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Abstract. This paper suggests a difference-based method for inference in the regression model involving

fractionally-integrated processes. Under suitable regularity conditions, our method can effectively deal with

the inference problems associated with the regression model consisting of nonstationary, stationary, and

intermediate memory regressors, simultaneously. Although the difference-based method provides a very

flexible modeling framework for empirical studies, the implementation of this method is extremely easy,

because it completely avoids the difficult problems of choosing a kernel function, a bandwidth parameter, or

an autoregressive lag length for the long-run variance estimation. The asymptotic local power of our method

is investigated with a sequence of local data-generating processes (DGP) in what Davidson and MacKinnon

(1985) call “regression direction”. The simulation results indicate that the size control of our method is

excellent even when the sample size is only 100, and the pattern of power performance is highly consistent

with the theoretical finding from the asymptotic local power analysis conducted in this paper.

Some key words: Fractionally-integrated process; Long memory.
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1. Introduction

It is well known that a great deal of estimation and inference techniques have been developed for weakly

dependent, I(0), and unit root, I(1), processes, including Phillips (1987), Newey and West (1987), Phillips

and Hansen (1990), Andrews (1991), and Hansen (1992). Nevertheless, inference methods for the fractionally-

integrated processes are relatively scarce. Among them, Robinson and Hidalgo (1997) consider the generalized

least squares (GLS) estimator for a time series regression in the presence of long-range dependence in both

errors and stochastic regressors. Robinson (1998) provides a framework to effectively test a time series

relationship involving stationary long memory processes under suitable regularity conditions. In addition,

Hidalgo (2000) tackles the problem of causality among stationary time series allowing long memory. These

studies share a common feature, i.e., all the time series considered are stationary.

This paper considers the multiple linear regression frameworks of Robinson and Hidalgo (1997), but

allows for the joint presence of stationary and nonstationary fractionally-integrated processes. Since there

are at least two different definitions of nonstationary fractionally-integrated processes, before presenting the

regression model considered in this paper, let us first define the underlining process clearly.

Adapting the notation of Robinson (2005), we define a short memory process {ηt, t = 0,±1, . . .} as a

zero-mean covariance stationary process with spectral density f(λ), which is bounded and bounded away

from zero. With ηt and d ∈ [−1/2, 1/2), we define the corresponding stationary fractionally-integrated, or

I(d), process ξt as

ξt = 4−dηt, t = 0,±1, . . . , (1)

where 4 = 1− L, and L is the usual lag operator. We denote the truncated ξt process as:

ξ#t = ξt1(t ≥ 1), t = 0,±1, . . . , (2)

where 1 is the indicator function. Based on the process ξ#t in (2), for q ≥ 0, we define its corresponding Type

I I(q + d) process1 as:

Wt = 4−qξ#t , t = 0,±1, . . . . (3)

1 Please see Robinson (2005) about the comparison between Type I and Type II I(q + d) processes.
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This Type I I(q + d) process has been used by Sowell (1990), Marinucci (2000), Tsay (2000), and Velasco

and Robinson (2000), to name a few.

Given the preceding I(d) and its associated Type I nonstationary I(q+d) (q ≥ 1) process, then denoting

γ as an unknown intercept, Ut as a scalar error term, and the (k × 1) column vector Zt as the stochastic

regressors whose j-th element is Zt,j , we present our regression model as:
Ct = γ + Z ′tβ + Ut, Zt,j = I(dZj

), Ut = I(dU ), max
1≤j≤k

dZj
= dZ , j = 1, 2, . . . , k, t = 1, 2 . . . , T,

dZ > dU , if dZj
≥ 1/2, for some j = 1, 2, . . . , k.

(4)

Specifically, if each component of Zt and Ut in (4) is stationary, then we impose no restriction on the relative

magnitude of dZ and dU as Robinson and Hidalgo (1997) do. When the maximum differencing parameter

of the regressors Zt, i.e., dZ defined in (4), is greater than or equal to 1
2 , then we require that dZ > dU so

as to ensure that the probability order of magnitude of the stochastic regressors Zt dominates that of the

error term. This condition is not stringent at all and is always imposed in the regression models involving

nonstationary processes. The model in (4) also allows the simultaneous appearance of a nonstationary error

term Ut and stationary regressors Z1t, where Z1t is a proper subset of Zt, as long as the conditions in (4) are

satisfied.2 The possibility that some regressors in Zt are intermediate memory or even noninvertible processes

is not ruled out with the model in (4), either.

To deal with the inference problems for the regression model in (4), we suggest a difference-based method.

Before discussing the details of this proposed method, let us address here that better estimation procedures

sometimes exist if we know the exact data-generating process (DGP) in (4). For example, as all of the

elements in Zt are I(1) processes and Ut is an I(0) process, the fully-modified estimators of Phillips and

Hansen (1990) are efficient for such a cointegration model. Moreover, when both Zt and Ut are stationary

long memory processes, the frequency-domain weighted least squares (WLS) estimator of Robinson and

Hidalgo (1997) achieves the Gauss-Markov bound under suitable regularity conditions, including that Zt and

Ut are mutually independent. Under the same independence assumption between Zt and Ut, Tsay (2000)

2 However, we cannot find an empirical study where some regressors have less persistence than the error

term in the regression model with other nonstationary regressors.
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shows that the convergence rate of the first-differenced (FD) estimator can be faster than that of the ordinary

least squares (OLS) counterpart when Zt is a nonstationary process, indicating that the implementation of

the FD estimator for the model in (4) may not incur any efficiency loss, as instead it may result in an infinite

efficiency gain in the estimation of β relative to its OLS counterpart.

As clearly suggested by an anonymous referee and the Associate Editor, the benefits of differencing

found in Tsay (2000) depend on the independence between the regressors and the error term. When this

independence assumption is relaxed, the findings in Tsay (2000) may not hold. In fact, if Zt and Ut are

correlated, then the FD estimator is even inconsistent in this set-up. Thus, the objective of this paper is

not to present a method which can ‘efficiently’ estimate the model in (4), but instead we want to propose a

unified testing methodology which can conveniently deal with the inference problems of the regression model

in (4). The advantages of using such a unified inference method is enhanced greatly once we realize that, in

the regression model where the integration orders of Zt and that of Ut can be fractional but unknown, the

differencing parameters of the regressors Zt and that of the error term Ut cannot be estimated without bias

when the sample size T is relatively moderate. In addition, as clearly pointed out by an Associate Editor,

when some regressors in Zt are nonstationary, the OLS estimator generally has a non-standard distribution

which is difficult to use in inference. However, our method does not require us to simulate the critical values

for various combinations of dZ , dU , and sample size T under this circumstance.

As will be shown in our Theorem 1, the β̂MD estimator generated from our difference-based method is

as simple as the usual OLS estimator and is asymptotically normally distributed under suitable regularity

conditions. Accordingly, the usual t-ratio statistic can be used to test each element of β, once the variance

matrix of β̂MD is consistently estimated. In fact, the computation of this variance matrix is almost as simple

as the β̂MD estimator in that we adopt Robinson’s (1998) long-run variance estimator which does not involve

any choice of an autoregressive (AR) lag length, a kernel function, or a bandwidth parameter. The remaining

parts of this paper are arranged as follows: Section 2 presents the test statistic and the main results. In

Section 3 we consider the choice of the number of differencing and asymptotic local power of our method. The

theoretical finding generated from the power analysis is verified through a Monte Carlo experiment. Section

4 provides a conclusion.
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2. The statistics and the main results

Our difference-based method contains two stages. The first one is simply to calculate the OLS estimator

for β, denoted as β̂MD, in the following multiple-differenced (MD) transformation of the regression model in

(4):

4MCt = 4MZ ′tβ +4MUt, M =


g, if dU = dZj

= 0, for all j = 1, 2, . . . , k;

g, if dU < 0, dZj < 0, for all j = 1, 2, . . . , k;

g + max ([dU ], [dZ ]) , otherwise,

(5)

where g is a nonnegative integer, [G] represents the integer part ofG, and t = M+1,M+2, . . . , T .3 Please note

that the choice of M in (5) actually is quite flexible, but it must ensure the resulting β̂MD is asymptotically

normally distributed under suitable regularity conditions. For example, if we know the regressors and the

error term are weakly stationary, then M = 0 can be used, because this case has already been discussed by

Robinson (1998). In addition, if there is only one regressor and 0 < dU , dZ < 1
2 and dU + dZ < 1

2 , then we

still can apply the results in Robinson (1998) - that is, we do not need to difference the data in this set-up

and M = g = 0 can be chosen. By contrast, if we know that 0 < dU , dZ < 1
2 holds, but dU + dZ ≥ 1

2 , then

M = g = 1 should be used instead to ensure that the resulting β̂MD is asymptotically normally distributed.

Another example where M = 0 can be adopted is when the differencing parameters of the regressors and that

of the error term are all negative. However, as will be shown later, we still can employ M = 1 (first-difference)

in this set-up and not necessarily increase a higher variance of our proposed difference-based method.

The preceding examples point out that if we know the exact DGP in (4), then sometimes we can find

some methods existing in the literature to solve the corresponding inference problems. Nevertheless, as we

have discussed in Section 1, the integration orders of Zt and that of Ut are simply unknown in reality, and the

differencing parameters of the regressors Zt and that of the error term Ut just cannot be estimated without

bias when the sample size is relatively moderate. That is why we propose a unifying testing procedure when

confronting the model in (4). In other words, the message carried in (5) is that, if we are not sure about the

3 Methods based on differencing have a long history in time series literature. Please also see Anderson

(1971, p.66) for the overviews.
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range and combinations of the differencing parameters in the regressors and the error term, then it is better

to pick a larger value of M to ensure the differencing parameters of the transformed regressors and that of

the transformed error term are all negative. In particular, if we suspect some regressors are I(1) processes,

but the unit root or stationarity tests cannot tell us whether dZ = 0 or 1, then we simply adopt M = 2 to

implement our difference-based method if we are sure that max ([dU ], [dZ ]) in (5) is less than 2. The great

flexibility enjoyed with our method in choosing M is valuable in empirical applications. We will discuss this

point after we present Theorem 1.

Provided that we can build a stationary I(d) process ξt in (1) and its associated Type I nonstationary

I(q + d) process in (3) with the short memory process ηt in (1), we construct the processes Zt and Ut in

(4) with the corresponding short memory processes Z∗t and U∗t , no matter if Zt and Ut are stationary or

nonstationary. By the Wold decomposition, both short memory processes, Z∗t and U∗t , can be expressed as

the form of infinite-order moving average (MA) processes which include stationary autoregressive (AR) and

stationary and invertible ARMA processes as the special cases. Thus, after applying the MD transformation

defined in (5), the resulting transformed regressors and transformed error term are stationary and can be

represented with the following infinite-order MA processes:

4MUt =
∞∑

i=0

ψiat−i, 4MZt =
∞∑

i=0

ϕibt−i, t = M + 1, . . . , T, (6)

where at and bt are assumed to satisfy the conditions in Assumption A of Robinson (1998). As a result, ψi

and each element of ϕi in (6) are bounded with the following rate:

ψi = O
(
i(dU−M)−1

)
= O

(
idU−M−1

)
, ϕi,j = O

(
i(dZj

−M)−1
)

= O
(
idZj

−M−1
)
, j = 1, . . . , k. (7)

The conditions in (2.2) and (2.3) of Robinson (1998) allow each element of bt to be correlated with each

other, which is weaker than the independence assumption used in Tsay (2000). For ease of exposition, from

now on, the following discussions are all based on the results in (6) and that at and bt satisfy the conditions

in Assumption A of Robinson (1998).
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We now consider the computational procedure of the β̂MD estimator. Although we do not have an

intercept in (5), before we run the OLS regression for the MD transformed model in (5), which is the first

stage of our difference-based method, we still demean 4MCt and 4MZt in (5) to obtain:

Yt = 4MCt −4MC, Xt = 4MZt −4MZ, (8)

where S denotes the sample mean of St. The purpose is to make our testing procedure be more in line with

the usual OLS estimator, because the estimate results from these TM ≡ T −M observations of Yt and Xt is

equivalent to that obtained from adding a constant term into the regressors 4MZt in (5).

The OLS estimation results are presented as follows:

Yt = X ′
tβ̂MD + et, β̂MD = (X ′X)−1

X ′Y, t = M + 1,M + 2, . . . , T, (9)

where et represents the OLS residuals, and the t-th row of X and that of Y are X ′
t and Yt, respectively. As

shown previously, the notation β̂MD points out that we multiple-difference the data series before we run the

OLS regression. On the other hand, it also signifies that we first difference Ct and Zt by M times before

we conduct the subsequent OLS estimation. In the following analysis about the asymptotic properties of

β̂MD, we name β̂MD as the MD estimator as compared to the FD estimator employed in Tsay (2000). The

asymptotic properties of β̂MD are displayed in the following Theorem 1.

THEOREM 1. Given that 4MUt and 4MZt are defined in (6), M is defined in (5), at and bt satisfy the

conditions in Assumption A of Robinson (1998), and the spectral density function of 4MZt 4MUt is finite

and positive definite, then as T → ∞, the MD estimator for the model in (4) is asymptotically normally

distributed and D̂−1/2
√
T

(
β̂MD − β

)
d−→ N(0, Ik), where D̂ =

(
T−1

M X ′X
)−1

V̂TM

(
T−1

M X ′X
)−1

,

V̂TM
=

TM−1∑
i=−TM+1

ĉi ⊗ d̂i, ĉi = T−1
M

∑
M+1≤t,t+i≤T

et et+i, d̂i = T−1
M

∑
M+1≤t,t+i≤T

XtX
′
t+i. (10)

d−→ stands for convergence in distribution, Ik is a (k × k) matrix, and ⊗ denotes the Kronecker product.
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The proof of Theorem 1 is omitted, because the results in Theorem 1 are the direct applications of

Theorem 5 of Robinson (1998). The point made here is that the important findings in Robinson (1998)

also apply to the cases where the differencing parameters of the regressors and that of the error term are

all negative. The intuition behind the results in Theorem 1 is as follows: When k = 1, both Ut and Zt,1

are independent ARFIMA(0, dU , 0) and ARFIMA(0, dZ1 , 0) processes, respectively, dU ∈ [0, 1), dZ1 ∈ [0, 1),

and then M = max([dU ], [dZ ]) + g = 0 + g = 1 is chosen to ensure that the autocorrelations of 4Ut and

those of 4Zt,1 at lag i are all negative as i 6= 0. It follows here that the autocorrelations of the product

4Zt,1 4 Ut are positive for all lag i, as Ut is assumed to be independent of Zt,1. Therefore, the spectral

density function of 4Zt,14Ut is finite and positive definite under this set-up. Combining the fast decay rate

of the autocorrelations of 4Zt,14Ut, we can easily prove the asymptotic normality of the MD estimator. On

the other hand, when the differencing parameters of 4MZt,1 and that of 4MUt are not all negative under

some other specifications for Zt,1 and Ut, the spectral density function of 4MZt,1 4MUt may degenerate to

be zero based on Lemma A.1 of Tsay (2000), implying that the
√
T convergence rate of the MD estimator

may not hold. That explains why we have to choose a large enough M to ensure the differencing parameters

of the differenced regressors and differenced error term are all negative.

In sharp contrast to the semiparametric long-run variance estimators considered in Newey and West

(1987) and Andrews (1991), and the autoregressive spectral estimate in Berk (1974), the computation of V̂TM

proposed by Robinson (1998) has nothing to do with the selection of an AR lag length, a kernel function, or

a bandwidth parameter. Most importantly, no matter whether some of the regressors are nonstationary or

non-invertible fractionally-integrated processes, each element of β in (4) can be tested with the usual t-ratio

statistic with the assistance of the easy-to-implement but elegant long-run variance estimator of Robinson

(1998). Of course, a Wald-type statistic can be used to test the value of β jointly. Building on the seminal

work of Robinson (1998), this paper proposes a unifying framework to deal with the inference problems of

the regression model in (4).
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3. Numerical illustrations

3.1. The choice of M

This subsection considers the efficiency issues surrounding the choice of M in (5). Theorem 1 reveals

that the efficiency of β̂MD is inversely related to the asymptotic value of D̂ in Theorem 1, i.e., a (k×k) finite

and positive definite matrix D. Under the case where there is only one stochastic regressor Zt,j , we have:

D = γj(0)−2
∞∑

i=−∞
γj(i)γU (i), (11)

where γj(i) denotes the autocovariance function of 4MZt,j at lag i, and γU (i) denotes the autocovariance

function of 4MUt at lag i, respectively. Thus, the magnitude of D in (11) sheds light on the relationship

between the efficiency of β̂MD and the value of M in (5).

Although a closed-form solution for the value of D in (11) is not available in this paper, even when

4MZt,j and 4MUt are the simplest ARFIMA(0, d, 0) processes, theoretically we can well approximate the

value of D in (11) with the following formula:

D̃ = γj(0)−2
h∑

i=−h

γj(i)γU (i),

if the value of h is large enough and we can choose a proper value of M to make the value of γj(i)γU (i)

in (11) decay at a fast enough rate of 2(dU + dZj
) − 4M − 2. To demonstrate the preceding argument, we

assume the data is generated as follows:

Ut = 4−dU vt, Zt,j = 4−dZjwt,j , dU ∈ (−1, 0), dZj
∈ (−1, 0), (12)

where vt and wt,j both are zero-mean n.i.d. processes. For ease of comparison, we also assume that:

E(v2
t ) = 1, E(w2

t,j) = 1, (13)

i.e., both Ut and Zt,j in (12) are intermediate memory processes, implying that we do not need to difference

the data to fulfill the regularity conditions in Theorem 1. In other words, M = 0 can be used under the

specifications in (12). Our task is to find out what will happen if we choose M = 1 instead.
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When M = 0 is adopted (no difference at all), we calculate a truncated version of D in (11) as:

D̃ = γj(0)−2
h∑

i=−h

γj(i)γU (i), h = 800, (14)

and present the results in Table 1. Under the configurations specified in Table 1, we note that the value of

γj(i)γU (i) in (14) decays at a rate of 2(dU + dZj ) − 2 < −2 when M = 0 is chosen. We also find that the

value of D̃ in (14) remains unchanged when the value of h increases from 500 to 800 for any configuration

considered in Table 1. These two observations support that D̃ in (14) with h = 800 is a good approximation

to D under the specifications in Table 1.

To illustrate the impact of ‘over-differencing’ on the efficiency of the MD estimator, we compute the

corresponding value of D̃ when M = 1 is employed and present the results in Table 2. Please note that the

reason we label the word ‘over-differencing’ is to signify that we do not need to difference the data under

the specifications in Table 1, but we on purpose do it in Table 2. We find that the value of D̃ in Table 2 is

larger than that of the corresponding D̃ in Table 1 when M = 0 is replaced with M = 1. In other words,

provided that the conditions in Theorem 1 are satisfied, ‘over-differencing’ incurs efficiency loss under the

specifications in Table 1 where only the stationary ARFIMA(0, d, 0) processes are considered.

To further explore the preceding issue, we extend our experiment to the following more general processes:

Ut = 4−dU v∗t , Zt,j = 4−dZjw∗t,j , dU ∈ (−1, 0), dZj
∈ (−1, 0), (15)

where
(1− φ1L)v∗t = (1 + θ1L)vt,

(1− φ2,1L)w∗t,j = (1 + θ2,1L)wt,j .
(16)

All the AR and MA parameters in (16) are set as follows:

φ1 = θ1 = φ2,1 = θ2,1 =
1
2
. (17)

The corresponding values of D̃ when M = 0 is chosen are presented in Table 3, while those of D̃ as M = 1

is selected are presented in Table 4. As compared to the results in Table 3 where M = 0 is used, the

corresponding value of D̃ in Table 4 does not always increase when M = 1 is employed, indicating that
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‘over-differencing’ may not always result in efficiency loss of the MD estimator. This also implies that, when

there is only one stochastic regressor, we may try different values of M and pick up the one producing a

minimum value of D̂ in Theorem 1 as the choice of M for the MD estimator.

The preceding results are based on the asymptotic variance of the MD estimator. If the finite sample

performance of the MD estimator is satisfactory, then the value of T ×MSE = D† should be very close to

the value of D̃ in Tables 1-4.4 To verify this conjecture and check the finite sample performance of the MD

estimator, we further compute the MSE of the MD estimator under the specifications in Tables 1-4 based on

1,000 replications with T = 200.5 We find that the value of D† is very close to that of D̃ in Tables 1-4, even

though the sample size is only 200, indicating that the MD estimator not only can be easily implemented,

but also possesses excellent finite sample performance.

3.2. Asymptotic local power analysis

This subsection explores the asymptotic local power of the difference-based method via a sequence of

local DGP’s in what Davidson and MacKinnon (1985) call “regression direction”.6 A limited Monte Carlo

experiment based on 10,000 replications is conducted to verify the theoretical finding generated from the

asymptotic local power analysis. The DGP considered in Tables 6 and 7 is arranged as follows:

Ct = β1Zt,1 + β2Zt,2 + Ut, where β1 = β2, (18)
Ut = 4−dU v∗t , Zt,2 = 4−dZ2w∗t,2, dU = 0.2, dZ2 = {0.1, 0.3},

Zt,1 = 4−qb#t,1, b#t,1 =
(
4−dZ∗

1w∗t,1

)
1(t ≥ 1), dZ∗

1
∈

[
−1

2
,
1
2

)
, q ≥ 1,

(19)

4 MSE denotes the simulated mean-squared error (MSE) of the MD estimator generated from a Monte

Carlo experiment.
5 Throughout this paper, a (T × 1) value of a stationary I(d) process is generated with the Cholesky

decomposition algorithm suggested by McLeod and Hipel (1978) and Hosking (1984), and two hundred

additional values are generated in order to obtain random starting values. For a Type I nonstationary

I(q + d) process, we just partially sum a stationary I(d) q times. All the programs are written in GAUSS

language.
6 Please also see Godfrey and Wickens (1982) for the related literature.
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(1− 1
2
L)v∗t = (1 +

1
2
L)vt,

(1− 1
2
L)w∗t,1 = (1 +

1
2
L)wt,1,

(1− 1
2
L)w∗t,2 = (1 +

1
2
L)wt,2,

(20)

where vt, wt,1, and wt,1 are all zero-mean n.i.d. processes with unit variance as that defined in (13), and

vt, wt,1, and wt,2 are independent with each other. It follows that D is a diagonal matrix throughout this

subsection.

We include both nonstationary and stationary regressors in (18), (19), and (20) to demonstrate the

coverage of Theorem 1. For clarity of illustration, Zt,1 is always generated as a nonstationary process, and

Zt,2 is certainly stationary, i.e., dZ1 ≥ 1
2 and dZ2 <

1
2 are imposed throughout the numerical investigation.

As shown previously, intermediate memory regressors are allowed by the regression model in (4) but are not

considered in the simulation studies. Since the maximum value of dZ1 used in the experiment is 1.9, M = 2

is chosen for the entire simulation studies, even though M = 1 is large enough to deal with the cases where

dZ1 < 1. The flexibility of choosing the value of M is clearly borne out in our experiment.

Theorem 1 shows that each element of β, βj , can be tested with the t-ratio statistic generated from the

results in Theorem 1 and the null hypothesis tested is displayed as follows:

H0 : βj = β0,j , for j = 1, 2, (21)

where β0,j is the j-th element of a column vector β0. These two individual t-ratio statistics are jointly named

as the tMD test hereafter. To better understand the finite sample performance of the tMD test, we follow

Davidson and MacKinnon (1985) to examine the asymptotic local power of the tMD test when the DGP is

a sequence of the form:

4MCt = 4MZ ′tβ0 +4MZ ′t

(
δ0/
√
T

)
+4MUt, t = M + 1,M + 2, . . . , T, (5′)

where δ0 is a (k × 1) finite constant.

Note that the tMD test for the j-th regressor is named as the tMD,j statistic and is calculated as follows:

tMD,j ≡

√
T

(
β̂MD,j − β0,j

)
√
D̂j,j

, for j = 1, 2,
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where D̂j,j denotes the row j, column j element of D̂ in Theorem 1. Given that βj is generated as β0,j +

T−1/2δ0,j as implied in (5′), δ0,j is the j-th element of δ0, and then asymptotically:

D̂j,j
p−→ Dj,j , tMD,j

d−→ N(D−1/2
j,j δ0,j , 1), (22)

where
p−→ denotes convergence in probability. This implies that the power of the tMD,j test grows with the

increasing value of |δ0,j | for a fixed sample size T and a fixed Dj,j . Of course, the power of the tMD,j test is

equivalent to its own size as δ0,j = 0. Furthermore, for a fixed value of δ0,j and a fixed T , the power of the

tMD,j test will increase with a decreasing value of Dj,j . To investigate the finite sample performance of the

MD estimator more closely, we present the corresponding values of D̃j,j in Table 5.

To confirm the preceding local power properties of the tMD,j test, we investigate the small sample

performance of the tMD,j test at the 5% level of significance, and the simulation results are contained in

Tables 6 and 7. Four different values of coefficients (i.e., β1 = β2 = 1.0, 0.9, 0.8, and 0.7) in (18) are

considered in the experimental studies. The values of β0,j in (21) are always set to be 1 for all j = 1, 2

considered in this subsection.

The simulation results correspond exactly to the size of the tMD,j test, when the data are generated

by the condition β1 = β2 = 1. These tables reveal that the size control of the tMD,j test is quite well even

when the sample size is only 100. The worst size distortion found within these tables is only 1.55%.7 When

T increases to be 200, the size control of the tMD,j test improves significantly, no matter if the regressor is

a nonstationary or stationary process. This phenomenon supports the prediction made in Theorem 1 which

claims that β̂MD is asymptotically normally distributed and converges at a rate of
√
T , which we frequently

encounter with the model consisting of weakly dependent regressors and the error term. This also reveals

that Robinson’s (1998) long-run variance estimator works effectively in controlling the nuisance parameters

embodied in the intermediate memory processes generated from the multiple-differenced transformation.

We now consider the power performance of the tMD,j test under three alternatives, i.e., β1 = β2 =

0.7, 0.8, and 0.9. According to the local power properties of the tMD,j test discussed above, we note that

7 Please confirm the configuration dZ1 = 0.9 and dZ2 = 0.10 in Table 6 for testing the value of β1.
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T−1/2δ0,j = −0.1 when βj = 0.9, T−1/2δ0,j = −0.2 when βj = 0.8, and T−1/2δ0,j = −0.3 when βj = 0.7.

Thus, for a fixed alternative (βj = 0.9, or 0.8, or 0.7), ceteris paribus, the value of |δ0,j | increases with an

increasing value of T . At the same time, the power of the tMD,j test should improve as T becomes larger.

This prediction is completely supported in Tables 6 and 7. As compared to the results in Table 6 where

T = 100, the power of the tMD,j test is found to increase for any configuration in Table 7 where the sample

size is now 200.

Provided that Dj,j can be consistently estimated with Robinson’s (1998) long-run variance estimator,

other things being equal, the power of the tMD,j test is inversely related to the value of D̃j,j in Table 5. This

theoretical finding is strongly supported by Table 6 and Table 7. In particular, the power of the tMD,j test

always reaches its maximum when dZj
is 1.9 under all alternatives and sample sizes considered, while the

occurrence of the minimum power is always located at dZj = 0.9 under all alternatives and the sample size is

200. We find only two cases where the pattern of power change is not what we expect, i.e., when testing the

hypothesis β1 = 1, but the true value of β1 is 0.9 and T = 100, the power of the MD estimator as dZ1 = 0.9

is found to be higher than that of the MD estimator as dZ1 = 1.1 in Table 6. Overall, with the assistance

of Robinson’s (1998) long-run variance estimator, the difference-based method works effectively for a large

variety of DGP considered in the experiment.

4. Conclusions

This paper considers a multiple regression model allowing the joint presence of stationary and nonsta-

tionary fractionally-integrated processes, and it provides a unifying framework to deal with the inference

problems associated with this model. Provided that the conditions in Theorem 1 are satisfied, we show

that each regression coefficient can be tested with the usual t-ratio statistic generated from our Theorem

1, no matter if the targeted regressor is nonstationary or non-invertible. Most importantly, we do not need

to simulate different sets of critical values for various combinations of dZ , dU , and sample size which are

frequently encountered in the inference problems associated with the presence of nonstationary processes

in the regression model. This feature is especially valuable, because in practice the fractional differencing
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parameters of the regressors and that of the error term cannot be estimated without bias, especially when

the sample size is relatively moderate. Moreover, building on the easy-to-implement but elegant long-run

variance estimator of Robinson (1998), the computational cost of our inference method is extremely mild and

can be conducted with standard statistics packages. The simulations also reveal that the size control of our

method is very good, although the sample size is only 100, and the pattern of power performance is highly

consistent with the theoretical finding from the asymptotic local power analysis conducted in this paper.
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Table 1. The Approximate Asymptotic Variance of MD Estimator and

the Corresponding Finite Sample Values when DGP are ARFIMA(0, d, 0) processes

dZj

dU −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9

−0.1 D̃ 1.0226 1.0015 0.9614 0.9096 0.8513 0.7899 0.7281 0.6673 0.6088
D† 1.0386 1.0071 0.9588 0.9004 0.8369 0.7717 0.7071 0.6446 0.5852

−0.2 D̃ 1.0779 1.0681 1.0346 0.9859 0.9281 0.8653 0.8007 0.7364 0.6738
D† 1.0951 1.0745 1.0325 0.9769 0.9134 0.8464 0.7786 0.7122 0.6484

−0.3 D̃ 1.1496 1.1495 1.1214 1.0749 1.0166 0.9516 0.8836 0.8149 0.7476
D† 1.1681 1.1570 1.1201 1.0662 1.0020 0.9323 0.8607 0.7896 0.7207

−0.4 D̃ 1.2372 1.2459 1.2226 1.1774 1.1180 1.0501 0.9778 0.9042 0.8313
D† 1.2573 1.2548 1.2224 1.1695 1.1037 1.0307 0.9544 0.8779 0.8030

−0.5 D̃ 1.3410 1.3583 1.3392 1.2948 1.2337 1.1621 1.0849 1.0054 0.9261
D† 1.3632 1.3689 1.3405 1.2881 1.2201 1.1429 1.0612 0.9784 0.8968

−0.6 D̃ 1.4619 1.4878 1.4728 1.4288 1.3653 1.2894 1.2063 1.1201 1.0336
D† 1.4866 1.5007 1.4760 1.4236 1.3529 1.2708 1.1827 1.0926 1.0033

−0.7 D̃ 1.6013 1.6362 1.6252 1.5813 1.5148 1.4337 1.3440 1.2501 1.1553
D† 1.6292 1.6519 1.6308 1.5781 1.5039 1.4161 1.3208 1.2225 1.1244

−0.8 D̃ 1.7611 1.8056 1.7986 1.7544 1.6844 1.5973 1.5000 1.3973 1.2932
D† 1.7926 1.8245 1.8072 1.7538 1.6755 1.5811 1.4776 1.3699 1.2619

−0.9 D̃ 1.9433 1.9982 1.9955 1.9508 1.8766 1.7827 1.6766 1.5641 1.4493
D† 1.9792 2.0211 2.0077 1.9533 1.8703 1.7685 1.6555 1.5373 1.4181

Notes: D̃ denotes the approximated value of D in (11) with the formula in (14). The corresponding finite
sample observation, D†, is based on the value T ×MSE generated from the 1,000 replications of the simulated
data defined in (12) and (13) with sample size T = 200 and M = 0 is chosen.
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Table 2. The Approximate Asymptotic Variance of MD Estimator and

the Corresponding Finite Sample Values when DGP are ARFIMA(0, d, 0) processes

dZj

dU −1.1 −1.2 −1.3 −1.4 −1.5 −1.6 −1.7 −1.8 −1.9

−1.1 D̃ 1.5494 1.4174 1.2920 1.1739 1.0636 0.9613 0.8669 0.7802 0.7009
D† 1.5191 1.3838 1.2561 1.1369 1.0263 0.9245 0.8312 0.7461 0.6688

−1.2 D̃ 1.7448 1.5975 1.4571 1.3248 1.2010 1.0861 0.9799 0.8823 0.7930
D† 1.7164 1.5646 1.4212 1.2871 1.1625 1.0476 0.9422 0.8460 0.7585

−1.3 D̃ 1.9664 1.8016 1.6444 1.4959 1.3570 1.2277 1.1083 0.9984 0.8977
D† 1.9407 1.7704 1.6091 1.4580 1.3175 1.1878 1.0687 0.9598 0.8608

−1.4 D̃ 2.2177 2.0331 1.8568 1.6902 1.5340 1.3886 1.2540 1.1302 1.0167
D† 2.1957 2.0044 1.8229 1.6526 1.4941 1.3475 1.2128 1.0896 0.9773

−1.5 D̃ 2.5028 2.2958 2.0979 1.9106 1.7349 1.5712 1.4196 1.2799 1.1518
D† 2.4855 2.2705 2.0662 1.8742 1.6952 1.5295 1.3771 1.2375 1.1103

−1.6 D̃ 2.8261 2.5939 2.3716 2.1609 1.9631 1.7786 1.6077 1.4501 1.3054
D† 2.8151 2.5732 2.3431 2.1264 1.9242 1.7369 1.5643 1.4062 1.2619

−1.7 D̃ 3.1931 2.9323 2.6822 2.4451 2.2222 2.0142 1.8214 1.6434 1.4800
D† 3.1897 2.9175 2.6581 2.4136 2.1851 1.9731 1.7777 1.5984 1.4348

−1.8 D̃ 3.6095 3.3164 3.0350 2.7679 2.5166 2.2820 2.0642 1.8632 1.6785
D† 3.6158 3.3092 3.0167 2.7405 2.4822 2.2423 2.0209 1.8177 1.6320

−1.9 D̃ 4.0824 3.7525 3.4356 3.1346 2.8512 2.5863 2.3403 2.1131 1.9042
D† 4.1003 3.7549 3.4248 3.1128 2.8206 2.5490 2.2982 2.0677 1.8569

Notes: D̃ denotes the approximated value of D in (11) with the formula in (14). The corresponding finite
sample observation, D†, is based on the value T ×MSE generated from the 1,000 replications of the simulated
data defined in (12) and (13) with sample size T = 200 and M = 1 is chosen.
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Table 3. The Approximate Asymptotic Variance of MD Estimator and

the Corresponding Finite Sample Values when DGP are ARFIMA(1, d, 1) processes

dZj

dU −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9

−0.1 D̃ 2.0011 2.1282 2.1798 2.1681 2.1064 2.0077 1.8841 1.7454 1.5997
D† 2.1045 2.2292 2.2778 2.2571 2.1808 2.0648 1.9248 1.7734 1.6195

−0.2 D̃ 1.6336 1.7849 1.8710 1.8988 1.8779 1.8189 1.7317 1.6255 1.5080
D† 1.7376 1.8862 1.9699 1.9908 1.9575 1.8826 1.7792 1.6590 1.5309

−0.3 D̃ 1.3701 1.5320 1.6385 1.6929 1.7013 1.6718 1.6129 1.5324 1.4375
D† 1.4714 1.6319 1.7376 1.7870 1.7851 1.7414 1.6667 1.5715 1.4645

−0.4 D̃ 1.1760 1.3417 1.4608 1.5336 1.5637 1.5571 1.5204 1.4607 1.3843
D† 1.2738 1.4398 1.5597 1.6293 1.6511 1.6317 1.5801 1.5055 1.4160

−0.5 D̃ 1.0299 1.1962 1.3234 1.4096 1.4564 1.4678 1.4493 1.4067 1.3459
D† 1.1244 1.2924 1.4217 1.5063 1.5464 1.5467 1.5142 1.4569 1.3823

−0.6 D̃ 0.9182 1.0837 1.2164 1.3129 1.3729 1.3991 1.3957 1.3676 1.3201
D† 1.0093 1.1778 1.3137 1.4099 1.4649 1.4814 1.4651 1.4228 1.3612

−0.7 D̃ 0.8318 0.9960 1.1329 1.2376 1.3087 1.3474 1.3570 1.3414 1.3054
D† 0.9195 1.0877 1.2287 1.3343 1.4018 1.4323 1.4301 1.4010 1.3511

−0.8 D̃ 0.7646 0.9277 1.0680 1.1797 1.2603 1.3100 1.3310 1.3265 1.3008
D† 0.8485 1.0164 1.1616 1.2754 1.3538 1.3967 1.4071 1.3899 1.3506

−0.9 D̃ 0.7121 0.8745 1.0180 1.1361 1.2253 1.2849 1.3162 1.3218 1.3054
D† 0.7918 0.9597 1.1088 1.2301 1.3183 1.3725 1.3946 1.3884 1.3590

Notes: D̃ denote the approximated value of D in (11) with the formula in (14). The corresponding finite
sample observation, D†, is based on the value T ×MSE generated from the 1,000 replications of the simulated
data defined in (13), (15), (16), and (17) with sample size T = 200 and M = 0 is chosen.
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Table 4. The Approximate Asymptotic Variance of MD Estimator and

the Corresponding Finite Sample Values when DGP are ARFIMA(1, d, 1) processes

dZj

dU −1.1 −1.2 −1.3 −1.4 −1.5 −1.6 −1.7 −1.8 −1.9

−1.1 D̃ 1.2840 1.2345 1.1753 1.1093 1.0392 0.9670 0.8947 0.8234 0.7544
D† 1.3212 1.2592 1.1893 1.1145 1.0373 0.9597 0.8832 0.8089 0.7377

−1.2 D̃ 1.3264 1.2813 1.2253 1.1613 1.0921 1.0201 0.9470 0.8744 0.8036
D† 1.3684 1.3107 1.2434 1.1698 1.0928 1.0144 0.9363 0.8600 0.7864

−1.3 D̃ 1.3767 1.3358 1.2827 1.2205 1.1520 1.0797 1.0056 0.9315 0.8585
D† 1.4233 1.3698 1.3051 1.2327 1.1556 1.0762 0.9964 0.9177 0.8413

−1.4 D̃ 1.4353 1.3985 1.3481 1.2874 1.2194 1.1466 1.0712 0.9951 0.9196
D† 1.4863 1.4371 1.3750 1.3037 1.2265 1.1458 1.0639 0.9826 0.9030

−1.5 D̃ 1.5026 1.4698 1.4220 1.3627 1.2949 1.2214 1.1444 1.0659 0.9876
D† 1.5576 1.5129 1.4535 1.3834 1.3058 1.2238 1.1396 1.0552 0.9721

−1.6 D̃ 1.5792 1.5504 1.5052 1.4472 1.3794 1.3048 1.2258 1.1448 1.0633
D† 1.6379 1.5978 1.5413 1.4723 1.3944 1.3108 1.2240 1.1363 1.0493

−1.7 D̃ 1.6658 1.6410 1.5985 1.5415 1.4736 1.3977 1.3165 1.2324 1.1474
D† 1.7279 1.6927 1.6391 1.5713 1.4930 1.4077 1.3181 1.2267 1.1354

−1.8 D̃ 1.7632 1.7427 1.7027 1.6468 1.5785 1.5011 1.4174 1.3299 1.2408
D† 1.8282 1.7982 1.7477 1.6812 1.6025 1.5154 1.4228 1.3274 1.2314

−1.9 D̃ 1.8724 1.8563 1.8189 1.7640 1.6952 1.6160 1.5294 1.4382 1.3446
D† 1.9400 1.9153 1.8683 1.8031 1.7240 1.6349 1.5390 1.4393 1.3383

Notes: D̃ denotes the approximated value of D in (11) with the formula in (14). The corresponding finite
sample observation, D†, is based on the value T ×MSE generated from the 1,000 replications of the simulated
data defined in (13), (15), (16), and (17) with sample size T = 200 and M = 1 is chosen.
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Table 5. The Approximate Long-Run Variance D̃j,j when Zt,j and Ut,
are Generated by (18), (19), and (20)

dZj

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

1.2408 1.4174 1.5785 1.7027 1.7632 1.7320 1.5872 1.3245 0.9704 0.5870

Notes: The results are all based on the model in (18), M = 2, and Ut and Zt,j are generated according to
(19) and (20). D̃j,j =

∑800
i=−800 γj(i)γU (i), where γj(i) denotes the autocovariance function of 4MZt,j at lag

i, and γU (i) denotes the autocovariance function of 4MUt at lag i, respectively.
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Table 6. Rejection Percentages of the tMD Test at the 5% Level of Significance

dZ1

dU = 0.2 T = 100 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
Alternatives

dZ2 = 0.30

True null β1 = 1.0 6.36 6.49 6.51 6.47 6.06 5.93 5.56 4.80
β1 = 0.9 14.07 13.41 13.08 12.97 13.52 14.65 18.27 25.51
β1 = 0.8 36.73 34.48 33.05 33.68 35.96 41.38 52.39 70.42
β1 = 0.7 65.89 62.73 61.51 62.09 65.51 72.52 82.84 93.60

True null β2 = 1.0 6.15 6.27 6.28 6.20 6.24 6.22 6.22 6.19
β2 = 0.9 15.79 15.71 15.71 15.74 15.71 15.68 15.64 15.63
β2 = 0.8 41.13 41.09 41.13 41.18 41.14 41.18 41.11 41.21
β2 = 0.7 71.59 71.58 71.61 71.54 71.55 71.48 71.43 71.49

dZ2 = 0.10

True null β1 = 1.0 6.47 6.46 6.55 6.48 6.10 5.86 5.44 4.79
β1 = 0.9 14.05 13.35 13.07 12.88 13.56 14.69 18.25 25.65
β1 = 0.8 36.71 34.47 33.09 33.72 36.13 41.49 52.35 70.48
β1 = 0.7 65.88 62.69 61.46 62.09 65.46 72.59 82.99 93.61

True null β2 = 1.0 6.26 6.26 6.24 6.27 6.29 6.35 6.34 6.25
β2 = 0.9 17.11 17.03 16.88 16.82 16.85 16.84 16.76 16.68
β2 = 0.8 45.47 45.49 45.59 45.56 45.52 45.45 45.47 45.38
β2 = 0.7 76.68 76.67 76.69 76.69 76.60 76.54 76.54 76.66

Notes: The results are all based on 10,000 replications with M = 2. The data are generated based on (18),
(19), and (20). The null hypotheses β1 = 1 and β2 = 1 are tested separately.
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Table 7. Rejection Percentages of the tMD Test at the 5% Level of Significance

dZ1

dU = 0.2 T = 200 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
Alternatives

dZ2 = 0.30

True null β1 = 1.0 6.05 6.12 6.04 5.85 6.08 5.84 5.63 5.07
β1 = 0.9 20.52 19.31 18.76 18.90 20.32 23.19 29.83 44.44
β1 = 0.8 60.57 57.02 55.15 56.21 59.93 67.57 79.70 93.40
β1 = 0.7 91.13 89.03 87.88 88.20 90.58 94.27 98.27 99.75

True null β2 = 1.0 5.80 5.84 5.74 5.76 5.81 5.80 5.82 5.83
β2 = 0.9 23.73 23.70 23.59 23.55 23.51 23.49 23.44 23.54
β2 = 0.8 67.00 67.02 66.97 67.00 66.91 66.85 66.92 66.91
β2 = 0.7 94.20 94.15 94.18 94.10 94.10 94.13 94.12 94.16

dZ2 = 0.10

True null β1 = 1.0 5.95 6.12 6.01 5.81 6.08 5.90 5.62 5.08
β1 = 0.9 20.49 19.35 18.90 18.91 20.34 23.08 29.87 44.40
β1 = 0.8 60.58 57.13 55.22 56.22 60.00 67.49 79.72 93.44
β1 = 0.7 91.10 89.08 87.89 88.29 90.59 94.29 98.33 99.75

True null β2 = 1.0 5.76 5.80 5.85 5.89 5.84 5.78 5.74 5.78
β2 = 0.9 26.06 26.08 25.96 25.82 26.03 26.00 25.95 26.00
β2 = 0.8 72.20 72.30 72.40 72.28 72.28 72.26 72.22 72.28
β2 = 0.7 96.40 96.38 96.39 96.37 96.39 96.30 96.35 96.36

Notes: The results are all based on 10,000 replications with M = 2. The data are generated based on (18),
(19), and (20). The null hypotheses β1 = 1 and β2 = 1 are tested separately.
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