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This paper considers the maximum likelihood estimation (MLE) of a class of stationary and invert-
ible vector autoregressive fractionally integrated moving-average (VARFIMA) processes considered
in (26) of Luceño [1] or Model A of Lobato [2] where each component yi,t is a fractionally integrated
process of order di, i = 1, . . . , r. Under the conditions outlined in Assumption 1 of this paper, the
conditional likelihood function of this class of VARFIMA models can be efficiently and exactly calcu-
lated with a conditional likelihood Durbin-Levinson (CLDL) algorithm proposed herein. This CLDL
algorithm is based on the multivariate Durbin-Levinson algorithm of Whittle [3] and the conditional
likelihood principle of Box and Jenkins [4]. Furthermore, the conditions in the aforementioned As-
sumption 1 are general enough to include the model considered in Andersen et al. [5] for describing
the behavior of realized volatility and the model studied in Haslett and Raftery [6] for spatial data
as its special cases. As the computational cost of implementing the CLDL algorithm is much lower
than that of using the algorithms proposed in Sowell [7], we are thus able to conduct a Monte Carlo
experiment to investigate the finite sample performance of the CLDL algorithm for the 3-dimensional
VARFIMA processes with the sample size of 400. The simulation results are very satisfactory and
reveal the great potentials of using the CLDL method for empirical applications.
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1 Introduction

Consider the maximum likelihood estimation (MLE) of a class of station-
ary and invertible vector autoregressive fractionally integrated moving-average
(VARFIMA) processes:

Φ(B)diag(∇d)Yt = Θ(B)Zt, (1)

I would like to thank an anonymous referee and an Associate Editor for their valuable comments
and suggestions. I also thank Jia-Ci Lin and Peng-Hsuan Ke for their excellent research assistance.
∗Corresponding author. The Institute of Economics, Academia Sinica, Taipei, Taiwan, R.O.C. Tel.:
(886-2) 2782-2791 ext. 296. Fax: (886-2) 2785-3946. E-Mail: wtsay@econ.sinica.edu.tw



2 W. J. Tsay

where Yt = (y1,t, . . . , yr,t)�, t = 1, 2, . . . , T , is an r−dimensional vector of ob-
servations of interest, and Φ(B) and Θ(B) are finite order matrix polynomials
in B (usual lag operator), such that:

Φ(B) = Φ0 − Φ1B − . . .− ΦpB
p, Θ(B) = Θ0 + Θ1B + . . .+ ΘqB

q, (2)

Φ0 = Θ0 = Ir, Ir is an (r × r) identity matrix, and the diagonal matrix
diag(∇d) is defined as:

diag(∇d) =

⎡⎢⎢⎢⎣
∇d1 0 . . . 0
0 ∇d2 . . . 0
...

...
. . .

...
0 0 . . . ∇dr

⎤⎥⎥⎥⎦ , (3)

with ∇ = 1 − B, and di ∈ (−1/2, 1/2) for all i = 1, 2, . . . , r. Here, Zt =
(z1,t, . . . , zr,t)� in (1) is an r−dimensional independent and identically dis-
tributed (i.i.d.) white noise process with a non-singular covariance matrix Σ.

Assuming that Φ(B) and Θ(B) satisfy the usual stationary and invertible
conditions, respectively, the multivariate process Yt can be represented with
the following MA representation:

Yt =
∞∑

j=0

ΨjZt−j =
∞∑

j=0

ΨjB
jZt, (4)

where Ψ0 = Ir, and the (r × r) coefficient matrices Ψj are often referred to
as impulse response functions. Note that Ψj decays at a slow hyperbolic rate
when the differencing parameters are not equal to 0. When r = 1, this process
was first introduced by Granger [8], Granger and Joyeux [9], and Hosking [10].
They show that Yt is stationary if d < 1/2. As d > 0, Yt is said to have a long
memory, because the autocovariance functions of the univariate process Yt are
not absolutely summable. See Beran [11] for the overviews of long memory
processes.

The model in (1) has been considered in (26) of Luceño [1] and is exactly
the Model A investigated in Lobato [2]. Each component yi,t in (1) is a frac-
tionally integrated process of order di, i = 1, . . . , r, denoted in (3). Sowell [7]
is the pioneer to calculate the likelihood function of the VARFIMA model
in (1). Nevertheless, the presence of AR parameters greatly complicates the
computation of the corresponding autocovariance functions, because the al-
gorithms of Sowell [7] [12] involve hypergeometric functions which need to be
evaluated with a truncated infinite sum, no matter whether the data are uni-
variate or multivariate. On the other hand, Luceño [1] suggests an approximate
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log-likelihood function based on the autocovariance function of the ‘inverse-
transpose’ model. As a consequence, a rounding error is inevitable from using
the approximate procedure of Luceño [1] and those of Sowell [7] [12]. The im-
pacts of rounding errors generated from these algorithms on the estimation
results might not be trivial, especially when the dimensionality of the data
series is relatively large.

The contribution of this paper is to show that the conditional likelihood
function of the VARFIMA process in (1) can be evaluated exactly and effi-
ciently if the model in (1) can be represented as:

diag(∇d)Φ(B)Yt = Θ(B)Zt. (5)

For example, the distinction between the models in (1) and (5) is irrelevant
if the data series is univariate, i.e., r = 1. Under the multivariate time series
scenario, the models in (1) and (5) are identical if either Φ(B) is diagonal
or the values of differencing parameters remain intact across i = 1, . . . , r as
imposed in Assumption 1 in the next section. Thus, each component yi,t in (5)
is still a fractionally integrated process of order di defined in (3) given that
the above-mentioned two conditions are satisfied. In fact, these conditions
have been employed in the multivariate long memory literature, e.g., Haslett
and Raftery [6] impose a homogeneous structure on the fractional differencing
and ARMA parameters across meteorological stations to describe the wind
speeds recorded at 12 synoptic meterorological stations in Ireland when using
the VARFIMA model for their spatial data. Moreover, Andersen et al. [5]
employ the long-memory Gaussian trivariate VAR model in their equation
(15) to describe the realized logarithm volatilities of exchange rates where
the values of differencing parameters are also identical across i = 1, . . . , r. The
reason why they impose such a homogenous structure on the value of fractional
differencing parameters is to reduce the computational burdens of estimating
the VARFIMA model whose dimensionality and span of data series are both
large. However, the methodology developed in this paper allows us to deal
with the VARFIMA model in (1) where the integration of each component yi,t

is different across, i = 1, . . . , r.
The model in (5) has been discussed in (27) of Luceño [1]. It is also equivalent

to Model B considered in Lobato [2] and can be estimated with Luceño’s [1]
approximate log-likelihood function. As argued previously, a rounding error
is inevitable when using the approximate procedure of Luceño [1]. On the
contrary, given that the model in (1) can be transformed as the one in (5),
we show that the conditional likelihood function of the VARFIMA process
in (1) can be evaluated exactly and efficiently by combining the multivariate
Durbin-Levinson algorithm of Whittle [3] with the conditional likelihood prin-
ciple of Box and Jenkins [4] even though the dimensionality and span of data
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series are relatively large. We name this procedure as the conditional likelihood
Durbin-Levinson (CLDL) algorithm. In the literature, Deriche and Tewfik [13]
and Tsay and Härdle [14] estimate the univariate ARFIMA process with the
univariate Durbin-Levinson algorithm, while Doornik and Ooms [15] suggest
using Whittle’s [3] method for VARFIMA models but with no implementation.

Because the VARFIMA processes considered in Andersen et al. [5] belong to
the subcases of models in (1), the proposed CLDL algorithm is readily applied
to the data of Andersen et al. [5]. Most importantly, the CLDL algorithm will
provide a much more efficient estimate than the equation-by-equation ordinary
least squares (OLS) method of Andersen et al. [5] who fix the value of d in (1)
with a common estimate 0.401 across three data series.

Another valuable feature of the CLDL algorithm is its computational gain
over the original algorithm of Sowell [7]. It is well known that the compu-
tational burdens of applying Sowell’s [7] algorithm to the VARFIMA data
are tremendous. Particularly, when studying the joint behavior of U.S. and
Canadian bond rates, Dueker and Startz [16] demonstrate that it takes about
35 minutes on a 200-MHz PC for each iteration of the MLE of a bivariate
VARFIMA process with 121 observations and 18 parameters when imple-
menting Sowell’s [7] algorithm. However, it takes about less than 40 seconds
on a 1066-MHz PC for each iteration of the conditional MLE of a bivari-
ate VARFIMA(1, d, 1) process with 400 observations and 11 parameters when
implementing the proposed CLDL algorithms. This clearly demonstrates the
power of the CLDL algorithm for many potential empirical applications. It also
explains why we can conduct a Monte Carlo experiment to investigate the fi-
nite sample performance of the CLDL algorithm for 3-dimensional VARFIMA
processes under the sample size up to 400.

The remaining parts of this paper are arranged as follows: Section 2 presents
the autocovariance functions of a VARFIMA(0, d, q) process and the imple-
mentation of the multivariate Durbin-Levinson algorithm. Section 3 considers
a class of VARFIMA(p, d, q) processes with which we can compute their cor-
responding conditional likelihood function exactly with the CLDL algorithm.
The finite sample performance of the CLDL algorithm is investigated through
a Monte Carlo experiment in Section 4. Section 5 provides a conclusion.

2 Autocovariances of VARFIMA(0, d, q) Processes

The model in (5) is essentially different from the one in (1) on the ordering
of Φ(B) and diag(∇d). The major idea of this paper is to show that the con-
ditional likelihood function of the VARFIMA process in (1) can be evaluated
exactly and efficiently if the model in (1) can be transformed as the one in (5).
Assumption 1 summarizes these conditions.
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Assumption 1. Given that the data is generated by (1), we assume (i) Φ(B)
is diagonal, or (ii) the values of differencing parameters di remain intact across
i = 1, . . . , r.

Provided that Assumption 1 holds, the difference in choosing between the
models in (1) and (5) no longer exists. Consequently, we impose the conditions
in Assumption 1 throughout this paper, and each component yi,t in model
(1) or (5) is a fractionally integrated process of order di, i = 1, . . . , r, as
defined in (3). Item (ii) of Assumption 1 allows us to estimate the data of
Andersen et al. [5] and those of Haslett and Raftery [6] with the proposed
CLDL algorithm explained more clearly later. The advantages of using item
(i) of Assumption 1 are more evident when the dimensionality of the data
series is relatively large. For example, when r = 7, we may require that Φ(B)
is diagonal, and the associated number of parameters for such a 7-dimensional
VARFIMA(1, d, 1) process is only 91 as compared to 133 parameters within a
VARFIMA(1, d, 1) process without being imposed any restriction. In so doing,
the resulting simplified model is still quite flexible, because we do not impose
any constraint on the structure of MA parameters, however, the computational
burden of estimating such a simplified model is much mitigated based on the
CLDL algorithm as has been documented in the introduction section.

Before implementing the MLE for the model in (1), we need to compute
the autovariance functions of the VARFIMA models. We first consider the
simplest case where Yt is generated as a VARFIMA(0, d, 0) model:

Yt = diag(∇−d)Zt, (6)

or

yi,t =
∞∑

j=0

ψi,jzi,t−j , ψi,j =
Γ(j + di)

Γ(j + 1)Γ(di)
, i = 1, 2, . . . , r, (7)

where Γ(.) is the gamma function. Denoting Ω(h) = E(Yt+hY
′
t ), h = −T +

1,−T + 2, . . . , 0, 1, 2, . . . , T − 2, T − 1, the autocovariance function of Yt in (6)
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at lag h is:

Ω(h) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

∞∑
j=0

ψ1,jψ1,j+h . . . σ1r

∞∑
j=0

ψ1,jψr,j+h

σ21

∞∑
j=0

ψ2,jψ1,j+h . . . σ2r

∞∑
j=0

ψ2,jψr,j+h

...
. . .

...

σr1

∞∑
j=0

ψr,jψ1,j+h . . . σrr

∞∑
j=0

ψr,jψr,j+h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

where σmn represents the (m,n)th element of Σ.
From Abramowitz and Stegun [17] (p. 556, §15.1.1, §15.1.20), we note that

the hypergeometric function is defined as:

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)
Γ(c+ n)Γ(n+ 1)

zn,

and it fulfills the following relationship:

F (a, b; c; 1) =
Γ(c)Γ(c − a− b)
Γ(c− a)Γ(c− b)

, c �= 0,−1,−2, . . . , c− a− b > 0.

Using the above results, we derive the (m,n)th element of Ω(h) in (8) as:

Ωm,n(h) ≡ σmn

∞∑
j=0

ψm,jψn,j+h =
σmnΓ(1 − dm − dn)

Γ(dn)Γ(1 − dn)
Γ(h+ dn)

Γ(h+ 1 − dm)
. (9)

Luceño [1] (p. 611) independently presents the formula for Ωm,n(h) in his
equation (8), but indirectly.

For computational efficiency, it is well known in the literature that Ωm,n(h)
in (9) can be calculated as follows:

σmn

∞∑
j=0

ψm,jψn,j+h =
σmnΓ(1 − dm − dn)
Γ(1 − dm)Γ(1 − dn)

∏
0<k≤h

k − 1 + dn

k − dm
, (10)

where m,n = 1, 2, . . . , r, and h = 1, 2, . . . .
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Combining the results in (9) and (10) with Whittle’s [3] multivariate Durbin-
Levinson algorithm, we evaluate the exact unconditional likelihood function
of a VARFIMA(0, d, 0) model, L(Φ,Θ, d,Σ, Y ), as:

(2π)−rT/2

⎧⎨⎩
T∏

j=1

det(Vj−1)

⎫⎬⎭
−1/2

exp

⎧⎨⎩−1
2

T∑
j=1

(
Yj − Ŷj

)�
V −1

j−1

(
Yj − Ŷj

)⎫⎬⎭ ,

(11)
where Ŷj denotes the one-step ahead predictor of Yj with the observation
Y (j − 1) = (Y �

1 , Y �
2 , . . . , Y

�
j−1)

� as j ≥ 2. Here, Vj−1 is the corresponding
one-step ahead prediction error matrix. As j = 1, Ŷ1 = 0, and V0 = Ω(0).
For the definition and computation of Ŷj and those of Vj−1, see Whittle [3] or
Proposition 11.4.1 of Brockwell and Davis [18] for details.

When Yt is a VARFIMA(0, d, q) process, i.e.:

diag(∇d)Yt = Θ(B)Zt, (12)

the (m,n)th element of its corresponding autocovariance function, Ω(h), is:

Ωm,n(h) ≡ Ω∗ (σmnΘmm,0Θnn,0)

+Ω∗
{

q∑
f=1

q∑
g=1

r∑
u=1

r∑
v=1

σuvΘmu,fΘnv,g
Γ(h+ dn + g − f)Γ(h+ 1 − dm)
Γ(h+ dn)Γ(h+ 1 − dm + g − f)

}

+Ω∗
{

q∑
f=1

r∑
u=1

σnuΘmu,f
Γ(h+ dn − f)

Γ(h+ dn)
Γ(h+ 1 − dm)

Γ(h+ 1 − dm − f)

}

+Ω∗
{

q∑
f=1

r∑
u=1

σmuΘnu,f
Γ(h+ dn + f)

Γ(h+ dn)
Γ(h+ 1 − dm)

Γ(h+ 1 − dm + f)

}
,

(13)
where

Ω∗ =
Γ(1 − dm − dn)
Γ(dn)Γ(1 − dn)

Γ(h+ dn)
Γ(h+ 1 − dm)

, (14)

and Θmn,k denotes the (m,n)th element of Θk in (1). Note that there are (rq+
1)2 terms at the right-hand side of (13). With the autocovariance functions in
(13), we apply the multivariate Durbin-Levinson algorithm of Whittle [3] to the
VARFIMA(0, d, q) processes as we have suggested for the VARFIMA(0, d, 0)
processes.

Sowell [7] provides a formula to compute the autocovariance functions of the
VARFIMA(0, d, q) process in page 12 and page 14 of his manuscript. In this
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paper, we present the formula in (13) more explicitly, thus providing an easy
access to empirical applications. Furthermore, similar to the results in (10),
the ratios of gamma functions in (13) can be computed with the following
relationship:

Γ(h+ dn + l)
Γ(h+ dn)

Γ(h+ 1 − dm)
Γ(h+ 1 − dm + l)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∏
k=1

h+ dn + k − 1
h− dm + k

, if l > 0,

1, if l = 0,

|l|∏
k=1

h− dm − k + 1
h+ dn − k

, if l < 0,

(15)

indicating that the unconditional likelihood function of an r−dimensional
VARFIMA(0, d, q) process can be evaluated efficiently and without a rounding
error.

For the more restrictive VARFIMA(0, d, q) process where Θ(B) is diagonal,
the value of Ωm,n(h) in (13) becomes:

Ωm,n(h) ≡ σmn Ω∗

⎧⎨⎩
q∑

l=−q

Ψ(l)
Γ(h+ dn + l)

Γ(h+ dn)
Γ(h+ 1 − dm)

Γ(h+ 1 − dm + l)

⎫⎬⎭ , (16)

where

Ψ(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q−|l|∑
k=0

Θmm,kΘnn,k+|l|, if l > 0,

q∑
k=0

Θmm,kΘnn,k, if l = 0,

q−|l|∑
k=0

Θnn,kΘmm,k+|l|, if l < 0.

(17)

Now there are only (q+1)2 terms at the right-hand side of (16). As r = 1, the
autocovariance function in (16) is equivalent to Sowell’s [12] (p. 173) formula.

3 CLDL Algorithm for VARFIMA(p, d, q) Processes

We now show that the conditional likelihood function of the model in (1)
under Assumption 1 can be evaluated exactly. From (1) or (5), we have
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Φ(B)Yt = diag(∇−d)Θ(B)Zt, and the term diag(∇−d)Θ(B)Zt at the right-
hand side of the equality sign corresponds to being a VARFIMA(0, d, q) pro-
cess whose autocovariances are displayed in (13). Adopting the idea of the
conditional likelihood function in Box and Jenkins [4] (Chapter 7), we trans-
form Yt in (1) into diag(∇−d)Θ(B)Zt for a given choice of parameters in Φ(B)
and of suitable starting values. Particularly, if p = 1, then conditional on Φ1

and Y1, Yt − Φ1Yt−1, t = 2, 3, . . . , T , is a VARFIMA(0, d, q) process, and we
denote its associated conditional likelihood function as:

L (Φ,Θ, d,Σ, Y | Y1) ≡ L (0,Θ, d,Σ, Yt − Φ1Yt−1) , for p = 1, t = 2, . . . , T.
(18)

Applying the multivariate Durbin-Levinson algorithm of Whittle [3] to the
transformed data, Yt −Φ1Yt−1, we simultaneously estimate all the parameters
Φ,Θ, d, and Σ of the VARFIMA(p, d, q) process in (1) with the numerical
optimization method. No rounding error occurs during the evaluation of the
conditional likelihood function of the VARFIMA(p, d, q) processes in (18).

There are three remarks to be addressed here. First, similar to Li and
McLeod [19], the CLDL algorithm is a one-step procedure, because we esti-
mate all the parameters Φ,Θ, d, and Σ in (1) simultaneously. Second, if Θ(B)
in (1) is diagonal, then we observe:

Φ(B)Yt = diag(∇−d)Θ(B)Zt = Θ(B)diag(∇−d)Zt = Θ(B)Ỹt, (19)

where Ỹt = diag(∇−d)Zt is a VARFIMA(0, d, 0) process. Again, conditional
on a set of Φ(B) and Θ(B) and of a suitable starting value, we can eval-
uate the conditional likelihood function of the process in (19) based on a
VARFIMA(0, d, 0) process, just like when we evaluate the conditional like-
lihood function of a VARMA(p, 0, q) process based on a vector white noise
process. The same transformation method for the univariate ARFIMA pro-
cess has been adopted in Dueker and Serletis [20] and Tsay and Härdle [14].

Third, in contrast to Li and McLeod [19] who first apply a binominal trans-
formation to the data, Yt, and then calculate the likelihood function for the
remaining AR and MA parameters, we initially transform Yt with a set of ini-
tial values of AR parameters and then compute the exact likelihood function of
the remaining VARFIMA(0, d, q) process. In so doing, we avoid the bias inher-
ent in many estimation methods for stationary univariate ARFIMA processes
which truncate the infinite sum that defines (1 − B)d, including both time-
domain and frequency-domain methods. This truncated infinite sum problem
was first pointed out by Sowell [12], who argues that the transformed series
from a truncated infinite fractional differencing transformation is the sum of
an ARMA model and a linear combination of an infinite number of unob-
served terms. Thus, ARMA parameters can never be correctly estimated from
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the estimators based on a truncated infinite fractional differencing transfor-
mation. Therefore, the estimate from the equation-by-equation OLS method
of Andersen et al. [5] by fixing the value of d in (1) with a common estimate
0.401 across three data series may be problematic. See Sowell [12] (p. 170) for
a detailed discussion about this truncation problem.

4 Monte Carlo Experiment

This section considers the finite sample performance of the MLE of VARFIMA
processes with the proposed CLDL algorithm. To our knowledge, this is
the first simulation study pertaining to the full time-domain MLE of the
VARFIMA processes. Without loss of generality, we focus on the process where
all the fractional differencing parameters are positive in that the long memory
process is the major concern of the fractionally integrated literature. Moreover,
we divide our studies into two parts. The first part deals with the 3-dimensional
VARFIMA(0, d, 1) process, while the second part considers the 2-dimensional
VARFIMA(1, d, 1) one.

4.1 Three-dimensional VARFIMA(0, d, 1)

We first consider the following 3-dimensional VARFIMA(0, d, 1) process for
the Monte Carlo experiment:⎡⎢⎢⎢⎣

∇d1y1,t

∇d2y2,t

∇d3y3,t

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 + Θ11,1B 0 0

0 1 + Θ22,1B 0

0 0 1 + Θ33,1B

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
z1,t

z2,t

z3,t

⎤⎥⎥⎥⎦ . (20)

Note that AR parameters are not included in (20). Moreover, the specification
in (20) reveals that yi,t is a fractionally integrated process of order di.

The parameters considered for the simulations are:

(d1, d2, d3)
� = (0.4, 0.3, 0.2)� , (Θ11,1,Θ22,1,Θ33,1)

� = (−0.7,−0.5,−0.3)� ,
(21)

(z1,t, z2,t, z3,t)
� = N(0,Σ), Σ =

⎡⎢⎢⎣
1 ρ ρ

ρ 1 ρ

ρ ρ 1

⎤⎥⎥⎦ , and ρ = {0.2, 0.5} .

(22)
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Given the specification in (20), we adopt the Cholesky decomposition algo-
rithm suggested by McLeod and Hipel [21] and Hosking [22] to simulate three
(T × 1) ARFIMA processes zi,t, i = 1, 2, 3.

We estimate the parameter:

ξ = (d1, d2, d3,Θ11,1,Θ22,1,Θ33,1)�, (23)

with the following transformation function:

ξ = κ(ξ̃), (24)

where

κ(ξ̃) =

(
d̃1

1 + 2|d̃1|
,

d̃2

1 + 2|d̃2|
,

d̃3

1 + 2|d̃3|
,
eΘ̃11,1 − 1

eΘ̃11,1 + 1
,
eΘ̃22,1 − 1

eΘ̃22,1 + 1
,
eΘ̃33,1 − 1

eΘ̃33,1 + 1

)�
,

(25)
and

ξ̃ = (d̃1, d̃2, d̃3, Θ̃11,1, Θ̃22,1, Θ̃33,1)�, (26)

are the parameters really estimated with the proposed algorithm. In order to
create a realistic simulation scheme, we do not use the inverse function of the
preceding transformation function calculated at the true parameter value of
ξ̃ as the initial value for estimation procedure. Instead, we employ the true
value of ξ as the initial value for ξ̃. In other words, in the simulation we use:

ξ̃0 = (d1, d2, d3,Θ11,1,Θ22,1,Θ33,1)�, (27)

as the initial value for ξ̃ in (24). This is the first mechanism to create a realistic
simulation scheme.

For the estimation of Σ in (22), we employ a (3×3) upper triangular matrix
U to conduct the following transformation:

Σ = U�U. (28)

The parameters contained in U are the parameters really estimated with the
proposed algorithm. However, the starting values for each element of U are all
set to be 1. Thus, the initial value of U for starting the procedure is not set
to be the true value of U . This is the second mechanism to create a realistic
simulation environment.

All the programs are written in GAUSS evaluated at three sample sizes,
T = 200, 300, 400. The choice of these sample sizes strongly reveals that the
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computational burden of implementing the CLDL algorithm is mild. Moreover,
these sample sizes are frequently encountered with the usual macroeconomic
time series.

Two hundred additional values are generated in order to obtain random
starting values. The optimization algorithm used to implement the CLDL
algorithm is the quasi-Newton algorithm of Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) contained in the GAUSS MAXLIK library. The maximum
number of iterations for each replication is 100. The first 250 replications of
normal convergence are recorded for the subsequent data analysis.

Define bias as the true parameter values minus the corresponding average
estimated values. The simulation results in Table 1 for ρ = 0.2 and Table 2 for
ρ = 0.5 reveal that the bias performance from using the unconditional maxi-
mum likelihood estimator is satisfactory and the associated root-mean-squared
error (RMSE) decreases with the increase of sample size for all configurations
considered in the experiment.

< Insert Table 1 here >

< Insert Table 2 here >

In order to give a clearer picture about the finite sample performance of
the CLDL algorithm, we also report the simulation results with box-plots in
Figures 1, 2, and 3 for the case ρ = 0.2, and in Figures 4, 5, and 6 for the case
ρ = 0.5. Figure 1 and Figure 4 show the box-plots of the estimated d, while
Figures 2 and 5 illustrate the box-plots of the estimated Θ. The box-plots of
the estimated Σ are displayed in Figures 3 and 6. All these figures demonstrate
that the performance of the CLDL algorithm performs well at a larger sample
size as shown in Table 1 and Table 2, supporting the usefulness of the CLDL
algorithm in estimating the VARFIMA processes displayed in (20).

< Insert Figure 1 here >

< Insert Figure 2 here >

< Insert Figure 3 here >
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< Insert Figure 4 here >

< Insert Figure 5 here >

< Insert Figure 6 here >

We also compare the performance of the CLDL algorithm in estimating the
model in (20) with that of the semiparametric QMLE in (8) of Lobato [23]. The
distinguished feature of the QMLE is that it is designed to be robust to the
presence of AR and MA parameters. Thus, it can generate robust estimates of
fractional differencing parameters in (1) without worrying about the order of
the AR and MA polynomials. However, the implementation of Lobato’s [23]
QMLE requires selecting a number of Fourier frequencies λj = 2πj/T with
j = 1, . . . ,m for estimation. The choice of m is crucial on the performance of
the semiparametric QMLE. In this section we select two values of m = [T 0.5]
and m = [T 0.65], where [X] is the largest integer less than or equal to X.

We employ a sequential quadratic programming algorithm “sqpSolve” con-
tained in the GAUSS library to implement the QMLE of Lobato [23]. Similar
to the experimental design for the CLDL algorithm, two hundred additional
values are generated in order to obtain random starting values. Again, the first
250 replications of normal convergence are recorded for the subsequent data
analysis as we have done for the CLDL algorithm.

In contrast with the CLDL algorithm, where the maximum number of it-
erations for each replication is 100, we do not impose a restriction on the
maximum number of iteration when conducting the QMLE. This is the first
design which favors the implementation of QMLE relative to the CLDL al-
gorithm. Furthermore, the true parameter values of di in (20) are set as the
initial value for estimation procedure. This is the second design which favors
the implementation of QMLE relative to the CLDL algorithm. If the simula-
tion results show that the performance of the CLDL algorithm in estimating
the fractional differencing parameters is still better than that of the QMLE of
Lobato [23] under the aforementioned experimental design, then we can accrue
this finding to the outstanding performance of MLE over its semiparametric
counterpart under correct model specification scheme.

For ease of comparison, the simulation results of the QMLE are also dis-
played in Table 1 for ρ = 0.2 and Table 2 for ρ = 0.5. Tables 1 and 2 clearly
show that performance of the QMLE improves when m = [T 0.5] is used as
compared to the other choice m = [T 0.65]. This finding is reasonable, because
the design of QMLE is motivated by examining the spectral density function
close to the zero frequency of a long memory process. These tables also reveal
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that, for all 3 differencing parameters considered in the experment, the perfor-
mance of the CLDL algorithm is much better than that of QMLE even when
m = [T 0.5] is chosen, because the RMSE of the CLDL algorithm is less than
that of the QMLE, respectively. This is as expected in that the CLDL algo-
rithm is a conditional maximum likelihood estimator which should be more
efficient than its semiparametric counterpart under correct model specifica-
tion.

The simulation results from the CLDL and QMLE are also graphed with
box-plots for clarity of exposition. Figure 7 displays the results for the case
ρ = 0.2, while Figure 8 contains the findings for the case ρ = 0.5. To save space,
we only present the simulations concerning the parameter d1 = 0.4. Note that
the results from QMLE are based on the choice m = [T 0.5] for the reason
outlined previously. It is clear from these two figures that the performance of
the CLDL algorithm is much better than that of the QMLE.

< Insert Figure 7 here >

< Insert Figure 8 here >

4.2 Two-dimensional VARFIMA(1, d, 1)

This subsection considers the impacts of AR parameters on the performance
of the CLDL algorithms when the off-diagonal elements of Φ(B) in (5) are not
equal to zero. To save the loadings of estimation, we focus on the following
2-dimensional VARFIMA(1, d, 1) model:⎡⎣∇d1 0

0 ∇d2

⎤⎦⎡⎣ 1 − Φ11,1B −Φ12,1B

−Φ21,1B 1 − Φ22,1B

⎤⎦⎡⎣ y1,t

y2,t

⎤⎦ = Z̃t, (29)

where

Z̃t =

⎡⎣ 1 + Θ11,1B 0

0 1 + Θ22,1B

⎤⎦⎡⎣ z1,t

z2,t

⎤⎦ . (30)

Note that AR parameters are included in (29) as compared to the model in
(20). The presence of non-zero off-diagonal elements in Φ(B) indicates that
the conditions imposed in Assumption 1 are no longer binding for the model
defined in (29) and (30) which is a special case of the model in (5). Thus,
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the order of integration of yi,t is not equal to di any more. This implies that
the fractional differencing parameters d1 and d2 in (29) cannot be consistently
estimated with the QMLE of Lobato [23], because it is the linear combination
of yi,t, yi,t−1, and yj,t−1 with j �= i is a fractionally integrated process of order
di. However, the CLDL algorithm still can deal with the model defined in (29)
and (30) easily.

The parameters considered for the simulations are:

(d1, d2)� = (0.4, 0.2)� , (Θ11,1,Θ22,1)� = (−0.7,−0.3)� , (31)

(Φ11,1,Φ12,1,Φ21,1,Φ22,1)
� = (−0.5,−0.6, 0.7,−0.8)� , (32)

(z1,t, z2,t)
� = N(0,Σ), Σ =

[
1 ρ

ρ 1

]
, and ρ = {0.2, 0.5} . (33)

The principle of setting initial values for the CLDL algorithms and the QMLE
of Lobato [23] is identical to that outlined in subsection 4.1, respectively. In
addition, the ways of choosing initial values for the AR parameters are identical
to those of choosing initial values for the MA parameters outlined in subsection
4.1 for the CLDL algorithm.

The simulations are graphed with box-plots in Figures 9, 10, and 11 for the
case ρ = 0.2, and in Figures 12, 13, and 14 for the case ρ = 0.5. Figure 9
and Figure 12 exhibit the box-plots of the estimated d, Figures 10 and 13
demonstrate the box-plots of the estimated Θ, and Figure 11 and Figure 14
present the box-plots of the estimated Φ. To save space, we do not present
the box-plots of the estimated Σ in this paper, but point out that they are
similar to those shown in Figures 3 and 6. All these figures demonstrate that
the performance of the CLDL algorithm improves with the increasing sam-
ple sizes and the bias from using the CLDL is very small as we find in the
studies concerning the 3-dimensional VARFIMA(0, d, 1) process in subsection
4.1. These simulation results explicitly support the usefulness of the CLDL
algorithm in estimating the VARFIMA(1, d, 1) processes displayed in (29) and
(30).

< Insert Figure 9 here >

< Insert Figure 10 here >
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< Insert Figure 11 here >

< Insert Figure 12 here >

< Insert Figure 13 here >

< Insert Figure 14 here >

We also prepare a comparison between the QMLE and the CDLD algorithm
in estimating the fractional differencing parameter under the model in (29)
and (30). Before discussing the findings, we emphasize here that the order
of integration of y1,t in (29) is not 0.4 due to the presence of a non-zero off-
diagonal element shown in Φ(B) of (29). Thus, the estimates for d1 from using
the QMLE of course will not be close to the true parameter value 0.4. Indeed,
in Figure 15 for the case ρ = 0.2 and in Figure 16 for the case ρ = 0.5,
respectively, we find the estimates of d1 based on Lobato’s [23] QMLE are far
away from the true parameter value d1 = 0.4. On the contrary, the conditional
MLE based on the CLDL algorithm provides a promising estimate of d1 no
matter whether the value of ρ is 0.2 or 0.5, indicating the excellent ability of
the proposed CLDL algorithm in estimating all the AR, MA, and fractional
differencing parameters under the model in (5).

< Insert Figure 15 here >

< Insert Figure 16 here >

5 Conclusion

We explicitly illustrate the analytic formulae of the autocovariance functions
of an r−dimensional VARFIMA(0, d, q) process and numerically demonstrate
that the unconditional MLE of the VARFIMA(0, d, q) processes can be im-
plemented efficiently and exactly with the multivariate Durbin-Levinson al-
gorithm of Whittle [3] via a Monte Carlo experiment. In the presence of AR
parameters, we further demonstrate that an exact conditional MLE can be
implemented with the proposed CLDL algorithm for the VARFIMA processes
displayed in (1) under Assumption 1. As a consequence, the problems of round-
ing error generated from Sowell’s [7] [12] and Luceño’s [1] algorithms are com-
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pletely avoided with the joint use of the CLDL algorithm and the conditions
in Assumption 1. In fact, the CLDL algorithm is the only procedure which is
free of rounding error in the multivariate long memory literature. This feature
is important when we do not have a clue to evaluate the impacts of rounding
errors on the precision of estimation results, especially when the dimensional-
ity and sample length of the data series are relatively large as we find in many
meterorological and spatial data.

The coverage of the methodology based on Assumption 1 and the CLDL
algorithm is general enough to include the model considered in Andersen et
al. [5] and the model studied in Haslett and Raftery [6]. Given the good per-
formance of the long-memory Gaussian VAR model proposed by Andersen et
al. [5], the advantages of applying the CLDL algorithm to the time-varying
return volatility environment are more evident, because we now are in a much
better position to deal with this kind of financial data whose dimensionality
and span of data series are both large. Furthermore, it is well known that
Haslett and Raftery [6] impose a homogeneous structure on the fractional dif-
ferencing and ARMA parameters in order to describe the wind speeds recorded
at 12 synoptic meterorological stations in Ireland due to the tremendous com-
putational burden of using the unconstrained VARFIMA model. Essentially,
the development of the CLDL algorithm greatly relaxes the restrictions im-
posed in the contemporaneous ARFIMA model of Haslett and Raftery [6] and
sheds more lights on the modeling of long memory space-time data.
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Table 1. Bias and RMSE from Estimating a 3-dimensional VARFIMA(0, d, 1) Process

d1 = 0.4 d2 = 0.3 d3 = 0.2 Θ11,1 = −0.7 Θ22,1 = −0.5 Θ33,1 = −0.3

ρ = 0.2

CLDL

T = 200 Bias 0.0926 0.0289 -0.0193 -0.0782 -0.0223 0.0357
RMSE 0.1681 0.1060 0.1114 0.1739 0.1268 0.1434

T = 300 Bias 0.0757 0.0205 -0.0247 -0.0685 -0.0174 0.0383
RMSE 0.1327 0.0899 0.0903 0.1391 0.1005 0.1147

T = 400 Bias 0.0723 0.0181 -0.0304 -0.0688 -0.0159 0.0441
RMSE 0.1218 0.0819 0.0816 0.1290 0.0915 0.1023

QMLE

m = [T 0.50]

T = 200 Bias 0.2012 0.0847 0.0419 NA NA NA
RMSE 0.2814 0.2078 0.1920 NA NA NA

T = 300 Bias 0.1403 0.0614 0.0208 NA NA NA
RMSE 0.2126 0.1760 0.1682 NA NA NA

T = 400 Bias 0.1158 0.0525 0.0097 NA NA NA
RMSE 0.1874 0.1581 0.1379 NA NA NA

m = [T 0.65]

T = 200 Bias 0.3538 0.1716 0.0799 NA NA NA
RMSE 0.3743 0.2077 0.1430 NA NA NA

T = 300 Bias 0.2948 0.1397 0.0620 NA NA NA
RMSE 0.3102 0.1714 0.1131 NA NA NA

T = 400 Bias 0.2679 0.1206 0.0461 NA NA NA
RMSE 0.2818 0.1484 0.0920 NA NA NA

Notes: The results are all based on 250 replications. Details of the experimental designs are given in (20), (21),
and (22). CLDL denotes the conditional likelihood Durbin-Levinson algorithm proposed in this paper. QMLE
denotes the QMLE method considered in Lobato [23], and m is the maximum number of Fourier frequencies
λj = 2πj/T with j = 1, . . . , m used for implementing QMLE. NA denotes not available.
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Table 2. Bias and RMSE from Estimating a 3-dimensional VARFIMA(0, d, 1) Process

d1 = 0.4 d2 = 0.3 d3 = 0.2 Θ11,1 = −0.7 Θ22,1 = −0.5 Θ33,1 = −0.3

ρ = 0.5

CLDL

T = 200 Bias 0.1027 0.0157 -0.0537 -0.0915 -0.0069 0.0782
RMSE 0.1447 0.0837 0.1066 0.1449 0.1024 0.1349

T = 300 Bias 0.0925 0.0072 -0.0614 -0.0865 -0.0011 0.0853
RMSE 0.1264 0.0709 0.0961 0.1275 0.0819 0.1240

T = 400 Bias 0.0888 0.0058 -0.0659 -0.0859 -0.0004 0.0889
RMSE 0.1171 0.0651 0.0913 0.1186 0.0737 0.1181

QMLE

m = [T 0.50]

T = 200 Bias 0.1947 0.0805 0.0466 NA NA NA
RMSE 0.2630 0.1909 0.1862 NA NA NA

T = 300 Bias 0.1383 0.0592 0.0344 NA NA NA
RMSE 0.2048 0.1672 0.1650 NA NA NA

T = 400 Bias 0.1120 0.0488 0.0194 NA NA NA
RMSE 0.1765 0.1497 0.1357 NA NA NA

m = [T 0.65]

T = 200 Bias 0.3541 0.1722 0.0826 NA NA NA
RMSE 0.3700 0.2010 0.1379 NA NA NA

T = 300 Bias 0.2964 0.1407 0.0652 NA NA NA
RMSE 0.3106 0.1663 0.1104 NA NA NA

T = 400 Bias 0.2676 0.1217 0.0492 NA NA NA
RMSE 0.2803 0.1440 0.0893 NA NA NA

Notes: The results are all based on 250 replications. Details of the experimental designs are given in (20), (21),
and (22). CLDL denotes the conditional likelihood Durbin-Levinson algorithm proposed in this paper. QMLE
denotes the QMLE method considered in Lobato [23], and m is the maximum number of Fourier frequencies
λj = 2πj/T with j = 1, . . . , m used for implementing QMLE. NA denotes not available.
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Figure 1. Box-plots of the estimated d from the 3-dimensional VARFIMA(0, d, 1) model defined in
(20), (21), (22), and ρ = 0.2 based on the CLDL algorithm with 250 replications. The value f(g)

denotes the model specification where f = d, g denotes the sample size, such that g=A=200,
g=B=300, and g=C=400.
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Figure 2. Box-plots of the estimated MA parameter from the 3-dimensional VARFIMA(0, d, 1)
model defined in (20), (21), (22), and ρ = 0.2 based on the CLDL algorithm with 250 replications.
The value f(g) denotes the model specification where f represents the value of MA parameter, and

g denotes the sample size, such that g=A=200, g=B=300, and g=C=400.
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Figure 3. Box-plots of the estimated Σ from the 3-dimensional VARFIMA(0, d, 1) model defined in
(20), (21), (22), and ρ = 0.2 based on the CLDL algorithm with 250 replications.
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Figure 4. Box-plots of the estimated d from the 3-dimensional VARFIMA(0, d, 1) model defined in
(20), (21), (22), and ρ = 0.5 based on the CLDL algorithm with 250 replications. The value f(g)

denotes the model specification where f = d, g denotes the sample size, such that g=A=200,
g=B=300, and g=C=400.
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Figure 5. Box-plots of the estimated MA parameter from the 3-dimensional VARFIMA(0, d, 1)
model defined in (20), (21), (22), and ρ = 0.5 based on the CLDL algorithm with 250 replications.
The value f(g) denotes the model specification where f represents the value of MA parameter, and

g denotes the sample size, such that g=A=200, g=B=300, and g=C=400.
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Figure 6. Box-plots of the estimated Σ from the 3-dimensional VARFIMA(0, d, 1) model defined in
(20), (21), (22), and ρ = 0.5 based on the CLDL algorithm with 250 replications.



Maximum Likelihood Estimation of Stationary Multivariate ARFIMA Processes 27

0.4(A,QMLE) 0.4(B,QMLE) 0.4(C,QMLE) 0.4(A,CLDL) 0.4(B,CLDL) 0.4(C,CLDL)

−0
.4

−0
.2

0.
0

0.
2

0.
4

d

Figure 7. Box-plots of the estimated d from the 3-dimensional VARFIMA(0, d, 1) model defined in
(20), (21), and (22) with 250 replications and ρ = 0.2. The value f(g, QMLE) denotes the

estimation results when the estimator is the QMLE of Lobato [23] and m = [T 0.50], f denotes the
true value of d = f , and g denotes the sample size, such that g=A=200, g=B=300, g=C=400.

Likewise, the value f(g, CLDL) denotes the estimation results when the estimator is the proposed
CLDL algorithm, f denotes the true value of d = f , and g denotes the sample size, such that

g=A=200, g=B=300, g=C=400.
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Figure 8. Box-plots of the estimated d from the 3-dimensional VARFIMA(0, d, 1) model defined in
(20), (21), and (22) with 250 replications and ρ = 0.5. The value f(g, QMLE) denotes the

estimation results when the estimator is the QMLE of Lobato [23] and m = [T 0.50], f denotes the
true value of d = f , and g denotes the sample size, such that g=A=200, g=B=300, g=C=400.

Likewise, the value f(g, CLDL) denotes the estimation results when the estimator is the proposed
CLDL algorithm, f denotes the true value of d = f , and g denotes the sample size, such that

g=A=200, g=B=300, g=C=400.
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Figure 9. Box-plots of the estimated d from the 2-dimensional VARFIMA(1, d, 1) model defined in
(29), (30), and ρ = 0.2 based on the CLDL algorithm with 250 replications. The value f(g) denotes

the model specification where f = d, and g denotes the sample size, such that g=A=200,
g=B=300, and g=C=400.
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Figure 10. Box-plots of the estimated MA parameter from the 2-dimensional VARFIMA(1, d, 1)
model defined in (29), (30), and ρ = 0.2 based on the CLDL algorithm with 250 replications. The
value f(g) denotes the model specification where f represents the value of MA parameter, and g

denotes the sample size, such that g=A=200, g=B=300, and g=C=400.
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Figure 11. Box-plots of the estimated AR parameter from the 2-dimensional VARFIMA(1, d, 1)
model defined in (29), (30), and ρ = 0.2 based on the CLDL algorithm with 250 replications. The
top-left panel depicts the estimates for Φ11,1, the top-right panel depicts the estimates for Φ12,1,

the low-left panel depicts the estimates for Φ21,1, and the low-right panel depicts the estimates for
Φ22,1.
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Figure 12. Box-plots of the estimated d from the 2-dimensional VARFIMA(1, d, 1) model defined
in (29), (30), and ρ = 0.5 based on the CLDL algorithm with 250 replications. The value f(g)

denotes the model specification where f = d, and g denotes the sample size, such that g=A=200,
g=B=300, and g=C=400.
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Figure 13. Box-plots of the estimated MA parameter from the 2-dimensional VARFIMA(1, d, 1)
model defined in (29), (30), and ρ = 0.5 based on the CLDL algorithm with 250 replications. The
value f(g) denotes the model specification where f represents the value of MA parameter, and g

denotes the sample size, such that g=A=200, g=B=300, and g=C=400.
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Figure 14. Box-plots of the estimated AR parameter from the 2-dimensional VARFIMA(1, d, 1)
model defined in (29), (30), and ρ = 0.5 based on the CLDL algorithm with 250 replications. The
top-left panel depicts the estimates for Φ11,1, the top-right panel depicts the estimates for Φ12,1,

the low-left panel depicts the estimates for Φ21,1, and the low-right panel depicts the estimates for
Φ22,1.
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Figure 15. Box-plots of the estimated d from the 2-dimensional VARFIMA(1, d, 1) model defined
in (29) and (30) with 250 replications and ρ = 0.2. The value f(g, QMLE) denotes the estimation
results when the estimator is the QMLE of Lobato [23] and m = [T 0.50], f denotes the true value
of d = f , and g denotes the sample size, such that g=A=200, g=B=300, g=C=400. Likewise, the

value f(g, CLDL) denotes the estimation results when the estimator is the proposed CLDL
algorithm, f denotes the true value of d = f , and g denotes the sample size, such that g=A=200,

g=B=300, g=C=400.
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Figure 16. Box-plots of the estimated d from the 2-dimensional VARFIMA(1, d, 1) model defined
in (29) and (30) with 250 replications and ρ = 0.5. The value f(g, QMLE) denotes the estimation
results when the estimator is the QMLE of Lobato [23] and m = [T 0.50], f denotes the true value
of d = f , and g denotes the sample size, such that g=A=200, g=B=300, g=C=400. Likewise, the

value f(g, CLDL) denotes the estimation results when the estimator is the proposed CLDL
algorithm, f denotes the true value of d = f , and g denotes the sample size, such that g=A=200,

g=B=300, g=C=400.


