# **Chap 7. Acid and Bases**



$$K_{a} = \frac{[A^{-}][H^{+}]}{[A - H]}$$

$$pK_{a} = -\log K_{a} = pH + \log \frac{[A - H]}{[A^{-}]}$$

Solvent usually acts as an acid (to donate H<sup>+</sup>) or as base (to accept H<sup>+</sup>)

activity  

$$K_{a}^{*} = \frac{a_{A^{-}} \cdot a_{H^{+}}}{a_{AH}} = \frac{r_{A^{-}}[A^{-}] \cdot r_{H^{+}}[H^{+}]}{r_{AH}[A - H]}$$

$$= K_{a} \frac{r_{A^{-}} \cdot r_{H^{+}}}{r_{AH}}$$

The stronger the acid is, the weaker the conjugate base is. The stronger the base is, the weaker the conjugate acid is. Lewis Acid : electron pair acceptor

Base : electron pair donor Lewis acid + Lewis base  $\longrightarrow$  adduct BMe<sub>3</sub> + NH<sub>3</sub>  $\longrightarrow$  Me<sub>3</sub>B:NH<sub>3</sub> BF<sub>3</sub> + OEt<sub>2</sub>  $\longrightarrow$  F<sub>3</sub>B:OEt<sub>2</sub> Li +  $\bigcirc_{H}^{Me} \longrightarrow \begin{bmatrix} Li: \bigcirc_{H}^{Me} \end{bmatrix}^{+}$ 

Lewis acids: SO<sub>3</sub>, BF<sub>3</sub>, AlCl<sub>3</sub>, SnCl<sub>4</sub>, FeCl<sub>3</sub>, ZnCl<sub>2</sub>, H<sup>+</sup>, Ag<sup>+</sup>, Ca<sup>+2</sup> Lewis bases: C<sub>6</sub>H<sub>5</sub>N, (C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>O, NH<sub>3</sub>, OH<sup>-</sup>, CO<sub>3</sub><sup>2-</sup>, HCO<sup>2-</sup>, SH<sup>-</sup>, CH<sub>3</sub>CO<sup>2-</sup>

Brønsted base can be Lewis base, e.g. OH<sup>-</sup> Brønsted acid may not be Lewis acid, e.g. AlCl<sub>3</sub>, or HCl

### Leveling effect :

The ionization of an acid (base) depend on the basicity(acidity) of the medium in which it is ionizing.

 $pKa(H_2O) = 15.75$   $pKa(H_3O^+) = -1.75$ if  $H-A_1 + H_2O = H_3O^+ + A^- K = 10^2, pK_{a_1} = -2$ for 0.1 M sol'n of  $HA_1 = [H^+] = 0.09990M = (\frac{x^2}{0.1-x} = 10^2)$  pH = 1.00043if  $H-A_2 + H_2O = H_3O^+ + A^- K = 10^3, pK_{a_1} = -3$ for 0.1 M sol'n of  $HA_2 = [H^+] = 0.09999M = (\frac{x^2}{0.1-x} = 10^3)$  pH = 1.000043no measurable difference

if  $pK_{a_1} = 4$ ,  $pK_{a_2} = 5$ , the *pH* differ by 0.5  $[H^+] = 3.11 \times 10^{-3} \text{ M}$   $[H^+] = 1.005 \times 10^{-3} \text{ M}$ pH = 2.507 pH = 2.998

- $\rightarrow$  1. No acid stronger than the conjugate acid of a solvent can exist in appreciable concentration in that solvent.
- $\rightarrow$  2. No base stronger than the conjugate base of a solvent can exist in appreciable concentration in that solvent
  - → Relative strengths of acids stronger than the conjugate acids of a solvent cannot be determined in that solvent.

→ Relative strengths of bases stronger than the conjugate bases of the solvent cannot be determined in that solvent (acidity can be measured for acid stronger than H<sub>2</sub>O, and weaker than H<sub>3</sub>O<sup>+</sup>)

The acidity range varies dramatically. strong acid HI,  $HCIO_4...$  weak acid methane,

To measure very strong acid  $\rightarrow$  use mix of H<sub>2</sub>O/H<sub>2</sub>SO<sub>4</sub> To measure very weak acid  $\rightarrow$  NH<sub>3</sub>, DMSO...

## Acidity Function, H<sub>0</sub>

$$BH^{*} \underbrace{K_{BH^{+}}}_{BH^{+}} = \frac{B + H^{*}}{a_{BH^{+}}} = \frac{r_{B}[B] \cdot r_{H^{+}}[H^{+}]}{r_{BH^{+}}[BH^{+}]}$$

$$\log K_{BH^{+}} = \log \frac{[B]}{[BH^{+}]} + \log[H^{+}] + \log \frac{r_{B} \cdot r_{H^{+}}}{r_{BH^{+}}}$$

$$pK_{BH^{+}} = \log I + pH - \log \frac{r_{B} \cdot r_{H^{+}}}{r_{BH^{+}}}, \qquad I = \frac{[BH^{+}]}{[B]}$$

 $\begin{array}{ll} H_0, & \text{if activity co. } r_{B^-}, r_{BH^+}, r_{H^+} \rightarrow 1 \\ & \text{then } H_0 \rightarrow pH \end{array}$ 

For a base with known  $pK_{BH^+}$ , in a series of acid sol'n

measure  $I \rightarrow H_0$  for the series of acid sol'n use  $H_0$  to measure the  $pK_{B_2H^+}$  of a weaker base from  $pK_{B_2H^+}$  to measure  $H_0$  for even more acidic sol'n from  $H_0$  of these sol'n to measure  $pK_{B_3H^+}$  even weaker base

# **Acid-Base Catalyzed Reactions**



changing rate  $\rightarrow$  general acid catalysis

## **Brønsted Catalysis Law**

For general acid catalysis, the acidity of each acid will affect the rate.

$$k_{\rm a} = G_{\rm a}(K_{\rm a})^{\alpha}$$

plot  $\log k_a$  v.s  $\log K_a$  for a series of related acid gives a linear curve with slope of  $\alpha$ 

 $\log k_{\text{HA}} = \alpha \log K_{\text{a}} + \text{constant}$  sensitivity of the rate constant to structural change

$$(\log k_{\rm HB} = \beta \log K_{\rm b} + \text{constant})$$



#### Substituent Effect on acidity

| Compound                                                    | $\mathbf{p}K_{a}$  | Compound                                        | $pK_a$             |
|-------------------------------------------------------------|--------------------|-------------------------------------------------|--------------------|
| Carboxylic acids                                            |                    | Cyclohexanecarboxylic acid                      | 4.90*              |
| Formic acid                                                 | 3.75*              | Benzoic acid                                    | 4.20*              |
| Performic acid                                              | 7.1 <sup>h</sup>   | 2-Methylbenzoic acid                            | 3.914              |
| Acetic acid                                                 | 4.76               | 3-Methylbenzoic acid                            | 4.274              |
| Fluoroacetic acid                                           | 2.59*              | 4-Methylbenzoic acid                            | 4.374              |
| Chloroacetic acid                                           | $2.87^{*}$         | 2-t-Butylbenzoic acid                           | 3.54 <sup>d</sup>  |
| Bromoacetic acid                                            | 2.90*              | 2-Bromobenzoic acid                             | 2.85 <sup>d</sup>  |
| Iodoacetic acid                                             | 3.18*              | 3-Bromobenzoic acid                             | 3.81ª              |
| Cyanoacetic acid                                            | 2.47*              | 4-Bromobenzoic acid                             | 4.00*              |
| Methoxyacetic acid                                          | 3.57*              | 2-Chlorobenzoic acid                            | 2.914              |
| Nitroacetic acid                                            | 1.484              | 3-Chlorobenzoic acid                            | 3.83*              |
| Mercaptoacetic acid                                         | 3.564              | 4-Chlorobenzoic acid                            | 3.99=              |
| 2-Hydroxyacetic acid                                        | 010200             | 2-Fluorobenzoic acid                            | $3.27^{d}$         |
| (Glycolic acid)                                             | 3.38*              | 3-Fluorobenzoic acid                            | 3.86 <sup>d</sup>  |
| Phenylacetic acid                                           | 4.31 <sup>h</sup>  | 4-Fluorobenzoic acid                            | 4.144              |
| Phenoxyacetic acid                                          | 3.16 <sup>b</sup>  | 2-Iodobenzoic acid                              | $2.86^{4}$         |
| Difluoroacetic acid                                         | 1.34 <sup>d</sup>  | 3-Iodobenzoic acid                              | 3.854              |
| Dichloroacetic acid                                         | $1.35^{d}$         | 4-Iodobenzoic acid                              | 4.00%              |
| Dibromoacetic acid                                          | 1.48%              | 2-Hydroxybenzoic                                |                    |
| Trifluoroacetic acid                                        | 0.526              | (Salicylic) acid                                | 2.97*              |
| Trichloroacetic acid                                        | 0.51 <sup>h</sup>  | 3-Hydroxybenzoic acid                           | 4.07*              |
| Tribromoacetic acid                                         | 0.725              | 4-Hydroxybenzoic acid                           | 4.58*              |
| Propanoic acid                                              | 4.87*              | 2-Cyanobenzoic acid                             | 3.14*              |
| Aerylic acid (H.C-CH-CO.H)                                  | 4.25%              | 3-Cyanobenzoic acid                             | 3.60*              |
| Propialie acid (HC=C-CO H)                                  | 1.894              | 4-Cyanobenzoic acid                             | 3.55*              |
| Pyruvic acid (CH COCO H)                                    | 9.395              | 2-Nitrobenzoic acid                             | 2.21*              |
| 2233 2 Pontafluoroneonanai                                  |                    | 3-Nitrobenzoic acid                             | 3.49*              |
| acid                                                        | -0.41 <sup>b</sup> | 4-Nitrobenzoic acid                             | 3.44*<br>0.00b     |
| Butanoic acid                                               | 4.82*              | Acetyisaneyiic acid                             | 3.38               |
| cis-2-Butenoic acid                                         | $4.42^{b}$         | Pentanuorobenzosc acid                          | 2.00               |
| trans-2-Butenoic acid                                       | 4.70*              | 2 Nanhthais acid                                | 3.00°              |
| 2-Butynoic acid<br>(CH <sub>3</sub> -C=C-CO <sub>2</sub> H) | 2.59 <sup>b</sup>  | Alcohols and Phenols                            | 4.14               |
| 3-Butynoic acid                                             |                    | (Water                                          | 15.74 <sup>d</sup> |
| $(HC=C-CH_2CO_2H)$                                          | $3.32^{5}$         | Methanol (CH <sub>3</sub> OH) 15.5 <sup>d</sup> |                    |
| Cyclopentanecarboxylic acid                                 | 4.99*              | Ethanol                                         | 15.9 <sup>d</sup>  |

## the acid strengthening effect of ortho-substituent



the ortho group remove the planarity



resonance effect : decrease the acidity



inductive effect : acid strengthening

# **Addition to Carbonyl Group**

Hydration of aldehyde and ketone

General base catalysis and general acid catalysis

#### base-catalysis



#### acid-catalysis



### for the equilibrium



the catalytic efficiency depends on acid strengthening

|            |                                                          | Table 7.6 Equilibrium constants for disperiation of                                                                                                                                                                                                                                         | f hudenter of rock                                                                                                                       |                                    |
|------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| о он       | 0                                                        | pounds. <sup>125</sup>                                                                                                                                                                                                                                                                      | or nyidranes of carb                                                                                                                     | onyi com-                          |
| p-X        | 60° A angle strain                                       | Compound                                                                                                                                                                                                                                                                                    | K <sub>4</sub> <sup>129</sup>                                                                                                            |                                    |
| Δθ = 49°/2 | $\Delta \theta = 60^{\circ}/2$ favors hydrate –          | Cyclopropanone <sup>134</sup>                                                                                                                                                                                                                                                               | very small                                                                                                                               |                                    |
|            | e <sup>-</sup> -withdrawing group<br>favors hydrate      | Chloral (a,a,a-Trichloroacetaldehyde)<br>Formaldehyde <sup>127</sup><br>a-Chloroacetaldehye<br>a-Chlorobutyraldehyde<br>a,a'-Dichloroacetone<br>a,a-Dibromobutanal<br>a-Chloroheptanal<br>2-Chloro-2-methylpropanal<br>Methyl pyruvate <sup>132</sup><br>CH <sub>3</sub> C-COCH             | $3.6 \times 10^{-5}$<br>$4.5 \times 10^{-5}$<br>$2.7 \times 10^{-2}$<br>$6.3 \times 10^{-2}$<br>0.10<br>0.11<br>0.16<br>0.19<br>3 $0.32$ |                                    |
|            | $ \begin{array}{ccc}                                   $ | a,a-Dichloroacetone <sup>132</sup><br>a-Bromoheptanal<br>Pyruvic acid <sup>132</sup><br>Biacetyl <sup>132</sup><br>Acetaldehyde <sup>124</sup><br>Propanal<br>Butanal<br>2-Methylpropanal<br>Pivaldehyde <sup>132</sup><br>a-Chloroacetone <sup>132</sup><br>Sodium pyruvate <sup>138</sup> | 0.35<br>0.35<br>0.42<br>0.50<br>0.83<br>1.4<br>2.1<br>2.3<br>4.1<br>9.1<br>18.5                                                          | increasing<br>alky<br>substitution |
|            | conjugate aromatic<br>group favors ketone                | Benzaldehyde <sup>120</sup><br>Acetone <sup>120</sup><br>Acetophenone <sup>120</sup><br>Benzophenone <sup>120</sup>                                                                                                                                                                         | 120<br>720<br>$1.5 \times 10^{5}$<br>$8.5 \times 10^{6}$                                                                                 |                                    |

The hydration may be unfavorable, but the equilibrium is established fast

\*OH  

$$R_2C=O + H_2O^* \implies R_2C=O^* + H_2O$$
  
 $t_{1/2} \sim 1 \text{ min in neutral condition}$   
 $<< 1 \text{ min in acidic or basic condition}$ 

#### hemiketal, hemiacetal, ketal, acetal



For OR'  
$$R_2^{\downarrow}$$
 OH  $\xrightarrow{K_d}$   $R_2^{\downarrow}$  C=O + R'OH

|             | Ketone          | $K_d$ (methanol) | $K_d$ (ethanol | )                                 |
|-------------|-----------------|------------------|----------------|-----------------------------------|
|             | Dipropyl ketone | 89.0             |                |                                   |
| 0           | Cyclobutanone   | 0 1.11           | 327            | in general less<br>favorable that |
| $\square$   | Cyclopentanone  | 15.1             | 810            | methanol for                      |
|             | Cyclohexanone   | ≥0 2.16          | 237            | steric reason                     |
| <b>)</b> =0 | Cycloheptanone  | 53.5             |                |                                   |
| -           | Cyclooctanone   | 268              |                |                                   |

To drive equilibrium to ketal, dehydration or azeotrope are used

# **Enolization of Carbonyl Compounds**



- 1. catalyzed by acid or base
- 2. first order in ketone, zero order in  $X_2$
- 3. if chiral at  $\alpha$  -carbon, the rate of bromination is the same as rate of racemization and rate H-exchange
  - $\rightarrow$  rate-determining step is the formation of enol or enolate

## in acid-catalysis



### in base-catalysis



For unsymmetrically substituted ketone, the enolization / halogenation depends on condition

in acid-catalysis, more substituted enol is formed



in base-catalysis, less substituted enolate is formed



the preference is based on both kinetic and thermodynamic reasons

#### Kinetic reason :

| 0   | $\mathbf{R}_{1}$ | $\mathbf{R}_2$  | Relative Rate |
|-----|------------------|-----------------|---------------|
| U B | Н                | н               | 238           |
| CH  | н                | $CH_3$          | 37            |
| R.  | н                | $CH_2CH_3$      | 29            |
| 2   | $CH_3$           | CH <sub>3</sub> | 7             |

#### Thermodynamic reason :



## Hydrolysis of Acetal by acid-catalysis

### Possible Transition State



## Mechanistic Evidences

- 1. C-O cleavage between carbonyl C and O is shown by isotope labeling experiment, stereochemistry of R group. (no racemization or inversion)
- 2. Hammet  $\rho$  value



- 3.  $\Delta S^+$  nearly zero or slightly positive
- 4. kinetic solvent isotope effect  $k_{D_3O^+}/k_{H_3O^+} \sim 2-3$
- 5. the reaction is specific acid catalyzed
  - $\rightarrow$  a pre-equilibrium exist for protonation of ketal/acetal



# General Acid catalysis for some "reactive" acetal-ketal



pH

### Acid-catalyzed Hydrolysis of Ester



## A<sub>Ac</sub>1 Mechanism



at 9.8M H<sub>2</sub>SO<sub>4</sub>,  $\Delta S^+$  +17eV (support A<sub>Ac</sub>1)  $\Delta H^+$  28.4kcal

No carbonyl oxygen exchange (rule out  $A_{AC}^2$ )



the hydrolysis mechanism depends on structure and condition



methyl; II, sec-butyl; III, phenyl; IV, tert-butyl.

# **Base-Catalyzed Hydrolysis of Ester**

## **B**<sub>Al</sub>2 Mechanism

×

×

Ruled out for most ester by labeling experiment

but in highly strained case



# B<sub>Ac</sub>2 Mechanism

Evidences : <u>kinetics</u>, <u>isotope labeling</u> dependence of [OH<sup>-</sup>], Acyl-O cleavage, activation parameters exchange with solvent... Substituent effect : Electron-withdrawing groups in R and R'

favor hydrolysis

Isotope labeling experiment for  $B_{AC}^2$  mech.



If the recovered ester loses <sup>18</sup>O, a tetrahedral intermediate is indicated. If no loss of <sup>18</sup>O, the  $B_{AC}^{2}$  mechanism can not be eliminated yet ( $k_4 << k_3, k_{-1}$ )

O || If the 18O is labeled as R C<sup>-18</sup>OR, loss of <sup>18</sup>O in the product should be observe



for eater from a strong acid (carboxylate ion stable) for R' a tertiary or benzylic alky group (carbocation stable) or conc'n of base too low

with B<sub>Al</sub>1 mechanism, R'OH will be racemized

