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Abstract 
 

 In this paper we consider a stochastic frontier model in which the distribution of technical 
inefficiency is truncated normal. In standard notation, technical inefficiency u is distributed as 
ܰାሺߤ,  ଶሻ.   This distribution is affected by some environmental variables z that may or may notߪ
affect the level of the frontier but that do affect the shortfall of output from the frontier.  We will 
distinguish the pre-truncation mean (ߤ) and variance (ߪଶ) from the post-truncation mean 
∗ߤ ൌ ଶ∗ߪ ሻ and varianceݑሺܧ ൌ var(u).  Existing models parameterize the pre-truncation mean 
and/or variance in terms of the environmental variables and some parameters.  Changes in the 
environmental variables cause changes in the pre-truncation mean and/or variance, and imply 
changes in both the post-truncation mean and variance.  The expressions for the changes in the 
post-truncation mean and variance are quite complicated.  In this paper, we suggest parameterizing 
the post-truncation mean and variance instead.  This leads to simple expressions for the effects of 
changes in the environmental variables on the mean and variance of u, and it allows the 
environmental variables to affect the mean of u only, or the variance of u only, or both. 
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1. Introduction 
 
 In this paper we consider the stochastic frontier model 

௜ݕ  (1) ൌ ߙ ൅ ௜ݔ
ᇱߚ ൅ ௜ݒ െ ݅  , ௜ݑ ൌ 1,… , ݊  , 

where ݕ௜ is log output, ݔ௜ is a vector of inputs or functions of inputs, ݒ௜ is random noise distributed 

as ܰሺ0, ௜ݑ ௩ଶሻ, andߪ ൒ 0 represents technical inefficiency.  Here i indexes firms and n is the 

number of firms. 

 We assume that the distribution of ݑ௜ is truncated normal.  In standard notation, ݑ௜ is 

distributed as ܰାሺߤ௜, ௜ߪ
ଶሻ.  When ߤ௜ and ߪ௜

ଶ are constant (do not depend on i), this is the truncated 

normal model of Stevenson (1980).  In subsequent models in the literature, ߤ௜ and/or ߪ௜
ଶ depend 

on some “environmental variables” ݖ௜ that may not affect the level of the frontier but that do affect 

the size of technical inefficiency (the shortfall of output from the frontier).  For example, in the 

RSCFG model of Reifschneider and Stevenson (1991), Caudill and Ford (1993) and Caudill, Ford 

and Gropper (1995), ߤ௜ ൌ 0 and ߪ௜
ଶ is a function of ݖ௜ and some parameters.  In the KGMHLBC 

model of Kumbhakar, Ghosh and McGuckin (1991), Huang and Liu (1994), and Battese and 

Coelli (1995), ߪ௜
ଶ is constant (does not depend on i) and ߤ௜ is a function of ݖ௜ and parameters.  In 

the model of Wang (2002), both ߤ௜ and ߪ௜
ଶ depend on ݖ௜ and parameters.  Finally, in the model of 

Alvarez et al. (2006), there is a “scaling function” ݃ሺݖ௜, ௜ߤ ሻ such thatߠ ൌ ߤ ∙ ݃ሺݖ௜,  ሻ andߠ

௜ߪ ൌ ߪ ∙ ݃ሺݖ௜,  .ሻߠ

 We now make an important distinction.  We will call ߤ௜ and ߪ௜
ଶ the pre-truncation mean 

and variance.  That is, they are the mean and variance of the random variable that is truncated to 

get ݑ௜.  They are not the same as the post-truncation mean and variance, ߤ∗,௜ ൌ ௜,∗ߪ ௜ሻ andݑሺܧ
ଶ  = 

var(ݑ௜), which are quantities of more direct interest.  (If ݖ௜ is regarded as random, then ߤ∗,௜ and ߪ∗,௜
ଶ  
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should be regarded as ܧሺݑ௜|ݖ௜ሻ and var(ݑ௜|ݖ௜), respectively.)   

 The relationship between the pre-truncation and post-truncation parameters is somewhat 

complicated. Specifically, letting ݄௜ ൌ െߤ௜/ߪ௜, 

(2A)  ߤ∗,௜ ൌ ௜ሻݑሺܧ ൌ ߤ௜ ൅ ሺ݄௜ሻߣ௜ߪ ൌ ௜ሾെ݄௜ߪ ൅  ሺ݄௜ሻሿߣ

(2B)  ߪ∗,௜
ଶ  = var(ݑ௜) = ߪ௜

ଶሾ1 ൅ ݄௜ߣሺ݄௜ሻ െ  . ଶሺ݄௜ሻሿߣ

Here ߣሺ݄ሻ is the normal hazard function defined by ߣሺ݄ሻ ൌ ߮ሺ݄ሻ/ሾ1 െ  ሺ݄ሻሿ, where ߮ is theߔ

standard normal p.d.f. and ߔ is the standard normal c.d.f.  See, e.g., Greene (2012, p. 836). 

 One implication of this is that the derivatives of ߤ∗,௜ and ߪ∗,௜
ଶ  with respect to ݖ௜ will be 

complicated, even when the pre-truncation mean and variance are uncomplicated functions of ݖ௜.  

For example, see Wang (2002), equations (9) and (10), for the case that ߤ௜ ൌ ௜ߪ and ߜ′௜ݖ
ଶ ൌ

exp	ሺݖ௜ᇱߛሻ.  The only exception is for models with the scaling property, since then ݄௜ ൌ െߤ௜/ߪ௜ 

does not change when ݖ௜ changes, and so the derivatives are simpler. 

 A more fundamental implication of these expressions is that, if a change in ݖ௜ affects either 

௜ߪ ௜ orߤ
ଶ (or both), it will affect both the mean and the variance of ݑ௜.  That is, in all of the models 

listed above, it is impossible for ݖ௜ to affect ߪ∗,௜
ଶ  but not ߤ∗,௜ , or vice-versa.  To date, virtually all of 

the stochastic frontier literature has been concerned with the effects of ݖ௜ on ܧሺݑ௜ሻ rather than on 

var(ݑ௜).  (An exception is Bera and Sharma (1999).)  However, the variance of ݑ௜ may also be 

relevant.  The enormous literature on production risk, building on the influential work of Just and 

Pope (e.g., Just (1975), Just and Pope (1979), Just and Pope (2003)), has emphasized the 

importance of risk (i.e. variance) in influencing decisions about choice of technology and choice of 

inputs given technology.   Thus it may be important to be able to investigate the separate effects of 

environmental variables on the mean and variance of technical inefficiency. 
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 In this paper, we propose a model that allows this to be done.  The basic idea is simple: 

construct parametric models for ߤ∗,௜ and ߪ∗,௜
ଶ  rather than for ߤ௜ and ߪ௜

ଶ.  This involves some 

theoretical and computational issues to be discussed below. 

 The plan of the paper is as follows.  Section 2 describes some issues of model specification.  

Section 3 discusses computational issues.  Section 4 gives an empirical example, and Section 5 

describes the results of a small simulation.  Finally, Section 6 contains our concluding remarks. 

 

2. Model Specification 

 To specify an estimable model, we need to specify ߤ∗,௜ and ߪ∗,௜ (or ߪ∗,௜
ଶ ) as functions of ݖ௜ 

and some parameters.  In generic notation, we need to specify functions ߤ and ߪ such that  

௜,∗ߤ ൌ ,௜ݖሺߤ ௜,∗ߪ ሻ andߠ ൌ ,௜ݖሺߪ  .ߠ ሻ for some parametersߠ

 These functions are subject to some restrictions.  It is obvious that we must have ߤ∗,௜ ൐ 0 

and ߪ∗,௜ ൐ 0.  Less obviously, it must also be the case that 

௜,∗ߤ  (3) ൐  . ௜,∗ߪ

That is, if u is the truncation from the left at zero of a normal random variable, it must be the case 

that ܧଶሺݑሻ > var(u); or, equivalently, the mean of u must be bigger than the standard deviation.  

See, for example, Horrace (2012), Lemma 1, or Bera and Sharma (1999), equation (16), or Barrow 

and Cohen (1954), equation (3).  This restriction can be enforced through the choice of functional 

form or by restrictions on ߠ.   

 We will now suggest and discuss two different specifications (parameterizations). 

 Specification 1: ߤ∗,௜ = exp(ߜ଴ ൅ ଴ߛ)௜ = exp,∗ߪ , (ߜ′௜ݖ ൅  (ߛ′௜ݖ

This specification is attractive because it satisfies the non-negativity constraints and because the 
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interpretations of ߜ and ߛ are straightforward.  Specifically, the (vector) derivatives of the mean 

and standard deviation of u with respect to ݖ௜ are: 

(4)  
ௗఓ∗,೔
ௗ௭೔

ൌ   ,  ߜ௜,∗ߤ
ௗఙ∗.೔
ௗ௭೔

ൌ    ߛ௜,∗ߪ

Furthermore, this specification allows the environmental variables to affect the mean but not the 

variance, or vice-versa.  However, the imposition of the constraint (3) is potentially troublesome.  

In some simple cases this constraint may be simple.  For example, if there is only one variable in ݖ௜, 

and if it is non-negative, then the constraint (3) will hold for all i if ߜ଴ ൐ ߜ ଴ andߛ ൐  ,However  .ߛ

in more realistic cases we would need to restrict the parameter space in the numerical 

maximization of the likelihood function to the set of ߠ ൌ ൬
ߜ
݅ ൰ such that (3) holds for allߛ ൌ 1,… , ݊.  

This may be expected to cause numerical difficulties in the maximization of the likelihood and it 

raises issues of the statistical properties of the maximum likelihood estimates. 

 Specification 2: ߪ∗,௜ = exp(ߛ଴ ൅ ଴ߜ)௜ + exp,∗ߪ = ௜,∗ߤ , (ߛ′௜ݖ ൅  (ߜ′௜ݖ

 In this specification, the constraint (3) is enforced by the functional form and so no 

restrictions on ߠ are needed.  The interpretations of ߜ and ߛ are only slightly more complicated: 

(5)  
ௗఓ∗,೔
ௗ௭೔

ൌ ߛ௜ሺ,∗ߪ +  ߜ௜,∗ߤ െ ሻߜ ൌ ߛ௜,∗ߪ ൅ ሺߤ∗,௜ െ    ,  ߜ௜ሻ,∗ߪ
ௗఙ∗.೔
ௗ௭೔

ൌ  ߛ௜,∗ߪ

In this specification, it is possible for ݖ௜ to affect ߤ∗,௜ but not ߪ∗,௜; this corresponds to ߛ ൌ 0.  

However, it is not possible for ݖ௜ to affect ߪ∗,௜ but not ߤ∗,௜ .  If ݖ௜ does not affect ߤ∗,௜ (for all values 

of i) it must be the case that ߜ ൌ ߛ ൌ 0. 

 An interesting special case occurs when ߜ ൌ  In this case, the model reduces to the  .ߛ

“scaled Stevenson model” discussed by Alvarez et al., p. 204.  Specifically, when ߜ ൌ  we have ,ߛ

௜,∗ߪ  (6) ൌ ௜ݖሺ	଴expߪ
ᇱߛሻ  ,  ߤ∗,௜ ൌ ௜ݖሺ	଴expߤ

ᇱߛሻ  
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where ߪ଴ ൌ expሺߛ଴ሻ and ߤ଴ ൌ expሺߛ଴ሻ ൅ expሺߜ଴ሻ.  More generally, the expression in equation (6) 

for ߪ∗,௜ always holds, whether ߛ ൌ  or not, whereas ߜ

௜,∗ߤ  (7) ൌ expሺݖ௜
ᇱߛሻ ሾexpሺߛ଴ሻ ൅ expሺߜ଴ሻexp൫ݖ௜

ᇱሺߜ െ  , ሻ൯ሿߛ

which reduces to the expression for ߤ∗,௜ in (6) when ߛ ൌ  So in this case the same “scaling  .ߜ

function” exp(ݖ௜′ߛ) applies to both the mean and variance of the truncated normal distribution of 

 .௜ changesݖ ௜ , and the scale but not the shape of the distribution changes whenݑ

 

3. Construction of the Likelihood 

 We wish to construct a (log) likelihood function of the form 

(8)  ln L = ∑ ln ௜݂ሺݕ௜ െ ߙ െ ௜ݔ
ᇱߚሻ௡

௜ୀଵ  
 
where  ௜݂ is the density of ߝ௜ ൌ ௜ݒ െ ௜ݑ ൌ ௜ݕ െ ߙ െ  Note that ௜݂ depends on i because it  .ߚ′௜ݔ

depends on ݖ௜ (because ݖ௜ affects the distribution of ݑ௜) as well as on ߪ௩ଶ and ߠ (the parameters 

that determine the distribution of ݑ௜ in terms of ݖ௜). 

 The numerical problem that we face is that the density ௜݂ is most naturally written in terms 

of the pre-truncation mean and variance, ߤ௜ and ߪ௜.  Specifically, ௜݂ is as given by Stevenson 

(1980), equation (5), p. 59, if we substitute ߤ௜ for his ߤ and ߪ௜ for his ߪ௨ (in his equation (5) and in 

his expressions for “ߪ” and “ߣ” in the following line) and if we change the sign of ߝ௜.
1  If we define 

and ߱௜  (”ߣ“ which replaces his) ௩ߪ/௜ߪ = ௜ߦ
ଶ ൌ ௜ߪ

ଶ ൅  this leads to the ,(”ଶߪ“ which replaces his) ௩ଶߪ

expression 

(9)  ௜݂ሺߝ௜ሻ ൌ 	߱௜
ିଵ߮ሺఌ೔ାఓ೔

ఠ೔
ሻሾ1 െ ߔ ቀെ ఓ೔

ఠ೔క೔
൅ ఌ೔క೔

ఠ೔
ቁሿሾ1 െ ߔ ቀെ ఓ೔

ఙ೔
ቁሿିଵ . 

                     
1 The sign change for ߝ is needed because he has a cost function with error ߝ ൌ ݒ ൅  whereas we have ݑ
ߝ ൌ ݒ െ  Changing the sign changes u to –u.  It also changes v to –v, but this does not matter when v is  .ݑ
normal with mean zero, hence symmetric.   
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 As noted previously, the model of Wang corresponds to a particular parameterization of ߤ௜ 

and ߪ௜.  Our model corresponds to using the values of ߤ௜ and ߪ௜ that are implied by values of ߤ∗,௜ 

and ߪ∗,௜, which in turn are implied by our chosen parameterization. 

 The formation of the likelihood (8) for our model as a function of ߠ (as well as ߙ,  (௩ଶߪ and ߚ

therefore involves the following logical steps.  First, for a given value of ߠ, calculate ߤ∗,௜ and ߪ∗,௜.  

This will depend on the parameterization (e.g. Specification 1) chosen.  Second, for these values of 

  .௜ that satisfy equations (2A) and (2B)ߪ ௜ andߤ ௜, calculate the corresponding values of,∗ߪ ௜ and,∗ߤ

Third, use these values of ߤ௜ and ߪ௜ in equation (9) to calculate ௜݂ሺߝ௜ሻ and insert that value in 

equation (8). 

 The only difficult step is the second step, calculating the values of ߤ௜ and ߪ௜ that 

correspond to given values of ߤ∗,௜ and ߪ∗,௜. This amounts to inverting the functions given in (2A) 

and (2B).  To pursue this solution, define ݄௜ ൌ െߤ௜/ߪ௜ (as above), and define the function H(h): 

(10)  H(h) = 
ఓ∗మ

ఓ∗
మାఙ∗

మ = 
௛మିଶ௛ఒሺ௛ሻାఒమሺ௛ሻ

ଵା௛మି௛ఒሺ௛ሻ
 

H(h) is a monotonically decreasing function that has a limit of one as ݄ → െ∞ and a limit of 0.5 as 

݄ → ∞.  (The fact that H is less than one is obvious from the definition.  The fact that it is greater 

than 0.5 is due to the constraint (3).)  Therefore it has an inverse, and we can calculate  

(11)  ݄௜ = ିܪଵ ൬
ఓ∗,೔
మ

ఓ∗,೔
మ ାఙ∗,೔

మ ൰ . 

 The value of ݄௜ that corresponds to a specific value of  
ఓ∗,೔
మ

ఓ∗,೔
మ ାఙ∗,೔

మ  can be calculated by solving 

(10) numerically.  Alternatively, we have constructed a large table, available on request, of values 

of [h, H(h)] for h between -15 and 15, with increments of 0.001.  The value of h corresponding to a 

value of H(h) can be found by interpolating in this table. 
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 Figure 1 is a graph of the function H(h).  Table 1 gives a few values. 

 Once we have obtained ݄௜, we can solve equation (2B) for ߪ௜:  ߪ௜
ଶ ൌ

ఙ∗,೔
మ

ଵା௛೔ఒሺ௛೔ሻିఒమሺ௛೔ሻ
 , and 

then ߤ௜ ൌ െ݄௜ߪ௜.  We then insert these values of ߤ௜ and ߪ௜ into the expressions for ߦ௜ and ߱௜
ଶ (see 

the discussion preceeding equation (9)) and into equation (9) to evaluate the likelihood. 

 

4. Empirical Example 

 We apply the models given above to the Philippine rice data used in the empirical examples 

of Coelli et al. (2005), chapters 8 and 9.  These are annual data on 43 farmers over eight years, for 

a total of 344 observations.  Coelli et al. estimate a variety of stochastic frontier models, ignoring 

the panel nature of the observations, which we will also do.  The output variable is tons of freshly 

threshed rice, and the input variables are planted area in hectares (area), labor (labor), and 

fertilizer used in kilograms (fert).  These variables are scaled to have unit means so the first-order 

coefficients of the translog function can be interpreted as elasticities of output with respect to 

inputs, evaluated at the sample means.  Data on the age of the household head (age), education of 

the household head (edyrs), household size (hhsize), number of adults in the household (nadult), 

and the percentage of planted area classified as bantog (upland) fields (banrat)  are used as farm 

characteristics (ݖ௜ሻ that affect the distribution of technical inefficiency.  See Coelli et al., Appendix 

2, for a detailed description of the data. 

 We specify a translog production function with a time trend, of the form 

(12) ln ௜ݕ ൌ ଴ߚ ൅ ݐߠ ൅ ଵߚ ln ௜ܽ݁ݎܽ ൅ ଶߚ ln ௜ݎ݋ܾ݈ܽ ൅ ଷߚ ln      ௜ݐݎ݂݁

 ൅	ߚଵଵሾ½ሺln ௜ሻଶሿܽ݁ݎܽ ൅ ଵଶሺlnߚ ௜ሻሺlnܽ݁ݎܽ ௜ሻݎ݋ܾ݈ܽ ൅ ଵଷሺlnߚ ௜ሻሺlnܽ݁ݎܽ  ௜ሻݐݎ݂݁

ଶଶሾ½ሺlnߚ +  ௜ሻଶሿݎ݋ܾ݈ܽ ൅ ଶଷሺlnߚ ௜ሻሺlnݎ݋ܾ݈ܽ ௜ሻݐݎ݂݁ ൅ ଷଷሾ½ሺlnߚ ௜ሻଶሿݐݎ݂݁ ൅ ௜ݒ െ  .  ௜ݑ
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In all of the models we estimate, we assume that ݒ௜ is ܰሺ0,  ௩ଶ).  Different models will makeߪ

different assumptions about the distribution of ݑ௜.  Note that we use a single subscript “i” because 

we are ignoring the panel nature of the data.  For example, since we have 43 farmers, i = 46 

actually means the second year’s observation on farmer number three. 

 The first model we estimate is the basic stochastic frontier model in which ݑ௜ is distributed 

as ܰାሺ0,  ,.௨ଶሻ.  Our results agree with the results of previous analyses of these data, e.g. Coelli et alߪ

p. 250, so we will not display them here.  The likelihood value achieved was -74.410. 

 The second model we consider is the model of Stevenson (1980), in which ݑ௜ is distributed 

as ܰାሺߤ,  ௨ଶ areߪ and ߤ ௜ is not necessarily zero.  Becauseݑ  so that the pre-truncation mean of	௨ଶሻ,ߪ

constant (do not vary over i) this model is a special case of both the pre-truncation 

parameterization of Wang (2002) and our post-truncation parameterization model.  We estimated 

the model using our post-truncation parameterization software as a check on the program.  Our 

results agreed quite closely but not exactly with the results in Coelli et al., p. 260.  We achieve a 

slightly higher likelihood value of -71.316 compared to their -71.64.  The main substantive 

difference is that our estimates imply a more highly truncated normal than theirs (h = െߪ/ߤ of 

about 6, rather than their value of about 2).  The value of h is numerically not very stable, in the 

sense that different starting values and different ways of bounding the parameter space in 

MATLAB led to sometimes very extreme values of h.  In any case the one-sided error is a heavily 

truncated normal and the results may be sensitive to the accuracy of the calculation of the normal 

hazard function.  Using either of the two likelihood values above, a likelihood ratio test would 

reject the basic stochastic frontier model in favor of Stevenson’s model. 
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 We now turn to models in which the distribution of ݑ௜ depends on the farm characteristics 

 .௜ listed above.  The parameter estimates for these models are given in Table 2ݖ

 The first model we estimated was the RSCFG Model in which 

௜ߤ  (13) ൌ ௜ߪ , 0
ଶ ൌ exp(ߛ଴ ൅  . (ߛ′௜ݖ

These are the pre-truncation mean and variance.  The implied post-truncation mean and variance 

are 

(14A)   ߤ∗,௜ ൌ ටଶ

గ
଴ߛ]௜ = expߪ ൅

ଵ

ଶ
ln ቀଶ

గ
ቁ ൅ ௜ݖ

ᇱሺଵ
ଶ
 ሻሿߛ

(14B)  ߪ∗,௜
ଶ ൌ గିଶ

గ
௜ߪ
ଶ ൌ exp[ߛ଴ ൅ lnቀగିଶ

గ
ቁ ൅  . ሿߛ′௜ݖ

So a positive coefficient in ߛ indicates that an increase in the corresponding variable in ݖ௜ 

increases mean technical inefficiency, and it also increases the variance (and standard deviation) 

of technical inefficiency.  (And, in fact, it increases the mean and the standard deviation by the 

same proportion.) 

 The regression coefficients for this model are unremarkable (similar to those for the basic 

stochastic frontier model or the Stevenson model).  The coefficients (ݏ′ߛ) of hhsize and nadults in 

the ߪ௜
ଶ	equation are insignificant at usual significance levels, while the coefficients of age, edyrs 

and banrat are significant.  The results indicate that technical inefficiency is higher (and more 

variable) on average when the farmer is older and more educated, and when the fraction of bantog 

(upland) fields is lower.  The effect of education is perhaps surprising.2 

                     
2 The standard errors for this model, and for the next two models we will discuss, were calculated using the 
outer product of the gradient (OPG) version of the information matrix.  Our attempts to calculate standard 
errors from the Hessian were not numerically stable, in the sense that small changes in starting values or 
details of the maximization led to small changes in the parameter estimates and in the likelihood values, but 
to substantial changes in the Hessian and the resulting standard errors.  This did not occur with the OPG 
estimates. 
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 Table 3 gives the average partial effects (APE’s) of the z’s on ߤ∗ and ߪ∗.  For the RSCFG 

model there is not much additional information here since these APE’s are proportional to ߛ.  For 

example, from equation (14A),  
ௗఓ∗
ௗ௭

ൌ ∗ߤ ∙ ሺ
ଵ

ଶ
 ሻ and for the APE this would just be evaluated at theߛ

sample average value of ߤ∗.  (And, for ߪ∗, similarly the APE would be 
ଵ

ଶ
 multiplied by the ߛ

average value of ߪ∗.)  As a result a t-statistic for the significance of the APE of ݖ௝ on either ߤ∗ or ߪ∗ 

would be the same as the t-statistic for ߛ௝, as given in Table 2.3 

 The basic stochastic frontier model is a special case of this model (though the Stevenson 

model is not).  We achieve a likelihood value of -65.89 for the RSCFG model (as opposed to 

-74.41 for the basic stochastic frontier model) and so the basic stochastic frontier model is rejected 

by a likelihood ratio test (chi-squared test with 5 degrees of freedom, statistic = 17.04). 

 The second model we consider is the model of Wang (2002) in which the pre-truncation 

mean (ߤ௜) and variance (ߪ௜
ଶ) are parameterized as follows: 

௜ߤ  (15) ൌ ଴ߜ ൅ ௜ߪ , ߜ′௜ݖ
ଶ ൌ exp(ߛ଴ ൅  . (ߛ′௜ݖ

Once again the parameter estimates are given in Table 2 and the APE’s are given in Table 3. 

 We can see in Table 2 that almost none of the individual ߛ’s or ߜ’s is individually 

significant.  The only individual coefficient that is significant at the 5% level is the coefficient of 

edyrs in the variance equation.  However, the coefficients are jointly very significant.  We achieve 

a likelihood value of -52.08, which is significantly larger than for the other models considered up 

to now.  For example, this model reduces to the basic stochastic frontier model if we impose the 11 

restrictions that ߜ଴ ൌ ߜ ൌ ߛ ൌ 0, and this hypothesis is decisively rejected by the likelihood ratio 
                     
3 A technical detail is that in practice we would evaluate the APE at the sample average value of ̂ߤ∗ not  ߤ∗ 
(or ߪො∗ not ߪ∗).  However, due to the extra level of averaging, the order in probability of (average value of ̂ߤ∗ 
minus average value of ߤ∗) is smaller than the order in probability of (ߛො െ  This implies that we can treat  .(ߛ
the average value of ̂ߤ∗ (or ߪො∗) as a constant in calculating an asymptotic standard error for the APE. 
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test (statistic = 44.65).  Similarly, the model becomes the Stevenson model if we impose the 10 

restrictions that ߜ ൌ ߛ ൌ 0,	and this is also rejected by the likelihood ratio test (statistic = 38.46).  

Finally, it becomes the RSCFG model is we impose the 6 restrictions that ߜ଴ ൌ ߜ ൌ 0, and this 

hypothesis is rejected by the likelihood ratio test (statistic = 27.61).  

 The individual coefficients in the Wang model are hard to interpret because they indicate 

the effects of the z’s on the pre-truncation mean and variance, and a change in either the 

pre-truncation mean or the pre-truncation variance will affect both the post-truncation mean and 

the post-truncation variance.  The average partial effects in Table 3 are therefore easier to interpret 

because they give the effects of the z’s on the post-truncation mean and the standard deviation of 

u,4 and these are the natural objects of interest.   

 The average partial effects of the z’s on the mean of u are of the same sign as in the RSCFG 

model except for edyrs.  We no longer have the surprising result that education raises average 

inefficiency.  The magnitudes of some of the partial effects are noticeably different, however.  For 

the average partial effects of the z’s on the standard deviation of inefficiency, once again the sign is 

the same as in the RSCFG model except for edyrs, but the magnitudes of the partial effects are 

sometimes quite different. 

 Now we turn to the model of this paper, in which the post-truncation mean (ߤ∗,௜) and 

standard deviation (ߪ∗,௜) are parameterized.  In Section 2 above we considered two different 

specifications.  In Specification 1, we have  ߤ∗,௜ = exp(ߜ଴ ൅ ଴ߛ)௜ = exp,∗ߪ and  (ߜ′௜ݖ ൅   .(ߛ′௜ݖ

Unfortunately we were unable to estimate this model satisfactorily on this data set.  We could 

estimate certain simplified versions of the model but not the full model.  There was a lot of 
                     
4 The partial effects of the ݖ௝ on ߤ∗ and ߪ∗ଶ are given by Wang (2002), pp. 244-245.  To calculate the partial 

effect on the standard deviation ߪ∗ we note that 
ௗఙ∗మ

ௗ௭
ൌ ∗ߪ2

ௗఙ∗
ௗ௭

 and therefore 
ௗఙ∗
ௗ௭

ൌ
ଵ

ଶఙ∗

ௗఙ∗మ

ௗ௭
 . 
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numerical instability and the algorithm would not converge.  This is presumably because we need 

to impose the restriction that ߤ∗,௜ ൐ ଴ߜ ௜ for all i, which is equivalent to,∗ߪ ൅ ଴ߛ < ߜ′௜ݖ ൅  for ߛ′௜ݖ

all i.  This is a very large set of restrictions, and the restricted parameter set is not compact.  We 

therefore gave up on this parameterization. 

 We were able to estimate Specification 2 successfully.  In this specification we have ߪ∗,௜ = 

exp(ߛ଴ ൅ ଴ߜ)௜ + exp,∗ߪ = ௜,∗ߤ and (ߛ′௜ݖ ൅ ଴ߛ)exp = (ߜ′௜ݖ ൅ ଴ߜ)exp + (ߛ′௜ݖ ൅  Therefore the  .  (ߜ′௜ݖ

 s determine the effect of the z’s on the standard deviation of u, and also part of the effect of the’ߛ

z’s on the mean of u.  The ߜ’s determine the effect of the z’s on the difference between the mean 

and the standard deviation of u. 

 The parameter estimates are given in Table 2.  The estimates of the ߚ’s and of ߪ௩ are once 

again unremarkable.  The estimates of the ߛ’s and ߜ’s are not directly comparable to the estimates 

from the Wang model (the two models do not contain the same parameters) but the level of 

individual significance of these parameters is comparable to what we had for the Wang model.  To 

make substantive comparisons, it is probably best to compare the average partial effects of the 

environmental variables on the mean and standard deviation of inefficiency in the various models, 

since the interpretation of the partial effects does not depend on the model.  For Specification 2 of 

our model, 
ௗఙ∗
ௗ௭

ൌ ∗ߪ ∙  and ߛ
ௗఓ∗
ௗ௭

ൌ ∗ߤ ∙ ߜ ൅ ∗ߪ ∙ ሺߛ െ ሻߜ ൌ ሺߤ∗ െ ሻ∗ߪ ∙ ߜ ൅ ∗ߪ ∙  For the  .ߛ

estimated APE’s these would be evaluated at the sample average values of ̂ߤ∗ and ߪො∗, and at ߛො and 

 መ,5 their asymptotic standard errors are easy toߜ	݀݊ܽ	ොߛ መ.  Since the estimated APE’s are linear inߜ

calculate. 

 The average partial effects from Specification 2 seem very reasonable, although admittedly 

                     
5 For the same reason given in footnote 3, we can treat the average values of ̂ߤ∗ and ߪො∗ as constants in 
calculating the asymptotic standard errors. 
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many of them are not significantly different from zero.  Most of the APE’s are similar to those 

from the other two models. They are generally more similar to the results from the RSCFG model 

than to the results from the Wang model.  The main differences across models are in the effects of 

education of the farmer (edyrs).  In our model increasing the education of the farmer increases both 

the mean and standard deviation of inefficiency, which agrees with the results from the RSCFG 

model but not the results from Wang’s model.  However, the effect of education of the farmer on 

the mean of inefficiency is much smaller in our model than in the RSCFG model, and in fact is 

insignificantly different from zero.  The main effect of education of the farmer is now on the 

variability (standard deviation) of inefficiency, and this effect is statistically significant.  This set 

of results illustrates the potential of our model to distinguish effects of variables on the mean 

versus the variance of inefficiency. 

   We achieve a likelihood value of -58.56.  Our model nests the Stevenson model, which 

corresponds to the 10 restrictions that ߜ ൌ ߛ ൌ 0, and the Stevenson model is rejected by the 

likelihood ratio test (statistic = 25.51).  Our model also nests the basic stochastic frontier model, 

which corresponds to the 10 restrictions just given plus the one additional restriction that 

଴ߜ ൌ ଴ߛ ൅	lnቆට
ଶ

గିଶ
െ 1ቇ.  The basic stochastic frontier model is rejected by the likelihood ratio 

test (statistic = 31.70).  Finally, our model nests the RSCFG model, which corresponds to the six 

restrictions that ߛ ൌ ଴ߜ and that ߜ ൌ ଴ߛ ൅	lnቆට
ଶ

గିଶ
െ 1ቇ.  The RSCFG model is rejected at the 5% 

level (statistic = 14.66, critical value = 12.59) but not as decisively as the other simpler models 

were rejected. 

 Our model does not nest Wang’s model, or vice-versa.  Our likelihood value of -58.56 is 
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noticeably smaller than the likelihood value of -52.08 for the Wang model, so that our model 

clearly does not fit the data as well as the Wang model.  However, because these are not nested 

models, we cannot say that this difference in likelihood values is statistically significant. 

  

5. Simulations 

 In this section we report the results of a small simulation study.  The point of the study is to 

see whether statistically reliable estimates can be achieved in either or both of our two 

specifications, in a very simple model. 

 The model we consider is of the form 

௜ݕ  (16) ൌ ௜ݔߚ ൅ ௜ݒ ൅  ,  ௜  ,  i = 1,…,nݑ

where all symbols are scalars.6  The ݔ௜ are iid standard normal and the ݒ௜ are iid ܰሺ0,  ௩ଶሻ, whereߪ

we consider ߪ௩ = 0.3, 0.5 and 1.0.  We consider three sample sizes, n = 200, 400 and 800.  In all of 

our experiments we choose 0 = ߚ (but it is estimated, so the true value of ߚ is inconsequential). 

 We consider both specifications described in Section 2.  The DGP is exactly the same in 

both cases but the model estimated is different.  For Specification 1 we have ߤ∗,௜ ൌ exp	ሺ	ߜ଴ ൅

௜,∗ߪ ௜ሻ andݖଵߜ ൌ exp	ሺߛ଴ ൅  ௜ asݑ ௜ are iid standard normal.  We generate theݖ ௜ሻ where theݖଵߛ

ܰାሺ0,1ሻ, which corresponds to ߜଵ ൌ ଵߛ ൌ ଴ߜ ,0 ൌ -0.2258 and ߛ଴ = -0.5063.  For Specification 2 

we have ߪ∗,௜ ൌ exp	ሺߛ଴ ൅ ௜,∗ߤ ௜ሻ andݖଵߛ ൌ ௜,∗ߪ ൅ exp	ሺ	ߜ଴ ൅  ௜ are iid standardݖ ௜ሻ.  Again theݖଵߜ

normal and we generate the ݑ௜ as ܰାሺ0,1ሻ.  In this specification this corresponds to  ߜଵ ൌ ଵߛ ൌ 0, 

଴ߜ ൌ -1.6340 and ߛ଴ = -0.5063. 

 Note that, in terms of the standard Aigner, Lovell and Schmidt (1977) notation, we have 

                     
6 The fact that we have v + u instead of v – u is inconsequential.  There are just a few sign changes in the 
likelihood. 
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௨ߪ ൌ 1 and therefore ߣ ൌ    .௩ = 0.3, 0.5 and 1.0, respectivelyߪ ௩ equals 3.33, 2 and 1 forߪ/௨ߪ

 We use 200 replications in our experiments, which is enough to answer the question posed 

above.  We report the bias and RMSE of the estimates of each of the parameters. 

 Table 4 reports the results for Specification 1.  The top panel shows the bias of the 

estimates.  These numbers are not very encouraging.  We generally estimate ߜଵ, ߛଵ and ߪ௩ 

reasonably well, but for the other parameters the bias is often large.  Bias is often not too serious 

when ߪ௩ is small and/or n is large, but for empirically relevant parameter values like ߪ௩ = 1 (which 

corresponds to 1 = ߣ) and n = 200 the bias is generally substantial. 

 The bottom panel in Table 4 reports the RMSE of the estimates.   The conclusions are 

broadly similar to those for bias.  The results are generally reasonably good when ߪ௩ is small 

and/or n is large, but not otherwise. 

 Having reported these results, we must admit that we do not entirely trust them.  There was 

a lot of numerical instability in the calculation of the estimates.  Slightly different starting values or 

values of the tuning parameters in the maximization algorithm led to unreasonably large 

differences in the results.  Also there were lots of outliers, and these drove many of the strange 

results reported in Table 4.  The propensity of Specification 1 to generate occasional outliers in the 

results is empirically relevant, and so we chose not to trim such outliers.  Our main conclusion 

from the simulations is that Specification 1, while attractive in principle, is unlikely to be 

empirically useful.   

 Table 5 reports the results for Specification 2.  For this specification we did not encounter 

the numerical problems or large outliers that we encountered with Specification 1.  The results are 

certainly better than they were for Specification 1, although comparisons are complicated by the 

fact that ߜ଴ and ߜଵ are not the same parameters in the two specifications.  In terms of bias (top 
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panel), we now estimate four parameters (ߜଵ, ߛ଴,  ௩) reasonably well, but there areߪ ଵ andߛ

substantial biases for ߚ and ߜ଴ except when ߪ௩ is small and/or n is large.  In terms of RMSE 

(bottom panel), there are fewer strange values than there were in Table 4.  For this specification, ߪ௩ 

is more important than n in determining the performance of the MLE, and we still have the 

problem that the results are not good when ߪ௩ is large. 

 

6. Concluding Remarks 

 In this paper we have considered stochastic frontier models in which the distribution of 

technical inefficiency is truncated normal.  That is, in standard notation we have u distributed as 

ܰାሺߤ,  ଶ the pre-truncation mean and variance.  These can be distinguishedߪ and ߤ ଶሻ.  We callߪ

from the actual (“post-truncation”) mean and variance, ߤ∗ ൌ ଶ∗ߪ ሻ andݑሺܧ ൌ var(u).  Previous 

models in the literature, notably Wang (2002), let ߤ and ߪଶ depend on environmental variables (z) 

and parameters (ߠ).  In this paper, we choose instead to parameterize the post-truncation mean and 

variance, ߤ∗ and ߪ∗ଶ. 

 The main advantage of Wang’s model is that it is easier to estimate.  The likelihood is most 

naturally written in terms of the pre-truncation mean and variance.  This simplifies programming 

and makes it more likely that the calculations will be numerically stable. 

 The advantage of our model is that the parameters are easier to interpret.  The 

post-truncation mean and variance of u are the items of economic interest.  In our model it is much 

easier than in Wang’s model to separate the effect of an environmental variable on the mean of u 

from its effect on the variance of u, and either or both of these may be of interest.  Also, because 

the interpretation of the parameters is clearer, it may be clearer what is and what is not a reasonable 
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parameterization. 

 One of the main motivations of Wang’s model is that it allowed a non-monotonic effect of 

environmental variables on the mean of u.  Our model can also allow that, if we choose a 

non-monotonic function in our parameterization. 

 

 
FIGURE 1 

 

 

 

 

  



18 
 

TABLE 1 

Values of h and H(h) 
 
 
 

h H(h) h H(h) 
-15 0.995575 1 0.580728
-14 0.994924 2 0.549317
-13 0.994118 3 0.531803
-12 0.993103 4 0.521655
-11 0.991803 5 0.515466
-10 0.990099 6 0.511497
-9 0.987805 7 0.508834
-8 0.984615 8 0.506975
-7 0.980000 9 0.505634
-6 0.972973 10 0.504639
-5 0.961539 11 0.503881
-4 0.941210 12 0.503293
-3 0.901465 13 0.502827
-2 0.826543 14 0.502452
-1 0.724730 15 0.502147
0 0.636620   
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TABLE 2 
 

Estimates of Models with Determinants of Inefficiency 
 
 

                                             RSCFG MODEL      WANG MODEL    SPECIFICATION 2 
 

Variable  Coeff |t-value| Coeff |t-value| Coeff |t-value|
        
 ଴ (constant)   0.246 5.50  0.171 3.69  0.190 3.70ߚ
 0.017 2.60  0.016 2.49  0.019 2.88   (time trend) ߠ
 ଵ (area)   0.575 6.43  0.564 6.44  0.560 6.57ߚ
 ଶ (labor)   0.215 2.46  0.232 2.78  0.240 2.85ߚ
 ଷ (fert)   0.192 3.83  0.185 3.96  0.187 3.86ߚ
ଵଵ   -0.352 1.39 -0.394ߚ 1.57 -0.305 1.25 
 ଵଶ    0.577 2.87  0.528 2.49  0.551 2.91ߚ
 ଵଷ    0.011 0.07  0.060 0.43 -0.027 0.19ߚ
ଶଶ   -0.601 2.21 -0.459ߚ 1.67 -0.550 2.12 
ଶଷ   -0.114 0.78 -0.133ߚ 0.99 -0.096 0.68 
ଷଷ    0.014 0.15 -0.013ߚ 0.16  0.035 0.38 
 ௩    0.171 8.34  0.187 10.43  0.178 8.50ߪ
        
 ଴ (constant)  -3.053 3.27  2.022 1.34 -2.294 3.17ߛ
 ଵ (age)   0.028 2.06  0.008 0.41  0.013 1.11ߛ
ଶ (edyrs)   0.112 3.36 -0.386ߛ 2.38  0.061 2.48 
 ଷ (hhsize)   0.085 0.99  0.132 1.02  0.075 1.04ߛ
ସ (nadult)  -0.104 0.98 -0.099ߛ 0.61 -0.054 0.68 
ହ (banrat)  -1.298 2.98 -0.687ߛ 1.13 -0.529 1.48 
        
଴ (constant)    -7.940ߜ 0.95 -1.595 0.51 
 ଵ (age)     0.034 0.59  0.044 1.06ߜ
 ଶ (edyrs)     0.685 1.02 -0.175 0.46ߜ
ଷ (hhsize)    -0.008ߜ 0.04 -0.121 0.38 
ସ (nadult)    -0.080ߜ 0.24 -0.084 0.39 
ହ (banrat)    -0.844ߜ 0.60 -2.410 1.40 
        
ln likelihood  -65.89  -52.08  -58.56  
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TABLE 3 
 

Average Partial Effects 
 
 

Effects on mean of u 
 

                                                       RSCFG      WANG            SPEC. 2 
 

Variable  APE APE APE Std. err. 
age   0.0046  0.0053 0.0052 0.0028 
edyrs   0.0186 -0.0054 0.0055 0.0206 
hhsize   0.0140  0.0261 0.0117 0.0162 
nadult  -0.0172 -0.0289 -0.0171 0.0188 
banrat  -0.2150 -0.2316 -0.2499 0.1203 

 
 
 

Effects on standard deviation of u 
 

                                                       RSCFG      WANG            SPEC. 2 
 

Variable  APE APE APE Std. err. 
age   0.0035  0.0012  0.0030 0.0027 
edyrs   0.0140 -0.0069  0.0145 0.0058 
hhsize   0.0106  0.0073  0.0179 0.0172 
nadult  -0.0130 -0.0074 -0.0128 0.0189 
banrat  -0.1625 -0.0575 -0.1261 0.0850 
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TABLE 4 
 
 

Bias of MLE of Post-Truncation Parameterization Model: Specification 1 
 

       
                       n      ߪ௩              ߚመ  ො௩ߪ            ොଵߛ             ො଴ߛ             መଵߜ           መ଴ߜ            
 

200 0.3  -0.0955 0.0954 0.0041 -0.2344 -0.0026 -0.0534 
400 0.3  -0.0435 0.0465 0.0022 -0.1703 0.0046 -0.0230 
800 0.3  -0.0304 0.0320 -0.0028 -0.7049 -0.0036 -0.0130 

         
200 0.5  -0.2522 0.2369 0.0062 -0.8523 0.2206 -0.1249 
400 0.5  -0.1585 0.1585 0.0029 -0.0641 0.0076 -0.0672 
800 0.5  -0.1215 0.1106 -0.0039 -0.0712 0.0040 -0.0503 

         
200 1.0  -0.7494 0.3866 0.0198 -2.5659 -0.1612 -0.2022 
400 1.0  -0.7710 0.5198 -0.0313 -0.3749  0.0324 -0.2131 
800 1.0  -0.5986 0.4697 0.0021 0.0807 -0.0047 -0.1700 

 
 
 

RMSE of MLE of Post-Truncation Parameterization Model: Specification 1 
 
 

                           n      ߪ௩             ߚመ  ො௩ߪ          ොଵߛ           ො଴ߛ            መଵߜ          መ଴ߜ           
 

200 0.3  0.1643 0.1865 0.0531 3.3636 0.1126 0.0987 
400 0.3  0.1064 0.1341 0.0379 1.7701 0.0581 0.0743 
800 0.3  0.0931 0.1197 0.0300 5.8868 0.0611 0.0714 

         
200 0.5  0.3646 0.3863 0.0861 9.3163 2.9910 0.1819 
400 0.5  0.2644 0.2719 0.0412 1.7215 0.0487 0.1210 
800 0.5  0.2301 0.2926 0.0356 1.3463 0.0760 0.0992 

         
200 1.0  1.1682 1.0775 0.3724 13.382 3.1643 0.3384 
400 1.0  1.0434 0.9461 0.2452 4.0405 0.3904 0.3315 
800 1.0  0.8375 0.6480 0.0707 1.1404 0.0988 0.2735 
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TABLE 5 
 
 

Bias of MLE of Post-Truncation Parameterization Model: Specification 2 
 

       
                       n      ߪ௩              ߚመ  ො௩ߪ            ොଵߛ             ො଴ߛ             መଵߜ           መ଴ߜ            
 

200 0.3  -0.0782 0.1869 0.0006 0.0047 0.0016 -0.0527 
400 0.3  -0.0391 0.0793 0.0084 0.0086 0.0000 -0.0253 
800 0.3  -0.0261 0.0307 -0.0218 0.0082 0.0004 -0.0169 

         
200 0.5  -0.1906 0.3331 -0.0025 0.0278 0.0118 -0.0999 
400 0.5  -0.1174 0.2147 0.0014 0.0328 0.0012 -0.0577 
800 0.5  -0.1068 0.2032 -0.0062 0.0377 0.0020 -0.0461 

         
200 1.0  -0.6399 0.8744 0.0272 -0.0281 -0.0244 -0.2195 
400 1.0  -0.6218 0.8780 0.0040 0.0861 0.0165 -0.1906 
800 1.0  -0.5040 0.6872 -0.0293 0.0811 0.0445 -0.1627 

 
 
 

RMSE of MLE of Post-Truncation Parameterization Model: Specification 2 
 
 

                           n       ߪ௩           ߚመ  ො௩ߪ          ොଵߛ           ො଴ߛ            መଵߜ          መ଴ߜ           
 

200 0.3  0.1643 0.5386 0.1858 0.0916 0.0701 0.0979 
400 0.3  0.1045 0.4083 0.1475 0.0616 0.0472 0.0630 
800 0.3  0.0858 0.3471 0.1275 0.0466 0.0346 0.0468 

         
200 0.5  0.3277 0.7630 0.2569 0.5170 0.1179 0.1665 
400 0.5  0.2450 0.6297 0.1924 0.1681 0.0660 0.1139 
800 0.5  0.2165 0.5797 0.1455 0.0990 0.0399 0.0920 

         
200 1.0  0.9339 1.2477 0.2466 1.3860 0.6133 0.3342 
400 1.0  0.9059 1.2656 0.2137 0.6769 0.2572 0.3022 
800 1.0  0.7895 1.1142 0.1797 1.0746 0.3800 0.2717 
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