1/2.

The most innovative characteristic of the process in (1) is that the fractional differencing

parameter dst well known in the long memory literature is allowed to be a Markov chain

satisfying the following Assumption A.

Assumption A. st is independent of zτ for all t and τ .

When N = 1, the model in (1) reduces to be the ARFIMA process introduced in Granger

(1980), Granger and Joyeux (1980), and Hosking (1981). The model in (1) cannot be esti-

mated with the recursive algorithm in Hamilton (1989), because the possible routes of states

running from time 1 to time T expand exponentially to be NT if we want to extract zt to

conduct the maximum likelihood estimation (MLE). In addition, this model cannot be writ-

ten in a state-space form due to the presence of a fractional differencing parameter, implying

that we cannot apply the EM algorithm considered in Hamilton (1990) for the model in (1),

because the non-Markovian nature of the model prevents us from using the results in (4.2)

of Hamilton (1990).

It is not difficult to write down the conditional likelihood function of the mixture model

in (1) in terms of the ARMA process zt, provided that we can exactly identify the true

path of st along with some suitable assumptions about the initial values, distribution, and

model specification of zt . We surely do not in reality observe the true path of the latent

state variable. Nevertheless, we can implement the Viterbi (1967) algorithm well-known in
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the digital communication literature to identify the most likely path of states among the

NT possible routes within the inflation data. Essentially, the original Viterbi algorithm is

the standard forward dynamic programming solution to maximum-likelihood decoding of a

discrete-time, finite-state dynamic system observed in white noise as documented in Omura

(1969). In this paper we apply the Viterbi algorithm to the finite-state dynamic system

observed in a more general ARFIMA noise with a Markov-switching fractional differencing

parameter. See Forney (1973) or Tsay and Härdle (2008) about the implementations of the

Viterbi algorithm.

3 Inflation with Markov-switching persistency

We estimate the U.S. inflation rates with the following 2-state MS-ARFIMA(1, d, 1) model:

wt = μstI{t ≥ 1} + (1 − L)−dst σstztI{t ≥ 1}, (1 − φ1L)zt = (1 + θ1L)εt, (2)

where φ1 or θ1 is assumed to be zero depending on the noise specification, and εt is standard

normally distributed. The case of φ1 = θ1 = 0 has been adopted by Tsay and Härdle (2008)

in characterizing Nile River data. The quarterly U.S. inflation data are calculated from

the seasonally-adjusted implicit price deflator of the nonfarm business sector for the period

1947 I until 2007 IV. Following Hamilton (1989), asymptotic standard errors are calculated

numerically. These calculated standard errors may not be valid, because the Viterbi algorithm

is not equivalent to the usual full complete-data log-likelihood estimation. Nevertheless, the

Viterbi algorithm provides a convenient way to identify the most likely regime path beneath

the observed data under the model in (2).

Table 1 shows that the estimates of μ1, μ2, p11, p22, σ1, and σ2 are quite robust across

all four different specifications. Interestingly, we identify 5 identical breakpoints at the time

of 1951 II, 1973 IV, 1975 II, 1979 II, and 1981 II from both the MS-ARFIMA(0, d, 1) and

the MS-ARFIMA(1, d, 1) models. These two specifications actually are the ones producing

the highest likelihood functions among the four specifications considered in Table 1. Figure

1 illustrates the fitting performance of the MS-ARFIMA(1, d, 1) model and clearly shows the

great ability of the MS-ARFIMA model in capturing the historical record of the U.S. inflation

rates.

The estimates of σ1 and σ2 in Table 1 show that the volatility of inflation is higher in the
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higher inflation regime, revealing that the uncertainty of inflation is relatively larger when

the economy is facing a higher inflation regime. This result correctly reflects the changing

pattern of observed inflation in Figure 1. For all configurations considered in Table 1, we also

observe that the values of p11 and d1 are larger than those of p22 and d2, respectively. This

finding reveals the probability that the state will move to the other regime is higher, and

the weight of current and previous shocks, εt−j (j = 0, 1, . . .), on current inflation is lower,

when the current state is in the high inflation regime as compared to the lower inflation

counterpart. These observations are reasonable, because the occurrence of oil shocks are not

regular, though perhaps they are closely related to the historical events of the 1973-74 OPEC

embargo and the 1979 Iranian revolution, respectively, as clearly demonstrated in Figure 2

concerning the estimated path of μst from the MS-ARFIMA(1, d, 1) model. Therefore, our

findings might contribute to the literature concerning the relationship between oil shocks

and recession considered in Rasche and Tatom (1981), Hamilton (1983, 1985), Burbidge and

Harrison (1984), among others.

Another important finding of this paper is that the fractional integration of U.S. inflation

is within the range of 0.3307-0.6350 based on the eight estimates in Table 1. This indicates

that the U.S. inflation rate is a mean-reverting long memory process as documented in Hassler

and Wolters (1995), Baillie et al. (1996), and Bos et al. (1999), even though the the data-

generating process is relaxed to allow for level shifts or persistency changes simultaneously.
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Tsay, W.J., Härdle, W.K., 2008. A generalized ARFIMA process with Markov-switching

fractional differencing parameter. Journal of Statistical Computation and Simulation,

forthcoming.

Viterbi, A.J., 1967. Error bounds for convolutional codes and an asymptotic optimum de-

coding algorithm. IEEE Transactions on Signal Processing IT-13, 260-269.

7



Table 1. Estimates of Parameters based on Data for

U.S. Quarterly Inflation Rate

ARFIMA(0, d, 0) ARFIMA(0, d, 1) ARFIMA(1, d, 0) ARFIMA(1, d, 1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

μ1 0.6302 0.2531 0.5082 0.4740 0.7818 0.3991 0.5423 0.4668

μ2 1.8784 0.2526 1.6541 0.5103 1.9834 0.3294 1.6778 0.4946

p11 0.9822 0.0088 0.9866 0.0077 0.9822 0.0088 0.9866 0.0077

p22 0.8707 0.0673 0.9261 0.0472 0.8706 0.0674 0.9261 0.0472

σ1 0.2884 0.0138 0.2825 0.0137 0.2848 0.0137 0.2819 0.0137

σ2 1.0838 0.1552 1.1095 0.1463 1.0834 0.1589 1.1006 0.1452

d1 0.4687 0.0424 0.6350 0.0939 0.5808 0.0599 0.6261 0.0851

d2 0.3307 0.1075 0.6231 0.0990 0.4754 0.1069 0.6092 0.0912

φ1 - - - - -0.2257 0.0816 -0.2522 0.1791

θ1 - - -0.2481 0.1052 - - -0.0129 0.2075

L∗ -104.9116 -101.3111 -101.5249 -100.5656

Notes: The results are based on the MS-ARFIMA model defined in (2). S.E. stands

for the standard error of the estimate. L∗ represents the log-likelihood function of

the switching model.
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Figure 1: Solid line denotes the quarterly U.S. inflation rate, while dotted line represents the corresponding

fitted values from the MS-ARFIMA(1, d, 1) model presented in Table 1.

Figure 2: The observed quarterly U.S. inflation rates and the corresponding estimated inflation level µ̂st from

the MS-ARFIMA(1, d, 1) model as presented in Table 1.
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