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We propose a general class of Markov-switching-ARFIMA processes in order to combine strands of
long memory and Markov-switching literature. Although the coverage of this class of models is broad,
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to the U.S. real interest rates and the Nile river level data, respectively. The results are all highly
consistent with the conjectures made or empirical results found in the literature. Particularly, we
confirm the conjecture in Beran and Terrin [?] that the observations 1 to about 100 of the Nile river
data seem to be more independent than the subsequent observations, and the value of differencing
parameter is lower for the first 100 observations than for the subsequent data.
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1 Introduction

It is well known that many time series data exhibit long memory, or long-
range dependence, including the Nile river level, ex post real interest rate,
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forward premium, and the dynamics of aggregate partisanship and macroide-
ology. Among the many other examples that Beran [?] gives the Nile river data
has been known for its long memory behavior since ancient times, and this is
one of the time series that led to the discovery of the Hurst effect (Hurst [?])
and motivated Mandelbrot and his co-workers (Mandelbrot and van Ness [?];
Mandelbrot and Wallis [?]) to introduce fractional Gaussian noise to model
long memory phenomenon.

Long range dependence also has been observed in financial data. As demon-
strated by Ding et al. [?], de Lima and Crato [?] and Bollerslev and Mikkelsen
[?] that the volatility of most financial time series exhibits strong persistency
and can be well described as a long memory process. Evidence of financial
market volatility’s strong persistency inspired Breidt et al. [?] to propose a
class of long memory stochastic volatility (LMSV) models. Deo et al. [?] also
show that the LMSV model is useful for forecasting realized volatility (RV)
which is an important quantity in finance.

Figure 1 displays the yearly Nile river minima based on measurements at
the Roda gauge near Cairo during the years 622-1284. Beran [?] (p.33) doc-
uments that “When one only looks at short time periods, then there seem
to be cycles or local trend. However, looking at the whole series, there is no
apparent persisting cycle.” The changing pattern of the Nile river data leads
Bhattacharya et al. [?] to argue that the so-called Hurst effect can also be
explained as if the observations are composed as the sum of a weakly depen-
dent stationary process and a deterministic function. As a consequence it is
important to distinguish between a long memory time series and a weakly
dependent time series with change-points in the mean. This question has been
intensively considered in the literature, including Künsch [?] and Heyde and
Dai [?]. Berkes et al. [?] presents an overview about this strand of literature.
Similarly, Diebold and Inoue [?] shows that long memory also may be easily
confused with a Markov-switching mean. Thus, most of the existing litera-
ture considers long memory as a competing modeling framework against the
structural change and Markov-switching models.

< Insert Figure 1 here >

The Nile river level time series is far more complicated than a pure long
memory or a weakly dependent time series with change-points in the mean to
describe. Beran and Terrin (BT) [?] suggest therefore that the Hurst parame-
ter characterizing the yearly Nile river might change over time. When estimat-
ing the Nile river data with the autoregressive fractionally-integrated moving-
average (ARFIMA) or I(d) process introduced by Granger [?], Granger and
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Joyeux [?] and Hosking [?], Beran and Terrin [?] (p.629) show that the data
can be well fitted with an ARFIMA(0, d, 0) model with d = 0.4, where the
fractional differencing parameter d of ARFIMA process acts like the Hurst
parameter H of fractional Gaussian noise in characterizing the hyperbolic de-
cay of the autocovariance function of a long memory process. BT further claim
that the observations 1 to about 100 seem to be more independent than the
subsequent observations, and the value of the fractional differencing parameter
might be lower for the first 100 observations than for the subsequent data. If
this claim is right, then there should be a structural change in the long range
persistence of the Nile river data around the year 720, and the Nile river data
neither can be described with a pure long memory nor a weakly dependent
time series with change-points in the mean.

The possible change of the differencing parameter stimulate BT to propose
a statistic for testing the stability of the fractional differencing parameter.
This testing statistic has been further discussed and extended in Horváth
and Shao [?] and Horváth [?]. However, their methods can not identify the
change points of the fractional differencing parameter. A Bayesian random
persistent-shift (RPS) method for detecting structural change in the differenc-
ing parameter and the process level has been considered in Ray and Tsay [?].
Nevertheless, Ray and Tsay [?] did not propose a model which embeds the
Markov-switching and long memory literature into a unified framework. Hal-
drup and Nielsen [?] indeed consider a regime switching long memory model
for describing electricity prices. An important feature of the model is that the
price processes in the different regimes can have different degrees of long mem-
ory. However, the state variable considered in Haldrup and Nielsen [?] (p.350)
is observable as opposed to a standard Hamilton [?] Markov-switching model
where the state variable is latent. As a consequence, the method proposed in
Haldrup and Nielsen [?] cannot deal with the puzzle raised by Diebold and
Inoue [?] who show that a mixture model of latent Markov-switching mean
can generate the aforementioned long memory dependence.

The above considerations lead us to combine the long memory and Markov-
switching literature into a unified framework. We introduce a Markov-
switching-ARFIMA (MS-ARFIMA) process by extending the hidden Markov
model. The distinguished feature of our model is that the state variable is la-
tent although the process in the different regimes can have different degrees of
long memory. Therefore, the MS-ARFIMA model subsumes many interesting
models in the literature, including the Markov-switching AR model considered
in Hamilton [?]. Moreover, this model also can be used to tackle the puzzle
raised in Diebold and Inoue [?] by estimating the differencing parameter al-
lowing for the presence of a Markov-switching mean. Given that the hidden
Markov model has become extremely popular in speech recognition as shown
in Juang and Rabiner [?] and Qian and Titterington [?], and in econometrics,
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finance, genetics, and neurophysiology as outlined in Robert et al. [?], the MS-
ARFIMA model provides a flexible modeling framework for many applications
to these fields.

The remaining parts of this paper are arranged as follows: Section 2 presents
the MS-ARFIMA process and the algorithms for estimating the parameters
of interest. In Section 3 we consider the finite sample performance of the
proposed algorithm under the simple mixture of a Markov-switching mean
and an ARFIMA(1, d, 1) process. We then apply the proposed methodology
to the U.S. real interest rates and the Nile river data in Section 4. Section 5
provides a conclusion.

2 Models and Main Results

The objective of this paper is to propose a general class of Markov-switching-
ARFIMA processes in order to combine strands of long memory and Markov-
switching literature. This class of models offers a rich dynamic mixture of a
Markov chain and an I(d) process.

Let {st}T
t=1 be the latent sample path of an N -state Markov chain. At each

time st can assume only an integer value of 1, 2, · · · , N , and its transition
probability matrix is

P ≡

⎡⎢⎢⎢⎣
p11 p21 · · · pN1

p12 p22 · · · pN2
...

...
. . .

...
p1N p2N · · · pNN

⎤⎥⎥⎥⎦ ,

where pij = P (st = j | st−1 = i) and
∑N

j=1 pij = 1 for all i.
An I(d) process, xt, is defined as:

(1 − L)dxt = ht,

where L is the lag operator (Lkt = kt−1) and ht is a short memory process.
When d > 0, the I(d) process is often called the long memory process, because
its autocovariance function is not summable so as to capture the long range
dependence of a time series. In addition, the I(d) process is nonstationary
when d ≥ 1

2 , otherwise, it is covariance stationary. The major feature of the
I(d) process is that its autocorrelation function declines at a slower hyperbolic
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rate (instead of the geometric rate found in the conventional ARMA models):

ρ(h) =
Γ(h + d)Γ(1 − d)
Γ(h − d + 1)Γ(d)

,

where ρ(h) denotes the autocorrelation function of xt at lag h when xt is an
ARFIMA(0,d,0) process and Γ(.) is the gamma function. By Stirling’s formula,
we note that

ρ(h) ∼ Γ(1 − d)
Γ(d)

h2d−1, as h → ∞.

Combining the defining feature of a Markov chain and that of an I(d) pro-
cess, we propose the following MS-ARFIMA(p, d, q) process:

wt = μst
I{t ≥ 1} + (1 − L)−dst σst

ztI{t ≥ 1} = μst
I{t ≥ 1} + yt, (1)

where wt is the observed time series of interest, I{.} is the indicator function
and zt is a stationary process with mean zero and bounded positive spectral
density fu(λ) ∼ G0 as λ → 0 at each possible regime, thus including stationary
and invertible ARMA process as its special case. The role of I{.} is to truncate
the influence of the infinite past observations of zt on wt because we allow dst

to be greater than or equal to 1
2 .

The most distinguished feature of the process is that the fractional differ-
encing parameter dst

well known in the long memory literature is allowed to
be a Markov chain satisfying the following Assumption A:

Assumption A. st is independent of zτ for all t and τ .

The model in (1) subsumes many interesting models in the literature. When
N = 1,

wt = μ0 + (1 − L)−d0σ0ztI{t ≥ 1} (2)

and can be represented as:

wt = μ0 +
t−1∑
k=0

(d0)k
k!

σ0zt−k, (3)

where

(d0)k =
Γ(d0 + k)

Γ(d0)
= (d0)(d0 + 1) . . . (d0 + k − 1) (4)
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is Pochhammer’s symbol for the forward factorial. Moreover, under the model
in (1) and dst

= 0, wt still includes the Markov-switching AR model considered
in Hamilton [?] as one of its special cases.

It is well known that the model in (1) cannot be estimated with the recur-
sive algorithm in Hamilton [?] even though we assume zt in (1) is a zero mean
independently and identically distributed white noise (i.i.d.). The reason is
that the possible routes of states running from time 1 to time T expand ex-
ponentially to be NT if we want to extract zt to conduct maximum likelihood
estimation (MLE). Moreover, this model cannot be written in a state-space
form due to the presence of fractionally differencing parameter. This implies
that we cannot apply the EM algorithm considered in Hamilton [?] for the
model in (1), because the non-Markovian nature of the model in (1) prevents
us from using the results in (4.2) of Hamilton [?]. We will show that the es-
timation of the model in (1) can be easily implemented with the algorithm
proposed in this paper, even though the parameter estimation from a noisy
version of realizations of Markov models is extremely difficult in all but very
simple examples as well documented in Qian and Titterington [?].

Let the total sample size be T , and denote Wt ≡ (w1, w2, · · · , wt)�
the column vector containing the observations from time 1 to time
t, while St = (s1, s2, · · · , st)� represents the corresponding states,
and Yt = (y1, y2, · · · , yt)� in (1) is similarly defined. The col-
umn vector α = (μ1, . . . , μN , σ1, . . . , σN , φ11, . . . , φ1p, φ21, . . . , φNp,
d1, . . . , dN , θ11, · · · , θNq)� and pij (transition probabilities) consist of the
parameters characterizing the conditional density function (cdf) of wt. After
stacking the parameter vector α and the transition probabilities pij into one
column vector ξ, we can represent the cdf of wt as f (wt | St,Wt−1; ξ), clearly
showing that the cdf of wt depends on the entire past routes of states (in
general). Indeed, there are NT possible paths of states running throughout
the observations WT .

To illustrate the proposed algorithm for the model in (1), we first consider
the simplest case where wt in (1) is generated as:

wt = μst
I{t ≥ 1} + (1 − L)−d0σ0εtI{t ≥ 1} = μst

I{t ≥ 1} + yt, (5)

where d < 1
2 and εt is a zero mean normally i.i.d. process with E(ε2

t ) = 1.
That is, wt in (5) is a special type of MS-ARFIMA(0, d, 0) process whose
differencing parameter is fixed across different regimes. Under Assumption A
and εt ∼ N(0, 1) i.i.d. process, the likelihood function of WT , L(ST ,WT ; ξ)
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hereafter, for the hidden Markov model in (5) equals

L(ST ,WT ; ξ) = (2π)−T/2|Λ|−1/2 exp
(
−1

2
Y�

T Λ−1YT

) T∏
t=1

P (st | st−1), (6)

where Λ = E(YTY�
T ), and P (s1 | s0) is evaluated with the unconditional

probability that the process will be in regime s1. Given that yt in (5) is a
simple ARFIMA(0, d, 0) process, we can use the Durbin-Levinson algorithm
to derive

(2π)−T/2|Λ|−1/2 exp
(
−1

2
Y�

T Λ−1YT

)
=

T∏
t=1

(2π)−1/2v
−1/2
t−1 exp

{
−(yt − ŷt)2

2vt−1

}
,

(7)
where ŷt denotes the one-step ahead predictor of yt with the observation Yt−1

as j ≥ 2, and vt−1 is the corresponding one-step ahead prediction variance.
Deriche and Tewfik [?] also have employed the Durbin-Levinson algorithm to
estimate a univariate ARFIMA(0, d, 0) processes without Markov-switching
characteristic. As a result, the likelihood function in (6) can be rewritten as:

L(ST ,WT ; ξ) =
T∏

t=1

(2π)−1/2v
−1/2
t−1 exp

{
−(yt − ŷt)2

2vt−1

}
P (st | st−1), (8)

indicating that the unconditional likelihood function of the mixture model in
(5) can be exactly and recursively evaluated provided that we can identify the
true path of st, S∗

T .
We do not know in reality the value of S∗

T . However, the recursive structure
shown in (8) is especially suitable for implementing the Viterbi [?] algorithm
well-known in the digital communication literature to identify the most likely
path of states among the NT possible routes within WT . See Forney [?] for
an interesting overview of the Viterbi algorithm. Basically, the Viterbi algo-
rithm is the standard forward dynamic programming solution to maximum-
likelihood decoding of a discrete-time, finite-state dynamic system observed
in i.i.d. noise as documented in Omura [?]. Our strategy is to combine the
Durbin-Levinson algorithm and the Viterbi algorithm by suggesting a Durbin-
Levinson-Viterbi (DLV) algorithm for the model in (5). When compared to the
original Viterbi algorithm designed for solving the problem of maximum a pos-
teriori probability estimate of the state sequence of a finite-state discrete-time
Markov process observed in white noise, the DLV algorithm proposed in this
paper is concerned with the hidden Markov process observed in a much more
general ARFIMA noise. As a consequence, the DLV algorithm can be used to
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tackle the puzzle raised by Diebold and Inoue [?] that long memory can be eas-
ily confused with a Markov-switching mean, because the DLV algorithm can
estimate the differencing parameter of a time series allowing for the presence
of a Markov-switching mean.

To locate the most likely path running through the data WT with the idea
of Viterbi [?], we note first that, for each time t, there are N possible states
ending at time t, i.e., (st = i), i = 1, . . . , N . For a particular node of these
N end points at time t, say (st = j), there exists a corresponding most likely
path:

(St−1(st = j), st = j) = (s1(st = j), s2(st = j), · · · , st−1(st = j), st = j) , (9)

which ends at this particular node (st = j). We refer to the path (St−1(st =
j), st = j) in (9) as the survivor associated with the node (st = j). Note that,
with little loss of clarity, we do not explicitly specify that the path depends
on the parameter ξ and the observations Wt in order to simplify the notation.
The likelihood function generated from this survivor (St−1(st = j), st = j) and
the formula in (8) is recorded as L(St−1(st = j), st = j,Wt; ξ) and is crucial for
locating the most likely path running from time 1 to time T . In short, for each
node (st = j) at time t, there exists a most likely path, survivor (St−1(st =
j), st = j), and its associated likelihood function L(St−1(st = j), st = j,Wt; ξ).
Most importantly, the number of survivors at each time t is always equal to
N .

Given the N survivors at time t and in order to locate the survivor
(St(st+1 = i), st+1 = i) for a particular node (st+1 = i) at time t + 1, among
the N segments connecting the node (st+i = i) and the N time-t survivors
(St−1(st = j), st = j) recorded at time t, we select the one producing the
largest likelihood function L(St(st+1 = i), st+1 = i,Wt+1; ξ) among these N
possible candidates, and name it as the survivor (St(st+1 = i), st+1 = i) for
this particular node (st+1 = i). The computation of the aforementioned like-
lihoods is simple, because we record the likelihood functions of the N time-t
survivors at each time t.

This recursive updating process proceeds from time 1 to time T and results
in N time-T survivors (ST−1(sT = i), sT = i) and their associated likelihood
function L(ST−1(sT = i), sT = i,WT ; ξ), for each i = 1, . . . , N . From these N
time-T survivors we select the one producing the largest likelihood function,
say L(ST−1(sT = g), sT = g,WT ; ξ), as the most likely path running from
time 1 to time T . Combining a numerical optimization procedure and this
chosen likelihood function L(ST−1(sT = g), sT = g,WT ; ξ) generated from
the Viterbi algorithm and the Durbin-Levinson algorithm displayed in (7),
we can estimate the parameters ξ and identify the states ST hidden in the
observations WT .
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We now consider another special type of MS-ARFIMA(p, d, q) process:

wt = μst
I{t ≥ 1}+yt = μst

I{t ≥ 1}+(1−L)−d0σ0ztI{t ≥ 1}, φ(L)zt = θ(L)εt,
(10)

where

φ(L) = 1 − φ1L − . . . − φpL
p, θ(L) = 1 + θ1L + . . . + θqL

q, (11)

and the roots of the polynomial φ(L) and those of θ(L) in (11) are all outside
the unit circle and share no common roots. The model in (10) is much more
general than that in (5), but still can be estimated with the preceding Viterbi
algorithm after some modifications. Please note that the value of fractional
differencing parameter is unchanged across different regimes as that imposed
in (5).

Note that the term yt in (10) can be rearranged as

yt = (1 − L)−d0σ0φ(L)−1θ(L)εt, t = 1, 2, . . . . (12)

We then have

φ(L)yt = (1 − L)−d0σ0θ(L)εt = σ0θ(L)(1 − L)−d0εt = σ0θ(L)ỹt, t = 1, 2, . . . ,
(13)

where ỹt = (1 − L)−d0εt is an ARFIMA(0, d, 0) process. Dueker and Serletis
[?] use the same transformation method for estimating an ARFIMA(p, d, q)
process. Conditional on a set of φ(L) and θ(L) and a suitable starting value,
the conditional likelihood function of yt in (12) can still be evaluated exactly
with the transformed ARFIMA(0, d, 0) ỹt in (13) and the Durbin-Levinson
algorithm defined in (7). For example, conditional on y0 being equal to 0, we
can extract an ARFIMA(0, d, 0) process from an ARFIMA(1, d, 1) process as
follows:

σ0ỹt = yt − φ1yt−1 − σ0θ1ỹt−1, t = 1, . . . , T. (14)

Conditional on a set of φ(L) and θ(L) and a suitable starting value for the
parameter ξ, we can recursively and exactly evaluate the conditional likeli-
hood function of the hidden Markov model using the DLV algorithm proposed
previously.

The same idea also applies to the class of MS-ARFIMA(p, d, q) processes
in (1) where d can be Markov-switching. However, we cannot use the Durbin-
Levinson algorithm when the fractional differencing parameter is allowed to be
Markov-switching. Nevertheless, the Viterbi algorithm is still powerful enough
to locate the most likely path under this circumstance. That is, conditional on
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a suitable starting value for the parameter ξ, we employ the recursive structure
inherent in Viterbi algorithms to identify the most likely path running through
the data set.

3 Monte Carlo Experiment

In this section we consider a Monte Carlo experiment to demonstrate the finite
sample performance of the proposed DLV algorithm on a special version of the
model in (1):

wt = μst
I{t ≥ 1} + (1 − L)−d0σ0(1 − φ1L)−1(1 + θ1L)εtI{t ≥ 1}, (15)

where εt ∼ N(0, 1) i.i.d. process. We employ three different values of the
fractional differencing parameter:

d0 = {0.2, 0.3, 0.4}, (16)

along with the following parameters:

μ1 = 4, μ2 = 1, φ1 = 0.5, θ1 = 0.5, p11 = p22 = 0.95, (17)

and σ0 is chosen to ensure that the variance of the ARFIMA(1, d, 1) noise in
(15) is equal to 1 across different configurations. Note that the positive values
of d0 in (16) are chosen to reflect the variations used in the long memory
literature. As a consequence, there are eight parameters characterizing the
behavior of wt in (15):

ξ = (μ1, μ2, p11, p22, σ0, d0, φ1, θ1)�.

We estimate ξ by the following transformation function:

ξ =

(
μ1, μ2,

ep̃11

1 + ep̃11
,

ep̃22

1 + ep̃22
, eσ̃0 ,

d̃0

1 + 2|d̃0|
,
eφ̃1 − 1

eφ̃1 + 1
,
eθ̃1 − 1

eθ̃1 + 1

)�
= κ(ξ̃),

where

ξ̃ = (μ1, μ2, p̃11, p̃22, σ̃0, d̃0, φ̃1, θ̃1)�,

are the parameters really estimated with the DLV algorithm. In order to create
a realistic simulation scheme, the inverse function of the preceding transfor-
mation function calculated at the true parameter value plus an extra (8 × 1)
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random vector generated from a standard normal distribution is used as the
initial values for estimation procedure, i.e., the initial values for ξ̃ is:

ξ̃0 = κ(ξ)−1 + N(0, 1),

where ξ is set at its true parameter value. Furthermore, all the computations
are performed with GAUSS at 3 different sample sizes, T = 400, 800, 1600.
The choice of these relatively large sample sizes reveal that the computational
burden of implementing our algorithm is extremely mild.

For each sample size T , 200 additional values are generated in order to
alleviate the impacts of starting values on estimation results. The optimization
algorithm used to implement the DLV algorithm is the quasi-Newton algorithm
of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) contained in the GAUSS
MAXLIK library. The maximum number of iterations for each replication is
100. The first two hundred replications of normal convergence are recorded for
the subsequent data analysis.

< Insert Table 1 here >

The simulation results contained in Table 1 reveal that the bias performance
from the DLV algorithm is satisfactory (especially when the sample size is
larger) for all configurations considered. Moreover, the associated root-mean-
squared error (RMSE) mostly decreases with the increasing sample size. The
two exceptional cases both occur when d = 0.4, i.e., the RMSE of estimating
the parameter μ1 and that of σ0 as T = 1600 is found to be higher than
that of μ1 and that of σ0 as T = 800, respectively. These two observations
demonstrate the ability of the DLV algorithm to deal with the mixture model
considered in this section. The performance of DLV algorithm for estimating
the fractional differencing parameter is particularly displayed with the box-
plots in Figure 2. The above-mentioned observations are clearly borne out in
this figure.

< Insert Figure 2 here >
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4 Empirical Applications

The methodology developed in this paper is motivated by the dynamic pat-
tern of long memory behavior. Evidence has been given by many methods for
such a changing covariance behavior of the Nile river. The applications of the
proposed MS-ARFIMA model to actual data are far reaching. For that reason,
we consider two data set. The first one is the U.S. real interest rates, while
the second one is the Nile river data.

4.1 Example with real interest rates

In this subsection we first consider the U.S. ex post monthly real interest
rate constructed from monthly inflation and Treasury bill rates from Jan-
uary 1953 to December 1990 in Mishkin [?]. The reason we use the original
dataset of Mishkin [?] is to employ it as a benchmark for a clear comparison
between the results from the MS-ARFIMA model and those generated from
the methodology employed in earlier papers.

The main feature of the real interest rate is that the whole dataset can
be split into three subperiods, January 1953-October 1979, November 1979-
October 1982, and November 1982-December 1990, because the operating pro-
cedure of the monetary authority changed in October 1979 and October 1982
as argued in Mishkin [?]. Another interesting feature of the real interest rate
is that the data of these three subperiods can be well described with the
ARFIMA models as shown in Tsay [?]. The simultaneous presence of struc-
tural break and long memory within the real interest rate allows itself to be
an ideal subject to be investigated with the MS-ARFIMA model.

Allowing the break points to be endogenously determined, Table 2 con-
tains the parameter estimates from the following mixture model with a 2-state
Markov chain and a normally distributed ARFIMA(1, d, 1) noise:

wt = μst
I{t ≥ 1}+(1−L)−d0σ0ztI{t ≥ 1}, (1−φ1L)zt = (1+ θ1L)εt, (18)

where φ1 or θ1 is assumed to be zero depending on the noise specification.
Following Hamilton [?], asymptotic standard errors are calculated numerically.
These calculated standard errors may not be valid, because the DLV algorithm
is not equivalent to the usual full complete-data log-likelihood estimation.
Nevertheless, the DLV algorithm provides us a convenient way to identify the
most likely regime path beneath the observed data under the model in (18).

< Insert Table 2 here >
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Table 2 shows that the estimates of μ1, μ2, p11, p22, σ0, and d0 from the
DLV algorithm are quite robust across all 4 different configurations. Inter-
estingly, the estimated values of p11 and p22 remain intact regardless which
model specification is used. This implies that the transition of states within the
real interest rates can be successfully captured with the model in (18) which
is designed to characterize the joint presence of long memory and Markov-
switching phenomena. This finding also explains why there are two identical
break points identified with these four models, i.e., November 1980 and May
1986, respectively. As a consequence, using the model in (18), we endogenously
divide the whole real interest rates data into three subperiods as suggested in
Mishkin [?].

Figure 3 displays the U.S. monthly ex post real interest rates and the path
of estimated switching means generated from the DLV algorithm. Without
loss of generality, only the path of the estimated switching means from the
specification ARFIMA(0, d, 0) in Table 2 is reported. Figure 3 shows that the
model in (18) provides a satisfactory fitting of the U.S. monthly real interest
rates. Although the endogenously identified break points are later than the
well-known monetary operating procedure change points (October 1979 and
October 1982), this finding is quite reasonable, because it takes some time for
the ex post real interest rate to adjust its path after new information arrives.
This argument is buttressed with the findings in Figure 3 that the endoge-
nously identified break points are more closely connected to the observed path
of the U.S. monthly ex post real interest rates than the monetary operating
procedure change points are.

< Insert Figure 3 here >

Table 2 also shows that a long memory phenomenon is found in the real
interest rate as has been documented in Tsay [?]. Nevertheless, the estimate
of the fractional differencing parameter in Table 2 is much lower than that
of 0.666 in Table 3 of Tsay [?] where the change points are exogenenously
determined, and it is more in line with the estimates of 0.204, 0.275, and
0.193 from the individual subperiod data presented in Table 3 of Tsay [?].
This implies that the persistence of long memory in the real interest rate is
much more mitigated, once we take the potentially switching mean of the data
into account, thus confirming the arguments of Diebold and Inoue [?] that the
presence of Markov-switching level might increase the persistence of the data
under investigation.

4.2 Example with Nile river data
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In this subsection we apply the Viterbi algorithm to the Nile river data with
the following model:

wt = μst
I{t ≥ 1} + (1 − L)−dst σst

εtI{t ≥ 1}, (19)

where N is assumed to be 2, and εt in (19) is normally distributed. For the
purpose of comparison, we estimate a fixed regime ARFIMA(0, d, 0) model for
the Nile river data, i.e., N = 1 is imposed on this model. The estimated value
of d from such a fixed regime ARFIMA(0, d, 0) model is 0.3986 and is almost
identical to the finding in Beran and Terrin [?].

< Insert Table 3 here >

When estimating the model in (19) with the Viterbi algorithm, we find that
the value of the differencing parameter in Table 3 is 0.5770 (nonstationary)
for one state, and is 0.2143 (stationary) for the other one. In addition, we
identify 5 transitions within the Nile river data in the year 720, 805, 815, 878,
and 1070. The estimated path of dst

from the MS-ARFIMA(0, d, 0) model in
Table 3 is graphed in Figure 4.

< Insert Figure 4 here >

Most impressively, the first transition date occurs in the year of 720, and
the associated estimated value of dst

within the period 622 to 719 is 0.2143
which is lower than the 0.5770 observed in the other regime. These two find-
ings correspond closely to the conjectures in Beran and Terrin [?] that the
observations 1 to about 100 seem to be more independent than the subse-
quent observations and the value of differencing parameter might be lower for
the first 100 observations than for the subsequent data. Moreover, the first
estimated transition date is also very close to the time of the construction of
the new measuring device in the year 715 noted in Percival and Walden [?]
(p.387).

In Figures 5 and 6 we present the observations and the fitted values gener-
ated from the estimated parameters displayed in Table 3. It is clear that the
fitted value from the MS-ARFIMA(0, d, 0) model is much closer to the real
data than that generated from the model whose differencing parameter is not
Markov switching. Combining the findings of the likelihood values in Table
3, we find that the MS-ARFIMA(0, d, 0) model is a promising alternative to
describe the Nile river data.
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< Insert Figure 5 here >

< Insert Figure 6 here >

5 Conclusions

A general class of MS-ARFIMA processes is suggested to combine long mem-
ory and Markov-switching models into one unified framework. The coverage
of this class of MS-ARFIMA models is far-reaching, but we show that they
still can be easily estimated with the original Viterbi algorithm or the DLV
algorithm proposed in this paper. In addition, the simulation reveals that the
finite sample performance of the DLV algorithm for a simple mixture model
of Markov-switching mean and ARFIMA(1, d, 1) process is satisfactory. When
applying the MS-ARFIMA models to the U.S. real interest rates and the Nile
river level, the estimation results are all highly compatible with the conjec-
tures made in the literature. Accordingly, the MS-ARFIMA model considered
in this paper not only can be used to tackle the puzzle raised by Diebold and
Inoue [?], but can also find many potential applications in several scientific
research fields.
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Table 1. Finite sample performance of the DLV algorithm

Parameter μ1 μ2 p11 p22 σ0 d0 φ1 θ1

d0 = 0.4

T = 400 Bias -0.024 -0.153 0.005 0.003 -0.006 0.093 -0.070 -0.007
RMSE 1.059 1.165 0.023 0.019 0.061 0.188 0.162 0.081

T = 800 Bias -0.058 -0.205 0.003 0.002 -0.002 0.050 -0.036 -0.008
RMSE 0.990 1.124 0.013 0.013 0.034 0.137 0.122 0.050

T = 1600 Bias -0.041 -0.209 0.001 0.001 -0.005 0.018 -0.014 0.000
RMSE 1.015 1.115 0.009 0.010 0.046 0.093 0.088 0.049

d0 = 0.3

T = 400 Bias -0.056 -0.174 0.006 0.002 -0.005 0.112 -0.079 -0.015
RMSE 0.960 1.026 0.028 0.018 0.053 0.239 0.207 0.075

T = 800 Bias 0.036 -0.115 0.002 0.002 -0.002 0.046 -0.029 -0.010
RMSE 0.877 0.973 0.013 0.013 0.030 0.159 0.145 0.048

T = 1600 Bias 0.055 -0.096 0.001 0.001 0.000 0.023 -0.015 -0.006
RMSE 0.789 0.876 0.009 0.008 0.007 0.120 0.110 0.031

d0 = 0.2

T = 400 Bias 0.016 -0.144 0.006 0.002 -0.006 0.157 -0.117 -0.017
RMSE 0.762 0.921 0.029 0.018 0.058 0.279 0.233 0.078

T = 800 Bias 0.050 -0.136 0.003 0.002 -0.003 0.084 -0.063 -0.011
RMSE 0.725 0.803 0.015 0.013 0.037 0.199 0.171 0.057

T = 1600 Bias 0.094 -0.118 0.001 0.001 -0.004 0.045 -0.037 -0.003
RMSE 0.678 0.761 0.010 0.009 0.035 0.146 0.125 0.050

Notes: Simulations are based on 200 replications. The data is generated from the mixture model
defined in (15), (16) and (17). DLV algorithm is the Durbin-Levinson-Viterbi algorithm proposed
in this paper. Bias is computed as the true parameter minus the corresponding average estimated
values.
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Table 2. Estimates of Parameters Based on Data for U.S. Monthly Real Interest Rate and the

DLV Algorithm

ARFIMA(0, d, 0) ARFIMA(0, d, 1) ARFIMA(1, d, 0) ARFIMA(1, d, 1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

μ1 5.3455 0.7494 5.3168 0.7162 5.3116 0.7124 5.3626 0.7706

μ2 0.7226 0.4814 0.7194 0.4383 0.7184 0.4322 0.7352 0.4958

p11 0.9833 0.0150 0.9833 0.0150 0.9833 0.0150 0.9833 0.0150

p22 0.9977 0.0023 0.9977 0.0023 0.9977 0.0023 0.9977 0.0023

σ0 2.5094 0.0831 2.5091 0.0831 2.5091 0.0831 2.4979 0.0827

d0 0.2225 0.0367 0.2062 0.0520 0.2034 0.0653 0.2337 0.0376

φ1 - - - - 0.0324 0.0946 -0.9847 0.0155

θ1 - - 0.0279 0.0663 - - 0.9675 0.0200

L∗ 1079.0875 1079.0009 1078.9918 1077.0173

Notes: The results are based on the MS-ARFIMA model defined in (18). S.E. stands for
the standard error of the estimate. L∗ represents the negative of the log-likelihood function
of the switching model. DLV algorithm is the Durbin-Levinson-Viterbi algorithm proposed
in this paper.

Table 3. Estimates of MS-ARFIMA(0, d, 0) Model based on the Nile River Data

MS-ARFIMA(0, d, 0) ARFIMA(0, d, 0)

Estimate S.E. Estimate S.E.

μ1 10.8593 0.6903 11.4847 0.2607

μ2 11.4939 0.0917 - -

p11 0.9930 0.0042 - -

p22 0.9918 0.0050 - -

σ1 0.5430 0.0202 0.6995 0.0192

σ2 0.8143 0.0332 - -

d1 0.5770 0.0430 0.3986 0.0309

d2 0.2143 0.0510 - -

L∗ 687.5642 703.8541

Notes: The MS-ARFIMA(0, d, 0) model is defined in (19). S.E. stands for the standard error
of the estimate based on numerical derivative. L∗ represents the negative of the log-likelihood
function of the estimated model.
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Figure 1. Yearly Nile river minima based on measurements at the Roda gauge near Cairo.
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Figure 2. Box-plots of the estimated d from the model defined in (15), (16) and (17) with 200
realizations. The value f(g) denotes the model specification where f = d, g denotes the sample size,

such that g = A = 400, g = B = 800, and g = C = 1600.
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Figure 3. US monthly ex post real interest rates, January 1953-December 1990. Solid line denotes
the path of estimated switching means from the specification ARFIMA(0, d, 0) in Table 2, while

dotted line denotes the observed monthly ex post real interest rates.
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Figure 4. Estimated dst from the MS-ARFIMA(0, d, 0) model in Table 3.
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Figure 5. Solid line denotes the Nile river water level divided by 100, while dotted line denotes the
corresponding fitted values from the MS-ARFIMA(0, d, 0) model in Table 3.
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Figure 6. Solid line denotes the Nile river water level divided by 100, while dotted line denotes the
corresponding fitted values from the ARFIMA(0, d, 0) model in Table 3.


