Chap. 2 Stereochemistry

§ Structural representations that convey 3-D information

§ Isomerism

Isomers : Different compounds that have the same molecular formula.

The flow chart for determining isomeric relationships

- Conformational Isomer : Stereoisomers that are superimposable by rotation around a single bond.
- Enantiomer ∶ Isomers that are non-superimposable mirror images to each other.→chiral
- Diastereomer : Isomers that are non-superimposable, not mirror images.
 - -Cis-trans isomer (geometric isomer) configurational isomers differ around a double bond or cyclic structure.

§ Symmetric, Asymmetric, Dissymmetric and Nondissymmetric molecules.

-Symmetry operation

reflection in a plane (對稱面) : σ inversion through a center (對稱中心) : *i* rotation about a proper axis (對稱軸) : Cn, for 360°/n rotation about an improper axis (更迭對稱軸) : Sn

(= rotation about an axis, followed by reflection though a plane perpendicular to the axis)

A Flow Chart for Classifying Molecular Symmetry I Point Groups

D_{2d}

Chirality : Molecules that are not superimposable with their mirror image \implies chiral. (enantiomeric)

 \rightarrow dissymmetric molecules : molecules without S_n axis (including n=1). Dissymmetric molecules are chiral, chiral molecules are dissymmetric.

Dissymmetrical with a chiral center (asymmetric):

 \rightarrow asymmetric molecules : molecules without any symmetry element, except C₁.

§ Designation of Molecular Configuration (Cahn-Ingold-Prelog convention)

Chirality about a point

- 1. Determine the priority of four groups.
- 2. With least priority group pointing away, determine the direction of $1 \rightarrow 2 \rightarrow 3$ priority, clockwise $\rightarrow R$, counterclockwise $\rightarrow S$

Criteria for priority

1. higher atomic number \Rightarrow higher priority

 $Br > Cl > C > H \dots$

2.if the two have same atomic number, count substituent next to it.

3. double bond counted twice, triple bond counted three times for both ends

4. tricoordinate : a group of atomic number of "0" assigned for the long pair

13R, 17S, 20R

Chirality about an axis

Start from the near end to determine the priority, then to the far end.

Other Stereochemical Nomenclature

close a reference *t*-4-bromo-*c*-4-chloro-1-methyl-*r*cyclohexanecarboxylic acid

Alkene cis,trans based on the shape of the molecules E, Z based on priority rule used for R,S.

Stereoselective Reaction : A reaction in which one stereoisomer (or pair of enantiomer) is formed or destroyed at greater rate or to a greater extent than other possible stereoisomer.

<u>Stereospecific Reaction</u>: A reaction in which stereoisomerically different reactants yield stereoisomerically different products.

Optical Activity

Enantiomers can exhibit optical activity—rotation of plane polarized light.

The two enantiomers rotate light to opposite direction, but to the same magnitude. rotation clockwise \rightarrow + (d) counterclockwise \rightarrow - (1)

for pure (+)-glyceraldehyde, specific rot. $+14^{\circ}$

for a mixture of enantiomeric glyceraldehyde giving +12.6°, the excess is $\frac{12.6}{14} = 90\% \rightarrow 95\%$ (+) -and 5% (-) -cpd.

Configuration and Optical Activity

R,S, D,L,- erythro- threo- are artificial molecular notation, based on arbitrary rules.

+,- are molecular property, obtained by expt'l observation.

Configuration and optical activity are not directly related.

CO₂H H = OHHO = H CO₂H (+)-Tartaric acid \rightarrow confirmed by X-ray Fischer assigned

To relate absolute config. and configuration

 \Rightarrow Prediction of optical activity :

