Chap.4 Molecular Orbital Theory

The M.O. of a molecule is treated as the linear combination of atomic orbitals \rightarrow LCAO-MO

$$\psi_i = \mathbf{c}_1 \phi_1 + \mathbf{c}_2 \phi_2 + \mathbf{c}_3 \phi_3 + \dots + \mathbf{c}_n \phi_n = \sum_{i=1}^n \mathbf{c}_i \phi_i$$

The energy of the M.O. system is obtained by solving equation.

$$\begin{array}{ccc} \mathcal{H} \ \Psi &= \Psi E \\ \end{array}$$
Hamiltonian Eigen value

The energy of a molecule arises from electron motions, internal vibrations, rotations, translation.

The electron motion can be treated separately from nuclear motion.

Hamiltonian operator gives the energy of electrons, for 2e⁻, 2 nuclei

$$\mathcal{H}_{e} = -\frac{\hbar^{2}}{2m} \sum_{i=1}^{2} \nabla_{i}^{2} - \sum_{i=1}^{2} \frac{z_{1}e^{2}}{R_{1i}} - \sum_{i=1}^{2} \frac{z_{2}e^{2}}{R_{2i}} + \frac{e^{2}}{r_{12}}$$
distance between
electron and nuclei 2 electron
$$\int \psi \mathcal{H} \psi d\tau = \int \psi E \psi d\tau \qquad E = \frac{\int \psi \mathcal{H} \psi d\tau}{\int \psi^{2} d\tau}$$

§ Ab initio Molecular Orbital Theory

Solve the Schrodinger equation with approximations, but no empirical parameters.

Born-Oppenheimer Approximation: separtion of nuclei and electrons, keeping nulei fixed.

The orbital approximation: the total wavefunction is considered as a product of one electron wavefunctions-orbital.

 $\Psi = \psi(1)\,\psi(2)\,\psi(3)\ldots\,\psi(m)$

Pauli Principle: the total wavefunction of an atome or molecule Must be antisymmetric with respect to an exchange of the coordinates of any two electrons.

§ Semi-empirical Method

NDO, MNDO, AM1, PM3...

§ Density Functional Theory

Calculating the electron density ρ across the entire molecule, which correlate with the total energy of the molecule

 $E = E^T + E^V + E^J + E^{XC}$

 E^{T} : electron kinetic energy term E^{V} : potential energy term E^{J} : Coulumb self-interaction term E^{XC} : exchange correlation term

§ Hückel Molecular Orbital Theory

- \rightarrow 1. only π -electrons are treated (σ - π separation)
- \rightarrow 2. the basis set consists of N p orbitals, one on each of the N carbon atoms of the π system

e.g For ethene

$$\psi_{\pi} = \mathbf{c}_{1} \phi_{1} + \mathbf{c}_{2} \phi_{2}$$
$$E = \frac{\int (\mathbf{c}_{1} \phi_{1} + \mathbf{c}_{2} \phi_{2})^{*} \mathcal{H} (\mathbf{c}_{1} \phi_{1} + \mathbf{c}_{2} \phi_{2}) d\tau}{\int (\mathbf{c}_{1} \phi_{1} + \mathbf{c}_{2} \phi_{2})^{2} d\tau}$$

define $\int \phi_1 \mathcal{H} \phi_2 d\tau = \int \phi_2 \mathcal{H} \phi_1 d\tau$ $\int \phi_1 \mathcal{H} \phi_1 d\tau \equiv H_{11}$ Coulomb integral energy of an electron in its own orbital $\int \phi_1 \mathcal{H} \phi_2 d\tau \equiv H_{12}$ Resonance integral interaction energy $\int \phi_1 \phi_1 d\tau = S_{11}$ Normalization integral $\int \phi_1 \phi_2 d\tau \equiv S_{12}$ Overlap integral for adjacent atoms $\frac{\partial E}{\partial c_1} = 0 \qquad c_1 (H_{11} - E \ S_{11}) + c_2 (H_{12} - E \ S_{12}) = 0$ by variation principle $\frac{\partial E}{\partial c_2} = 0 \qquad c_1 (H_{12} - E \ S_{12}) + c_2 (H_{22} - E \ S_{22}) = 0$

to solve c_1, c_2

$$\begin{vmatrix} H_{11} - E & S_{11} & H_{12} - E & S_{12} \\ H_{21} - E & S_{21} & H_{22} - E & S_{22} \end{vmatrix} = 0$$

assume $S_{ii}=1, S_{ij}=0$ for $i \neq j$ $H_{ii}=\alpha$, $H_{ij}=\beta$ if *i* and *j* are σ -bonded energy of an electron in interaction energy of an e⁻ in basis

i orbital. same for all *i* orbital *i* and orbital *j*.

for 3 p-orbitals of allyl system

$$\psi = c_1\phi_1 + c_2\phi_2 + c_3\phi_3$$

$$\begin{vmatrix} X & 1 & 0 \\ 1 & X & 1 \\ 0 & 1 & X \end{vmatrix} = 0 \qquad X^3 - 2X = 0 \qquad X = \pm\sqrt{2}, 0$$

$$\therefore E_1 = \alpha + \sqrt{2}\beta \qquad \text{bonding} \qquad \psi_1 = \frac{1}{2}\phi_1 + \frac{\sqrt{2}}{2}\phi_2 + \frac{1}{2}\phi_3$$

$$E_2 = \alpha \qquad \text{non-bonding} \qquad \psi_2 = \frac{\sqrt{2}}{2}\phi_1 - \frac{\sqrt{2}}{2}\phi_3$$

$$E_3 = \alpha - \sqrt{2}\beta \qquad \text{anti-bonding} \qquad \psi_3 = \frac{1}{2}\phi_1 - \frac{\sqrt{2}}{2}\phi_2 + \frac{1}{2}\phi_3$$

$$E \qquad \psi_3 - \alpha - 1.414\beta \qquad \psi_1 + \psi_2 + \psi_2 + \psi_3 + \psi_1 + \psi_1 + \psi_2 + \psi_1 + \psi_1 + \psi_2 + \psi_1 + \psi_1 + \psi_1 + \psi_2 + \psi_1 +$$

For four p-orbitals of butadiene

X	1	0	0	v	1	0 1	1	
1	X	1	0	$ \Lambda $	1		I	0
	1	V	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$	$X \mid 1$	X	1 - 0	X	1 = 0
0	1	X	1	0	1	X = 0	1	X
0	0	1	X	10	1		T	21

$$X(X^{3} - 2X) - (X^{2} - 1) = 0$$

$$X^{4} - 3X^{2} + 1 = 0 \quad X = \pm 0.618 \text{ and } \pm 1.618.$$

$$\psi_{4} = 0.372\phi_{1} - 0.602\phi_{2} + 0.602\phi_{3} - 0.372\phi_{4}$$

$$\psi_{3} = 0.602\phi_{1} - 0.372\phi_{2} - 0.372\phi_{3} + 0.602\phi_{4}$$

$$\psi_{2} = 0.602\phi_{1} + 0.372\phi_{2} - 0.372\phi_{3} - 0.602\phi_{4}$$

$$\psi_{1} = 0.372\phi_{1} + 0.602\phi_{2} + 0.602\phi_{3} + 0.372\phi_{4}$$

Benzene HOMO

Generalization :

- 1. The number of nodes increases from 0 to n-1
- 2. The bonding and antibonding orbitals are symmetrically placed above and below $E=\alpha$ (or non-bonding level)
- 3.Coefficients are symmetrical with respect to atomic orbital's c's

§ Correlation of Physical Properties with Results of HMO Calculations

Energy

for ethylene, 2e⁻ in ψ_1 , $E_{\pi} = 2 \alpha + 2 \beta$

for allyl system (delocalized system)

the extra stability is called resonance energy

For benzene $E = 6 \alpha + 8 \beta$, resonance energy 36kcal $\rightarrow \beta = 18$ kcal

 π -bond order

$$P_{ij} = \sum_{\text{occup'd}\,\psi} nc_i c_j$$

- n: no. of electron in a particular orbital
- c_i, c_j : the coefficient of *i*, *j* (bonded together) for the M.O.

butadiene

2e⁻ in
$$\psi_1 = 0.372\phi_1 + 0.602\phi_2 + 0.602\phi_3 + 0.372\phi_4$$

2e⁻ in $\psi_2 = 0.602\phi_1 + 0.372\phi_2 - 0.372\phi_3 + 0.602\phi_4$
 $P_{12} = 2 \times 0.372 \times 0.602 + 2 \times 0.602 \times 0.372 = 0.895$
 $P_{23} = 2 \times 0.602 \times 0.602 + 2 \times 0.372 \times (-0.372) = 0.444$
total $\longrightarrow H_2C \frac{1.895}{CH} CH \frac{1.444}{CH} CH \frac{1.895}{CH_2}$
bond order = σ bond order + π -bond order

For excited state of butadiene

2e⁻ in
$$\psi_1$$

1e⁻ in ψ_2
1e⁻ in ψ_3
 $P_{12} = 2 \times 0.372 \times 0.602 + 1 \times 0.602 \times 0.372 + 0.602 \times (-0.372)$
 $= 0.448$
 $P_{23} = 2 \times 0.602 \times 0.602 + 1 \times 0.372 \times (-0.372) + 1 \times (-0.372)$
 $\times (-0.372) = 0.725$

total bond order

$$H_{2}C \xrightarrow{1.448} CH \xrightarrow{1.725} CH \xrightarrow{1.448} CH_{2} \qquad \begin{pmatrix} H_{2}\dot{C} - C = C - \dot{C}H_{2} \\ H & H \end{pmatrix}$$

electron density

 $\psi = c_1 \phi_1 + c_2 \phi_2 + \dots + c_k \phi_k$

to normalize ψ ,

$$c_1^2 + c_2^2 + c_3^2 + \dots + c_k^2 = 1$$

if one electron occupies the orbital, c_i^2 is the fraction of electron density on *i*th carbon, or $2c_i^2$ for 2e⁻/orbital

 $\rho_i = \sum_{\text{occp'd}\,\psi} n c_i^2$ for allyl $\psi_1 = \frac{1}{2}\phi_1 + \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{2}\phi_3$ $\psi_2 = \frac{1}{\sqrt{2}}\phi_1 - \frac{1}{\sqrt{2}}\phi_3$ $\psi_3 = \frac{1}{2}\phi_1 - \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{2}\phi_3$ $\frac{\text{charge density}}{\frac{1}{2}}$ for cation, e⁻-density on $c_1 = 2 \times (\frac{1}{2})^2 = \frac{1}{2}$ $c_2 = 2 \times (\frac{1}{\sqrt{2}})^2 = 1$ 0 $\frac{1}{2}$ $c_3 = 2 \times (\frac{1}{2})^2 = \frac{1}{2}$ on $c_1 = 2 \times (\frac{1}{2})^2 + (\frac{1}{\sqrt{2}})^2 = 1$ for radical, 0 $c_2 = 2 \times (\frac{1}{\sqrt{2}})^2 + 0 = 1$ 0 $c_3 = 2 \times (\frac{1}{2})^2 + (-\frac{1}{\sqrt{2}})^2 = 1$ 0 on $c_1 = 2 \times (\frac{1}{2})^2 + 2 \times (\frac{1}{\sqrt{2}})^2 = 1\frac{1}{2}$ $-\frac{1}{2}$ for anion, $c_2 = 2 \times (\frac{1}{\sqrt{2}})^2 + 2 \times 0 = 1$ 0 $c_3 = 2 \times (\frac{1}{2})^2 + 2(-\frac{1}{\sqrt{2}})^2 = 1\frac{1}{2}$ $-\frac{1}{2}$

charge density on *i*th atom $q_i = 1 - \rho_i$

Correlation of Bond Order and Bond length

-0.03Å

-0.04Å

tG. 4-6 (a) Non-equivalent carbon-carbon bonds (A to H, J to M) in ovalene (b) Compari icalculated and experimentally-observed bond-lengths in ovalene (Redrawn from A. J. Buzerr Δr_{23} roc. Phys. Soc. London, A63, 827, (1950).)

Hückel 4n+2 Rule :Planar cyclic system with 4n+2 π -electron \rightarrow aromatic
extra stability relative to acyclic analogsPlanar cyclic system with $4n \pi$ -electron \rightarrow antiaromatic
less stable than acyclic analogues

Circle Method for arriving the energy levels for monocyclic π -system

1. In an alternate hydrocarbons, the MO energy levels are symmetrically paired above the $E = \alpha$ level. $\rightarrow E = \alpha + k\beta$

 $E = \alpha - k\beta$

- 2. In an alternate hydrocarbon, the LCAO-coefficient of any pair of complementing orbitals are identical except for a change of sign in the coefficients of atomic orbitals centered on the unstarred atoms.
- 3. In a neutral alternate hydrocarbon or hydrocarbon-radical electron density on various C-atom are, in the ground state, all unity. (self-consistent)
 - (Corollary : For odd alternate hydrocarbon, there is at least one non-bonding MO, at $E = \alpha$.(or odd number or NBMO))

more about NBMO:

- 4. The NBMO will have non-zero coefficients only at the starred position.
- 5. The sum of the coefficients of the atomic orbitals of the starred atoms directly linked to a given non-starred atom is zero.

For non-alternate hydrocarbon, the electron density in each contributing carbon is not unity, not equivalent.

Benzene and Aromaticity

Benzene (and derivatives) exhibit special properties

-thermal stability

aromatic - substitution reaction with electrophilic reagents - resistance to oxidation - different physical properties as analogous aliphatic compounds

is different from the "double" However, the double in bond in

A true reference should be a cyclohexatriene with same bond lengths but no delocalization.

- 1. So R.E. increase with no. of rings
- 2. bent poly ring more stable in a linear

The planar structure involves severe angle strain (135°) that the molecule buckles \rightarrow non-aromatic

 $\begin{array}{l} \text{dianion} \rightarrow \text{closed shell} \\ \text{dication} \rightarrow \text{aromatic} \end{array} \text{ exist} \end{array}$

 C_8H_8

planar

 C_8H_8

α

— dipole 0.755D

Cyclotriapentafulvalene

dipole (6.0D for hexaphenyl substituted derivative !)

Larger Annulenes [10] Annulene

Severe non-bonded strain

planar, severe angle strain

non-planar, more stable (30kcal/mole more stable than all *cis*-planar)

The observed isomers are non-aromatic, due to non-planarity, not due to breakdown of Hückel's Rule.

show diamagnetic ring current no significant bond alternation observed

Experimental Evidence for aromaticity:

Bond length : Aromatic systems show C-C bond length 1.38~1.44 and uniform around the ring. non-aromatic systems show sp²-sp² single bond and sp²-sp² double bond length.

NMR chemical shift :	shielding effect for nuclei above/below the
due to	ring \rightarrow Upfield (by 6~11 ppm)
diamagnetic anisotropy	deshielding effect for nuclei attach to the
	ring \rightarrow Down field (by 2~4 ppm)

Other definitions of Aromaticity

Resonance Energy = $\Delta H_{f}^{\circ} - \Delta H_{f ref}^{\circ}$

 ΔH_{f}° : heat of formation of an organic cpd $\Delta H_{f \text{ ref}}^{\circ}$: heat of formation calculated for

localized reference

 $\Delta H_{f \text{ ref}}$ calculated from bond energies of C - H, C = C, C = O, C - O.

Dewar Resonance Energy = DRE

Table 4.2 DRE values for selected hydrocarbons.

	Compound	Experimental RE ^a	Calculated DRE^{b}	DRE > 0
	Cyclobutadiene ^c	-	– 17 kcal/mol	aromatic
	Benzene	+ 21 kcal/mol	+ 21	
	Cyclooctatetraened	_	- 10	DRE < 0
	Cyclodecapentaene	+ 10	+ 6	antiaromatic
	Naphthalene	+ 33	+ 33	untilaronnatio
	Anthracene	+ 43	+ 42	DRE 20
	Phenanthrene	+ 49	+ 49	≈ non-aromatic
-				

*Calculated from the experimental heat of formation given in reference 113 and equation 4.63. ^bValues taken from Tables 3 and 4 of reference 113.

^cExperimental heats of formation are not available

^d Assumed to be planar.

relate to e⁻-affinity

🧹 relate to ionization potential

antiaromatic for Hückel hardness > -0.15 β

Perturbation MO Theory (Orbital mixing rules)

The interaction of two orbitals (atomic or molecular) can be seen as a perturbation on the original orbital. new orbitals and energies are resulted.

1.Symmetry: only orbitals of like symmetry can interact.

2. Overlap: orbitrals must overlap in order to interact, the

greater the overlap, the stronger the interaction.

3. Relative energy: the closer the energy, the stronger the interaction.

- if the two interacting orbitals are of the same energy, (degenerate)---first order perturbation $H_{-}S + H_{-}$

The antibonding orbital is destabilized more than the bonding orbital is stabilized. - if the two interacting orbitals are of different energy (non-degenerate) ---second order perturbation

$$\psi_{i} \xrightarrow{\Delta E}_{i} \psi_{j} = \psi_{j} - \lambda \psi_{i} \qquad E_{j}^{'} = E_{j}^{\circ} + \frac{\left|H_{ij}^{'}\right|^{2}}{E_{j}^{\circ} - E_{i}^{\circ}}$$

$$H_{ij}^{'} = \int \psi_{i}^{\circ} \mathcal{H}^{'} \psi_{j}^{\circ} d\tau$$

$$\psi_{i} \xrightarrow{\Delta E}_{i} \psi_{i} = \psi_{i} + \lambda \psi_{j} \qquad E_{i}^{'} = E_{i}^{\circ} + \frac{\left|H_{ij}^{'}\right|^{2}}{E_{i}^{\circ} - E_{j}^{\circ}}$$

- 1. The lower orbital, mixing with the upper orbital, gives a bonding orbital, between the interacting region.
 - The upper orbital, mixing with the lower orbital, gives an antibonding orbital, between the interacting region.
- 2. The perturbation causes the lower energy orbital to be even lower in energy and vice versa.
 - The energy changes are larger for larger overlap, and smaller if the initial difference is larger.
- 3. The orbital initially of lower energy is altered by adding in (mixing) a portion of the higher one in a bonding way.
 - The orbital initially of higher energy is altered by adding in (mixing) a portion of lower one in an anti-bonding way.
 - The mixing is larger the larger the overlap, and smaller the larger the initial energy difference.

useful interaction usually involves one filled orbital and one empty orbital, such as a HOMO of one system and the LUMO of the other system.

- Consequences : 1. the ionization potential of norbornadiene should be smaller than the model compound norbornene.
 - 2. π , π^* transition (SA \rightarrow AS) should be red-shifted, but it is also a forbidden transition.
 - 3. The π , π^* excitation promote an e⁻ from an orbital which is 2-6 and 3-5 anti-bonding to one which is bonding in the same region.
 - (.:. photochemical closure to
- is promoted.)
- 4. removing one e⁻ (from SA) or adding one e⁻ (to AS) promote the bond formation between C_2 - C_6 and C_3 - C_5 .

Extended Hückel Theory

Take into account of all atomic orbitals 2s, 2p

e.g. the basis set for ethene

All MO's must be symmetric or anti-symmetric to the symmetry element of the molecule.

Qualitative Molecular Orbital Theory

Table 1.7 The Rules of QMOT*

- 1. Consider valence orbitals only.
- 2. Form completely delocalized MOs as linear combinations of s and p AOs.
- 3. MOs must be either symmetric or antisymmetric with respect to the symmetry operations of the molecule.
- 4. Compose MOs for structures of high symmetry and then produce orbitals for related but less symmetric structures by systematic distortions of the orbitals for higher symmetry.
- Molecules with similar molecular structures, such as CH₃ and NH₃, have qualitatively similar MOs, the major difference being the number of valence electrons that occupy the common MO system.
- 6. The total energy is the sum of the molecular orbital energies of individual valence electrons.
- 7. If the two highest energy MOs of a given symmetry derive primarily from different kinds of AOs, then mix the two MOs to form hybrid orbitals.
- 8. When two orbitals interact, the lower energy orbital is stabilized and the higher energy orbital is destabilized. The out-of-phase or antibonding interaction between the two starting orbitals always raises the energy more than the corresponding in-phase or bonding interaction lowers the energy.
- 9. When two orbitals interact, the lower energy orbital mixes into itself the higher energy one in a bonding way, while the higher energy orbital mixes into itself the lower energy one in an antibonding way.
- 10. The smaller the initial energy gap between two interacting orbitals, the stronger the mixing interaction.
- 11. The larger the overlap between interacting orbitals, the larger the interaction.
- 12. The more electronegative elements have lower energy AOs.
- 13. A change in the geometry of a molecule will produce a large change in the energy of a particular MO if the geometry change results in changes in AO overlap that are large.
- 14. The AO coefficients are large in high energy MOs with many nodes or complicated nodal surfaces.
- 15. Energies of orbitals of the same symmetry classification cannot cross each other. Instead, such orbitals mix and diverge.

^{*}Adapted, with modifications, from Gimarc, B. M. (1979). Molecular Structure and Bonding: The Qualitative Molecular Orbital Approach, Academic Press, New York.

Group orbitals from qualitative molecular orbital theory(QMOT) planar methyl

Building larger molecule from group orbitals

The group orbital for methylene

Figure 1.9

The Walsh diagram for CH_2 . The linear form is shown on the left, and it is converted to the bent form. Also shown is a secondary mixing between the C and E orbitals to make C' and E'. The computed MOs and the standard group orbital designations are also given.

Formation of ethylene by mixing of two CH₂ group orbitals

Figure 1.14 Orbital mixing diagram for the formation of ethylene by mixing two CH_2 groups. The computed MOs are shown in Figure 1.15.

Figure 1.15 The computed MOs of ethylene. Note the molecule is shown in different orientations for different MOs.

The effect of heteroatoms

Similar molecules have similar MO diagrams, with altered orbital energies.

