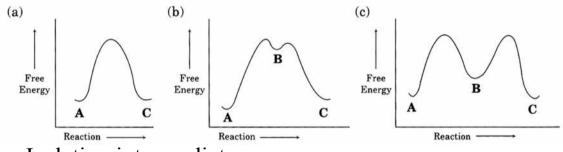
Chap. 6 Methods of Studying Organic Rxns

Determining Reaction Mechanisms

1. Identification of reaction products


2. Determination of Intermediates

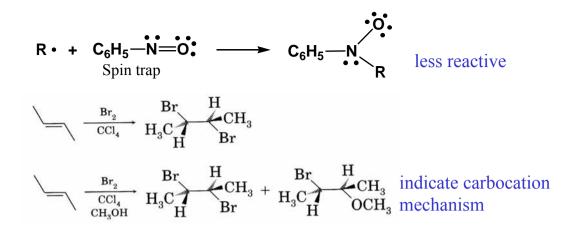
 \rightarrow Determining no. of steps

(a one step reaction, with reaction \rightarrow T.S. \rightarrow product, is an elementary reaction)

if more than one elementary steps, an intermediate is involved

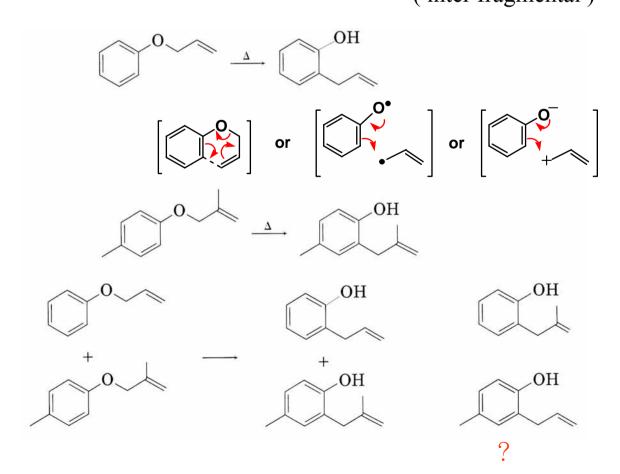
reactant $\xrightarrow{k_1}$ intermediate $\xrightarrow{k_2}$ product depending on the magnitude of k_1, k_2 , the concentration of intermediate can be high or low

 \rightarrow Isolating intermediate

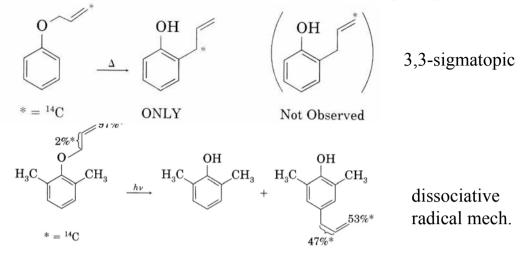

quench the reaction (by cooling, by diluting, by removing catalyst,....)

→ Spectroscopic characterization

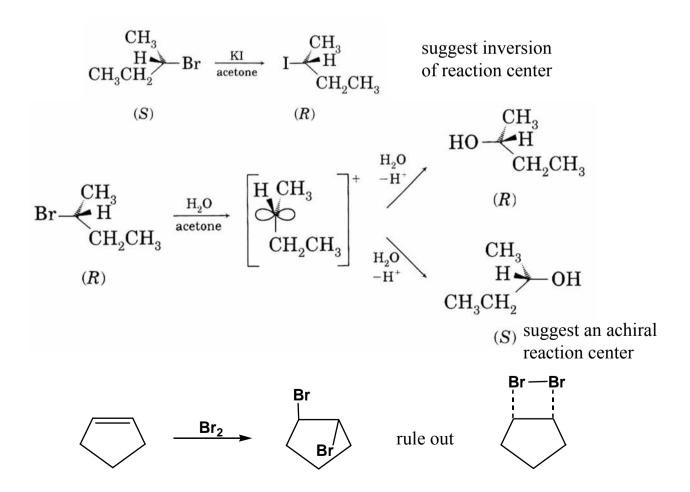
UV-VIS, IR, NMR, ESR.....


If not isolable, not spectroscopically observable,

 \rightarrow trap the intermediate by a trapping agent


→ Disprove an intermediate synthesize a proposed intermediate and compare the reaction properties...

→ Crossover Experiment To differentiate intra-molecular or inter-molecular (inter fragmental)



→ Isotope labeling

the least perturbation to a system is by isotope replacement

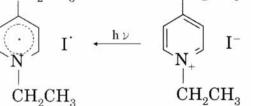
→ Stereochemical Studies

→ Solvent Effect

Solvent affects reaction rate through relative stabilization of reactants / transition \rightarrow deduce T.S. structure

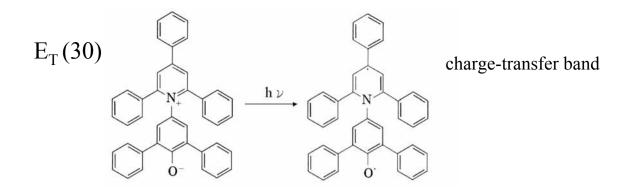
e.g
$$\delta^+$$
 $\delta^ \delta^+$ δ^- Nu⁻
S_{N1} (CH₃)₃C-Cl \longrightarrow (CH₃)₃C $\cdot \cdot$ Cl $\xrightarrow{\text{Nu}^-}$ (CH₃)₃C-Nu + X⁻
the rate increases with increasing solvent polarity.
 \rightarrow more ionic character in T.S. than the reactant
S_{N2} OH⁻ + CH₃-Br \longrightarrow [HO $\cdot \cdot$ CH₃ $\cdot \cdot \stackrel{\delta^+}{\text{Br}}$] \longrightarrow CH₃OH + Br⁻
The rate decreases with increasing solvent polarity
 \rightarrow less ionic character in T.S. than starting material

Measurement of solvent polarity :


 μ : dipole moment (a molecular property)

+ e -e +e =
$$4.8 \times 10^{-10}$$
 esu, for r = 1×10^{-8} cm
 μ = e · r = 4.8×10^{-18} esu · cm
= 4.8 D

 ε : dielectric constant, effect of substance on the E-field between an capacitor, relating to polarity and polarizability $E = \frac{E_0}{\varepsilon}$


Hexane	1.89	H ₂ O	78.4
CCl_4	2.23	MeOH	32.7
CHCl ₃	4.8	EtOH	24.5
V	1 .	<i>n</i> -PrOH	20.4

 $Z : Kosower scale \xrightarrow{n-Pro}_{CO_2CH_3} CO_2CH_3$

the charge-transfer band is sensitive to solvent

the transition energy $: Z = E_T$

α : acidity as H-bonding Donor (the ability of the solvent to donate a proton in solvent-solute H-bond)

β : basicity as H-bonded Acceptor

Solvent	ۻ	$\mu(D)^{\mathbf{a}}$	$\mathbf{Z}^{\mathbf{b}}$	$E_T(30)^c$	π*	β	$\boldsymbol{\alpha}^{\mathrm{f}}$
Formamide	111.0	3.37	83.3	56.6	0.97	0.48 ^g	0.71
Water	78.4	1.8	94.6	63.1	1.09	0.47 ^g	1.17
Formic acid	58.5	1.82		54.3	0.65 ^g	0.38 ^g	1.23 ^g
Dimethyl sulfoxide	46.5	4.06	71.1	45.1	1.00	0.76	0.00
N,N-Dimethylformamide	36.7	3.24	68.5	43.8	1.00 ^g	0.76 ^g	0.00
Nitromethane	35.9	3.56		46.3	0.85	0.06 ^g	0.22
Acetonitrile	35.9	3.53	71.3	45.6	0.75	0.40 ^g	0.19
Methanol	32.7	2.87	83.6	55.4	0.60	0.66 ^g	0.93
Hexamethylphosphoramide	29.3	4.31	62.8 ^d	40.9	0.87 ^g	1.05 ^g	0.00
Ethanol	24.5	1.66	79.6	51.9	0.54	0.75 ^g	0.83
1-Propanol	20.4	3.09	78.3	50.7	0.52	0.90 ^g	0.84 ^g
1-Butanol	17.5	1.75	77.7	50.2	0.47	0.84 ^g	0.84 [£]
Acetone	20.6	2.69	65.7	42.2	0.71	0.43 ^g	0.08
2-Propanol	19.9	1.66	76.3	48.4	0.48	0.84^{g}	0.76
Pyridine	12.9	2.37	64.0	40.5	0.87	0.64	0.00
t-Butyl alcohol	12.5	1.66	71.3	43.3	0.41	0.93 ^g	0.42
Methylene chloride	8.9	1.14	64.2	40.7	0.82	0.10 ^g	0.13^{g}
Tetrahydrofuran	7.58	1.75		37.4	0.58	0.55	0.00
1,2-Dimethoxyethane	7.20	1.71	62.1 ^d	38.2	0.53	0.41	0.00
Acetic acid	6.17	1.68	79.2	51.7	0.64	0.45^{g}	1.12
Ethyl acetate	6.02	1.82		38.1	0.55	0.45	0.00
Chloroform	4.80	1.15	63.2 ^e	39.1	0.58	0.10 ^g	0.20 ^g
Diethyl ether	4.2	1.15		34.5	0.27	0.47	0.00
Benzene	2.27	0	54.0 ^d	34.3	0.59	0.10	0.00
Carbon tetrachloride	2.23	0		32.4	0.28	0.10^{g}	0.00
<i>n</i> -Hexane	1.89	0.085		31.0	-0.04 ^g	0.00	0.00

Data from the compilation in reference 34. bData from reference 38. cData from the compilation in reference 39, pp. 365–371. dData from the compilation in reference 35, p. 301. c(0.13 M EtOH). Values for π^ , β , and α from reference 40. Data from the compilation in reference 42.

§ Application of Kinetics in Studying Rxn Mechanism

reaction rate : rate of change of concentration of reactant or product

For a reaction

$$n_{A}A + n_{B}B + n_{C}C \rightarrow n_{P}P$$

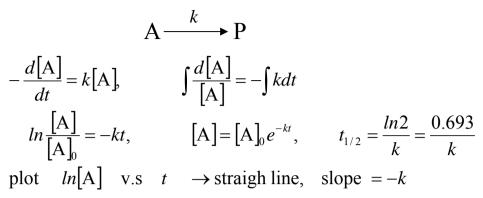
rate = $-\frac{1}{n_{A}}\frac{dA}{dt} = -\frac{1}{n_{B}}\frac{dB}{dt} = -\frac{1}{n_{C}}\frac{dC}{dt} = \frac{1}{n_{P}}\frac{dP}{dt}$
= $k_{r}[A]^{a}[B]^{b}[C]^{c}$

overall reaction order = a + b + c. \leftarrow determined by experiment not by stoichiometry

the order of the reaction = the no. of reacting molecule = molecularity)

Pseudo order : if one reactant doesn't change its concentration significantly, e.g. [C] ≒ const

rate =
$$k'[A]^{a}[B]^{b}$$
, reaction order = $a + b$


e.g. ROTs $\xrightarrow{aq EtOH}$ R-OEt pseudo first order

zero order

$$A \xrightarrow{k} \text{ product}$$
rate = $-\frac{dA}{dt} = k$ $\int -dA = \int k dt$
Differential rate equation
$$A - A_0 = -kt \text{ Integration rate equation}$$
e.g. Saturation reaction on the surface of a metal
half life $t^{1/2}$ = the time for $A = \frac{A_0}{2}$

$$\frac{A_0}{2} - A_0 = -kt^{1/2}, \quad t^{1/2} = \frac{A_0}{2k}$$

First order reaction

Second order reaction

type 1

$$2A \xrightarrow{k} P$$

$$\frac{d[P]}{dt} = -\frac{d[A]}{2dt} = k[A]^{2},$$

$$\frac{d[A]}{2[A]^{2}} = -kdt, \qquad \int \frac{d[A]}{[A]^{2}} = -\int 2kdt, \qquad \frac{1}{[A]} - \frac{1}{[A]_{0}} = 2kt$$
plot $\frac{1}{[A]}$ v.s $t \rightarrow$ straigh line slope $= 2k$

$$t_{1/2} : \qquad \frac{2}{[A]_{0}} - \frac{1}{[A]_{0}} = 2kt_{1/2} \qquad t_{1/2} = \frac{1}{2k[A]_{0}}$$

type 2
$$A + B \xrightarrow{k_2} P$$

$$-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = k_2[A][B],$$

$$ln\frac{[A]}{[B]} + ln\frac{[B]_0}{[A]_0} = ([A]_0 - [B]_0)k_2t,$$
plot $ln\frac{[A]}{[B]}$ v.s $t \rightarrow$ straigh line slope $= ([A]_0 - [B]_0)k_2$

Reversible reaction

$$A = \frac{k_{1}}{k_{-1}} B$$

$$-\frac{dA}{dt} = \frac{dB}{dt} = k_{1}A - k_{-1}B , \quad A_{0} + B_{0} = A + B$$

$$-\frac{dA}{dt} = k_{1} - k_{-1}(A_{0} + B_{0} - A)$$

$$= (k_{1} + k_{-1})A - k_{-1}(A_{0} + B_{0})$$

$$\int \frac{dA}{(k_{1} + k_{-1})A - k_{-1}(A_{0} + B_{0})} = \int -dt \quad \because \int \frac{dx}{a + bx} = \frac{1}{b}\ln(a + bx)$$

$$\frac{1}{k_{1} + k_{-1}}\ln[(k_{1} + k_{-1})A - k_{-1}(A_{0} + B_{0})] = -t + const.$$
at $t = 0$

$$const. = \frac{1}{k_{1} + k_{-1}}\ln[(k_{1} + k_{-1})A_{0} - k_{-1}(A_{0} + B_{0})]$$

subst. into above eq.

at

$$\ln \frac{(k_{1} + k_{-1})A_{0} + k_{-1}(A_{0} + B_{0})}{(k_{1} + k_{-1})A - k_{-1}(A_{0} + B_{0})} = (k_{1} + k_{-1})t$$

$$\ln (\frac{k_{1}A_{0} + k_{-1}B_{0}}{k_{1}A + k_{-1}A - k_{-1}A_{0} - k_{-1}B_{0}}) = (k_{1} + k_{-1})t$$

$$t = \infty \quad A = A_{\infty} \quad , \quad B = B_{\infty} \qquad k_{eq} = \frac{B_{\infty}}{A_{\infty}} = \frac{k_{1}}{k_{-1}} \qquad k_{1} = k_{-1}\frac{B_{\infty}}{A_{\infty}}$$

$$\ln \frac{k_{-1}\frac{A_{0}}{A_{\infty}}B_{\infty} - k_{-1}B_{0}}{k_{-1}\frac{B_{\infty}}{A_{\infty}}A - k_{-1}B} = (k_{1} + k_{-1})t$$

$$\ln(\frac{A_0 B_{\infty} - A_{\infty} B_0}{B_{\infty} A - B A_{\infty}}) = (k_1 + k_{-1})t$$

plot left hand side v.s. t \rightarrow slop = k₁ + k₋₁ \rightarrow k₁, k₋₁ from k₁=k₋₁ $\frac{B_{\infty}}{A_{\infty}}$ more common simplification : Pseudo first order

$$A + B \longrightarrow P \quad \text{let } [B] \gg [A] \text{ so that } [B] \text{ is relatively constant}$$
$$-\frac{d[A]}{dt} = k'[A] \quad \text{where } k' = k_2[B]$$
$$\Rightarrow \ln \frac{[A]}{[A_0]} = -k't$$

third order reaction

$$3A \longrightarrow \text{product}$$

$$rate = -\frac{d[A]}{3dt} = k[A]^{3}$$

$$2A + B \longrightarrow \text{product}$$

$$rate = -\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt} = k[A]^{2}[B]$$

$$A + B + C \xrightarrow{k} \text{product}$$

$$rate = -\frac{d[A]}{dt} = -\frac{d[B]}{dt} = -\frac{d[C]}{dt} = k[A][B][C]$$

For consecutive and irreversible reaction

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

$$rate = \frac{d[C]}{dt} = k_2[B]$$

$$\frac{d[B]}{dt} = k_1[A] - k_2[B], \qquad -\frac{d[A]}{dt} = k_1[A], \qquad [A] = [A]_0 e^{-k_1 t}$$

$$\Rightarrow C = A_0 - A_0 e^{-k_1 t} - \frac{k_1 A_0}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t})$$

Apply steady state approximation to [B] in the case $k_2 >> k_1$

$$\frac{d[B]}{dt} = k_1[A] - k_2[B] = 0$$

$$k_1[A] = k_2[B]$$

$$rate = \frac{d[C]}{dt} = k_2[B] = k_1[B]$$

the s.s.a. is more accurate if $k_1/k_2 \ll 1$

For
$$A + B \xrightarrow{k_1} C \xrightarrow{k_2} D$$

 $rate = \frac{d[D]}{dt} = k_2[C]$

applying steady state approximation

$$\frac{d[C]}{dt} = k_{1}[A][B] - k_{2}[C] - k_{-1}[C] = 0$$

$$[C] = \frac{k_{1}[A][B]}{k_{2} + k_{-1}}$$

$$rate = \frac{d[D]}{dt} = \frac{k_{1}k_{2}[A][B]}{k_{2} + k_{-1}}$$

if $k_{2} << k_{-1}$, $k_{2} + k_{-1} \approx k_{-1}$ (the reverse reaction is fast)

$$rate = k_{2}(\frac{k_{1}}{k_{-1}})[A][B] = k_{2} \underline{K}[A][B]$$

if $k_{2} >> k_{-1}$

$$rate = k_{1}[A][B]$$

Pre-equilibrium
const.

e.g.
$$E_{1cb}$$
 rxn

$$Z CH_{2}CH_{2}X + B \xrightarrow{k_{1}} Z \overset{\Theta}{\leftarrow} HCH_{2}X + BH^{+}$$
electron-
withdrawing
S.s.a. $\frac{d[Z \overset{\Theta}{\leftarrow} HCH_{2}X]}{dt} = 0 = k_{1}[ZCH_{2}CH_{2}X][B]$
 $-k_{-1}[Z \overset{\Theta}{\leftarrow} HCH_{2}X][BH^{+}]$
 $-k_{2}[Z \overset{\Theta}{\leftarrow} HCH_{2}X]$
 $[Z \overset{\Theta}{\leftarrow} HCH_{2}X] = \frac{k_{1}[ZCH_{2}CH_{2}X][B]}{k_{-1}[BH^{+}] + k_{2}}$
 $rate = \frac{d[ZCH = CH_{2}]}{dt} = \frac{k_{2} \cdot k_{1}[ZCH_{2}CH_{2}X][B]}{k_{-1}[BH^{+}] + k_{2}}$

(1) assume $k_2 >> k_{-1}[BH^+]$ (formation of carbanion is slow, destruction is fast)

$$rate = k_1[ZCH_2CH_2X][B]$$

(2) assume $k_{-1}[BH^+] >> k_2$ (the destruction of anion is slow)

$$rate = \frac{k_2 \cdot k_1}{k_{-1}} \frac{[ZCH_2CH_2X][B]}{[BH^+]}$$

To distinguish between (1) or (2),

one can use a buffer.

Experimental methods for determination of reaction orders

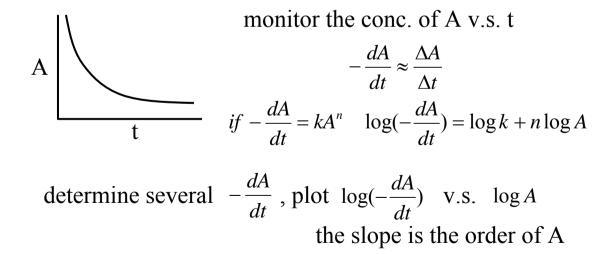
(1) method of integration

 $-\frac{dA}{dt} = k[A]^{a}[B]^{b}[C]^{c}$ evaluation of a, b, c by integration plot

(2) method of half life

 $t_{1/2} \propto A_0^{1-n}$, n is the order

determine the relationship between $t_{1/2}$ and $A_0 \Rightarrow$ order


(3) method of isolation ------Pseudo orders

 $-\frac{dA}{dt} = k[A]^a [B]^b [C]^c$

make the concentration of B and C extremely large

so that they don't change with progress of rxn.

(4) Differential method

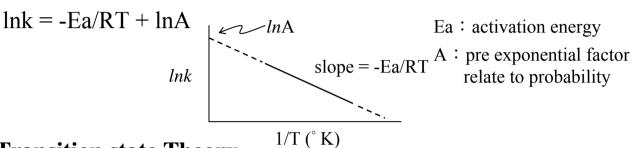
no matter what the order is,

 $log(-\frac{dA}{dt})$ v.s. log A is always a straight line, with slope n

§ Arrhenius Theory & Transition State Theory

rate constant is a function of temperature

[Transition State]+


- Product

Ea

activation energy

Arrhenius equation : $k = A \exp(-Ea/RT)$

Transition state Theory

The starting material is in equilibrium with activated complex

treat the TS as a species, rate = [AB] * × frequency of T.S Boltzmann Constant passing over

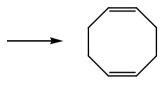
$$k_r = (\kappa k T / h) e \left(-\Delta G^{\ddagger} / RT \right) = \left(\frac{\kappa k T}{h} \right) e \left(\Delta S^{\ddagger} / R \right) e \left(-\Delta H^{\ddagger} / RT \right)$$

transmission coefficient, to account for probability of reactant to product

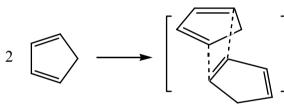
for
$$\Delta G^{\ddagger} = \Delta H^{\ddagger} - T \Delta S^{\ddagger}$$
 (Ea = $\Delta H^{\ddagger} + RT$)

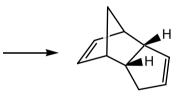
$$\frac{k_r}{T} = \left(\frac{\kappa k}{h}\right) e^{\Delta S \pm /R} e^{-\Delta H \pm /RT}$$

$$ln\left(\frac{k_r}{T}\right) = ln\left(\frac{\kappa k}{h}\right) + \frac{\Delta S \ddagger}{R} - \frac{\Delta H \ddagger}{RT}$$
from k_r , T, $\Delta H \ddagger$ at one temp.
plot
$$ln\left(\frac{k_r}{T}\right) \qquad v.s.\frac{1}{T} \rightarrow \Delta H \ddagger , \quad then \quad \Delta S \ddagger$$
from slope

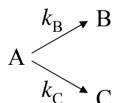

Δ S[‡] reflects the change in the order of the system from reactants to activated complex (T.S.)

 $(CH_3)_3 C$ -O-O-C $(CH_3)_3 \rightarrow [(CH_3)_3$ -C-O····O-C $(CH_3)_3]^{\ddagger}$


 $\rightarrow 2 (CH_3)_3 CO^{-1}$

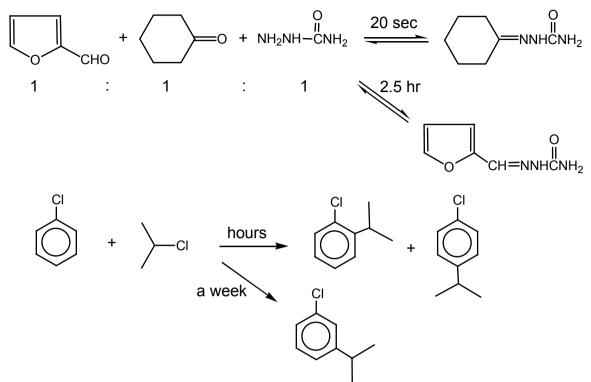

 Λ S[‡]= 13.8 eu

one molecule becomes two

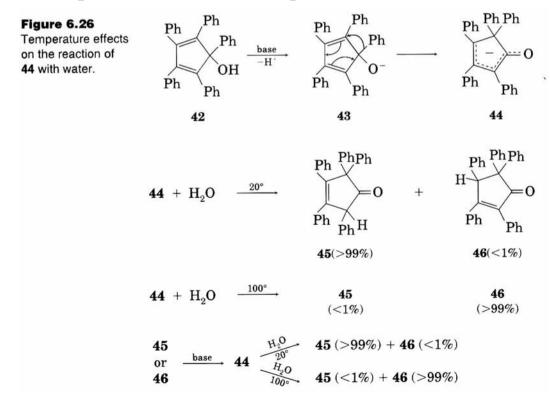

 $\Delta S^{\ddagger} = -11.7$ eu two fragments connected together

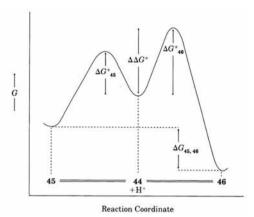
 $\Delta S^{\ddagger} = -26$ eu two molecules combine to one

For competing reaction


if irreversible, the product ratio is the rate constant ratio.

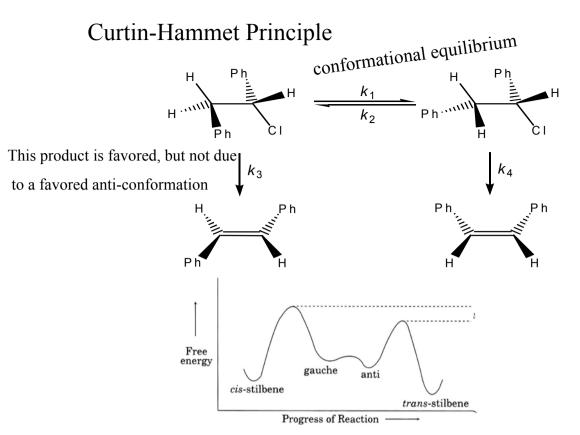
$$\frac{k_B}{k_C} = \frac{[B]}{[C]} = e^{\Delta \Delta G^{\ddagger}/RT}$$


activation free energy difference


[B] [C]	$\Delta\Delta G^{\ddagger}$ (kcal/mol)
1	0
100	2.73
1000	4.09
10000	5.45

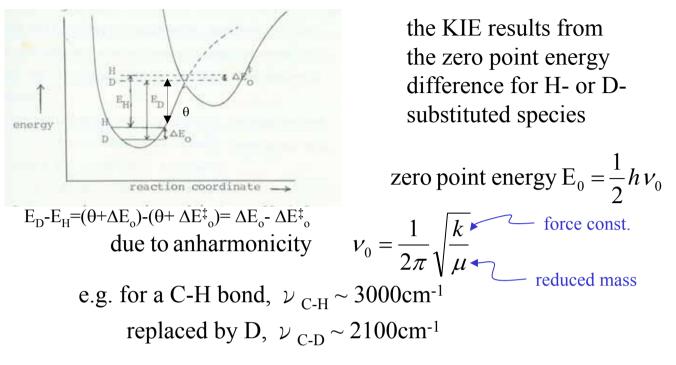
Different product ratio for diff. reaction time (or temperature) for reversible reaction

different prod. ratio at diff. temperature


Kinetic control v.s Thermodynamic control

Both time effect and temperature effect are of same origin \rightarrow the time required to reach the equilibrium

If a bulky base used, non-hydroxylic solvent used, low temperature used → less substituted enolate dominates (Kinetic enolate)


If hydroxylic solvent used, or higher temperature equilibrium reached \rightarrow more substituted enolate dominates (Thermodynamic enolate)

For two equilibrium conformational isomer, each leading to different product, the product ratio is determined by the activation energy difference, not by the population of the isomer.

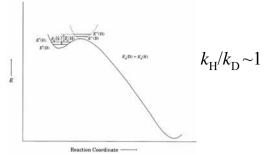
$$B \rightleftharpoons A \qquad Kc = \frac{[A]}{[B]}$$
rate of Product $P_A = \frac{dP_A}{dt} = k_a[A] = k_aKc[B]$
Product $P_B = \frac{dP_B}{dt} = k_b[B]$
Product ratio $= \frac{dP_A/dt}{dP_B/dt} = \frac{k_aKc[B]}{k_b[B]} = \frac{k_aKc}{k_b}$
 $k_r = \frac{\kappa kT}{h} e^{-\Delta G \ddagger/RT}, \qquad Kc = e^{-(-\Delta G/RT)}$
product ratio $= \frac{(\kappa kT/h)e^{-\Delta G \ddagger_a/RT}e^{\Delta G_c/RT}}{(\kappa kT/h)e^{-\Delta G \ddagger_b/RT}} = e^{(-\Delta G \ddagger_a + \Delta G \ddagger_b + \Delta G_c)/RT}$
 $= e^{\Delta G \ddagger_b - \Delta G \ddagger_a}$

Kinetic Isotope Effect

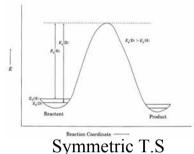
In ground state, the zero point energy differs by ΔE_0 , in transition state, zpe differs by ΔE_0^{\ddagger} , (usually $\Delta E_0^{\ddagger} < \Delta E_0$) depend on the extent of C-H bond breakage, $k_{\rm H}/k_{\rm D}$ may very.

 $k_{\rm H}/k_{\rm D} = \exp \{(\Delta E_0 - \Delta E_0^{\ddagger})/RT\}$

for C-H $k_{\rm H}/k_{\rm D}$ maximum value at room temp. ~7 for primary KIE depend on the ext. of bond cleavage, $1 < k_{\rm H}/k_{\rm D} < 7$

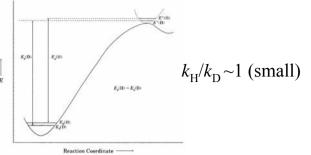

Information provided by primary KIE:

1. $k_{\rm H}/k_{\rm D} > 2 \rightarrow$ strong evidence that the C-H bond is broken in T.S.


2. the magnitude of $k_{\rm H}/k_{\rm D}$ provides qualitative indication of where the T.S. lies relative to S.M. or Product

C -	$-H \cdot \cdot \cdot A$	$C \cdots H \cdots A$	$C \cdots H - A$
		symmetric	
$k_{ m H}/k_{ m D}$	small	large	small

early transition state



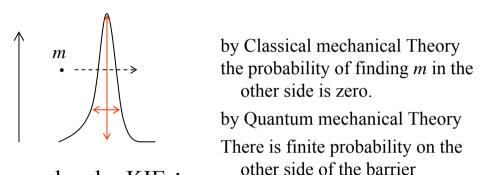
C-H (or C-D) bond is slightly broken in the T.S.

C-H (or C-D) is half-broken \rightarrow large $k_{\rm H}/k_{\rm D}$

late transition state

C-H (or C-D) is nearly fully broken away from S.M., but nearly fully from in product.

[Transition State Theory Description :] contribute to Zero $\overline{\mathbf{B}}$... \mathbf{H} ... \mathbf{A} Point energy in T.S. $B \cdots H \cdots A$ asymmetric stretching symmetric stretching (reaction coordinate) $\mathbf{\hat{f}}$ $\mathbf{\hat{f}}$ $\mathbf{\hat{f}}$ $\mathbf{\hat{f}}$ $\overset{+}{\mathrm{B}}$ \cdots $\overset{-}{\mathrm{H}}$ \cdots $\overset{+}{\mathrm{A}}$ in plane bending out-of-plane bending of low energy & cancel similar bending in S.M. e.g. $\phi \operatorname{CH}_2\operatorname{CH}_2$ -X $\xrightarrow{\operatorname{EtO}^-} \phi \operatorname{CH}=\operatorname{CH}_2$ for non-linear T.S. KIE $X = Br OTs SMe_2 NMe_3$ is also smaller $k_{\rm H}/k_{\rm D}$ 7.11 5.67 5.07 2.98 $k_{\rm H}/k_{\rm D}$


50% H-transfer

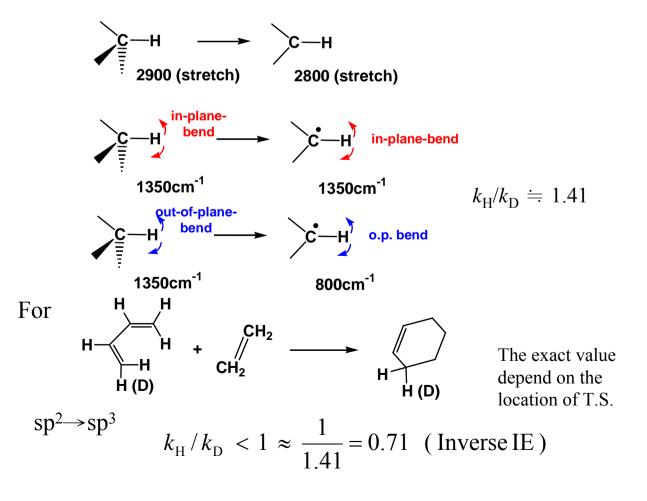
usual range of Primary Kinetic Isotope Effects 5~8

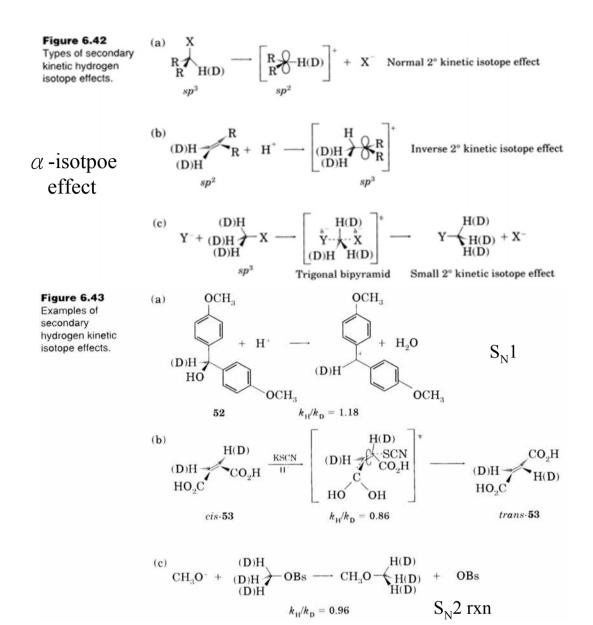
Some KIE are much larger than expected maximum Because oversimplifications :

- 1. C-H bending vibration (~48 if considered)
- 2. Tunneling of H will increase $k_{\rm H}/k_{\rm D}$

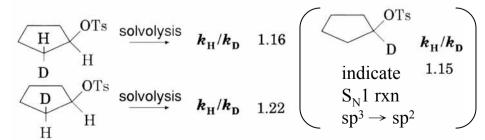
Tunneling Effect

[X = Cl]


Reaction

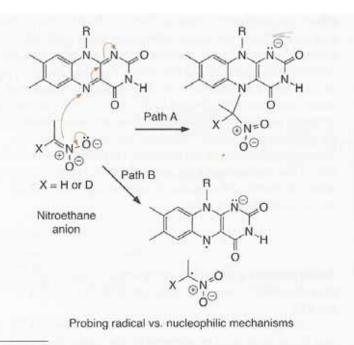

Secondary Isotope Effect

The effect of isotope substitution at a bond not broken in the transition state. \rightarrow result from zero-point-energy difference due to change of force constant in a vibration in going from reactant to T.S. (α -, β - 2° KIE)


e.g. for rxn
$$\begin{array}{c} R \\ R \\ R \\ R \end{array} \xrightarrow{R} H (D) \longrightarrow \begin{array}{c} R \\ R \\ R \end{array} \xrightarrow{+} H (D) + X^{-}$$

in going from sp³ \rightarrow sp², C-H bond will experience a decreased resistance to C-H bending. The effect is greater for C-H bond than C-D bond (C-H longer than C-D by 0.009Å) $k_{\rm H}/k_{\rm D} > 1$ (normal secondary isotope effect).

 β -secondary isotope effect : the isotope bond to a position next to reaction center

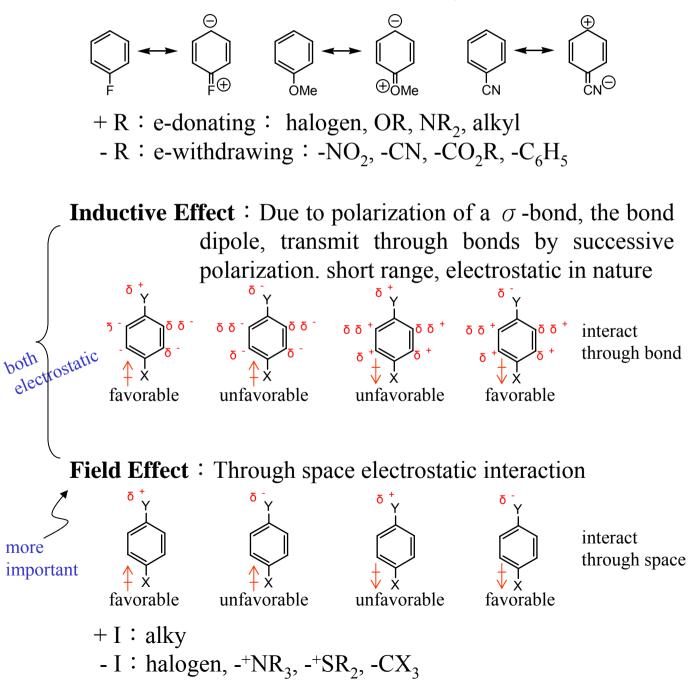


The hyperconjugation weakens β -H (or β -D) bond, thus a small ZPE contribution. \rightarrow faster for H- species (C-H > C-D)

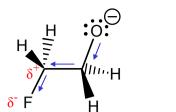
Isotope effect on Acidity (Not Kinetic IE, but equilibrium IE)

		K	a(H)/Ka(D)
$C_6D_5OH \longrightarrow C_6D_5O^- +$	H		1.12
$C_6D_5COOH \longrightarrow C_6D_5C < 0 +$	H		1.02
$C_6D_5CD_2COOH \longrightarrow C_6D_5CD_2COO^2$	+	H⁺	1.12
DCOOH	H+		1.06
$CD_3COOH \longrightarrow CD_3COO^- +$	H⁺		1.033

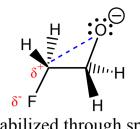
∴ The C-D bond is shorted than C-H by 0.009Å, the electron-density is closer to C, equivalent to a e-donating group. (+I effect, C-D > C-H)



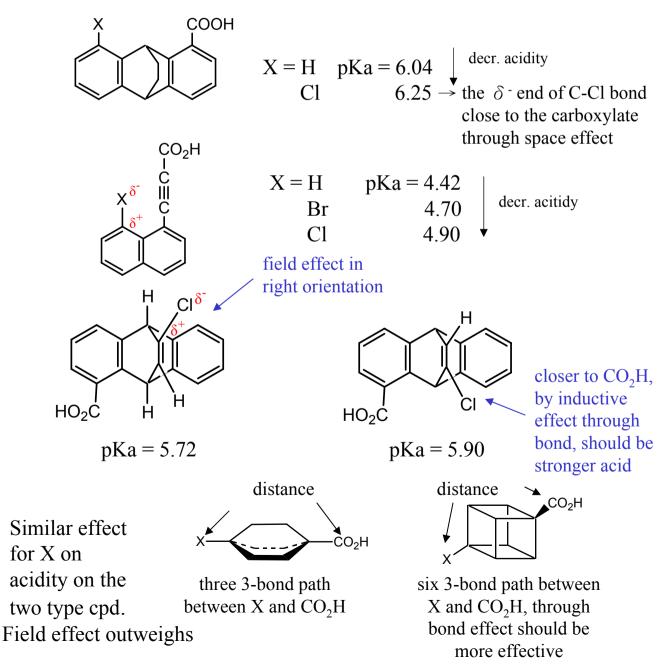
Path A: nucleophilic addition Path B: electron transfer followed by combination of radicals $k_{\rm H}/k_{\rm D} = 0.84$, implying rehybridization

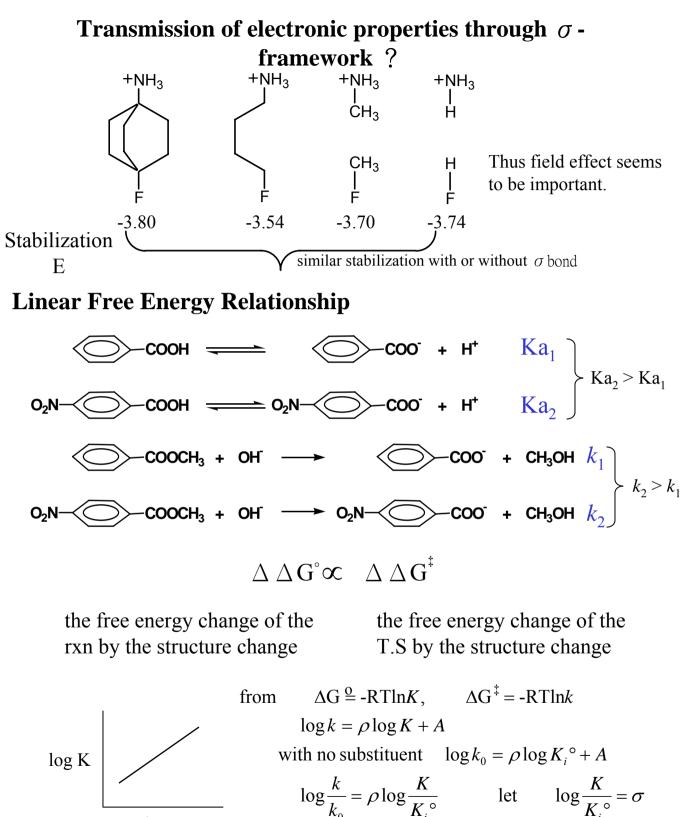

§ Substituent Effect and Linear Free Energy Relationship

A substituent can influence a reaction rate, equilibrium or property via inductive, resonance, steric effect.


Resonance Effect : Polarization of charge density through π - bond formation (or π -system) in a structure

higher acidity for 2-fluoroethanol


Stabilized by inductive withdrawal through bond



Stabilized through space field effect

the importance of through space effect

or

 $\log k$

then $\log \frac{k}{k_0} = \rho \sigma \implies$ Hammet equation

substituted Benzene

 σ : substituent constant = A measure of the electronic effect of

the substituent S at a particular position.

at 25°C in H_2O

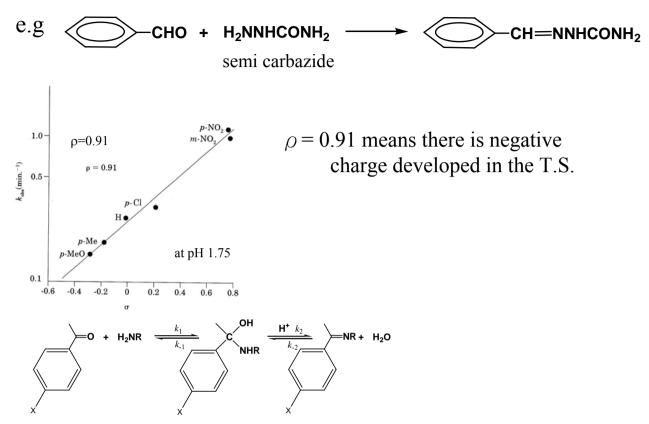
A measure of sensitivity of the reaction

ρ : reaction constant

to the electronic effect of a substituent

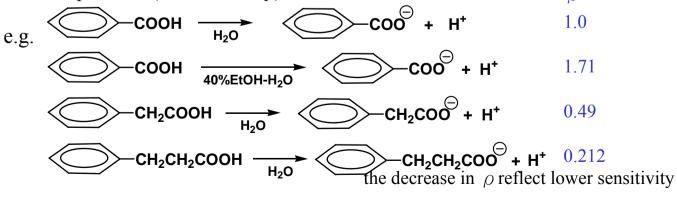
= 1 for ionization of benzoic acid

(the reference system)

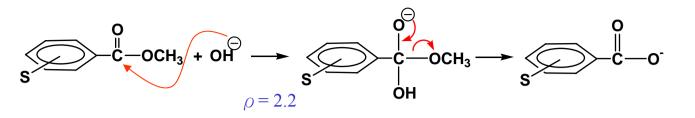

 ρ : "+" for rxn favored by e--

withdrawing

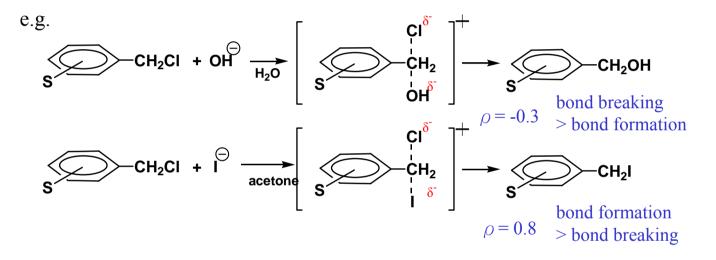
- "-" for rxn favored by e-donating
- σ : "+" for e-withdrawing "-" for e-donating


substituted Benzoic acid	σ
P-NH ₂	-0.66
P-CH ₃	-0.17
Н	0
P-Cl	0.23
P-CN	0.66
P-NO ₂	0.78

For a particular rxn, plot rates v.s σ , if a linear curve is obtained, a linear free energy relationship exists.


at pH 1.75, the first step is rate-determining

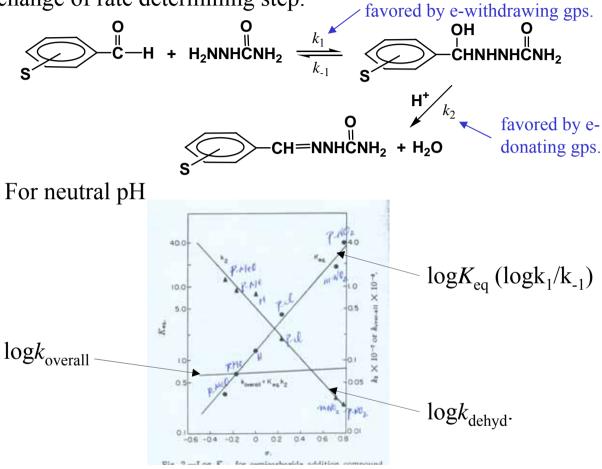
magnitude of $\sigma \rightarrow$ sensitivity to the substituent \rightarrow extent of charge development? (not necessary)



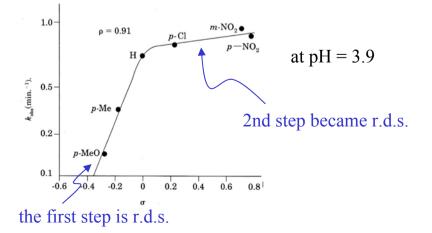
not different charge formation

Inferring mechanism from Hammet ρ value

typical S_N^2 reaction has low ρ values



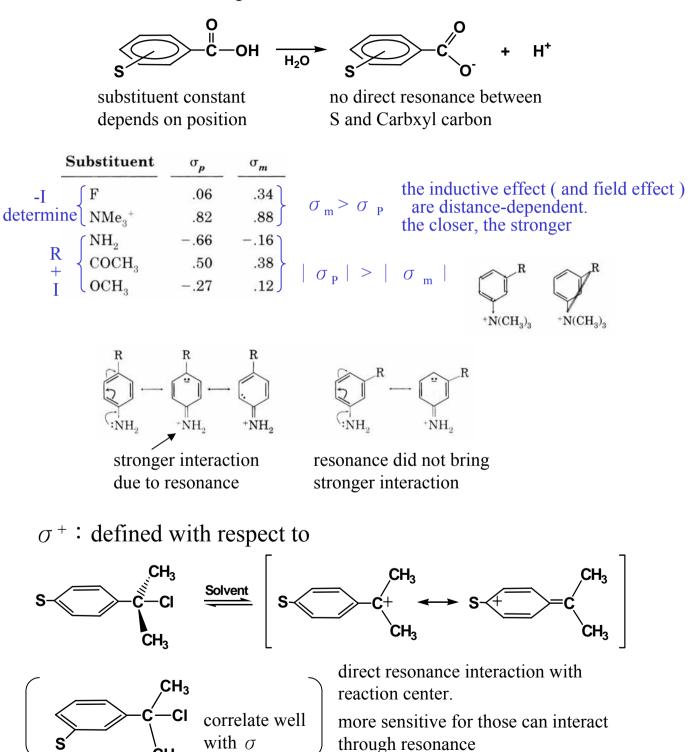
the large value of 2.2 for ester hydrolysis rules out a S_N^2 mechanism


However $S = -0.95 \quad S = -0.42 \text{CH}_2\text{OH$

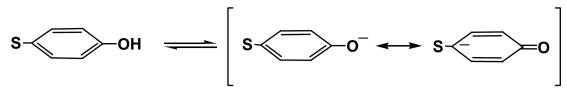
Nonlinear Hammet Correlation

If not due to expt'l error, if not due to impurity, if not due to side reactions. \rightarrow may due to change of mechanism or change of rate determining step.

at Neutral pH, the observed rate is the resultant of two \rightarrow insensitive to σ



Substituent Constants


 σ : defined with respect to

СН₃

-I

 σ^{-} : defined with respect to

Which sets of σ 's correlate better will depend on the nature of the reaction center.

Yukawa-Tsuno equation

a term to correct for the additional $\log \frac{K}{K_0} = \rho \sigma + \overbrace{\rho r(\sigma^+ - \sigma)}^{r(\sigma^+ - \sigma)}$ depend on rxn, large $r \rightarrow$ large resonance contribution $r \rightarrow 0$, original Hammet eq.

Swain-Lupton

$$\log \frac{k_x}{k_v} = f \underline{F} + r \underline{R} \qquad (\text{ dual-substituent parameter })$$

field effect
(Polar)

for ortho-substituents, steric effect may involve.

 σ^* : a measure of polar effect of alkyl substituent in aliphatic system.

$$\sigma^* = \left[(\log \frac{k_x}{k_o})_B - (\log \frac{k_x}{k_o})_A \right] / 2.48$$

Taft equation

$$\log \frac{k_x}{k_v} = \rho^* \sigma^* - S \underline{E}_s$$

steri
$$E_s = \log(\frac{k}{k_0})_A$$

steric substituent constant

acid-hydrolysis of aliphatic ester RCO_2R' , only related to steric effect