Chap. 8 Substitution Reactions

Nucleophilic :

not necessarily the same as R

Electrophilic :

The rxn mechanism encompasses a wide spectrum two-dimensional rxn coordinate diagram for S_N^2

Three dimensional rxn coordinate with E as third axis

Effect of moving down (stabilizing) the energy of a corner (species)

 \rightarrow move the TS away from the corner "along the rxn coordinate"

Effect of moving down (stabilizing) the energy of a corner (species) perpendicular to the rxn coordinate, shift the TS toward the corner.

The effect of nucleophile, substrate, leaving group, solvent on the geometry and energy of TS can be analyzed based on these principles

S_N1 Reaction

R -

R⁺

$$\mathbf{x} \xrightarrow{k_{1}}_{k_{-1}} \mathbf{R}^{+} + \mathbf{x}^{*}$$

$$rate = \frac{d[R-Y]}{dt} = k_{2}[R^{+}][Y^{-}]$$

$$s.s.a$$

$$+ \mathbf{Y}^{*} \xrightarrow{k_{2}}_{k_{2}} \mathbf{R} - \mathbf{Y} \qquad \frac{d[R+]}{dt} = 0 = k_{1}[R-X] - k_{-1}[R^{+}][X^{-}] - k_{2}[R^{+}][Y^{-}]$$

$$[R+] = \frac{k_{1}[R-X]}{k_{-1}[X^{-}] + k_{2}[Y^{-}]}$$

$$Rate = \frac{k_{1}k_{2}[R-X][Y^{-}]}{k_{-1}[X^{-}] + k_{2}[Y^{-}]}$$

if [X⁻] very small (early stage) k_{-1} [X⁻] $\ll k_2$ [Y⁻] Rate = k_1 [R-X] if [X⁻] increases, rate decreases (common ion effect)

Effect of Structure on S_N1 reaction :

rate of solvolysis $: 3^{\circ} > 2^{\circ} > 1^{\circ} > methyl$ parallel the stability of carbocation size of R₁, R₂, R₃ in R₁, R₂, R₃ C-X rate of solvolysis for R(CH₃)₂CCl, rel.rate 1 for Me 1.67 Et rate of bridgehead system : 1.58 Pr rel reactivity

Effect of Solvent :

Grunwald-Winstein eq

 $\log(k/k_0) = mY$

where $Y = log(k_{t-BuCl, solvent}, k_{t-BuCl, methanol})$

m: sensitivity of the substrate to solvent ionizing power

Y: ionizing power

Schleyer's eq

rate in a given solvent

$$log(k/k_0) = l N_{OTs} + mY_{OTs}$$

rate in reference solvent, 80% ethanol

$$Y_{OTs} = \log (k/k_0)$$

- N_{OTs} : solvent nucleophilicity
 - *l* : sensitivity to solvent nucleophilicity
- Y_{OTs} : ionizing power
 - m : sensitivity to ionizing power
- for 2-Adamantyl tosylate

no nucleophilic rxn possible

$$N_{OTs} = \log (k/k_0) - 0.3 Y_{OTs}$$

for CH₃OTs

both nucleophilic rxn and ionizing rxn possible

 $S_N 1$ rxn is first order rxn in substrate

if sp²-hybridized intermediate is formed \rightarrow racemization for chiral S.M.

Sometimes partial inversion is observed (characteristic of $S_N 2$) \rightarrow Solvated ions and ion pairs

Anchimeric assistance (Neighboring group participation)

S_N2 reaction

backside attack with inversion at carbon

$$*I^{-} + \underset{R}{\overset{CH_{3}}{\longrightarrow}} -I \longrightarrow \begin{bmatrix} \underset{H}{\overset{CH_{3}}{\longrightarrow}} \\ *I^{\overset{CH_{3}}{\longleftarrow}} \\ H \\ R \end{bmatrix}^{\ddagger} \longrightarrow *I \longrightarrow \overset{CH_{3}}{\longleftarrow} \\R \\ *I \xrightarrow{\overset{CH_{3}}{\longleftarrow}} \\R \\ *I \xrightarrow{\overset{CH_{3}}{\longrightarrow}} \\R \\ *I \xrightarrow{\overset{CH_{$$

from chiral iodide, the rate of racemization is twice the rate of incorporation of radioactive *I

Solvent effect

depend on solvation energy of reactants and transition state

1. negative nucleophile + neutral substrate

$$I^- + CH_3Cl \longrightarrow \begin{bmatrix} b^-\\ I \cdots CH_3 \cdots Cl \end{bmatrix}^T \longrightarrow ICH_3 + Cl^-$$

rate increases with lower polarity, non-hydroxylic solvent

2. neutral nucleophile + neutral substrate

$$(CH_3)_3N + CH_3Cl \longrightarrow \left[(CH_3)_3 \overset{\delta^+}{N} \cdots CH_3 \cdots \overset{\delta^-}{Cl} \right]^{\dagger} \longrightarrow (CH_3)_3N^+CH_3 + Cl^-$$

rate increases with increasing polarity

3. negative nucleophile + positive substrate

$$\mathrm{HO}^{-} + \mathrm{CH}_{3} - \mathrm{N}^{+}(\mathrm{CH}_{3})_{3} \longrightarrow \begin{bmatrix} \overset{\delta^{-}}{\mathrm{HO}} \cdots & \mathrm{CH}_{3} \cdots & \overset{\delta^{+}}{\mathrm{N}(\mathrm{CH}_{3})_{3}} \end{bmatrix}^{\frac{1}{2}} \longrightarrow \mathrm{HOCH}_{3} + \mathrm{N}(\mathrm{CH}_{3})_{3}$$

rate increases with lower polarity

4. neutral nucleophile + positive substrate

$$(CH_3)_3N + CH_3 - S^+(CH_3)_2 \longrightarrow \left[(CH_3)_3N \cdots CH_3 \cdots S(CH_3)_2 \right]^{\dagger} \longrightarrow (CH_3)_4N^+ + CH_3SCH_3$$

rate increases with lower polarity

Polar solvent can increase solubility of ionic nucleophile, less polar solvent increase the rate. \rightarrow use crown ether or special solvent to increase solubility / reactivity of nucleophile

 $\mathrm{CH}_3\mathrm{I} + \mathrm{Cl}^{\scriptscriptstyle -} \to \mathrm{CH}_3\mathrm{Cl} + \mathrm{I}^{\scriptscriptstyle -}$

E	Solvent	k (rel.)		the nucleophilicity can change
32.7	CH ₃ OH	0.9]	dramatically in different solvent
78.4	H ₂ O	1.0	> protic	in protic solvent
111	HCONH ₂	14.1	J	I > D_{m} > C_{1}
35.9	CH ₃ NO ₂	14,100)	1 > Br > Cl
35.9	CH ₃ CN	35,800	aprotio	in aprotic solvent strongly solvate
36.7	DMF	708.000	aprotic	$Cl^- > Br^- > I^-$
20.6	Acetone	1,410,000	J	

in solvents with polarity lower than H_2O , the activation energy lies between that of gas phase and H_2O

Substrate Effect

Steric effect $R-Br + *Br \rightarrow *Br-R + Br$ in acetone

	R	k (rel.)	$E_{\rm a}$ (kcal/mol)	log A
I	CH ₃	76	15.8	10.7
	CH ₃ CH ₂	1.0	17.5	10.1
Increasing	CH3CH2CH2	0.65	17.5	9.8
Steric	$(CH_3)_2CH$	0.011	19.7	9.7
hindrance	$(CH_3)_2CHCH_2$	0.033	18.9	9.6
↓ ↓	$(CH_3)_3C$	0.003	21.8	10.7
·	(CH ₃) ₃ CCH ₂	0.000015	22.0	8.6

Nucleophilicity and Basicity are related but not necessarily

Swain-Scott equation

 $\log(k_{\rm n}/k_{\rm 0}) = {\rm s~n}$

Edward's equation

$$\log(k_n/k_0) = \alpha \operatorname{Eu} + \beta \operatorname{H}$$

 $\log(k_{\rm n}/k_{\rm 0}) = A P + B H$

n: nucleophilicity of a nucleophile

s : sensitivity of substrate to the nuclephile

H = pka + 1.74 relate to basicity $Eu = E_0 + 2.60$ relate to oxidization potent

- B : basicity (from pK)
 - P: polarizability (from mole refractivity)

Leaving group Effect :

The more stable the detached leaving group, the more stable the product system

→ Leaving group ability (Nucleofugality) $H_2O > CH_3OH > Br^- > NO_3^- > I^- > F^- > CI^- > SCN^- > (CH_3)_2S > C_6H_5O^- > NH_3 > C_6H_5S^- > CH_3O^- > CN^- > > NH_2^- >>H^- >H_3C^-$

Compare the basicity of the leaving group

(or the acidity of the conjugate acid)

Different solvent can change the leaving gp ability

		$\log [k(CH_3X)/k(CH_3I)]$				
Y -	Solvent	$\mathbf{X} = \mathbf{C}\mathbf{l}$	Br	I	OTs	Me ₂ S ⁻
N ₃ ⁻	CH ₃ OH	-2.0	-0.2	0.0	+0.8	-3.3
	DMF	-3.3	-0.9	0.0	-1.8	-4.8
C1-	CH3OH		+0.3	0.0	+0.4	
	DMF		-0.8	0.0	-1.7	

Electrophilic Aromatic Substitution S_EAr

Basic step

$$\mathbf{E}^{+} + \mathbf{Ar} - \mathbf{H} \stackrel{\mathbf{k_{1}}}{\underset{\mathbf{k_{-1}}}{\overset{\mathbf{k_{2}}}{\longrightarrow}}} [\mathbf{Ar} < \mathbf{E}^{\mathrm{H}}]^{+}$$
$$[\mathbf{Ar} < \mathbf{E}^{\mathrm{H}}]^{+} \stackrel{\mathbf{k_{2}}}{\xrightarrow{\mathbf{k_{2}}}} \mathbf{Ar} - \mathbf{E} + \mathbf{H}^{+}$$

General Mech.

1. generation of attacking species

 $strong \begin{cases} NO_2^+ & 2 H_2 SO_4 + HNO_3 \longrightarrow NO_2^+ + 2 HSO_4^- + H_3O^+ \\ Br_2 \text{ or } Br_2 \text{-}MX_n & Br_2 + MX_n \longrightarrow Br_2 \text{-}MX_n \\ \hline R_3C^+ & R_3CX + MX_n \longrightarrow R_3C^+ + [MX_{n+1}]^- \\ RC \equiv O^+ & R^-CX + MX_n \longrightarrow RC \equiv O^+ + [MX_{n+1}]^- \\ \hline Weak \longrightarrow NO^+ & HNO_2 + H^+ \longrightarrow N \equiv O^+ + H_2O \end{cases}$

2. Formation of encounter complex (π -complex)

3. Formation of σ -complex encounter complex

4. Loss of proton

Depending on the electrophile & substrate, rate-determining step can be either of these.

Kinetic evidence for the mechanism

reaction rate,

kinetic isotope effect,

Fig. 9.7. Transition states for highly reactive (A) and less reactive (B) electrophiles.

Table 9.6. Values of ρ for Some Electrophilic Aromatic Substitution Reactions"

Reaction	• relative to σ^+
Bromination (CH1CO2H)	-13.1
Chlorination (CH ₁ NO ₂)	-13.0
Chlorination (CH ₁ CO ₂ H-H ₂ O)	-8.8
Proton exchange (H2SO4-CF1CO2H-H2O)	-8.6 middle T.S.
Acetylation (CH1COCI, AICI1, C2H4CI2)	-8.6
Nitration (H ₂ SO ₄ -HNO ₁)	-6.4
Chlorination (HOCI, H*)	-6.1
Alkylation (C2H3Br, GaBr3)	-2.4 early transition state

a. From P. Rys, P. Skrabal, and H. Zollinger, Angew. Chem. Int. Ed. Engl. 11, 874 (1972).

8.40

SO₂

CH₃

9.38

HF-SbF₅

н

нн

CH₃

H C₂H₅

н

-Н Н

CH₃▲

3.30

SbF₆

5.05

elem. anal.

NMR temp. dependent

For Substituted aromatics, the reaction sites are non-equivalent. \rightarrow activating & ortho, para-directing gp : alkyl, OCH₃, -NR, $\rightarrow \rightarrow$ deactivating & meta-directing gp : -NO₂, -+NR₃ \rightarrow deactivating & ortho, para-directing gp : Cl, Br

Partial Rate factors

 $f_o^{Z} = [(k'/2)/(k/6)] \times (\text{percent ortho product/100})$ $f_m^{Z} = [(k'/2)/(k/6)] \times (\text{percent meta product/100})$ $f_p^{Z} = [(k'/1)/(k/6)] \times (\text{percent para product/100})$ k' : rate for the rxn of substituted derivative k : rate for the rxn of benzeneif $f^{Z} > 0$: activating ; $f^{Z} < 0$: deactivating $f_o^{Z}, f_p^{Z} > f_m^{Z} \quad o, p - \text{directing}$ $f_o^{Z} < f_p^{Z} = f_m^{Z} \quad m - \text{directing}$

Partial rate factors relate 1. substrate selectivity 2. positional selectivity

```
high substrate selectivity \rightarrow large differences in rate of rxn
\rightarrow low reactivity of electrophile
```

low substrate selectivity \rightarrow high reactivity of electrophile positional selectivity relates to substrate selectivity

In general :

Electrophilie with high substrate selectivity will have low ortho : para ratio and negligible meta

Electrophiles of low substrate selectivity \rightarrow low position selectivity

Selectivity factor	$s_{p} = \log \frac{f_p}{f_p}$ for toluene	strongly correlate
	$S_f = \log \frac{1}{f_m}$ for toluene	with f _P

high substrate selective \rightarrow high positional selective

	Partial rate factors for toluene			
Reaction	ſ.	f	fe	-
Nitration				-
HNO ₃ (CH ₃ NO ₂)	38.9	1.3	45.7	
Halogenation) intermediate
Cl ₂ (CH ₃ CO ₂ H)	617	5	820	
Br ₂ (CH ₃ CO ₂ H-H ₂ O)	600	5.5	2420	
Protonation				N N
H ₂ O-H ₂ SO ₄	83	1.9	83	highly
H2O-CF1CO2H-H2SO4	330	7.2	313	
Acviation				selective
PhCOCI(AlCl ₁ , PhNO ₂)	32.6	5.0	831	
CH3COCI(AICI3, CICH2CH2CI)	4.5	4.8	749	
Alkylation				
CH ₃ Br(GaBr ₃)	9.5	1.7	11.8	— low selectiv
(CH ₃) ₂ CHBr(GaBr ₃)	1.5	1.4	5.0	
PhCH ₂ Cl(AlCl ₂)	4.2	0.4	10.0	

Table 9.5. Selectivity in Some Electrophilic Aromatic Substitution Reaction	9.5. Selectivity in Some Electrophilic Aromatic	Substitution Reaction	5"
---	---	-----------------------	----

a. From L. M. Stock and H. C. Brown, Adv. Phys. Org. Chem. 1, 35 (1963).

PMO Theory of directing effect

The cation charge is on C_1 , C_3 , C_5 for a substituent with positive charge on atom directly bond to the ring, there will be electrostatic repulsion. \rightarrow meta-directing for >C=O, C = N, $-NO_2$

Nucleophilic Aromatic Substitution S_NAr

First order

ΗE

- 1. The site of reaction is the leaving group position, as H is not a good leaving group \rightarrow no isomeric mixture formation.
- 2. a strong e-withdrawing $-NO_2$, -CN at ortho, para-position is needed to stabilize the adduct

Product Distribution in Benzyne Rxns

Table 8.19 Product distributions for reaction of substituted halobenzenes with amide in liquid ammonia.

	and the second se	the second se	
Yield (%)	% Ortho	% Meta	% Para
28		100	
66	45	55	
64	48.4	51.5	
33		100	
25		50	50
35		62	38
31		49	51
16		100	
66	40	52	8
61	22	56	22
59		100	
	Yield (%) 28 66 64 33 25 35 31 16 66 61 59	Yield (%) % Ortho 28 66 45 64 48.4 33 25 35 31 16 66 40 61 22 59	Yield (%) % Ortho % Meta 28 100 66 45 55 64 48.4 51.5 33 100 25 50 35 62 31 49 16 100 66 40 52 61 22 56 59 100

considered as e-withdrawing since the anion is in sp², orthogonal to the π -system