Chap. 12 Photochemistry

Photochemical processes Jablonski diagram

- 1. Light absorption: $S_0 \rightarrow S_1$, $S_0 \rightarrow S_2$ k~ 10^{15}
- 2. Vibrational Relaxation: $k\sim10^{12}/s$, from high ν to low ν
- 3. Internal Conversion: to lower electronic state of same multiplicity ($k>10^{10}/s$)
- 4. Radiationless Decay: $S_1 \rightarrow S_0$, no emission, $k < 10^6/s$
- 5. Intersystem Crossing: $k \approx 10^6 \sim 10^{10}$ /s, depends on molecules. (carbonyl fast; alkene slow)
- 6. Fluorescence: $S_1 \rightarrow S_0$, with emission. $k \approx 10^6$ 10^9 .
- 7. Phosphorescene: $T_1 \rightarrow S_0$ with emission. $k \approx 10^{-2} 10^4$
- 8. Triplet Triplet Absorption
- 9. Singlet Singlet Absorption
- 10. Singlet Triplet Absorption

Photophysical Processes

- S_0 (ground st.) of $H_2C=O$:
 - $[(1S_{\rm O})^2 (1S_{\rm C})^2 (2S_{\rm O})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-H})^2$
- $S_1(1^{st} \text{ exc.state})$:
 - $[(1S_{\rm O})^2 (1S_{\rm C})^2 (2S_{\rm O})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-O})^2] (\pi_{\rm C-O})^2 (n_{\rm O}) (\pi_{\rm C-O})^2 (n_{\rm O})^2 (\pi_{\rm C-O})^2 (n_{\rm O})^2 (\pi_{\rm C-O})^2 (n_{\rm O})^2 (\pi_{\rm C-O})^2 (n_{\rm O})^2 (\pi_{\rm C-O})^2 (\pi_{\rm C-O})$
- $S_2(2^{nd} \text{ exc.state})$:
 - $[(1S_{\rm O})^2 (1S_{\rm C})^2 (2S_{\rm O})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-H})^2 (\sigma_{\rm C-O})^2] (\pi_{\rm C-O}) (n_{\rm O})^2 (\pi_{\rm C-O})^2$

UV Absorption and Emission

Factors determining radiative transition:

- 1. Symmetry of electronic state (ini. final state)
- 2. Multiplicity of the spin
 - ◆Spin-orbit interaction (allows different spin transition mixing due to the mixing of magnetic moment of e⁻ and the magnetic moment of the nucleus)
 - ♦ Heavy atom effect: higher rate of intersystem crossing
 - ♦ Greater mixing if S and T are closer in energy, example carbonyl cpds.
- 3. Frank-Condon term, determined by overlap of nuclear coordinate of init. and final state

Frank-Condon Principle

- At the instant of excitation, only electrons are reorganized, the heavier nuclei retain the ground state geometry
- The excited state has similar molecular geometry as ground state

(1): Vib. energy diff. of S₀

(2): (0,0) transition

(3): Vib energy diff. of S₁

Anthrcene

Fluorescence
The excited state

• The excited state geometry quite different from ground state geometry => large Stokes shift

(anti-Stokes shift: the fluorescence is at shorter wavelength)

planar geometry

Measurement of Absorption

• Beer-Lambert Law: $\log \frac{I_o}{I_t}$ = \varepsilon d

=A (absorbance)

I₀: incident light

I_t: transmitted light

ε: extinction coefficient

c: concentration

d: light path length

• Quantum yield of emission:

$$\Phi_{f} = \frac{\# of \ photon \ emitted \ from \ S_{1}}{\# of \ photon \ absorbed}$$

Phosphorescence

Much reduced due to diffusional quenching with ground state species or O₂

Observed in fixed matrix, such as liquid N2 temperature or surrounded by a host

In aqueous solution with α -CD

Concentration — Dependent Fluorescence

Excimer formation

Excimer: A complex formed between an excited molecule with a ground state molecule of same compound

Geometric Requirement of Excimer Formation

• The molecular plane can stack together with interplanar distance less than 3.5 Å.

n=0 no overlap of ring

n=1 excimer formation

n=2 strain of chain

Excimer formation

Partial overlap of ring plane

- Exciplex: complex formed between an excited molecule with a ground state molecule of dissimilar molecule
- $A*B \longrightarrow AB*$ can give exciplex emission or quench emission

aromatics / amine aromatics/conjugate olefin

Energy Transfer and Electron Transfer

- Pathways $\mathcal{D}^* + \mathcal{A} \rightarrow \mathcal{D} + \mathcal{A}^*$
 - 1) Radiative energy transfer

$$\otimes D^* \rightarrow D^+ hv$$

$$\alpha A+hv\rightarrow A*$$

The rate depends on

- ① The quantum yield of emission by $D^* (\Phi^D_e)$
- ② The concentration of (the # of) A in light path
- The light absorbing ability of A (extinction coefficient)
- The overlap of emission spectrum of D* and absorption of A (spectral overlap integral)
- 2) Förster energy transfer
- Long range (D*-A distance up to 100 Å)
- No radiation involved
- The dipole-dipole interaction of D* and A

- •An interaction at a distance via electromagnetic field, induce a dipole oscillation in A by D*.
- •Efficient transfer requires a good overlap of emission of D* with absorption of A.

3) Collisional energy transfer (Dexter energy transfer): exchange of electron between the donor and acceptor

The exchange of electron via overlap of electron clouds require physical contact between the interacting partners.

- Spectral overlap integral also required
- This process allows triplet state to be generated $D^* \stackrel{||}{\rightarrow} A_0 \stackrel{||}{\rightarrow} D_0 \stackrel{||}{\rightarrow} A^* \stackrel{||}{\rightarrow}$
- A short-ranged interaction

Electron Transfer

The photo excited state is a better donor (lower oxid. potential) as well as a better acceptor (lower reductive potential) relative to ground state

Acidity and Basicity in Excited States

•
$$\Delta H^* + hv' = \Delta H + hv''$$

•
$$\Delta$$
 H*- Δ H = + $\hbar v$ '' - $\hbar v$ ' $\approx \Delta$ G*- Δ G

- (if Δ S* $\approx \Delta$ S for ionization)

- Δ G = 2.303RTpK

- pK*-pK= $\frac{\Delta G$ *- ΔG $\approx \frac{\hbar v$ ''- $\hbar v$ '

2.303RT

Table 12.3 Acidity constants of ground and excited states. (Except as noted, data are from reference 80.)

Compound	Reaction	$\mathbf{p}K\left(\mathbf{S}_{0}\right)$	$pK(S_1)$	$pK(T_1)$
Naphthalenea	protonation	-4.0	11.7	-2.5
2-Naphthol	deprotonation	$9.5 \frac{(1)}{}$	3.1	7.7 to 8.1
2-Naphthoic acid	deprotonation	4.2(2	8.2 ^b	4.0^{c}
2-Naphthylamine	protonation	4.1 — (3	3) − 2.0	3.1 to 3.3

^aVander Donckt, E.; Lietaer, D.; Nasielski, J. *Bull. soc. chim. Belges* **1970**, 79, 283. ^bKovi, P. J.; Schulman, S. G. *Anal. Chim. Acta* **1973**, 63, 39. (1):more acidic ^cReference 81. (2):less acidic

(3):more acidic

When photochem. excited, electron from HOMO → LUMO, and change the e⁻ density

 π n

Bond angle, Dipole moments of Excited state

$$\stackrel{\mathsf{H}}{\searrow} = 0 \quad \stackrel{\mathsf{h}v}{\longrightarrow} \quad \left[\stackrel{\mathsf{h}v}{\searrow} = 0 \right]$$

Table 12.4 Physical properties of formaldehyde excited states. (Data from references 89, 90, and 91.)

Property/State	So	S,	T,	
Troperty/State		~1		
Geometry	planar	pyramidal	pyramidal	
Δ (nonplanarity)	0°	20°	35°	
C = 0 length	$1.22~\textrm{\AA}$	1.32 Å	$1.31\mathrm{\AA}$	
ν C=0 stretch	$1746\ cm^{-1}$	$1182 \ cm^{-1}$	$1251~{\rm cm}^{-1}$	
<hch< td=""><td>120°</td><td>122°</td><td></td></hch<>	120°	122°		
Dipole moment	2.3 D	1.5 D	1.3 D	

$$S_1 = 1.5 D$$

 $E = 84 \text{ kcal/mol}^{-1}$

$$T_1 = 1.3 D$$
 $E = 76 \text{ kcal/mol}^{-1}$

LUMO

HOMO

$$S_0 \quad \begin{array}{l} \mu = 2.3 \text{ D} \\ E \equiv 0 \text{ kcal/mol}^{-1} \end{array}$$

- $S_0 \rightarrow S_1$ (n- π *) excited state less polar than the ground state
 - hypsochromic (blue) shift with polar solvent
- $S_0 \rightarrow S_2$ (π π *) excited state more polar than the ground state
 - bathochromic (red) shift with polar solvent

Photochemical Reactions of Carbonyl Compounds

Norrish Type I Cleavage (α - cleavage)

$$R^{\bullet} \longrightarrow R^{\bullet} + CO$$

 $S_1 \rightarrow T_1$ at vibrationally excited state of T_1

$$H_2C = CH(CH_2)_3CHO$$

Norrish Type II Cleavage(β -Cleavage)

If the S.M. is retrieved, the γ carbon may loose stereochem. (if chiral), so not exactly the same original S.M.

α - β unsaturated ketone

De-conjugated absorb at shorter wave length

Oxetene Formation (Paterno-Buchi Reaction)

Photochemical Reactions of Alkene and Dienes

1.

Isomerization

Trans compound has longer absorption wavelength

Both cis and trans give the same excited state species => twisted geometry with 90° rotation of p-orbital relative to each other

3

A photostationary state will be reached from either side (cis→ photostationary state; trans→ photostationary state)

$$\frac{[C]_{pss}}{[T]_{pss}} = \frac{\mathcal{E}t}{\mathcal{E}c} \cdot \frac{kc}{kt}$$

k_c=formation constant of cis from the excited twisted state

k_t =formation constant of trans from the excited twisted state

For cyclopentene, the cis-trans isomerization doesn't occur.

The photochemically allowed reaction by symmetry rule may be only one of many reaction pathways