Riemannian Covering.

Definition. Suppose \widetilde{X} and X are connected smooth mfd’s. A map $\pi : \widetilde{X} \to X$ is called a smooth covering map if

1. \widetilde{X} is path connected and locally path connected,
2. π is surjective and continuous, and
3. each point $p \in X$ has a nbhd U that is evenly covered by π, meaning that U is connected and each component of $\pi^{-1}(U)$ is mapped diffeomorphically onto U by π.

X is called the base of the covering, and \widetilde{X} is called a covering space of X.

Definition 2.17. Let (M,g) and (\widetilde{M},h) be two Riemannian manifolds. A map $\pi : \widetilde{M} \to M$ is a Riemannian covering map if

(i) π is a smooth covering map,
(ii) π is a local isometry.

Proposition 2.18. Let $\pi : \widetilde{M} \to M$ be a smooth covering map. For any Riemannian metric g on M, there exist a unique Riemannian metric h on \widetilde{M}, such that π is a Riemannian covering map.

Proof. If such a metric h exists, it has to satisfy for $q \in \widetilde{M}$ and $X, Y \in T_q \widetilde{M}$

(*) \[h_q(X,Y) = g_{\pi(q)}(\pi_* X, \pi_* Y). \]

Conversely, since π_* is a vector space isomorphism, the formula (*) defines a scalar product h_q on $T_q \widetilde{M}$

This scalar product depends smoothly on q, since p is a local diffeomorphism. \hfill \Box

Definition. Let \widetilde{M} and M be smooth manifolds, and let $\pi : \widetilde{M} \to M$ be a covering map. A covering transformation (or deck transformation) of π is a diffeomorphism $\varphi : \widetilde{M} \to \widetilde{M}$ such that $\pi \circ \varphi = \pi$;

\[
\begin{array}{ccc}
\widetilde{M} & \xrightarrow{\varphi} & \widetilde{M} \\
\downarrow & & \downarrow \\
M & = & M
\end{array}
\]

Definition. The set $C_*(\widetilde{M})$ of all covering transformations, called the covering group of π, is a group under the composition, acting on \widetilde{M} on the left.

Proposition 2.18*. If g is a Riemannian metric on M, then $\widetilde{g} = \pi^* g$ is a Riemannian metric on \widetilde{M} that is invariant under all covering transformation. In this case π is a Riemannian covering.
• On the contrary, a Riemannian metric h on \tilde{M} on M does not automatically yield a metric g on M such that π is a Riemannian covering map.

Example 2.19. Equip the sphere S^2 with a Riemannian metric which can be written in spherical coordinates as

$$h = d\theta^2 + a^2(\theta)d\psi^2.$$

The metric induces on \mathbb{RP}^2 a metric g such that the canonical projection from (S^2, h) to (\mathbb{RP}^2, g) is a Riemannian covering map if

$$h_q(X, Y) = g_{\pi(q)}(\pi_*X, \pi_*Y), \quad \forall X, Y \in T_qS^2.$$

Since $\pi(x) = \pi(y)$ iff $x = y$ or $x = -y$,

$$g_{\pi(q)} \text{ exists} \iff h_q(X, Y) = h_{-q}(X, Y), \quad \forall X, Y \in T_qS^2. \iff a(\pi + \theta) = a(\theta).$$

Proposition 1. Let $\pi : \tilde{M} \to M$ be a smooth covering map. With the discrete topology, the covering group $\mathbb{C}_*(\tilde{M})$ is a zero-dimensional Lie group acting smoothly, freely, and properly on \tilde{M}.

Proposition 2.20*. Given a covering map $\pi : \tilde{M} \to M$ where (M, g) is a Riemannian manifold and where all the deck transformations are isometries, there is a Riemannian metric h down on M such that π is everywhere a local isometry.

Proposition 2.20. Let (\tilde{M}, h) be a Riemannian manifold and G is a free and proper group of isometries of (\tilde{M}, h). Then there exists on the quotient manifold $M = \tilde{M}/G$ a unique Riemannian metric g such that the canonical projection $\pi : \tilde{M} \to M$ is a Riemannian covering map.

Proof. Let $p \in M$ and $q \in \pi^{-1}(p)$. Since $\pi \circ f = \pi$ and π is a local diffeomorphism, we let

$$(\pi_{p,q})_* : F_pM \to F_q\tilde{M}$$

and define a scalar product g_p on T_pM by, for $X, Y \in T_pM$:

$$(*) \quad g_p(X, Y) = h_q((\pi_{p,q})_*X, (\pi_{p,q})_*Y).$$

Claim: This quantity does not depend on the choice of q in the fiber $\pi^{-1}(p)$. Indeed, for $q, q' \in \pi^{-1}(p)$, there exists an isometry $f \in G$ such that $f(q) = q'$ and

$$(\pi_{p,q})_* = f_*(\pi_{p,q'})_*.$$

Hence we have constructed a metric $(*)$ on M such that π is a Riemannian covering map.

Claim: Uniqueness. If π is Riemannian covering map, then g must satisfy $(*)$. \qed

Example 2.21. $\mathbb{RP}^n \cong S^n/\{\pm 1\}$.

Equip \mathbb{RP}^n with a canonical metric such that the projection $p : S^n \to \mathbb{RP}^n$ is a Riemannian covering map, with $G = \{\text{Id}, -\text{Id}\}$ as the isometry group.
Flat tori. $T^n \cong \mathbb{R}^n/\Gamma$, Γ: a lattice.

Let $\{\vec{e}_1, \cdots, \vec{e}_n\}$ be any basis of \mathbb{R}^n. Obtain torus T^n by making the quotient of \mathbb{R}^n by the set of translations

$$(v_1, \cdots, v_n) \rightarrow (v_1, \cdots, v_n) + \vec{e}_i, \quad i = 1, \cdots, n.$$

Equivalently, for the lattice Γ associated with this basis, namely

$$\Gamma = \{k_1\vec{e}_1 + \cdots + k_n\vec{e}_n : k_i \in \mathbb{Z}, \quad i = 1, \cdots, n\},$$

we consider \mathbb{R}^n/Γ by

$$\pi(x_1\vec{e}_1 + \cdots x_n\vec{e}_n) = (e^{2i\pi x_1}, \cdots, e^{2i\pi x_n}).$$

Any translation is an isometry of the canonical Euclidean structure of \mathbb{R}^n. Hence we can equip \mathbb{R}^n/Γ with a Riemannian metric g_Γ for which $\pi: \mathbb{R}^n \to \mathbb{R}^n/\Gamma$ is a Riemannian covering map.

- This metric g_Γ is locally Euclidean for any choice of Γ; this is why the resulting Riemannian manifold is called a flat torus.

- A local chart for \mathbb{R}^n/Γ around $(e^{2i\pi x_1}, \cdots, e^{2i\pi x_n})$ is given by

$$\Phi: \left(\frac{x_1 - 1}{2}, \frac{x_1 + 1}{2}\right) \times \cdots \times \left(\frac{x_n - 1}{2}, \frac{x_n + 1}{2}\right) \to \mathbb{R}^n/\Gamma$$

where

$$\Phi(y_1, \cdots, y_n) = \text{class in } \mathbb{R}^n/\Gamma \text{ of } (e^{2i\pi y_1}, \cdots, e^{2i\pi y_n}).$$

- If $\langle \cdot, \cdot \rangle_\mathbb{R}$ is the Euclidean scalar product on \mathbb{R}^n and $(\frac{\partial}{\partial x_j})$ are the coordinate vector fields on \mathbb{R}^n/Γ associated with the chart Φ, the metric is given in this chart by

$$g_\Gamma = \sum_{ij=1}^{n} \langle \vec{e}_i, \vec{e}_j \rangle_\mathbb{R} dx_i dx_j.$$

Theorem 2.23. The metrics g_Γ and g'_Γ are isometric iff there exist an isometry of \mathbb{R}^n which sends the lattice Γ on the lattice Γ'.

Proof. (\Leftarrow) If there exists an isometry $F : \mathbb{R}^n \to \mathbb{R}^n$ with $F(\Gamma) = \Gamma'$, then F goes to the quotient and gives an isometry f between \mathbb{R}^n/Γ and \mathbb{R}^n/Γ':

$$\begin{array}{ccc}
\mathbb{R}^n & \xrightarrow{F} & \mathbb{R}^n \\
\pi \downarrow & & \downarrow \pi' \\
\mathbb{R}^n/\Gamma & \xrightarrow{f} & \mathbb{R}^n/\Gamma'
\end{array}$$

(\Rightarrow) If f is an isometry from \mathbb{R}^n/Γ to \mathbb{R}^n/Γ', since \mathbb{R}^n is simply connected, there is a map F from \mathbb{R}^n to \mathbb{R}^n such that

$$f \circ \pi = \pi' \circ F.$$

The map F is an isometry and by construction, $F(\Gamma) = \Gamma'$. □
Classification of 2-dimensional flat torus

Definition. Two metrics g_1 and g_2 on a manifold are **homothetic** if there exists $\lambda \in \mathbb{R}$ such that $g_1 = \lambda g_2$.

- We want to classify the flat metrics on T^2 up to isometries and homotheties.
 The classification is equivalent to the classification of the lattice of \mathbb{R}^2 up to isometries and dilations.

- Let a_1 be the shortest non-zero vector of Γ.
 - After using if necessary a dilation and a rotation, we can assume that $a_1 = (1, 0)$.
- Let a_2 be the shortest vector of $\Gamma \setminus \mathbb{Z} \cdot a_1$.
 - The vectors a_1 and a_2 generate Γ.
 - Since Γ is symmetry w.r.t.the y-axis, we can assume that a_2 lies in the first quadrant, and then the x-coordinate of a_2 is smaller than $1/2$
 (otherwise the length of $a_2 - a_1$ would be shorter than a_2).

○ The class of the lattice Γ is hence determined by the position of a_2 in the domain

$$M = \{(x, y) : x^2 + y^2 \geq 1, 0 \leq x \leq 1, y > 0\},$$

and two lattices corresponding to two different points of M belong to two different classes.