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This paper is an attempt to construct a geometric theory of characters of a 
reductive algebraic group G defined over an algebraically closed field. We 
are seeking a theory which is as close as possible to the theory of irreducible 
(complex) characters of the corresponding groups G(F,) over a finite field F, 
and yet it should have a meaning over algebraically closed fields. 

The basic objects in the theory are certain irreducible (l-adic) perverse 
sheaves (in the sense of [ 11) on G; they are the analogues of the irreducible 
(I-adic) representations of G(Fq) and are called the character sheaves of G. 
The definition of character sheaves is suggested by the following result [3, 
Corollary 7.71: any irreducible representation of G(F,) appears in at least 
one of the virtual representations R’(W), defined by Deligne and Lusztig in 
[3, 1.91. 

The virtual representations Re(w) have a geometric analogue Kz, (here w  
is an element in the Weyl group and 5P is a “tame” local system of rank 1 
on the maximal torus of G). We shall define here K$ only in the case where 
.P is the constant local system 5$ = QI. 

Let Y,,, be the variety of all pairs (g, B), where g is and element of G and 
B is a Bore1 subgroup of G such that 23, gBg- ’ are in relative position w; let 
71,: Y, + G be the morphism defined by q,,( g, B) = g. We define K? to be 
the direct image with compact support (rr,),Q,. Then, K? is an object in the 
derived category of constructible Z-adic sheaves on G. (The definition of Kz 
is given in 2.4.) The character sheaves of G are, by definition, those 
irreducible perverse sheaves which are constituents of a perverse cohomology 
sheaf PH’(Kr) for some i, w, 9. 

We note the similarity of Kc and R’(w): the virtual representation R’(w) 
is defined as the alternating sum of the G(F,)-modules Hi(X,,,, Q,), where X, 
is the variety of all Bore1 subgroups which are in relative position w  with 
their transform under the Frobenius map. (Thus, Y, is the analogue of X,.) 

Our objective in this paper and the ones following it is to classify the 
character sheaves of G and to compute their cohomology sheaves. 
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The paper is organized as follows: Section 1 collects some of the basic 
results on perverse sheaves due to Beilinson-Bernstein-Deligne-Gabber [ 11. 
Section 2 contains the definition of character sheaves. Apart from the 
definition in terms of Kz we also give an equivalent definition in terms of 
some compactification is, of rrw: Y, -+ G. This compactification (which is 
analogous to the compactilkation [3,9.10] of X,,,) is essential to apply the 
deep results of [ 1,2]. In Sections 3 and 4 we study the restriction and 
induction for character sheaves. (These are analogues of the familiar 
operations on representations of G(F,).) As a consequence of Theorem 4.4, 
the character sheaves of G are a special case of the “admissible complexes of 
G” defined in [4]; we hope to show elsewhere that these two classes of 
complexes on G coincide. Section 5 contains some technical preliminaries to 
Section 6. The most difficult result of this paper is Theorem 6.9(a) which 
asserts that the restriction functor carries a character sheaf to a direct sum of 
character sheaves. 

1. PERVERSE SHEAVES 

1.1. The theory of perverse sheaves on algebraic varieties is due to 
Beilinson, Bernstein, Deligne, and Gabber. The basic reference is [ 11. 

We shall review here some of the theory. 

1.2. Let k be an algebraically closed field. Unless otherwise specified, all 
algebraic varieties will be over k. 

We denote by @X = g,“(X, 0,) the bounded derived category of o,- 
(constructible) sheaves on X [ 1, 2.2.181; here 1 is a fixed prime number such 
that 1-l E k and 0, is an algebraic closure of the field of l-adic numbers. 

Objects of @X are referred to as “complexes.” For a complex K E BX, 
we denote by R”K the ith cohomology sheaf of K (a Q,-sheaf on X); we 
denote by DK E gX the Verdier dual of K. 

1.3. Let gXCo be the full subcategory of C@X whose objects are those K 
in GX such that, for any integer i, P’K has support of dimension < -i. (In 
particular, we have RiK = 0 for i > 0.) 

Let gX>’ be the full subcategory of CZX whose objects are those K in 
@X such that DK E G9X GO Let MX be the full subcategory of gX whose . 
objects are those K in gX such that K E c?JX(’ n 9X>‘; the objects of JX 
are called perverse sheaves on X. 

AX is an abelian category [ 1, 2.14, l-3.61 in which all objects have finite 
length [ 1,4.3.1]. 
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1.4. The inclusion of gXGo in @X has a right adjoint “rco and the 
inclusion of gX>’ in gX has a left adjoint pr>o, [I, 2.2.11, 1.3.3(i)]: we 
have natural morphisms Pr.,oK + K -+ pr>o K (K E gX) and 

Horn@, “rGoB) = Horn@, B) for all A E @X”‘, B E GX 
and 

Hom(Pr>OA’, B’) = Horn@‘, B’) for all A’ E %‘X, B’ E 9X”‘. 

The functors p7.+op7~o, p710p7ao, (.@X+ 93x), are canonically 
isomorphic [l, 1.3.51. Hence, for any K E gX, the complex P7>oP7~oK is a 
perverse sheaf; it is denoted pH°K. 

The functor pH”: gX-+AX is a cohomological functor [ 1, 1.3.61, i.e., for 
any distinguished triangle (K, K’, K”) in Bhx (notation of [ 1, 1.1.1 J), the 
corresponding sequence pH°K + pHoK’ -+ P@K’r is exact. 

We define PHi: C2X+LMX by PHiK = pH”(K[i]), where [i] denotes 
“decalage,” or shift. Then, it follows that for any distinguished triangle 
(K, K’, K”) in &@‘x we have a long exact sequence of perverse sheaves 

. . . --tPHiK-,PHiK’~PHiK”-,PHi+‘K--, . . . . 

Moreover, for any K E GrX, we have PHiK = 0 for all but a finite number of 
integers i. 

1.5. The irreducible objects of AX can be described as follows [ 1, 4.3.11. 

Let V be a locally closed, smooth, irreducible subvariety of X, of 
dimension d and let 4p be an irreducible Q,-local system on V. Then Y[d] is 
an ireducible perverse sheaf on V and there is a unique irreducible perverse - 
sheaf P[d] on the closure v, whose restriction to V is iP[d]; we have 

L?T] = IC(v, Y)[d], where IC(v, Y) is the intersection cohomology 
complex of Deligne-Goresky-MacPherson of v with coefficients in Y. The 
extension of Y’[d] to X (by 0 outside v> is an irreducible perverse sheaf on 
X, and all irreducible perverse sheaves on X are obtained in this way. 

1.6. Let X be a smooth irreducible variety of dimension d, and let 
D, , D, ,..., D, be smooth divisors with normal crossings in X. Let 9 be a 
one-dimensional, qrlocal system on the open subset X - (D, U -. . U D,.), 
such that the corresponding representation of the fundamental group factors 
through a finite quotient of order invertible in k. The intersection complex 
IC(X, 9) can be represented in 9X as a single constructible o,-sheaf 2 (in 
degree 0). Let I, be the set of i E [ 1, r] such that the local monodromy of 9 
around Di is nontrivial. Then 5? restricted to the open subset X - Ui,,, Di is 
a local system of rank 1 and 9 restricted to the closed subset (Ji,,, Di is 
zero. (These statements can be reduced to the special case where dim X = 1.) 
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1.7. Let f: X+ Y be a morphism between the algebraic varieties X, Y. 
Let f* : gY -+ 9X be the inverse image functor and letf! : QX --) k?JY be the 
direct image with compact support. They admit adjoint functors 
f*:L9X-+@Y,f1:L!2Y+L3P, for any AEGX, BETSY, we have: 

(1.7.1) HomGf*B,A) = Hom(B,f,A). 

(1.7.2) HomuA, B) = Hom(A,f!B). 

(1.7.3) Iffis proper, then& =f;.. 

(1.7.4) If f is smooth with connected libres of dimension d, then 
f’= f *(2d](d), where (d) denotes Tate twist; in this case, we setf= f *[d]. 

(1.7.5) Let 

XfY 

h 

I I 

h’ 

be a Cartesian diagram withf, f’ smooth with connected libres of dimension 
d. Then h,j= f’h,’ : @Y + 9Z. 

1.8. Assume that f: X-+ Y is smooth, with connected fibres of dimen- 
sion d. 

Here are some properties off (see (1.7.4)): 

(1.8.1) If KE QY, then we have 

K E LiPY<O ojiv E G2xG0, 

KEG3Y’“ojkE~X’o, 

KEJYojkEMX, 

pHi(jk) = 3(W’K). 

(1.8.2) If K E ?ZY”‘, K’ E .@Y>‘, then Horn,@, K’) = 
Hom,(% jly’). 

(1.8.3) fi’:Y+JX is fully faithful. 

(1.8.4) If K E JY and K’ E AX is a subquotient of fi E AX, then 
K’ is isomorphic to fi, for some K, E MY. 

(The proofs are in (1, 4.2.5, 4.2.61.) 

1.9. Let m: H x Y+ Y be an action of a connected algebraic group H on 
the variety Y. Let z: H x Y-+ Y be the second projection. Both m and K are 
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smooth morphisms with fibres isomorphic to H. Hence, if K E MY, then 
fiK, <K (see (1.7.4)) are perverse sheaves on H X Y. We say that K is H- 
equiuariunt if rZK, fK are isomorphic as perverse sheaves on H X Y. (This is 
equivalent to the definition in [4, Sect. 01.) 

(1.9.1) Zf A E AY is H-equivariant and B E MY is u subquotient of 
A, then B is again H-equivariant. 

(Apply (1.8.4) to X= H x Y, f = rr, K = A, K’ = fiB. We see that there 
exists C EJY such that GB = 7%. Restricting this equality to 
{e}~YcHxYwegetB=C.Hence&B=7SB.) 

(1.9.2) Let f: X --t Y be an H-equivariant morphism, with respect to 
actions of H on X and Y. If K E MX is H-equivariant, then “H’A K is H- 
equivariant for all i. If K’ E-NY is H-equivariant, then pHif*K’ is H- 
equivariant for all i. (The verification is left to the reader.) 

(1.9.3) Assume thatf: X + Y is as in (1.9.2), and that H acts freely on 
X and trivially on Y. Assume furthermore, that for each y E Y, there is an 
open neighborhood U c Y, (U 3 y), and an H-equivariant isomorphism 
f-‘(U)diH x U (H acts on H x CT by h: (h’, u) + (hh’, u)) such that 

Pr2 0 i = f: f - ’ U + U. Then the following conditions for K E JX are 
equivalent. 

(a) K is H-equivariant, 

(b) K is isomorphic tof(K,), for some K, EJY. 

The implication (b) * (a) is trivial, (see (1.9.2). Assume now that K is 
H-equivariant. Let d = dim H. According to [ 1,4.2.6], (b) is equivalent to 
the statement that the canonical map K + T(pH-“f* K) is an isomorphism. 
For this, we may assume that X= H x Y, f = pr2, and H acts on X by left 
translation on the first factor. Let m, 71: H x H x Y -+ H x Y be defined by 
m(h, h’, v) = (hh’, y), x(h, h’, y) = (h’, JJ) and let i: H x Y-t H x Y x Y be 
defined by i(h, y) = (h, e, y). By our assumption, m*K z x*K, hence 
i*m*K z i%*K or equivalently, K z f *j*K, where j: Y-, H x Y is defined 
by j(y) = (e, y). Let K, = j*K[-d] E DY. Then K =B,. It remains to 
show that K, E-NY. This follows from (1.8.1), since we know that 
jiu, E LNx. 

1.10. Let X be an algebraic variety, let X’ be an open subset of X and let 
X” be the complement of X’ in X. Let j’ :X’ t, X, j”: X” 4 X be the 
natural inclusions. For any K E 3X, there is a canonical distinguished 
triangle in ~XZ (j( j’ *K, K, jr j”*K). Hence, iff: X -+ Y is a morphism, then 
we have a canonical distinguished triangle (f! j; j*K, fi K, Jj(l j” *K) in g Y. 

1.11. Let n > 1 be an integer invertible in k. Let ,u, = {x E k* ) x” = 1). 
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Consider the principal fibration pn: k* + k* (x+x”) with group ,+. The 
finite group p, acts naturally on the direct image local system @,J* Q, ; we 
denote by gnn,# the summand of @,)*a, on which p,, acts according to the 
character w:@,, + 0,. Then SYn,* is a QJocal system of rank 1 on k*. The 
following result is well known: 

(1.11.1) If m > 1 is an integer not divisible by n and if w  is injective, 
then Hf(k*, a:,“) = 0 for all i. 

1.12. A complex K E 9X is said to be split if K is isomorphic in gX to 
a direct sum mi PHiK[-i]. 

If K is split, then K[j] is split for any j. If K’ E gX is a direct summand 
of K E %JX with K split, then K’ is split. 

A complex K E gX is said to be semisimple if it is split and each PHiK is 
a semisimple object of AX. If K is semisimple and K’ E gX is a direct 
summand of K, then K’ is semisimple. 

2. DEFINITION OF CHARACTER SHEAVES. 

2.1. Let G be a connected reductive algebraic group over k. We fix a 
Bore1 subgroup B c G with unipotent radical U and a maximal torus T c B. 

Let R c Hom(T, k*) be the set of roots and R” c Hom(k*, T) the set of 
coroots; the canonical bijection R ct R- is denoted a +-+ a”. 

Let R ’ be the set of positive roots determined by B and let R - = R -R +. 
Let W = N,(T)/T be the Weyl group. An element w  E W may be regarded 

as an automorphism w: T-P T: w(t) = tit+-’ (t E T). Here ti E N,(T) is a 
representative for w  in N(T). Let S be the set of simple reflections in W 
(defined by R ‘) and let 1: W+ N be the corresponding length function. 

2.2. Let Y(T) be the set of isomorphism classes of Q,-local systems of 
rank 1 on T which are of the form n*(8”,U), (see 1.12), for some character 
2 E Hom(T, k*), some integer n > 1 invertible in k, and some imbedding 
w: &I C. QT ; tensor product makes Y(T) an abelian group. 

We may (and shall) assume that w  is the restriction to ,u, of a fixed 
injective homomorphism I+?: {group of roots of 1 in k*} 4 QT, which is 
independent of ,4 and n. 

The choice of I+? gives rise to a group isomorphisms 10 (l/n) + 2 *gn,, : 

(2.2.1) Hom(T, k*) 0 (Q//Z) Y Y(T), where Q’ = {m/n E Q I 
m E Z, n E Z, n > 1 invertible in k}. 

The Weyl group W operates on Y(T) by w: P + (w-‘)*Y, where 
(w-l)* denotes inverse image under w-‘: T+ T, it also operates on 
Hom(T, k*) by w(A)(t) =n(w-l(t)), t E T, A E Hom(T, k*). These actions 
are compatible with (2.2.1). 
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W$= {WE WI (w-‘)*ip=q. 

(2.2.2) The following conditions on w  E W and io = A*(cF?~,,) E 9(T) 
are equivalent: 

(a) The local system 9 is T-equivariant for the action of T on T 
given by t, : t + W-‘(t,) tt;’ 

(b) There exists a character AI E Hom(T, k*) such that 
w(A) = nyn 

(c) w  E W$. 

2.3. For 5? E P(T) we define 

R,= {aER Ir,E W$}= {aER 1 (a”,1)=O(modn)} 

where Y, is the reflection in W corresponding to a, and ( , ) is the natural 
pairing Hom(k*, 7’) x Hom(T, k*) + Z. We define 

W, = subgroup of W generated by the ra , a E Rip. 

Then Rip is a root system with Weyl group W,. The set R & = R rp f~ R + is a 
set of positive roots for R,; let S, be the corresponding set of simple 
reflections for W,. (The set S, is not in general contained in the set S.) 

2.4. Let .5? be the variety of all Bore1 subgroups of G. For each w  E W, 
we consider the subvariety O(w) of 5 x 9 defined by 
O(w)={(B’,B”)E9~.9’~13gEG:gB’g-‘=B, gBNg-‘=tiBC’}. We 
define a morphism 

Tt, : Y,+G 

as follows: 

Y,=((g,B’)EGx~l(B’,gB’g-‘)EO(w)}, qJg, B’) = g. 

Let et-,+: BwB -+ T be the map defined by p-J&&‘) = t (z+ u’ E U, t E T). 
Let Y,={(g,hU)EGx(G/U)Ih-‘ghEBwB}. The map Y,+Tgiven by 
(g, hU) +prJh-‘gh) is T-equivariant with respect to the action 
t,: (g, hU)-t (g,ht;‘(U)) (of T on I’,) and t,: t-, (@-‘toti) tt;’ (of T on 
T>. 

Hence, if 9 E P’(T) and w  E W$, then the inverse image 2 of 9 under 
Y,,,- T is T-equivariant. The map p,,,- Y,,, ((g, hU) + (g, hBh-‘)) ’ is a prin- 
cipal fibration with group T, (the action of T on Y,+ has been described 
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above). It follows that there is a unique @-local system of rank 1, 2 on Y,,, 
whose inverse image under Y,,, -+ Y,,, is 2. It is easy to see that the 
isomorphism class of 2 is independent of the choice of representative 3. 

We shall set for w  E W$: 

2.5. More generally, let w  = (wi, We,..., w,.) be a sequence in W and let 
w  = WI w* * * * w,. 

We define a morphism 
XI,: Y,-+G 

as follows: 

y,= {(g,Bo,B,,..., B,)EGx.~x~?Tx~~~x.?~ 

(Bj-,YBi)E o(wi) (l <i<r)7B,=gBog-1}T 

qr(g, B,, B, ,a.., B,) = g. 

Let Yw= (g,h,U,h,B ,...., h,B): h12,hi E BwiB (1 < i< r), h;‘gh, E B}. 
Define a map Z’,+T by (g,hoU,h,U,...,h,U)~~-‘nln,...n,s, where 
n, E N,(T) are defined by h,:-‘, hi E UniU and r E T is defined by 
h; ‘gh, E rU. This ‘map is T-equivariant with respect to the action 
to : (g, ho U, h,&.., h,B)+ (g, h,t,‘U, h,B ,..., h,B) (of T on YJ and 
t, : t -+ (6 ‘t, 6) tt; i (of T on 7’). Hence, if 9 E P(T) and w  E W$, then 
the inverse image 2 of 9 under E’,+ T is T-equivariant. The map Y,+ Y, 
given by (g, h, U, h,B ,..., h,B)+ (g, h,Bh;‘, h,Bh;‘,..., h,Bh;‘) is a prin- 
cipal libration with group T. It follows that there is a unique $local system 
of rank 1, 2 on Y, whose inverse image under Y,+ Y, is 9. We shall set 

(This is defined only when w, wz ..e w, E W$.) 

(2.5.1) When w  reduces to a single element w, the variety Y, may be 
identified with the variety Y, in 2.4: (g, B,, B,) E Y, corresponds to 
(g, B,) E-Y,,,. This is compatible with the maps x,, rc, and with the local 
systems P (if w  E W$). Hence Kz = Kc. 

(2.5.2) In general, Y, is smooth and connected. 

An equivalent statement is {(g,&J,x,,...9 x,)EGxGx-.-xGI 
x;-‘ix, E BwiB (1 < i < r), x;‘gx, E B} is smooth and connected. By the 
substitution b = x; igx,, x;?,xi = yi (1 < i < r), we are reduced to showing 
that {(b, x0, Y 1 ,..., y,) E B x G x . - - xGJy,EBw,B (l<i<r)} is smooth 
and connected, and this is clear. 
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2.6. For any sequence s = (sl, So,..., s,) in S U {e) (e = neutral element 
of W) we define a proper morphism 

as follows: 

c= ((&B,,B , )..., B,) E G x .9 x 28 x *. . x .9 / 

(Bi-, , Bi) E O(Si) (I < i < r), B, = gB, g-’ } 

%(g, B,, B, ,..., B,) = g. 

Here, O(s,) denotes the Zariski closure of O(sJ in 9 X 3. It is O(s,) U O(e) 
if si E S, and it is O(e) if si = e. 

Let J0 = (j E [ 1, r] ( sj E S). For such subset J c .I,, we consider the r 
element sequence s, in S u (e} whose ith term is si if i 6 f and e if i E J. 
Then Ys, (see 2.6) may be identified with the locally closed subvariety of u, 
defined by the conditions Bi_, = Bi if i E J, (BL- ,, Bi) E O(si) if 
i E [ 1, r] -J. The sets Y,, (J c Jo) form a partition of Y,. We have s, = s 
and the corresponding piece Ysa = Y, is open dense in ?,. For each j E .I,, we 

. , 
wrote sj Instead of S( j,. 

LEMMA 2.7. y, is smooth, connected. The closures of Y,, (for various 
j E J,) are smooth divisors on r, with normal crossings. 

Proof: An equivalent statement is: the variety 

{(g,xo,xI,..., x,) E G x G x **a X G 1 Xi_-‘lXi E BsiB 

(1 <i<r),x;‘gx,EB} 

is smooth and connected and its subvarieties 

i(g,xorXIr..., x,)EGxGx... X G (X~-‘IXi E BSiB 

(1 -G i < r, i f jo), XjiL, x EB,x;‘gx,EB} j, 

(j, E Jo), are smooth divisors with normal crossings. By the substitution 
b = x;‘gx,, x-’ I- ,xi = yi (1 < i < r), we are reduced to the following 
statement: the variety 

((f~, ~0, ~1, .~2,..., .I’,) E B X G X .-* X G ) yi E BsiB (1 < i < r)} 

is smooth and connected and its subvarieties 

{(by X0, .,v, 3 JJ~,**., .I’,) E B X G X .** X G ) yi E BSiB 

(l<iirr,ifjo),~j,~B} 
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(j, E J,,) are smooth divisors with normal crossings. This is, in turn, a conse- 
quence of the following obvious statement: if si E s, then 
Bs,B = (BstB) U B is smooth and connected and B is a smooth divisor on 
it. 

2.8. Assume now that s is such that_s,s, ..a s, E y’. By 1.6 and 2.7, 
there is a well-defined (constructible) QL-sheaf on P on I’, such that 
2 = IC( r,, 2) in gFS ; (here we regard 4p as a @-local system on Y, as in 
2.5, and we identify Y, with an open dense subset of US, as in 2.6). 

We shall set 

(Here g is regarded as an object in @,, concentrated in degree 0.) 
We can now state the following result. 

PROPOSITION 2.9. Let P’ E Y(T) and let A be an irreducible perverse 
sheaf on G. The following conditions on A are equivalent: 

(a) A is a constituent of PHi(Ka for some w E W$ and some i E Z. 

(b) A is a constituent of PHi(K3 for some sequence 
w = (W,) wz,..., w,) in W such that w, w2 .-- w, E W$ and for some i E Z. 

(c) A is a constituent of PHi(Kr) for some sequence s = (s,, sz,..., s,) 
in S U (e) such that s, s2 e-V s, E W$ and for some i E H. 

(d) A is a constituent of PHi(Ky) for some sequence s = (s,, sz,..., s,) 
in S U {e} such that s,s, .a- s, E W$ andfor some i E Z. 

The proof will be given in 2.1 l-2.16. 

2.10. DEFINITION. For 9 E S@(T), we denote by 6, the set of 
isomorphism classes of irreducible perverse sheaves A on G which satisfy the 
equivalent conditions 2.9(a)-(d) with respect to 9. 

A character sheaf on G is an irreducible perverse sheaf on G, which is in 
6, for some 4p E y(T). The set of isomorphism classes of character 
sheaves on G is denoted by G. 

Note that the character sheaves of the torus T are the perverse sheaves 
Y[d] (9 E y(T)), where d = dim T. 

2.11. We now begin the proof of 2.9. The implication (a) =S (b) follows 
from (2.5.1). The implication (C)S- (b) is trivial. We now prove the 
implication (b) =s- (c). Let w  = (wl ,..., w,) be a sequence in W, and let, for 
some i (1 < i < r), w;, wr be elements of W such that wi = w;w; and l(w,) = 
I(wf) + I(w;). Let ti = (wl ,..., wi-,, wf, wf’, wi+ ,,..., w,). The map 
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(g,Bo,B*,...,Bi-l,Bi,Bi+l,...,B,+l) * (g,Bo,Bl,...,Bi-l,Bi+l,...,Br+l) 
defines an isomorphism Y;r Y,. It is compatible with the maps xi, rr, and 

with the local systems 5? defined on Y,, Y, in terms of P as in 2.5 
(assuming w, w2 ..- w, E IV&). Hence 

Applying this repeatedly, we see that Kz is equal to KY for some sequence s 
in S U {e}. This proves the implication (b) +- (c). 

For the proof of the equivalence (c) o (d) we shall need the following 
result. 

LEMMA 2.12. Let s = (sl ,..., s,) be a sequence in S U (e} such that 

slsZ.es~,E W$. LetI,= (jE [l,r] ]siES,srsr-, .-.s,i-..S,P,s,E IV,}. 

(a) 2 is a Q,-local system of rank 1 on the open subset Ujer, Y, of y, 
(see 2.6) and is zero on its complement. 

(b) If JC I,, the restriction of 2 to Y, is isomorphic to the local 
system 2 on Y, (defined in 2.5 for s, instead of s); note that, for J c I,, the 
product of the elements in the sequence sJ belongs to W$, hence 2 is defined 
on Y,. 

Proof. We first prove (a). Let j E [ 1, r] be such that s,~ E S. Then Y,i is a 
smooth divisor in the smooth variety Y,U Ysj (see 2.7). By a computation 
which takes place essentially in SL,, we see that the local monodromy of the 
local system P (on Y,) along the divisor Ysi is the same as the monodromy 
of the local system 8@” “,~ on k* at 0, where m = (/3;, A), /?i is the root 
corresponding to the reflection s,s,_, ... sj ... s,_,s, and 5? = k*8’“.,, as in 
2.2. Hence, this local monodromy is trivial if and only if 
(/3;, A) E 0 (mod n), i.e., if s,s,.- , ... .sj ... s,-, s, E W,. Hence (a) follows 
from 1.6. 

To prove (b), we may assume that J consists of a single element j E I,. 
Then sj has the same entries as s except for thejth entry which is e for sj and 
sj for s. 

Let & G be a surjective homomorphism of algebraic groups whose 
kernel is a central torus in G and such that C.? is a reductive group with 
simply connected derived group. The varieties Y,, Y, for G are locally trivial 
fibrations over the corresponding varieties for G with connected smooth 
fibres (isomorphic to a torus). Hence if (b) is true for G, then it is also true 
for G. Thus, we may assume that G has simply connected derived group. 

Let 3,, ij, $, be representatives in N,(T) for S, S* -*A Sj- I, Sj, 
sj+l ‘*’ sr-I r s respectively, and let + = ~+,i,ti~. We shall assume (as we 
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may) that ij is a product of three unipotent elements in (BSjB)U B. 
Consider the smooth variety 

z= {@,X,,Y 1 g***y YJ E B X G X . * * X G 1 yi E BSiB 

(1 < i < r, i # J, JJj E (BSjB) U B} 

and the smooth divisor D c Z defined by the equation yj E B. Let 
f:Z-D+k*,f’:D-+k* be the maps given by 

f(b, x0, Y1,***, yr)=I(ti;%,+iq’n,n, *** nr7), 

f’(b, x0, Y, ,‘.., y,)=qti;‘Qz,n, *-* t&s), 

where n, E NG(T) are defined by yi E UniU and 7 E T is defined by b E 7U. 

As in the proof of 2.7, we are reduced to proving the following statement 

(2.12.1) If cay, 1) E 0 (mod n), then there exists a local system on Z 
whose restriction to Z -D isf*g”,, and whose restriction to D isf’“??‘,,,,. 

We can write @I”“, A) = nn,, where n, is an integer. Since G has simply 
connected derived group, there exists 1’ E Hom(T, k*) such that 
q3;,Aq=n,. Then (/I;, (A’)-‘,l) = 0. Replacing I by @‘)-“A does not 
change f *g,,;l,G, f ’ *g,,,@. Hence, we may assume in (2.12.1) that @,y, 1) = 0. 
In this case, there is a unique homomorphism of algebraic groups 
y: (BsjB) U B + k* such that 

y(t) = l(ti; ‘t&) for all t E T. 

Since ij is a product of unipotent elements in (Bs,B) UB, we must have 
Y(ij) = 1. We define a morphism 7: Z -+ k* by 

w?C:(b, xo, Y, ,...> Y,)=Y(i,“Gi,;‘(n,TZ* *‘* nj-l)Yj(llj+l **‘n,7)ti;‘)> 

where ni E NG(T) are defined by yi E Un, U (i # j), and 7 E T is defined by 
bErU. 

We show that f = f’/ Z - D, f’ = f”l D. If yj E BSjB, we write yj E Unj U, 
n E N(T) and we have 

f(b, xo, Y, ,...> y,)=y(~,:‘tit;‘(n,n, a-* nj-,)nj(nj+, 

=;l(ti;‘~/‘~;‘n,n, .a. n,) 

=f(b,q,, yl,..., Y,). 

If yj E B, we write yj E nj U, nj E T, and we have 

fib, x,,, Y, >...v y,) = y(G;‘(n, n2 ... nj-J nj(nj+, . 

=A(ti;%;‘n,n, ... n,t) 

=f ‘(b, xc,, Y, ,..., Y,). 

. . 

. . 
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It follows that the local system $*8,,,,, on 2 has the property required in 
(2.12.1). The lemma is proved. 

2.13. Let s, 9 be as in 2.9(d). Consider the sequence of closed subsets 
Z”’ c y, defined by 

z”’ = u Y, (iE Z) 
JCJO 
IJl>i 

tsee 2.6). we have pi+ 1) c z(i). If g(i): z(i) c. i;,, p): z(i) - p+ 1) c, y, 

are the inclusion maps, we have (by 1.10) a natural distinguished triangle in 
G: 

It gives rise to a long exact sequence in flG (for each i): 

(2.13.1) ... --t Pff-l((ff)!~;i+ l)(#(i+ I))*gi//) ~ @ pffj(K;) 
JCJJ 
IJI =i 

+ @ pfp+yq+ . . . . 

.JCJs 
IJI =i 

Here we have used the isomorphism 

which follows from Lemma 2.12. Note that 
- 

(2.13.2) “Hj((n,)!~l”(~‘“)*~) = y(K3 
I 

for i < 0, 
for i > 1IS1, 

2.14. We now prove the equivalence of (c) and (d) in 2.9. Let A be as in 
2.9. For a sequence s = (s i ,..., s,) in S u {e), we denote by m(s) the number 
of i E [ 1, Y] such that si E S. If m(s) = 0, then Y, = I;, and KY= I?: (if 
defined) hence A is a constituent of “H’(K~), if and only if it is a constituent 
of PH’(Ky). It is enough to prove the following statement. 

(2.14.1) Assume that s satisfies m(s) = m > 1, s1s2 a.. s, E W$, and 
that for any sequence s’ in S U {e}, with product in W$ and with m(s’) < m, 
and any integer j, A is not a constituent of pHj(Kff). Then, for any j, A is a 
constituent of pHj(Ky) if and only if it is a constituent of “Hj(KF). 
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Using our hypothesis and (2.13.1) for i > 0, we see that for any i > 0, and 
any j, we have: 

A is a constituent of pHj((~31dI”‘(~‘i))*9) if and only if A is a 
constituent of “H~((ir,),~~““(~“+‘))*~). 

Applying this repeatedly for i = IZ,I, IZ,l - I,..., 1 and using (2.13.2), we see 
that for any j, A is not a constituent of PHj((ii,),~l’)(d(l))*~). 

This, together with (2.13.1) for i = 0, implies that A is a constituent of 
“ZZj(K,“>, if and only if A is a constituent of “Hj((~,)!~l”(~“‘)*~) which, 
by (2.13.2) is the same as pZZj(KF). Thus, (2.14.1) and hence the 
equivalence (c) o (d) in 2.9, are verified. 

2.15. Let s= (s s , , z ,..., s,) be a sequence in S U {e) such that 
SlS2 * * * s, E W$. Assume that, for some h (2< h<r), we have 
shml = sk E S. We have a partition Y,= YtU Yi where YL (resp. Y’i) is the 
subvariety of Y, defined by (BhP2, BJ E O(s,) (resp. by B,-, = BJ. Then 
Y; is open in Y, and Y: is closed in Y,, so that, if we denote 71: (resp. xi) the 
restriction of n, to Y: (resp. Yy) we have a natural distinguished triangle 
(1.10) in gG: 

Here, we denote the restriction of 2 from Y, to Y: or Y,,l again by g. It 
follows that we have a natural long exact sequence in MG: 

(2.151) . * * + pHi((7r;)& -+ PHi(Kr) -+ PHi((~b’)!i?) 

Let s’ be the sequence (sl, s2 ,..., sh-, , s,,+, ,..., s,) and let s” be the sequence 

( SI,S2,...,Sh-2,Sht,,.‘., SF). Then (g, B,, B, ,..., B,) -+ (g, B,, B, ,..., Bhm2, 
B,,B ,,+, ,..., B,) makes Y: into a locally trivial k*-bundle over Y,, and 
(g,Bo, B,,..., B,.) -+ (g, B,, B, ,..., B, -2, Bh+ 1 ,..., B,) makes Y’,’ into a locally 
trivial afflne line bundle over Y,,,. 

The local system 2 on Yy is just the inverse image of the local system 2 
on Y,,, (obtained by the construction in 2.5 applied to s”, whose product is in 
W$). The local system 2 on Y: is the inverse image of the local system $ 
on Y,,, if h E Z, (by the argument in the proof of (a) in 2.12); if h 6? I,, the 
direct image with compact support of S? under Y:+ Y,, is zero, (using 
1.11.1). It follows that 

($‘)$ = K5[-21(-l), 

and, if h & Z,, we have (X&J? = 0. If h E I,, we have a natural distinguished 
triangle (1.10) in gG: 

((n:)&% K3-2)(--11, K:). 
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Hence, we have long exact sequences in .MG: 

(2.15.2) * * * -+ Tz’((7?~)! 27) + PH’(KfJ + pHi- Z(K$)(- 1) 

+ vz’+1((7r~)!L?)+ .-. 

(2.15.3) f *a + w((n;)!Gq + VZ-*(Z$)(-l) + P’H’(Kz) 

if h E I,, and isornorphisms 

(2.15.4) PHi(K;‘) r pHi-2(K;)(-1), if h@Z,. 

2.16. We now prove the implication (c) * (a) in 2.9. 

Assume that A is a constituent of PHi(Kf’) for some sequence 
s = (S,) s* )..., s,) in SU {e} such that sls2 ... s, E W$ and some i. We may 
assume that r is minimum possible (for A), which implies that all sj are in S. 
We want to prove that A is a constituent of PZ-Z’(KF) for some w  E WL. and 
some j. 

If E(s,s, -.. s,) = r, then Kr= Kz, where w  = s,s2 ... s, (see 2.11, (2.5.1)) 
and the desired conclusion follows. Hence we may assume that 
Z(s,s, *** s,) < r. We shall show that this contradicts the minimality of r. We 
can find h (2<h<r) such that s,, ... s r-,~I is a reduced expression and 
Sh-,Sh *** s, is not a reeduced expression. We can find sj, ,..., s:-, , s: in S 
such that s;I...s:_~s:=s~...s~-~s~=Y and s;, =s,,-1. Let o = 

( 
, s 1 , s, ,***, s,, - , , s,, ,***, S’ r-l, s;), r = (si, s2 ,..., sh- i, y). From 2.11, we see that 

KY= KY, KY= Kz. Hence Kr= Kc. Hence we may assume that 
S h-I = sh, so that the discussion in 2.15 is applicable. 

If h e I,, then (2.15.4) shows that A is a constituent of pHi-2(K$); the 
sequence s” in S has length r - 2. This contradicts the minimality of r. 

Assume now that h E I,. By the minimality of r, A is not a constituent of 
PHj(Kz) (see 2. IS) f or any i. From (2.15.3) it then follows that A is not a 
constituent of “ZZ’((z:)!i”) for any j. This, together with (2.15.2) shows that 
A is a constituent of pHi-2(K~). This again contradicts the minimality of r. 

Thus, the implication (c) * (a) in 2.9 is proved. This completes the proof 
of 2.9. 

PROPOSITION 2.17. Let s = (sl, s?,..., s,) be u sequence in S U {e) such 
that s,s2 ..- s, E W$, .P E Y(T). Let m be the number of indices i E [ 1, r] 
such that si E S, and let m’ = m + dim G. 

(a) Z?r E 93G is semisimple (see 1.12). 

(b) pH’(Z?y) is isomorphic to “H’“‘-‘(K~) (in ./G) for any j. 
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ProoJ (a) is a special case of the “decomposition theorem” [ 1, 6.2.51, 
and (b) is a special case of the “relative hard Lefschetz theorem” [ 1, 6.2.101 
applied to the projective morphism if,: u,+ G and to the perverse sheaf 
4a(rn”] on F,. 

PROPOSITION 2.18. (a) If K E C?, then K is G-equivarant for the 
conjugation action of G on G. 

(b) More precisely, if K E cY, 9=l*Zn;l.0 (see 2.2), and Pi is the 
connected centre of G, then K is G x -.Flm equivariant for the action 

(&I, z>: g+ ~ngclggcl -‘of Gx-3’: on G. 

Proof: Define an action of G X -I”: : 

(i) On Tby (g,,,z):t+z”t. 

(ii) On I’ by (g,, z): (g, hU) + (z’g, gg; ‘, g, hU) (see 2.4). 

(iii) On Y, by (g,,z): (g,B’)-,(z”g,,gg;‘, g,B’). 

If 5? is as in (b), then 5? is T-equivariant for the action of T on itself 
given by t, : t --) to” t. Hence, it is Zl-equivariant since 3: is a subgroup of T 
and G acts trivially on T. With the notation in 2.4, pw- T is G x Bi- 
equivariant hence the local system 2 on Yw is G x %z-equivariant. Since 
Y,,, + Y,,, is G X .%$equivariant, the local system 5F on Y, is G X 8:- 
equivariant. Now using (1.9.2). it follows that PH’(Kg is G X S,$- 
equivariant for all i hence, by (1.9.1) any subquotient of PHi(Kr) (in .nG) 
is G x 4:-equivariant). Thus (b) is proved; (a) is a special case of (b). 

2.19. Consider a sequence s = (s s i , *,..., s,) in S U {e) such that 
SIS2 **a s,E w>. Let s’ = (s2, s 3 ,..., s,,s,); we have s2sJ ... s,s, E W&,,, 
where 9 = s,*y. We have a natural isomorphism Y,-+ Y,, (over G) defined 
by (g,Bo,B,,...,B,)-t(g,B,,B 2 ,..., B,, gB, g-i). One can verify that this 
isomorphism carries 2 on Y, to 3’ on Y,, (2” is defined in terms of g’ in 
the same way as 2 in defined in terms of ip). It follows that KY= KY. 
Applying this property r times, we obtain the following result. 

(2.19.1) Let s = (s,, s2 ,..., s,), s’ = (s:, s; ,..., s;,) be two sequences in 
SU {e} such that s1s2 a.. s,E W$, s;s; ... s;, E W$. Let ss’ be the 
sequence (si, s2 ,..., s,, s;, s; ,..., s:,) and let s’s be the sequence 
( s;, s; ,..., s;,, s,, s2 ,..., s,). Then Kg, = KzS. 

3. RESTRICTION 

3.1. We now fix a parabolic P of G such that P 3 B and we denote by 
UP its unipotent radical and by L the Levi subgroup of P containing T. We 
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denote by Z~ the canonical homomorphism of P onto L. Let B * = B n L; it 
is a Bore1 subgroup of L. We shall denote by R*, W*, S*, W$, S$, W’$, 
9*, O*(w) the objects defined by replacing G by L in the definition of R, 
W, S, W,, S,, W&, 9, O(w). (We regard T also as a maximal torus of L.) 
Let 

W, = ( y E W 1 y has minimal length among elements in W*y}. 

The correspondence y + W*y is a I- 1 correspondence W, z W* \ W. The set 
W*\W is also in l-l correspondence with the set of P-orbits on .!8: to the 
coset W*y (y E W), corresponds the P-orbit of j&j-‘; we denote this P- 
orbit by u(y). 

3.2. If v is a P-orbit on ,557 and w  E W, we define a new P-orbit VW by: 
uw = u(yw), where u = v(y). 

We may assume here that y E W,. If s E S, there are three possibilities 
for us: 

(a) ys E W, and ys > y; then v c us - US, 

(b) ys E W, and ys < y; then us c V - u, 

(c) ys 6Z W, ; then ysy-’ E S* and us = U. 

3.3. Let s = (se s2 ,..., s,.) be a sequence in S such that s, s, a.. s, E W$ 
(p E .V(T)). Let Y’ be the closed subvariety of r, defined by 

let 2 be the restriction of 2 (see 2.8) from y, to Y’ and let if’: Y’ + L be 
the map defined by ir’( g, B,, B, ,..., B,) = zp( g). 

Any sequence v = (v, , u, ,..., u,.) of P-orbits on %B defines a locally closed 
subvariety r: of F: 

y:= {(g,&,B 1 )*a.) B,) E F, 1 g E P, Bi E Vi (0 < i < r)}. 

It is clear that u: is empty unless v satisfies 

(3.3.1) vi = ZIP I or uimlsi for all i, 1 <i<r, and u,=u,.. 

Let 2: be the restriction of 2’ to pV and let 77: be the restriction of 7c’ to rV. 
We associate with v (satisfying (3.3.1)) the sequence s’= (S;, S;,..., S;) in 
S U {e} defined by 

(3.3.2) fi = 
1 
zi 

if vi = vip,si, 
if ui# vip,si. 
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We then have vi = v i-lfi (1 <i<r), hence v,,S;S; . ..5’..=v,,. 

(3.3.3) Let yi E W, be defined by vi = v(yi) (0 < i < r). We define 

(3.3.4) ti=yi-,fiyl:’ = yi-~siy~‘~9 
I 

if vi-,si= vi-i, 

e, if vi-lSi# Vi-1 

(1 < i < r). Then t = (t, , t, ,..., tr) is a sequence in S* U {e}. 

3.4. The formula (g, B,, B1,..., B,) + @b(g), q& n P), 
%(B, n P),..., zP(Br nP)> defines a morphism p: rV+ F:, where 

F?={(Z,B&B,* )...) B,*)ELX9”x***XL!?*) 

(BE,, BF) E O*(ti), B; = ZB,*Z-‘}. 

This morphism is a locally trivial fibration. Its fibre over any point 

(1, B,*, B:,..., B,*) E c is isomorphic to the afftne space of dimension 

(3.4.1) d(v)=dimU,+#{iE [l,r]]visicfii-vi}. 

Indeed, the set of all B, E v0 such that n,(B, nP) = B,* is an affine space 

of dimension Z(y,). If (BO, B, ,..., Bi_,) are already determined, the set of all 
Bi E vi such that (B,-, , Bi) E O(s,) and 71p(Bi n P) = BT is an affine line if 
ViSi c pi - Vi and is a point, otherwise. Finally, if B,, B, ,..., B, are already 
determined, the set of all g E n;‘(l) such that B, = gB, g-’ is an affine 
space of dimension dim UP - I(y,), (since y, = y,). Hence our fibre is an 
affine space of dimension Z(y,) + #{i E [ 1, r] / ViSi C Ci- Vi} + 

(dim UP - Z(y,)) = d(v). We now state 

LEMMA 3.5. Let notations be as in 3.3; we assume that v satisfies 
(3.3.1).LetI,c[1,r]beasin2.12andZetJ=J,={iE[1,r]I~i=e}: 

(a) rfJ d I,, then fi$?,P:) = 0. 

(b) If Jcl,, then 7cppa = K7[--2d(v)](-d(v)) where 
9, = (y;l)*Y and KYE gL is defined as in 2.8, with respect to L. 

Proof: Let xt be the canonical projection u: + L. We have (751)! = (FJ! p! 
@ is as in 3.4). Hence it is enough to prove: 

(a’) IfJdI,, then g;=O. 

(b’) If Jcl,, then ~~(9;) = g[---2d(v)](-d(v)), where e is the 
constructible sheaf on Ft defined in the same way as 2 in 2.8, but replacing 
s, 9, G by t, P,;, L. 

(For 2, to be defined, we must know that t, t, ... t, E W$* or that 
y;‘t, t, * * * t,yoE W$. We have y;‘t,t,.*. t,yo=(y;‘t,y,)(y;‘t,y,).** 
(y;-Q,J$) =s;f* -** S; (since y0 = y,), and this is in W$, since J c I,.) 
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Since p is a locally trivial fibration with fibres E kd(“) (see 3.4) we see that 
(b’) is a consequence of 

(b”) g;=p*(@)), ifJcZ,. 

First, assume that .Zc! I, and let j be an index in .Z - I,. If 
(g, B,, B, ,..., B,.) E Y:, we have Bj- I = Bj (since j E J) and 
(Bipl, Bi) E O(si) for all i E [ 1, r] - {j}. Sincej & Zs, from 2.12(a) it follows 
that the stalk of 2 (or 9:) at (g, B,B, ,..., B,) is 0, hence 5?: = 0, proving 
(a’>. 

Next, we assume that .ZcZ,. Let H, = {i E [ 1, r] / ti # e}. Then 
.Zn H, = 0. For any subset H c H, we have the locally closed subvariety of 
u* t ) 

Y,T, = {(I, B,*, B,*,..., B,?) E r;” 1 (Bir_l) BT) E O*(ti) 

ifi&H,BT-,=BT ifiEH}. 

These form a partition of r’,*. Define YL,, = p-’ Ft*,, for all H c H,. The 
subvarieties y,” form a partition of FI into locally closed pieces. 

Let I, be the set of all j E [ 1, r] such that tj # e and 
t,t,-, -9. tj *** f,-,&E q . Then I, = I, n H,. Applying 2.12(a) to g,, t, 
and L, we see that g ii a local system of rank 1 on the open subset 
UHcrt Yt*, of F,* and is zero on its complement. 

It follows that p*gl is a local system of rank 1 on the open subset 

U Hc,t Y:,H of FV and is zero on its complement in yV. 
With the notations in 2.6, we have Y:,H = YsH,, f7 pV. For a set H c H,, 

the conditions H c I, and H UJc I, are equivalent. By 2.12(a), 2 (and 
hence 2:) is a local system of rank 1 on the open subset UHclt Y:,H of FV 
and is zero on its complement in yi. To prove (b”) it is then enough to show 
that the local systems on UHcl, Y;,H defined by 5? and p*@‘) are 
isomorphic. Since Y;., is open dense in the smooth variety UHclt Y:,, it is 
even enough to show that the local systems on Y:,, defined by @ and 
p * (g ‘) are isomorphic. 

The local system defined by g on Yi,O is the restriction of the local 
system 5? from Ys, to Y;,o, ($ ’ is constructed explicitly in 2.5). 

The local system defined p*(g’) on Y:,, is the inverse image under 
p: Y{,O + Yt*, of the local system g’, which is explicitly constructed as in 2.5 
(for t, ip’, L instead of s, 9, G). From these explicit constructions, we get 
immediately an explicit isomorphism between our two local system. Thus, 
(b”) follows, completing the proof of the lemma. 

3.6. We consider the sequence of closed subsets of ?’ defined by 

zi= u F”, 
c(v)<i 
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where v runs over all sequences v = (uO, V, ,..., v,) of P-orbits on 9 satisfying 
(3.3.1) and c(v) < i, where 

c(v) = dim u,, + dim u, + a+. + dim 0,. 

If pi is the inclusion 2; 4 F, and yi is the inclusion Zl - Ziel c F, 
then we have a natural distinguished triangle (1.10) in 59L: 

(f[((yi)! y,*2’, *vi)! p,*g’T X/vi- I)! pi*_ 19’)* 

It gives rise to a long exact sequence in ML (for each i) 

(3.6.1) -.a -pH’-l(jil~i-l)Ipi*-l~‘)B-* @ “Hj((ii;)p:) 
Y 

c(v)=i 

--t pHqf!yj3i),ppP) + “Hj(f[@i-l)!pi*-lIp’) 

4 @ pH’+l((ii;)!~;). 
” 

c(v)=i 

Here we have used the isomorphism ii/@,), r:g’ = @V,C(V)=i ((5$L?L). Note 
that 

(3.6.2) ii;&), /?,%’ = I 
ir;P for large i, 
o 

for i < 0. 

We now prove the following result. 

LEMMA 3.7. (a) For each integer i, the maps 6 in (3.6.1) are zero. 
(b) For each integer i, the complex f;(/?i),/3fg1 E C9L is semisimple 

(1.12); it is isomorphic in BL to the direct sum @ v,C(vjGi ((jll)!g):). 

(c) The complex fii2’ E @L is semisimple; it is isomorphic in 59L to 
the direct sum 0, ((ff;)@;). 

Proof: From (3.6.2) we see that (c) is a special case of (b), (for large i). 
Assuming that (a) and the first assertion of (b) are proved, we prove the 
second assertion of (b) as follows. Since both complexes in question are 
semisimple (see 3.5 and 2.17), it is enough to show that they have the same 
pHi for all j. Using (a) we see that (3.6.1) decomposes into short exact 
sequences of semisimple objects in A(L). Hence 
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This proves the desired equality for pHj by induction on i. (The case i < 0 is 
trivial by (3.6.2)) 

It remains to prove (a) and the first assertion of (b). By general principles 
[ 1, Sect. 61 it is enough to prove them in the case where the ground field k is 
the algebraic closure of a finite field. In this case, we can realize (3.6.1), 
(3.6.2) in the category of mixed perverse sheaves over G, (a split Fq-form of 
G with B, T, P defined over Fq) for sufficiently large F, c k, depending on 
$P. The isomorphisms in Lemma 3.5 can also be realized in that category 
(possibly with an even larger F,). Now KY1 in that lemma is a pure complex 
of weight 0 (by Deligne’s theorem 12, 6.2.61 applied to the proper map 
ii, : y, --) G and to p which is pure of weight 0, as we can see either directly, 
or from Gabber’s purity theorem [ 1, 5.3,4]); after applying to it 
[-24v)l(-4v)), ‘t 1 remains pure of weight 0, see [ 1, 6.1.41. Hence, by 3.5, 
(~{)!(-4”{) are pure complexes of weight 0; it follows that 

(3.7.1) @ “Hj((n:),g’:) in (3.6.1) are pure complexes of weightj. 

We now show by induction on i that “Hj(n~(jli)&lT~‘) is a pure complex 
of weight j for any i. This is obvious for i < 0, by (3.6.2). If we assume that 
this is true for i- 1, the statement for i follows from (3.6.1), using (3.7.1) 
the statement for i - 1 and the following fact: if K, + K, + K, is an exact 
sequence of mixed perverse sheaves with K, , K, pure of weight j, then K, is 
also pure of weight j. 

Now using [ 1, 5.4.41 it follows that rr~(j?J! /3:2” is pure of weight 0. 
Using the “decomposition theorem” [ 1, 5.4.5, 5.3.81 it follows that 
rc[CgJ! /?Tg’ is semisimple. 

The vanishing of 6 in (3.6.1) follows from the fact that 6 is a morphism 
between two pure perverse sheaves of different weights. This completes the 
proof of the lemma. 

3.8. We define a functor res: @G + QL by resA = (rrP)! i*A(a), where 
i: P C. G is the inclusion and cz = dim UP. It is clear that, with the notation 
in 3.3, we have 

(3.8.1) res Kr = $P’(a) E @L. 

Hence 3.7(c) and 3.5 imply 

(3.8.2) res KY E C2L is semisimple; more precisely it is a direct sum 
of finitely many complexes of the form A’[i], where A’ E i and i is an 
integer. 

We can now state 

PROPOSITION 3.9. If A E 6, then res A E gL is semisimple; more 
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precisely, it is a direct sum of finitely many complexes of form A’ [i], where 
A’ E L and i is an integer. 

Proof We can find a sequence s = (sl, So,..., s,) in S and 9 E Y(7) 
such that s1s2 a.. s, E W$ and such that A is a constituent of pti(Ep). 
From 2.17(a), it follows that A [-j] is a direct summand of gr. Since res 
transforms direct sums into direct sums, it follows that res(A)[-.] is a direct 
summand of res(Er) which is semisimple by (3.8.2). By 1.12, res A[-j] 
must be also semisimple. Now PHi(res A) is a direct summand of 
PHi+‘(res ET) which, by (3.8.2) has all its irreducible subquotients in i; 
hence all irreducible subquotients of pHi(res A) are in J? The proposition 
follows. 

DEFINITION 3.10. A character sheaf A E G is said to be cuspidal if for 
any parabolic subgroup Pf G containing B (with Levi subgroup L 2 T), we 
have resA[-l] E gL” (with res defined with respect to P), or, 
equivalently, dim supp&P’(res A) ( -i for all i. The cuspidal character 
sheaves form a subset G(O) of 6. 

3.11. For any g E G, we denote by g, the semisimple part of g and we 
define H,(g) to be the centralizer in G of the connected centre of Zd( g,). 
Then HG(g) is the smallest Levi subgroup of a parabolic subgroup 
containing Zt( g,). We say that g (or its conjugacy class) is isolated if 
H,(g) = G. (When G is semisimple, it has only finitely many isolated 
classes.) 

Following [4, 3.11, we now define a partition of G into finitely many 
locally closed smooth irreducible subvarieties stable by conjugation. The 
pieces in the partition are parametrized by pairs (L, z) up to G-conjugacy, 
where L is a subgroup of G, which is the Levi subgroup of some parabolic 
subgroup of G, and r: is a subset of L, which is the inverse image under 
L + L/Pi (8: = connected centre of L) of an isolated conjugacy class of 
L/9’:. For such (L,C), we define 

and J’cL,z) = U,,, 4LgW1. 
The ~,,J, form the required partition of G. 

PROPOSITION 3.12. Let A E G, be cuspidal, where 9 = ,I*.z?~,, is as in 
2.2. Consider the action of G x 3: on G defined in 2.18(b). Then there is a 
unique G X %:-orbit Z, c G and a unique irreducible, G x %~-equivariant 
&local system 8 on Z, such that A = ZC(zo, B)[d], where d = dim -?Y,. 
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Moreover, the image of Z,, in G/Z: is an isolated conjugacy class (see 3.11) 
of G/8:. If g E Z, and H is the centralizer of g in G, then Ho/BE is a 
unipotent group. 

Proof. Let I/ be a locally closed smooth irreducible subvariety of G 
which is dense in the support of A and is such that A 1 V is isomorphic to 
a[d], where B is an irreducible o,-local system on V and d = dim V. We 
shall assume (as we may be 2.18(b)) that V is G x P,$stable and that B is 
G x Pt-equivariant. 

Since V is irreducible, there is a unique piece Y(,,,, in the finite partition 
of G described in 3.11 such that Vn Y,,,,, is open dense in YCL Z). Since 
Y ,L,Z) is G X FE-stable, we may assume (by replacing V by Vn Y;,,,J that 
VC YCL,T). We may also assume that L 3 T and is the Levi subgroup of a 
parabolic subgroup P of G containing B. Let UP, 11~ be defined as in 3.1 and 
let i be the inclusion P G G. Let g E Greg f7 VC L. The orbit of g under the 
conjugation action of U,, is closed (it is an orbit of a unipotent group acting 
on an affine variety) and is contained in gU, (since xP(g) = n,(ugu-‘) for 
24 E Up). The isotropy group of g in UP is contained in 
U, n Z,( g) c U, n ZE( g,); hence it is trivial since g E Zree. Hence the 
dimension of the UP-orbit of G is equal to dim U,; this orbit being closed in 
gU,, it must be equal to gU,. In particular, we have gU, c V (since V is 
stable by conjugation). The restriction of B to gU, is a UP-equivariant local 
system (for the conjugation action of U,) on the UP-orbit gU,, with trivial 
isotropy group. It follows that B is a constant nonzero local system on gU,, 
hence Hf”( gU,, 8) # 0, (a = dim U,,). This means that the stalk of the 
cohomology sheaf RzaPd ((zp)!i*A) at g is nonzero. Thus, we have shown 
that 

(3.12.1) C,,, n Vc sup Z2”-d((rrp)r i*A). 

Let G, = 

IgEN,(L 
I = 
3 by 

by 
(g, a) + gag-’ is surjective (since VC Y,,,,, ) and its Iibres are precisely the 
orbits of the G,-action just described. It follows that 

{gEN&)I &-‘=~I = {gEN&)I gxregg-’ =4eg 
,)I gzg-lnZ#O}. Th e group G, acts on G x (Zre, n V 

g,: (g,o)+ (gg;‘, g,ug;‘). The map GX (Zregn V)-+ V defined 

dim(Z=,,, n I’) + dim G = dim V + dim G, = dim V + dim L 

= d + dim G - 2a; 

hence dim(Zr’,,, n P’) = d - 2a. From (3.12.1) it now follows that 
dim supp Zzaed ((xJ!i*A)>d-2a. S ince A is assumed to be cuspidal, it 
follows that L = P = G. In this case, YtL,T) = C is a single G x %:-orbit on 
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G, and therefore V must also be a single G X &-orbit; the image of V = Z 
in G/P: is isolated. The last assertion follows from [4,2.8], since (Z, a) is a 
cuspidul pair for G in the sense of [4,2.4].(The condition [4, 2.4(a)] follows 
from G X Z$equivariance; the condition [4, 2.4(b)] follows from the fact 
that A is cuspidal.) 

4.1. 

where 

4. INDUCTION 

Let P, L, U,, X~ be as in 3.1. Consider the diagram 

L” L 4-- V, --?% V2 - G, 

V, = {(g, h) E G x G 1 h-‘gh E P}, 

Vz={(g,h)EGx(G/P)Ih-‘ghEP}, 

n(g, h) = q(h-‘gh), n’(g, h) = (g, w, 71N(g, hP) = g* 

Then n, rc’ are smooth morphisms with connected fibres. 

We associate with any perverse sheaf K EJYL (which is L-equivariant for 
the conjugation action of L on L) a complex ind K E !Z?JG, as follows. The 
perverse sheaf ~SKEJW, is P-equivariant for the action 
p: (g, h) -+ (g, hp-‘) of P on V, and the action p: I-+ zp(p) la;(p)-’ of P on 
L. Since x’ is a locally trivial principal P-bundle, there is (1.9.3) a well- 
defined perverse sheaf K, EJV, such that 7sK = f’K,. We define 
ind K = (7~“)~ K, . We shall sometimes write indz K instead of ind K. 

In the case where L = P = G, we have indz K = K, as we see immediately 
from the definition of G-equivariance of K. From (1.9.2) it follows easily 
that 

(4.1.1) “H’(indFK) is a G-equivariant perverse sheaf on G (for the 
conjugation action), for all i. 

We shall now state a transitivity property of induction. Let Q be a 
parabolic subgroup of L containing B * = 3 n L, let M be the Levi subgroup 
of Q containing T, and let xc: Q + A4 be the canonical projection. 

Let Q = QU, ; it is parabolic subgroup of G, B c 0 c P. 

PROPOSITION 4.2. Let K E A(M) be M-equivariant (for the conjugation 
action). Assume that ind, K is in AL. Then inds(indb K) = ind; K. 
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Proof. Consider the commutative diagram 

M 

where 

X,={(X,V)ELXL(~~‘X~EQ~, 

X, = ((y,z,u’)~ P x G x G 1 u’-‘zu’ E @, 

X2 = {(z, u’) E G x G ( u’ -‘zu’ E e’}, 

Y,={(x.~Q)ELxL/QJ~-‘x~‘E~“}, 

Y, = {(y, z. v’) E P X G X G 1 u’-‘ZU E 0, mod. action of 0: 

9:(Y,z,u’)~(Yq-‘,z,u’q-‘), 

Y, = {(z, u$) E G x G/e ) u’ -‘zu’ E & 

v,, v,, 71, n’, nN are as in 4.1, 

e,(y, z, 0’) = (.vu’-~zu’Y-~, YQ), 

e,(y, 2, u’> = (z, u’&), 

h,(Y, z,u’) = (yu’-‘zu’y, y), 

UY, z, u’) = (z, fJ’), 

43(X, Y> = Q(Y- ‘vh 

d,(y, z, u’) = ?r,(zP’zu’) 

d,(z, u’) = 7rp(u’ -‘zu’) 
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f,(x, Y> = (x7 YQ), 
f,(r, z, u’) = D-orbit of (y, z, u’), 

f2k v’) = (z, G2>, 

go(x, YQ) = x 

g,(y, z, 0’) = (z, u’y-l), 
g,(z, t@) = (z, U’P). 

The two lowest squares (e, , g,, g, , rc) and (e,, g,, g, , 7~‘) are Cartesian and 
the maps ei,A, 71, 71’ are smooth with connected libres. It follows that 

(4.2.1) me”, = 7s(goh 

(4.2.2) (g,)!4 = 7?(gd!, 

(4.2.3) x : JYi --+ JXi is fully faithful (i = 0, 1, 2). 

Since K is M-equivariant, C&K E .MXO is in the image of TO : MY, + MX,,. 
We shall write (f:,)-‘C&K for the object in JY,, which maps under fO to 
c&K. Again, since K is M-equivariant, $K E JX, is in the image of 
f2 : .“y2 + d?x, ; we write (&‘&K for the object in .dY, which maps 
under f2 to d’, K. 

Let K’ = (g,),(fJ’d;K E 99V,. It is enough to prove the following three 
statements: 

(a) K’ E AU’, , 

(b) 75(g,J,($,-l&K = n”K’, 

(c) TC! K’ = q( gz>,(.$,> - l&K. 

Property (c) is obvious from the definition of K’. We now prove (b). 
From d, = d,h, = d,h,, we see that 

h;d;~=li,&~~~X,. 

This can also be written as 

Now, using fi h, = e2 f, , f, h, = e, f, , we have 

Using (4.2.3), we can suppress?, : 
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We now apply (g,)i to both sides of this equality and use (4.2.1), (4.2.2); 
we get 

hence (b) is proved. 
By assumption, (g,)$,&,K E ML, hence the left-hand side of (b) is in 

HI’,. By (b), we have n”‘K’ E MV, and from (1.8.1) it follows that 
K’ E ~&Vz. This completes the proof. 

4.3. Let C be a subset of L which is the inverse image under L -+ L-Z: of 
an isolated conjugacy class of L/Z; and let B be a o,-local system on .?Y 
which is equivariant for the action of L X 2: on Z defined by 
(1, z): u -+ z”lzZ-‘; IZ > 1 is a fixed integer invertible in k. Then IC(z, Z)(d], 
(d = dim Z) is an L-equivariant perverse sheaf on L. The following result is 
proved in [ 4,4.5 1: 

(4.3.1) indF(IC(z, F)[d]) is a perverse sheaf on G; it is a direct sum 
of irreducible perverse sheaves with support yCl.,r,, (see 3.11). 

Now, using 3.12, we deduce: 

(4.3.2) If A, E i is cuspidal, then ind:A , E. XG and is semisimple. 

We can now state 

THEOREM 4.4. (a) For any A E 6, there exists L c P as in 3.1 and 
A, E i’“’ such that A is a direct summand of ind:A,. 

(b) IfLcPisasin3.1,andAIE~,thenind~A,E.XG. 

(c) ZfL c P is as in 3.1, and A E C?‘, then resA E QL”. 

(d) IfLcPisasin3.1,AEdandA,EL,then 

Hom,,,(res A, A,) E Horn&A, ind A,). 

When G is a maximal torus, the theorem is obvious. Assume now that G is 
not a torus and that the theorem is already proved for G replaced by L for 
any L c P as in 3.1, with P # G. We shall prove the theorem for G itself, in 
4.5-4.6, using this inductive assumption. 

4.5. We first show that 

(4.5.1) 4.4(b) holds for G. 

Indeed it is enough to check 4.4(b) in the case where P # G. Then (a) 
applies to L, hence there exists M c Q in L as in 4.2 and A, E it?‘) such 
that A, is a direct summand of indk(A,) (which is in ML by (4.3.2)). By 
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4.2, we have ind,G(ind#,)) = ind@,) (Q = QU,). Again using (4.3.2), we 
have ind@,) E MG. Hence indF(ind&4,) E MG. Since A I is a direct 
summand of ind#,) and ind: takes direct sums to direct sums, it follows 
that indF(A ,) is a direct summand (in gG) of an object in JG. This clearly 
forces indg(A ,) to be in JG, as required. 

4.6. Consider the commutative diagram 

D'4 L "PP 
where 

v,= {(g,xP)Ix-‘gxEP}, 

D={(x,Z)JEGxL) modulo the P-action 

P: (K 4 - (xp-‘7 qP)x%(P)-‘)Y 

D'= {(x,Z)EGxL}, 

fl(& xp> = g, 

/I : obvious map, 

P(X, P) = (XPX - I, xv, 

0(x, P) = (x2 %(P)), 

4% P) =xpx-‘3 

C’(X, P) = P. 

@‘(x, P) = PT 

44 P) = G(P). 

Let A, E i. Then TA , is P-equivariant for a P-action on D' which makes P 
a locally trivial principal P-bundle. By (1.9.3) we have y14, =pAi, 
(A; E JD). We have 

(4.6.1) ind A, = (.f,)&A;. 
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(Indeed, it is enough to show that $*A; = &A,. But $A; = $pA i = @A, = 
8;4,.) 

Let A E G. Define Res A = (&)!f~A[a](a) E @D, (a = dim UP). We 
show that 

(4.6.2) y(res A) = &Res A). 

Indeed, we have 
T(res A)[-dim G](-a) = y*(7c,)!i*A = #,t?‘*i*A = #!(‘*A, 

&Res A)[-dim G](-a) =P*(f2)JTA = $!p*ff:A = #![*A 

(we have used /3*(f,)i = #rp*, y*(nP)! = #!19’* which follow from (1.7.5)). 
But [, c’: G x P + G are compositions of G x PC, G X G with the maps 
G x G + G given, respectively, by (g, , 8,) + g, g, g; ‘. (g,, g2) + g,. 
Hence, the G-equivariance of A implies [*A = [‘*A, SO that #! [’ *A = #![*A 
and (4.6.2) follows. 

Next, we show that, for any integer i, we have 

(4.6.3) Horn vn(ResA,A{[i])rHom,,(A,indA,[i]) 

Indeed, the left-hand side is 

Hom((fi>!f~Alal(a),Allil) 
= Hom(f~A[a](a),fSAl[il) (by (1.7.2)) 

= Hom(f~A[a](a),f,*A~[2a + i](a)) (by (1.7.4)) 

= Hom(fFA,ffA{[a + i]). 

The right-hand side in (4.6.3) is 

HomW (f,)!&l;[il)= Hom(A U’,L&AI[il) 0-v (1.7.3)) 

= Hom(fTA,T2 A;[i]) (by (1.7.1)) 

= Hom(f:A, ffA ; [a + i]) (by (1.7.4)); 

and (4.6.3) follows. 
If i < 0, we have Horn&A, ind A,[i]) = 0, since A, ind A, E MG, (see 

(4.5.1)). From (4.6.3), it now follows that 

(4.6.4) Horn ,,(Res A, Ai [i]) = 0 for i < 0. 

According to 3.9, there exists a sequence C,, Cz,..., C, in i and a 
sequence of integers it, , n2,..., it, such that 

res A = @ Cj[nj] in S?L. 
j=l 
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Attach Cj E gD to Cj in the same way as A ; was attached to A,. We have 

p”(pHi Res A) = pHi@Res A) (see (1.8.1)) 

= p’Hi(yres A) (see (4.6.2)) 

=PHi (F(i cj[njl)) 

(see (1.8.1)) 

Since p” is fully faithful (1.8.3), we have 

(4.6.5) ‘Hi Res A = @,cjCc,ni=-i C,;. 

Now we show that 

(4.6.6) PHi Res A = 0 for all i > 0. 

Assume that this is not so; let i be the largest integer such that 
PHi Res A # 0; then i > 0 and there exists a nonzero morphism 
Res A -+ PHi Res A[-i]. Now using (4.6.5), we see that there exists a 
nonzero morphism Res A --+ Cj [-i] for some j E [ 1, t]. Since -i < 0, this 
contradicts (4.6.4) with A; replaced by Cj. Thus, (4.6.6) is proved. We can 
also formulate it as stating that 

(4.6.7) Res A E G9D ‘O. 

Applying (1.8.1) to B, we deduce that &Res A) E %JD’<‘. Using (4.6.2), we 
have then &(res A) E 9D’ (‘. Applying (1.8. I) to j7, we deduce that 
res A E @L ‘O. Hence 

(4.6.8) 4.4(c) holds for G. 

We have 

Hom(A, ind A,) = Hom(Res A, A:) (by (4.6.3) with i = 0) 

= HornCaRes A, PA i) (by (1.8.2) and (4.6.7)) 

= Hom(yres A, jXAl) (by (4.6.2)) 

= Hom(res A, A,) (by (1.8.2) and (4.6.8)). 

(4.6.9) Hence 4.4(d) holds for G. 
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Finally, we show that 4.4(a) holds for any A E G. If A is cuspidal, there is 
nothing to prove. Thus, we may assume that there exists L c P # G as in 3.1 
such that res A[-1] 6? 9?L (‘, or equivalently, such that PH’ res A # 0 for 
some i > 0. By (4.6.8) we have PHi res A = 0 for i > 0. It follows that 
PH” res A # 0 and that there exists a nonzero morphism res A + pH” res A 
(in 5~irL). Since PH” res A is a direct sum of objects in i (see 3.9) it follows 
that there exists A, E L and a nonzero morphism res A -+ A, (in 5?L). Using 
(4.6.9) it follows that there exists a nonzero morphism A -+ ind:A , , in GG 
(or NG). This must be injective, since A is irreducible. By our inductive 
assumption, A, is a direct summand in indk(A,) for some M c Q as in 4.2 
and some A, E fi”. By transitivity of induction (4.2), ind:A, is a direct 
summand in indgA,, where Q = QU,. Hence A is isomorphic to a subobject 
of ind$(A,). By (4.3.2) indE(A,) is a semisimple object of MG, hence A is a 
direct summand of it. Thus, 4.4(a) holds for G. This completes the proof of 
Theorem 4.4. 

4.1. Let L c P, U,, W*, W$,, .;C * be as in 3.1, (P E P’(T)). Let 
s = (s, ) s, ,..., s,) be a sequence in S* ir (e). We can consider s also as a 
sequence in S U {e). Let 6: i; s,L-) L, pL ,-S!@) = i?FL be defined in terms of 
s, 9, L in the same way as 5,: Y,+ G, 9, KY is defined in 2.8 in terms of s, 
9, G. We shall prove the following result. 

PROPOSITION 4.8. (a) For any i, we have 
p,yi+dc-d,.E;, 

ind~(PHiK~l~) = 
where do = dim G, d,~ = dim L. 

(b) For any A, EL,, indz(A,) is semisimple in XG, and its 
irreducible components are in 6,. 

Proof: We first show that (a) implies (b). If A, E i,, we may assume 
that A I is a direct summand of pHi(i?~& (2.17(a)). From (a), it follows that 
indz(A ,) is a direct summand of pH’itdG-d~(EF) which is semisimple by 
2.17(a); (b) follows. 

We now prove (a). Consider the commutative diagram 

whose bottom row is defined in 4.1; [ is defined by 

C(tL B,, Bl,..., B,) = c&5 XOP), 
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where x,, E G is any element such that B, = x,$x; I. The map 7i’ is defined 
as follows: for (g, h) E V, and (I, B,*, B,+,..., B,*) E Y,, such that 
n,(h - ‘gh) = 1, we set 

?‘((g, h), (E, B,*, B,*,..., B;)) 

= (g, hB,*U,h-‘, hB,*U,h-I,..., hB;U,h-I). 

Both squares in the diagram are Cartesian and the maps rc, n’, pr2, 2’ are 
smooth with connected tibres. 

Using (1.7.5) we see that 

(4.8.1) 7?r! = (prl)$, 56! = (prJ p?z. 

Let K’ E g:V, be defined by K’ = <i@. By the decomposition theorem [ 1, 
6.2.51, K’ is semisimple. 

From the definitions on 3, pL we can check easily that prFgL = A’ *5?. It 
follows that (pi-i)! pr,*gL = (pr,)! ?*g; using (4.8.1) we obtain 
7c*6!gL = 7c’*&L?, hence x*I?~~ = k*K’. We have r?= r[idG - $d,j, 
r?’ = n’[id, + id,]. It follows that rS?Ei = f’K’[d, - d,]. 

Applying (1.8.1) to n’ and 3, we have 

f(‘Hi~TL) = PHi(?i?TL) = PHi(ZtK’ [d, - dL]) 

= jf’(PH’K [d, - dL]) = f’(PHi++d,Kf). 

By the definition of induction, we have 

indz(PHiEEL) = rC;(PHitdc-d/.Kf)a 

We have 

(4.8.2) @ indF(PHiE$)[-i] = @ (pHi+d~-d~Kf)[-i], in C3G. 
I I 

Indeed, the left-hand side is 

@ ,.q(P)Hi+dG-dLK/ 
I 

)[-i] = 7~1’ (F (PHi+d~-d’K’)[--i]) 

= n;(K’[d, - dL]) since K’ is semisimple 

= $‘@&dc - dL] 

= l?:‘[d, - dL], 

which is equal to the right-hand side of (4X2), since K, is semisimple 
(2.17(a)). In (4X2), we have indF(PHiKEL) E-&G for all i; indeed, 
PHi(ErL) is a direct sum of objects of form A 1 E i and for each such A,, 
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we have indF(A ,) E JG ( see 4.4(b)). Taking PHi for both sides of (4.8.2), 
we therefore find ind~(“H’K~J = pHitd~-dLKT and the proposition is 
proved. 

5. SEQUENCES IN THE WEYL GROUP 

5.1. We fix Y’E .%(T). Besides the notations in 2.3, we shall use the 
following notation. Let a,= {w E IV&,/ w(Rs,) = Rz,). Then W& is the 
semidirect product of Q,, and W,., with W, normal. 

Let E W’ P + N be the function defined by I”(w) = #(a E R $1 ~(a) E R - }. 
Then rextends the length function of the Coxeter group (W,,, S,). 

5.2. Let s = (s,,s2 ,..., s,) be a sequence of elements in S U (e) such that 

SlS2 *** s,E w;. When si # e, we shall write ai for the simple root in R 
corresponding to si. Define 

(5.2.1) I,=(iE [I,Y] Isife,s,~~~Si+ISiSi+I *..S,E W,}. 

We have the following 

LEMMA 5.3. IIs1 > @s,s, ... s,.), with equality if I(s,s, a*. sJ= 
l(s,) + ... + I@,). 

Proof: Let X=(aER~I(s,s,...s,)(a)ER-), X’=(aER$ISE 
[l,r],-Sjfe, a=SrSr-l ;’ si+,(ai)}. It is clear that XcX’. We have 
IX\= I(s,s, .*. s,) hence l(s, s2 .-. s,) < 1 X’ I. Let 4: I, + R,, be defined by 

4(i) =y- 1 ... si+,(ai); then X’=#(I,)nR$. Hence IX’/ < Id( </1,1 so 
that Z(s,s, .ee s,) < )I, /, as required. Assume now that Z(s, s, ... s,) = 
I@,) + ... + l(s,). Then the roots s,s,-, .a- si+ r(ai) (1 < i < r, si # e) are 
distinct and positive. Hence, for i E I,, the roots s,s,-r .-. ~,+,(a,) are 
distinct elements of X, so that (I,1 < 1x1. It follows that II,1 = IX/. 

LEMMA 5.4. Let J c I,; we define sJ to be the sequence (s;, s;,..., s:) with 
si = si for i @ J, s; = e for i E J. We have I, = I, - J. 

Proof: Let h E I, - J. We have s,s,.-, ... sh ... s,-,sh E W,.. Hence if 
a, > a, > ..a > ap are the indices in Jn [h + 1, r], we have 

s,s,-, ... fa,“’ Sh *** $ .a* s, P 

= (s,s,-, ... sap --* s,-Is,)(s,s,-* ... s/# ... s,-IS,) 

x (s,s,-, ... SDD”’ SrpIS,)E w, 
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s,s,-, .** fa, a.. &,..- s^, ... Sh *** s” ai- ... &,, . . . s^,, ... S,-,s,E w,. 

(Here,  ̂ stands for an o’mitted symbol.) 
This shows that h E I,. The same computation (in the opposite direction) 

shows that if h’ E I,, then h’ E I, - J. 

5.5. We write the elements of I, in ascending order: i, < i, < ... < i,. 
Define 

PROPOSITION 5.6. (a) u, , u2 ,..., u, E S, (see 2.3) and CL) E l2,, (see 
5.1). 

(b) SlS2 .a’ sr= wu,u2 ..* u,. 

(c) More generally, ifJ is a subset of I,, then 

n Si=O n uj 

l$i<r 1 Ci<a 
i$J ij@ 

(in both products, the factors are written in ascending order of indices). 

(4 If @ls2 ... s,) = I@,) + ... + I@,), then (I, u2 .. a ua is a reduced 
expression in W,. 

Proof: We set h = i, E I,. Let s’ be the sequence (s,, s,- ,,..., 
s,, ,*.*, s,- 1 , s,). We show that I,, has a single element. We have s,s,- 1 +.a 
si **- s ,plS, E w,. But S,S,ml *.. Shil .*. S,-,S, @ w,, S,S,-, *** s,,+2 “* 
S r-, s, rf w,,..., since h is the largest index in I,. Hence the middle term in 
s’ has an index in ZS, but all the terms following it have an index outside I,,. 
We now show that the term in s’ immediately preceding the middle term has 
an index outside I,,. If this is not so, we would have s,s,-, +.. 
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ShtlShShtlShShtl **’ sr-lSrE wP Multiplying on the left and right by 
s,.s,-, *‘- s,, “’ S,.-,Sr, we find that s,.s,_, ...shf, .a.~,-,s,E W,, a 
contradiction. Similarly, we see that all terms in s’, preceding the middle 
term have an index outside I,,. Thus, I,, has a single element. By 5.3, we 
have I’(o,) = ~s,.s,;~ ..a s,, ... s r- ,s,) < 1. Since (3, has odd length in W, it 
must be #e hence Z(a,) = 1. We have B, E W,, hence o. E SY. 

We now prove (a) and (b) by induction on a. Assume first that a = 0. By 
5.3, we have qs, s2 ... s,) = 0, hence s, s2 ... s, E 0, and (a), (b) are clear. 
Assume now that a > 1 and that (a), (b) are proved for u - 1. Consider the 
sequence sJ , where J= {i,}, (see 5.4). By 5.4, we have ZsJ = I, - {i,}. The 
induction hypothesis applies to sJ. It follows that 00-I ,..., o, E S, and 
wEi.2,. We have checked already that u. E S,. Hence (a) for s follows. 
The induction hypothesis shows that s, ... sliO . . . s, = 00, cz ... u, _ i . It 
follows that s,s, .s. s, = (s,s, ..I ii, ..a s,)(s, ... si, ... sr) = W(J~U~ ... ua- ,ua 
hence (b) for s follows. The more general statement (c) follows from (b) 
using 5.4. Statement (d) follows from 5.3. 

5.7. Let s = (s,, s2 ,..., s,.), s’ = (si, s; ,..., si,) be two sequences in S U {e) 
such that slsz ... s,E WY, sisi ..a SE~E W$. Let o, uil,ui2 ..a ui, be the 
elements attached to s in 5.5, let w’, ai,, u,~~,..., F~,, be the elements defined in 
the same way for s’ instead of s, and let w”, uh,, u,,~,..., uh,,, be the elements 
defined in the same way for the sequence 

Then, we have 

ss’ = (s,, s, ,..., sr, s;, s; )..., Si?). 

au = a + a’, 0” zz w(J)’ cJ*,=o ‘-‘ui,d )..., Uh = uPUi”W’, 
(1 

‘h = 
Oil 

CJj , ). . . ) uh,+,, = u.i,,’ 

(This follows easily from the definitions.) 

5.8. We let S* c S, W* c W, R* c R, be as in 3.1. The statements 
(5.8.1), (5.8.2) below are well known. 

(5.8.1) Any coset W*y c W contains a unique element of minimal 
length y,-, ; it is characterized by the property y; ‘(R * n R ’ ) c R + . 

(5.8.2) Any coset z W,C W contains a unique element of minimal 
length z,, ; it is characterized by the property z,(R $) c R ‘. 

(5.8.3) Let w  E W, s E S be such that w  has minimal length in wW,. 
Then either (a) SW has minimal length in swW, or (b) w-‘SW E W,. 

Indeed, assume that (a) does not hold, so that there exist a E R$ such that 
sw(a) < 0. By our assumption we have w(a) > 0. Hence w(a) must be the 
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simple root a, corresponding to s. Thus, ~‘(a,) =(x E R,, hence 
w-‘SW E WY, hence (b) holds. This proves (5.8.3). 

(5.8.4) Let w, w’ E W be such that W*wW,= W*w’W,. Assume 
that 

(a) w  has minimal length in w  W, and also in W*w, 

(b) w’ has minimal length in w’ W, and also in W*w’. 

Then w  = w’. 

Indeed, our assumption implies that there exist s,, s2,..., s, E S*, such that 
s,s2 .‘. s,w E W’W,. Assume that there exists i E [2, t], such that si -. - s, w  
has minimal length in si . . . s, w  W, and sip I si -. . s, w  does not have minimal 
length in sip,si a-- s, W,. Then by (5.8.3), we have si-rsi .*. s,w = 
SiSi+ 1 *-* stwu for some UE w,. Hence s, e-e sieZsi a.. s,w = 
s, e-9 S,WUE w’W#J= w/w,. Iterating this, we are reduced to the case 
where for all i E (1, t], si -.- s, w  has minimal length in si .-a s, wW,. In 
particular, s i s2 . *. s, w  has minimal length in s, s2 ..- s, w  W, = w’ W,. Since 
w’ has also minimal length in w’ WY, we have s,s, -.. sI w  = w’, by (5.8.2). 
Thus, W*w = W*w’. Since w, w’ both have minimal length in 
W*w = W*w’, we have w  = w’, by (5.8.1). This proves (5.8.4). We can now 
state: 

PROPOSITION 5.9. Any double coset W*yW, contains a unique element 
of minimal length. It is 

;i1(R*f7Rt)cR’ andy,,(R$)cR+. 
characterized by the property: 

ProoJ The existence of an element y, of minimal length in W*yW, is 
obvious. It is clear that y, must have minimal length in y,, W, and also in 
W*y, the proposition follows from (5.8.4), (5.8.1), (5.8.2). 

6. HECKE ALGEBRAS 

6.1. We fix ip E S(T). Let d = Z[u”*, u-~“], where u is an indeter- 
minate. 

Let H$ be the Hecke algebra (over _,P) corresponding to W$; it is a free 
.&-module with basis T, (w E W&). The multiplication is characterized by 

T, T,, = T,,,,, if w, w’ E W$ satisfy qw) + Rw’) = qww’) 

(T, + l)(T, - u) = 0 if oE S,. 

(Recall that I”is defined in 5.1.) 
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Let fi$ be te free &‘-module with basis e, indexed by the sequences 
s = (Sl) s* )...) sr) in S U {e} (r > l), such that sIs2 ... s, E W$. 

Let r, be the abelian group with generators [A] (corresponding to the 
various isomorphism classes of objects A in JG) and relations 
[A] + [A’] = [A @A’] for any two objects A, A’ EJG. 

Define an d-linear map y: &+ r, @r &’ by y(eJ = zE r (-1 )j 
[PHj(xy)] @ P. 

Define an .&linear map 6: flL.-+ HI, by 6(e,) = 7’,(1 + T,,) 
(1 + T,J e-s (1 + TOO) u(“~~+~~~~)‘*, where w, (T,, u2,..., 0, are the elements 
of W$ associated to s = (s, , s2 ,..., s,) in 5.6, and m=#{iE [l,r] Isi#e}. 
With these definitions, we can state 

PROPOSITION 6.2. (a) There is a unique .ci/“-linear map E: HL--+ 
r, On .w’ such that the diagram 

is commutative. 

(b) We have &(h, h,) = e(h,h,)for all h,, h, E H$.. 

(c) Let -iH$+ H>. be the ring involution defined by T,,, + T$,, 
(w E W$) and uJi2 = uPji2. Let -: r, @&be the group involution deflned 
by [A 10 uj’* -+ [A] @ u-j’*. Then c(h) = E(h)for all h E HI,. 

First, note that 6 is surjective. Indeed, given CO E .R,, and a sequence 
Q, 7 02 ,“., Do in S,,, we consider reduced expressions o = 1, t, ... tp, 

uj= rj,rj2 ... rjri **. rj2rj, (1 < j < a) in S, and let s be the sequence 

(t,, t,,.... tp, r,,, t,*, . . . . rlr,3...’ r,,, 521, s**, . . . . 

r2r2’...’ 122 ,.a., r,, , 502 ,..*1 rar,, . . . . To* 3 r,J 

in S. It is easy to see that 6(s) = T,(l + T,,) . . . (1 + TO,); these elements 
clearly generate H$ as an &‘-module, so that 6 is surjective. 

‘It follows that E is unique (if it exists). Assume that (a) is already proved. 
To prove (c), it is enough in view of surjectivity of 6 to show that -- 
&(6e,) = s(6e,) for all basis elements e, of E?$. We have de, = u-(m+dim ‘) 6e, 
since 1 + TGi = u - ‘( 1 + T,.), T, = T, . Hence, we must check that 
U -"'e(SeJ = e(de,), (m’ = m + dim G) or, equivalently, that 

U -“‘y(e,) = y(e,). This is equivalent to the statement 2.17(b). Thus, (c) 
follows from (a). 
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It remains to prove (a) and (b). The statement 
following statement: 

(6.2.1) Let (e,,, e, *,..., e,l), (e,!, ei ,..., e,,) be two sequences of basis 
elements of ii$ and let (n,, n2 ,..., i,), (n;, nil . . . . n;,) be two sequences of 
integers. Assume that 

(a) is a consequence of the 

is in the kernel of 6: A$+ H&. Then for any integerj, the perverse sheaves 
@i=, pHi-“i(i?~) and @:I=, pHj-n;(ET) are isomorphic in JG. 

By general principles [ 1, Sect. 61, the statement (6.2.1) for general k is a 
consequence of the statement (6.2.1) for k an algebraic closure of a finite 
field. The same applies to (b). Thus, it is enough to prove (6.2.1) and (b) in 
the special case where k is an algebraic closure of a finite field. 

6.3. We now prove (6.2.1) under the assumption that k is an algebraic 
closure of a finite field. Since the two perverse sheaves in (6.2.1) are 
semisimple (2.17(a)), they are isomorphic if and only if they define the same 
element of the Grothendieck group ZG of the abelian category JG. Hence, 
if p: r, +X’G is the natural homomorphism, it is enough to prove that there 
exists an d-linear map E’: ,X3-+ X(G) @r ~8’ such that 

(6.3.1) ~‘8 = @ @ 1)~. 

We may regard Kz, Kc, KF as well as the complexes and morphisms 
appearing in 2.13-2.16 (for fixed 9) as being in the derived category of 
mixed complexes over G, (a split Fq-form of G) with B, T defined over Fq:,, 
for a sufficiently large Fb c k. Then the PHi of these complexes will have 
natural weight filtrations (see [ 1,5.3.5]) whose subquotients (denoted pHj) 
are pure perverse sheaves of weight j. For any mixed complex K on G,, we 
define 

xu(K) = 1 (-I)i{pH;(K)) @d/2 EX(G) @z.d. 
i,i 

Here {pHj(K)} denotes the image of pHj(K) in the Grothendieck group XG. 
We define an &‘-linear map E’: H$+X(G) Ozd by 

(6.3.2) &‘(T,,,) =x,(f$ u(-‘(~)+~(~)-~~~~)‘*. 

Let s = (sr ,..., s,) be a sequence in S U {e) such that s, s2 .a. s, E W$, and 
let 0, ui, u2 ,..., o, be the elements of W$ associated to s in 5.5. We shall 
prove by induction on m = #{i E [ 1, r] ] si # e) that 

(6.3.3) x,(KT) = u(‘“-~+~~“‘~)‘~~‘(T, To,To2 ..a Tea). 
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We can assume that all si are in S by dropping the ones which are e. Then 
m = r. 

When m = 0, we have KT = KF, a = 0, and (63.3) follows from (6.3.2). 
Assume now that m > 1 and that (6.3.3) is already known for sequences m 

replaced by m' < m. 
Assume first that Z(s,s, ..a s,) = r so that KY= Kc, where w  = s,s, a-. s, 

(see 2.11, (25.1)). By 5.6, we have qw)=O, ~ci)=...=!(uJ=l, 
qoqrJ* ... ua)=a, hence T,T,,T 02 ame Tc,= T w(i,(i*’ ’ .mo = T S,S2”‘Sr = T, so 
that 

u(~-~+~~~~)‘*&I(T~T~~T~~ . . . Too) = u (I(w)-l(w)+dimG)/2EI(Tw,) 

= xu(K:l 

= xu(KP) 

as required. 
Assume next that I(s, s, ... s,) < r. Then we can find h (2 < h < r) such 

that sh a . . s r-, s, is a reduced expression and she, sh -3. s, is not a reduced 
expression. We can find s; ,..., s;- i, s; in S such that s; **e s:- ,s: = 
sh -” s,-, ,. s and sl, = sh-, . 

Let o = (s, , s2 ,..., sh- 1, s; ,..., s;- 1, s;). As shown in 2.16, we have 
KT = Kz; hence x,(Ky) =x,(Kr). The definition 5.5 of w, cri ,..., ua 
attached to s can be also applied to o instead of s, and it leads to the same 
sequence 0, u, ,..., u,. Hence to prove (6.3.3) for s it is enough to prove it for 
u. Thus, we are reduced to the case where s satisfies she, = sh. In this case. 
we shall use the notations in 2.15. 

If h G?G I,, then from (2.15.4) we have xu(Kr) = u . x,(Ks). By the 
induction hypothesis, we have x,(Kz) = u(r-2-atdim G)‘2c’(Tw To, - -. Trio) 
hence x,,(Ky) = u (r-a+dimG)~2~‘(TJ-u, . . . Too). 

If h E I,, then from (2.15.2) we have 

and from (2.15.3) we have 

uxu(K,41) = x,W!@ + x,(K:b 

(Indeed, since weight filtrations are strictly compatible with morphisms [ 1, 
5.3.51 the exact sequences (2.15.2), (2.15.3) remain exact when each PHi is 
replaced by pHf for fixed j.) It follows that 

xu(Kf’) = uxu(K?) + (u - 1) xuW:J 
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The induction hypothesis is applicable to KT, K 5 : 

x,(Kf+ U(+l)-(-l)+dim ‘W,~(T 0 T 
01 

. . . T ‘f . . . T,J, 
Oh-1 oh 

x (K~)=u((‘-*)-(“-*)+dimG)/*~I(T 
u w 

T 
01 

. . . f f . . . Toa), 
ah-1 ah 

Moreover, we have oh-i = oh so that uToh-, + (u - 1) 1 = To,-, To,. Hence 

xti(K:) = u (r-“+di”‘G)/2E$‘-Te, . . . Toa), 

as required. Thus, (6.3.3) is proved. 
We now prove that with the notation in (6.3.3), we have 

(6.3.4) x,(KF) = U(m-a+dim G)‘2 ~‘Vo,(l + T,,)(l + ToJ ..a (1 + Lo))- 

We shall use the notation in 2.13. From (2.13.1) (or rather, from the 
corresponding exact sequences obtained by considering the subquotients of 
fixed weight of the weight filtrations), we get 

= XuWsh #I’+ ‘9 ci+‘))*@+ 1 xu(K;) 
JCI, 
IJI=i 

for any i. 
Summing these equalities over all i, 0 < i < II,1 and taking into account 

(2.13.2), we find 

We now use (6.3.3) for each sJ is the last sum, and 5.6(c); (6.3.4) follows. 
The mixed complex KY is pure of weight 0 (see the proof of 3.7) hence 

It follows that &y) = (p @ 1) y(e,). On the other hand, the right-hand side 
of (6.3.4) is equal to e’(6eJ. Hence (6.3.4) implies (6.3.1). This completes 
the proof of 6.2(a). 

6.4. We shall now prove 6.2(b) assuming again (without loss of 
generality) that k is an algebraic closure of a finite field. We again place 
ourselves in the setup of 6.3. It is enough to prove the following statement: 

(6.4.1) Let s = (sl, s2 ,..., sr), s’ = (s;, s; ,..., s;,) be two sequences in S 
as in 5.7 and let (w, u,,u *,..., ua), (w’, a;, a; ,..., a:,) be the sequence in W$ 
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attached to them in 5.5 Then c’((TuT,, .-a T,o)(T,fT,,; ..a T,;I,)) = 

NLJ’o; a.. T,;,)(LT,, -.a TJ). 

Let ss’, s’s be defined as in (2.19.1). Using 5.7 and (6.3.3) we see that the 
equality (6.4.1) is equivalent to the equality 

XAG) = xuw~s’,). 

But this follows from (2.19.1). 

This completes the proof of Proposition 6.2. 

6.5. Let us define for any K E %G, 

x(K) = r (-l)jlPHiK} E XG. 
i 

The proofs in 6.3 and 6.4 (specialized for u = 1) give the following result: 
Let E; : Z [ IV&] -+X(G) be the homomorphism defined by E;(W) =x(Kz). 

Then E; is constant on conjugacy classes in IV>. With the notations in 
(6.3.3), we have 

x(Ky) = E;(s~s, ..a s,) = E;(oo,(T, a.- u‘,), 

X(fy) = %$(W(l + aJ(1 + 02) a*’ (1 + (I,)). 

6.6. We now return to the setting in 3.1. Let s = (s,, s2 ,..., s,) be a 
sequence in S such that _s,sz ... S,E W$, (YE Y’(T)). We apply the 
functor res: sG-+ QL to K,. We wish to describe “H’(resK$ in terms of 
the function “, : H$.L -+ r, az ,&’ (defined as E in 6.2, for L instead of G); 
here H$.L is i$ defined with respect to L instead of G. We shall denote by 
H, (resp. Hy,L) the &‘-submodule of Ha (resp. H$,L) spanned by the 
elements T,, w E W,, (resp. by the elements T,, w E W$). 

We shall denote by .F the set of elements y, in W which have minimal 
length in their W* - W, double coset. 

Let w, uJ,, uz ,..., u, be the sequence in W& attached to s in 5.5. Thus, 
UEQ,,UiES,. Ify, EY, then o’ = y,wy;’ is in Q,,, al = y,,u,~~;’ are 
in S,, where Y’ = (y-‘)*p. If we assume that w’ E W*, then conjugation 
by w’ is an automorphism of the Coxeter group (W,,, S,,) leaving stable 
its length function I’, and its parabolic subgroup W,, n W*. Hence it also 
leaves stable the set 

.sC‘ = {z E W,., ] z has minimal p-length in the coset ( W* n W,,)z }. 

For any h E Hy, and any z E Y, there are well-defined elements 
x;,,,(h) E Hipc.L (z’ E Y’), such that 

(6.6.1) Tw,,-,Lw, . h = Cz,E.gxz,,,(h) T,, in H,,. 

(Indeed, H,, is free as a left HyP’,L module with basis T,,, z’ E 9.) 
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With these notations, we set 

We can now state: 

PROPOSITION 6.7. The following identity holds in r, Or A? : 

(6.7.1) cj (-ly’[“Hj(res RF)] ~(j-~‘)‘~ = C,, y(y,,) u-u/2. 

where yO runs over all elements of F such that yOwyO-’ E W*, and 
m’=r+dimG. 

Proof. We shall give the proof in the case where ip is the constant sheaf 
0,. In this case we have W = W,= W$; we denote H = HIP= H$, 
HL = Hp,L = H$.L , 8, = 6y.L. We have also w  = e, a = r, ui = si (1 < i < r). 
Using 3.7(c), 3.5, and (3.8.1) we see that the left-hand side of (6.7.1) is equal 
to 

(6.7.2) C, xj (-l)j[pHj-““‘~.I] ~(j-~‘)‘~; 

here, v runs over all ‘sequences v = (v ,,, v 1,..., v,) of P-orbits on 9 satisfying 
(3.3.1), d(v) is defined by (3.4.1), t is the sequence in S* U {e} defined in 
(3.3.4), and 7 is the sequence in S* obtained from t by dropping all ti which 
are equal to e. (Thus, z is completely determined by v.) We denote by i?, the 
complex in 9L defined in 2.8 in terms of r, 40 = or, L. 

Now using 6.2(a), we can rewrite (6.7.2) as 

(6.7.3) cL(CV(l + TJI + TJ +.. (1 + Tz~)~d~V~-dim”~)~-“2, 

where v and r = (7,) 72 ,..., 7,J are as in (6.7.2). 
For any yE W,, sES, we have 

1 

Ty + Tys, ifysE: W,,ys> y, 

T&l + T,) = u(T, + T,,), ifysE W,,ys< y, 

(1 + Tysy-I) Ty’ if ys E W*y (so that ysy-I E S*). 

Applying this repeatedly, we see that for any y E W,, we have 

(6.7.4) TJl + T,,)(l + TJ ... (1 + TJ 
= Cyqs(y)(l + T,,)(l + ZJ a-- (1 + TTJ Ty,; 

here, the sum is over all sequences y = (y,, y, ,..., y,.) in W, such that 
Y=Yov W*y, = W*yi-,’ or W*yi-,s, (1 < i & r), 6(y) is defined to be 
#{i E [l, r] 1 yi > yisi, yisi E W,} and r = (71,72,..., th) is the sequence in 
S* consisting of those terms in (y,s, y;‘, y,s, y;‘,..., y,-,s,y;?‘,) which are 
in S*. 
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Now (6.7.1) (in the case V = Q,) follows directly from (6.7.3), (6.7.4), 
and the definition (6.6.2) of the function y. The proof in the general case is 
similar, but the notation is more complicated; we shall omit it. 

COROLLARY 6.8. For any j, we have PH’(res ET) E PH2m’-j(res RF) in 
C?L, where m’ = r + dim G. 

Proof. Since PHj(res nr) are semisimple objects of ML for all j, it is 
enough to show that [pHJ res KT] = [pH2”‘-ires RF] (equality in r,). By 
(6.7.1) it is then enough to show that for any y, in the sum (6.7.1), the 
expression y( yO) u -‘I2 E r, @ ..@’ is fixed by the involution - of r, @ ,d 
defined in 6.2(c). Since E~>!,~ commutes with the involutions - (see 6.2(c)) 
and (1 + T,,) . . . (1 + TOa) u-‘12 is fixed by the bar involution, we see that it 
is enough to prove the following statement: 

(6.8.1) ~Y,~V’~~ LY x,,,(h)) = E~,,~(T~~ ,LYx,,,(~~) for all 
h E HP-J (notation as in 6.6). 

Applying the involution - : H, , + H, , to the identity (6.6. l), we get 

(6.8.2) ?;,s-,,,, 
~ - 

. h= C;,E > x,,;,(h) T,, (z E .Y ). 

Since (T,),(r,), (z E 9). form two bases of H,,, as a free left HL,y,- 
module, we have 

(6.8.3) ~:=C;sEg-;.;,T:,, T;=~;sE./qz,;sl‘s (zE.~), 

where rr,rr E HL,Ipt, q,,,, E HL,y,. 
Introducing in (6.8.2) we get 

= ;& rw~-~.-~~J~,h 

= J, ~ rw’-‘;w’,z”x,,,,,,,-,.z,,,(h) T ;,,, 

From this, we deduce 
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Multiply both sides with T,, and apply E~,.~ : 

by 6.2(b) 

This proves (6.8.1) and hence the corollary, 

We can now state 

THEOREM 6.9. (a) IfLcPisasin3.1,andAE6,thenresAE.HL; 
moreover, res A is semisimple and its irreducible components are in i. 

(b) A E 6 is cuspid& (see 3.10) if and only iffor any L c P as in 3.1 
with P # G, we have res A = 0. 

Proox Assuming that (a) holds, the proof of (b) is immediate: if A E d 
is cuspidal, then PH’(res A) = 0 for all i > 0 and by (a), PH’(res A) = 0 for 
all i # 0; hence PH’(res A) = 0 for all i, so that res A = 0. 

We now prove that in (a), we have res A E .NL for A E d. (The other 
statement in (a) follows from 3.9.) Let s = (s , ,..., s,) be a sequence in S such 
that s, sz ..+ s, E W& Y E Y-(T). 

Let K = i?y[m’], K’ = res K, Kj = PHiK, Kj = res Ki, (m’ = r + dim G). 
It is enough to prove that Kl E.HL (since res A may be assumed to be 
direct summand of K,‘.) 

Fix A’ E i and let b, be the multiplicity of A’ in “Hj(KI). Then bi,i > 0 
and it is enough to prove that b, = 0 whenever j# 0. Let b,i be the 
multiplicity of A’ in “Hj(K’). From 2.17(a), we have “Hj(K’) = 
“Hj(@, res Ki[-i]) = oi PH’pi(K;), hence b, = xi b,,j-i. From 6.8, we have 
bj = bej for all j, hence 

(6.9.1) O=Cjjbj=Ci,jjbi,j_i=Ci,j(i+j)bi.,i. 
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From 2.17(b), we have Ki= K-,; it follows that b,= b-i,j, SO that 
&j ibi+j = 0. I n ro t d ucing this into (6.9. l), we find Ci,j jb, = 0. 

From 4.4(c) and 2.17(a) we see that b, = 0 for all j > 0. Therefore, we 
have Ci,jGO jb, = 0. Since jb, < 0 for all terms in the previous sum, we 
must have jb, = 0 for all i, j. It follows that b, = 0 for j # 0 and the theorem 
is proved. 
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Character Sheaves I I 

GEORGE LUSZTIG * 

Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139 

Contents. 7. Strongly cuspidal complexes. 8. Generalized Green functions. 
9. Orthogonality for generalized Green functions. 10. Orthogonality for certain 
characteristic functions. 

This paper is a continuation of [S]; we preserve its notations. The num- 
bering of chapters, sections and references will continue that of [S]. In [5 J 
we have defined, for any connected reductive algebraic group G over an 
algebraically closed field k, a class G of irreducible perverse sheaves on G, 
called the character sheaves. In the case where k is an algebraic closure of 
the finite field F, and G is defined over F,, we may consider the subset 
C?(F,,) of G consisting of the character sheaves which are isomorphic to 
their inverse image under the Frobenius map F. Any character sheaf K in 
c(Fq) gives rise to a class function xK on G(F,) well defined up to mul- 
tiplication by a nonzero constant, as follows. We choose a definite 
isomorphism cp: F*Kr K, and we define xK( g) (g E G( F,), to be the alter- 
nating sum over i of traces of cp on the stalks of the cohomology sheaves 
3;” 

One expects [6, 13.71 that the class functions xK coincide with the 
“almost-characters” of G(F,) (see [6, 13.61) so that, in particular, they 
should form an orthogonal basis of the space of class functions on G(F,). 
Here, we shall try to prove the orthogonality relations for the class 
functions XK( g). We shall prove them only under an assumption on 
cuspidal character sheaves. Thus, here we have only a relative result; it is 
one step in an inductive proof which will be completed (in good charac- 
teristic) in another paper in this series. An important role in our arguments 
is played by certain class functions on the unipotent set of G(E;), called 
generalized Green functions, since they are closely related to the Green 
functions of [3] and [7]. 

We shall adhere to the notations in [4, Sect. 01. 
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7. STRONGLY CUSPIDAL COMPLEXES 

7.1. Let A be a perverse sheaf on G 

(7.1.1) We say that A is cuspiduf if it satisfies: 

(a) There exists an integer n > 1, invertible in k, such that A is 
G x Y”O,-equivariant for the action of G x Y”“, on G given by (g,, z): 

g-t~“goix,‘. 
(b) For any parabolic subgroup P $ G with Levi subgroup L, we 

have resA[-l]EgL”’ or, equivalently, dim supp Xi (res A) < -i for all 
i. (Here res: g%G + 9L is defined wit respect to P, L just as in 3.8; the 
assumptions on P, L made in 3.8 are not necessary for that definition.) 

The proof and conclusions of Proposition 3.12 remain valid: 

(7.1.2) If A is a irreducible cuspidal perverse sheaf on G, then there is a 
unique G x Zt-orbit Zc G and a unique irreducible G x S?“O,-equivariant 
local system d on C such that A = IC(c, 8)[d], extended to the whole of 
G, by 0 on G - C (where d = dim 2). Moreover, the image of C in G/2”O, is 
an isolated conjugacy class of G/S: and, for g E Z, the group S$( g)/%“o, is 
unipotent. 

It is easy to see that 

(7.1.3) In the set up of (7.1.2), (Z, 8’) is a cuspidal pair for G, in the 
sense of [4, 2.41. 

The converse is also true: 

(7.1.4) If (C, 8) is a cuspidal pair for G, in the sense of [4, 2.41 and 
d=dim C, then IC(z’, &)[d] extended to the whole of G, by 0 on G-Z is 
an irreducible cuspidal perverse sheaf on G in the sense of (7.1.1). 

(The proof is immediate, using [4, 2.2(a)].) We shall need the following 
variant of definition (7.1.1): 

(7.1.5) A perverse sheaf on G is said to be stronglv cuspidal if it satisfies 
condition (a) in (7.7.1) and if for any parabolic subgroup P $ G with Levi 
subgroup L, we have res A = 0 E $SY (where res is as in (7.1.1 )(b)). 

It is clear that if A is strongly cuspidal, then it is also cuspidal. 
On the other hand, if A is a character sheaf of G, then A is cuspidal in 

the sense of (7.1.1) if and only if it is cuspidal in the sense of 3.10. Using 
now 6.9(b), we see that 

(7.1.6) A character sheaf is cuspidal if and only if it is strongly cuspidal. 
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We now consider the following data on G: 

(7.1.7) P is a parabolic subgroup of G with Levi subgroup L and 
unipotent radical U,, and &, is an irreducible cuspidal perverse sheaf on L. 

Let rcP be the canonical projection P + L. Consider the diagram 

where V,=((g,h)~GxGlh-‘gh~P}, 

Vs= {(g,hP)eGx(G/P) 1 h-‘gheP}, 4g, h) = M-‘gh), 

n’( g, h) = (g, w, 7f’(g,h)=h. 

There is a well-defined perverse sheaf K, E A?V, such that iiKo = E’K, 
(cf. 4.1); we define 

K= (d’)!K,. (7.1.9) 

Then K is a semisimple object of A’G, (see (4.3.1)). Note that K is obtained 
by inducing (see 4.1) K, from P to G; the assumptions on P, L made in 4.1 
are not necessary for the definition of induction. 

(7.1.10) The irreducible perverse sheaves on G which appear as 
irreducible components of K (for various P, L, K. as in (7.1.7)) are called 
the “admissible complexes” of G. 

This definition is the same (up to shift and extension by 0) as that in 
[4, 4.11. 

(7.1.11) The irreducible perverse sheaves on G which appear as 
irreducible components of K in (7.1.9) (for various P, L, K, as in (7.1.7) 
and with K, assumed to be strongly cuspidal for L) are called the “strongly 
admissible complexes” of G. 

(7.1.12) The class V of irreducible perverse sheaves on G which appear 
as irreducible components of K in (7.1.9) (for various P, L, K, as in (7.1.7) 
and with K, assumed to be a cuspidal character sheaf of L) coincides with 
the class of character sheaves of G. 

Indeed, the class % considered in (7.1.12) is contained in the class of 
character sheaves on G, by 4.8(b). Conversely, let A be a character sheaf of 
G. If A is cuspidal, then A is clearly in %? (take P = L = G, K, = A). If A is 
not cuspidal, then there exist PI L as in (7.1.7) P $ G, such that 
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res A # 0, (res defined with respect to P, L, G). By 6.9(a), there exists a 
character sheaf A’ of L and a nonzero morphism res A -+ A’ in 53L. We 
may assume (by induction) that A’ is in the class ‘% (defined in terms of L, 
instead of G). From 4.4(d) it follows that there is a nonzero morphism 
A -find A’ in LSG (ind is delined with respect to P, L, G). Hence A is a 
direct summand of ind A’, (see 4.8(b)). But transitivity of induction shows 
that by inducing a complex in %? (with respect to L) to G one obtains a 
complex which is direct sum of complexes in %? (with respect to G). Hence 
A is in S”, as required. 

In particular, we see that for an irreducible perverse sheaf A on G we 
have the following implications: 

(7.1.13) A character sheaf =+ A strongly admissible complex =S A 
admissible complex. 

(7.1.14) Now let P, L. K,, be as in (7.1.7) and let Vi, VZ, K,, K be 
defined in terms of P, L. K,, as in (7.1.8), (7.1.9). We also consider another 
set of data P’, L’, Kb of the same type as P, L, K, and define V’, , Vl, K’, , K 
in terms of P’, L’, Kb in the same way as V, , V?, K are defined in terms of 
P, L, Kc,. 

With these notations, we have the following result. 

PROPOSITION 7.2. Assume that K,,, Kb are strongly cuspidal. Assume also 
that for an isomorphism f: L 3 L’ which can be realized by conjugation b-v an 
element of G, we have Hf.( L, K, @,f *Kb) = 0 ,for all i. (This condition is 
automatically satisfied tf L, L’ are not conjugate in G). Then, for any 
irreducible components A of K and A’ of K’ we have 

H;.(G, A@A’)=O for all i. 

Proof Since K, K’ are semisimple objects of J%‘G and Ht. commutes 
with direct sums, it is enough to show that H:.( G, KO K’) = 0 for all i, or 
equivalently that 

H:(X, R) = 0 for all i; (7.2.1) 

here X = VL x V; = ((g, hP, h’P’) E G x (G/P) x (G/P’) 1 h-‘gh E P, 
h’-‘gh’ E P’}, K = K1 BY K;, where V,, K,, V;, K’, are as at the end of 7.1. 
Each G-orbit 0 on (G/P) x (G/P’) we define X, = {(g, hP, h’P’) E 
X / (hP, h’P’) E 0 ). The X,, form a finite partition of X into locally closed 
subvarieties. Hence (7.2.1) is a consequence of 

Hf.{ X, , z) = 0 for all i and all Lr. (7.2.2) 
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Consider the morphism bO: X0 + 0 given by (g, hP, h/P’) --) (hP, h’P’). 
The Leray spectral sequence of 40 shows that to prove (7.2.2) it is enough 
to show that Ht(cp&‘(S), @=O for all i, all 0 and all 5~ 0. By G- 
homogeneity of 0, it is moreover enough to check this for a single r in each 
orbit 0. Thus, it is enough to check that for any element n E G such that 
L, nL’n-’ contain a common maximal torus we have 

W$f(n), R) = 0 for all i, (7.2.3) 

where X(n) is the subvariety of X defined by the conditions hP= P, 
h’P’ = nP’. Let P” = nP’n-‘, L” = nL’n-‘, UP,! = nU,,n-’ and let rcP,! be the 
canonical projection P” + L”. Let f: L” r L’ be defined by f(x”) = n ~ ‘x”n. 
Then g + (g, P, nP’) is an isomorphism 

P n P’ Z X(n). (7.2.4) 

Consider the morphism 

defined by gt+(rcJg), rcPP, (g)). (See [4, 1.21.) This is a locally trivial 
libration with libres z U,n UP,,, which is an afhne space. The restriction of 
E to X(n) becomes under (7.2.4), the complex p(R), where & is the follow- 
ing complex on E: 

R= K, Ia f*(ro)[j] 

with a suitable shift [j]. Thus (7.2.3) is a consequence of 

Hf.(E, K, @ f*(Kb)) = 0 for all i. (7.2.5) 

Note that P” n L is a parabolic subgroup of L with Levi subgroup 
L n L” and that P n L” is a parabolic subgroup of L” with Levi subgroup 
L n L”. 

Assume first that P” n L #L. The orbits of the unipotent radical of 
P” n L acting on E by left multiplication on the x coordinate are precisely 
the libres of the map pr,: E + Pn L”. Since K,, is strongly cuspidal, the Hf. 
of any such orbit with coefficients in K,, Of*& are zero. From the Leray 
spectral sequence of pr,, it then follows that (7.2.5) holds. 

Similarly, if P n L” # L”, then using the fact that f *Kb is strongly 
cuspidal we see that (7.2.5) olds. 

Thus, we are reduced to the case where PI’ n L = L and Pn L” = L”. 
Then L = L” and E is the diagonal in L x L. In this case (7.2.5) follows 
immediately from the assmptions in the proposition. This completes the 
proof. 
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7.3 

We shall state a variant of Proposition 7.2. Let d be the aIke variety 
which parametrizes the semisimple classes of G and let C: G + d be the 
Steinberg morphism which attaches to each g E G the conjugacy class of the 
semisimple part of g. Let us fix a E d. We then have the following result 

(7.3.1) We preserve the assumptions of 7.2 except that we replace 
“H~(L,K,@f*~b)=Oforalli” by“Hj.(Lna-‘(a),K,,@f*Kb)=Oforall 
i.” Then for any irreducible components A of K and A’ of K we have 
Hb(o-‘(a), A @A’) = 0 for all i. 

As in the proof of 7.2 we see that it is enough to prove that 
Hi.(X”, R) = 0, where X” = { ( g, hP, h’P’) E X / a(g) = a} and X, E are as in 
(7.2.1). AS in that proof, this can be reduced to the following statement 

Hf.(E”, K, !?4 ,f*Kb) = 0 for all i, (7.3.2) 

where E, K, IX f  *Kb are as in (7.2.5) and E” is the subspace of E defined 
by E” = {(x, x’) E E 1 a(.~) = a(Y) = a >. Just as in the proof of (7.2.5), we 
consider the map pr2: E” + (Pn L”) n a-‘(a); if Pn L” # L”, we use 69(b) 
to deduce that (7.3.2) holds. Similarly, we see that (7.3.2) olds if 
P” n L # L. If we have P n L” = L” and P” n L = L then L = L” and then 
(7.3.2) follows from the assumption in (7.3.1 ). Thus, (7.3.1) is proved. 

7.4 

Let A, A’ be two perverse sheaves on a variety Z. Then 

q.(Z, ABA’)=0 for i>O. 

Moreover if A, A’ are irreducible, then 

Hf(Z, A 0 A’) = 0 o A’ is not isomorphic to DA. 

(7.4.1) 

(7.4.2) 

This is proved as follows (cf. [4, 6.71.) From the inequalities 
dim supp %‘A d -i and the analogous inequalities for A’, it follows 
that dim supp(X’A 0 %“A’) Q min( - i, -j) d -t(i + j), so that 
dim supp %“(A @ A’) < -i/2. It follows that H;(Z, Xai(A @A’)) = 0 for 
a > -i, i.e., for i + a > 0. This is the E,-term of a spectral sequence converg- 
ing to H:(Z, A @ A’), hence (7.4. I ) follows. We now prove (7.4.2). Assume 
that A, A’ are irreducible. For i < -d, we have XO’(A) = 0 and for i > -d = 
-dim supp A, we have dim supp X’(A) < --i; an analogous result holds for 
A’. Hence dimsupp(#‘(A)@%‘jA)< -f(i+j) for i# -d, j# -d’= 
-dim supp A’, and H;(Z, %“‘(A @A’)) is 0 for i + a 3 0 except possibly in 
the following case: supp A = supp A’, -a = i = -d - d’ = -2d, in which 
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case it is Hfd(Z, z-d(A)@X-d(A’)). Let Z, be an open dense subset of 
supp A =supp A’ on which Xpd(A), #-d(A’) are irreducible local 
systems 8, 8’. We have H:d(Z, zpd(A) 0 .S-d(A’)) = Hfd(Z,, d @ 6”) and 
this is zero if 6” is not isomorphic to the dual of 8, and is l-dimensional 
otherwise. From this, (7.4.2) follows as in the proof of (7.4.1). 

We shall need the following variant of Proposition 7.2. 

PROPOSITION 7.5. With the notations in (7.1.14) assume that the follow- 
ing condition is satisfied: for any isomorphism f: Lr L’ which can be 
realized by conjugation by an element of G, f *Kb is not isomorphic to DK,. 
Then, for any irreducible components A of K and A’ of K', A’ is not 
isomorphic to DA. 

Proof: The proof will follow closely the proof of 7.2. We shall use the 
notations in that proof. Using (7.4.2), we see that it is enough to show that 
@(X, B) = 0, (see (7.2.1)). This, in turn, is a consequence of the following 
statement: 

@(X0, x) = 0, for all Lo (as in (7.2.2)) which follows from the 
equality Hi((p;‘(t), K) = 0, f or all i > -26 (6 = dim Lo), all 0, and 
all 5 E 0. 

Thus, it is enough to prove the following variant of (7.2.3): H)(X(n), R) = 0 
for all iZ -26, where (P, nP’)E 0 and L, nL’n-’ have a common maximal 
torus. In the case where PI’ n L # L or P n L” # L”, this is proved as in the 
proof of 7.2, using the fact that K,,, Kb are cuspidal. In the case where 
PI’ n L = L, P n L” = L”, we have L = L” and we are reduced just as in that 
proof to showing that Hf.(L, K0 Q f  *(Kb)) = 0 for all i > 0, (where f  :L r L’ 
is defined by f(x) = n-‘xn). This follows from our assumptions and from 
(7.4.1) (7.4.2). (Alternatively, a proof of the proposition could be extracted 
from the proof of Theorem 5.5 in [4].) 

COROLLARY 7.6. With the notations in (7.1.14) assume that A is an 
admissible complex on G which is a component of both K and K’. Then there 
exists g E G such that gLg-’ = L’, K0 = ad( g)*Kb (ad(g): L -+ L’, ad( g)x = 
g-c’). 

Proof: Note that DK& is again a cuspidal complex on L’. This follows 
from the fact that if (,E, E) is a cuspidal pair for L, then (z, a*), (where b* 
is the dual of 6’) is again a cuspidal pair for L. (See [4, 2.51.) Now DK’ is 
obtained from P’, L’, DKb in the same way as K is obtained from P, L, K,; 
(see (7.1.9)) since induction commutes with D. Clearly, DA is an 
irreducible component of DK’. It remains to apply 7.5 to K and DK and to 
A’ = DA. 
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DEFINITION 7.7. Let A be a cuspidal perverse sheaf on G. We say that A 
is clean if there exists Z c G (the inverse image under G -+ G/TO, of a con- 
jugacy class in G/J~Y~) such that supp A = C and the restriction of A to 
Z - C is zero. 

PROPOSITION 7.8. Let A, A’ be two clean irreducible cuspidal perverse 
sheaves on G such that A’ is not isomorphic to DA. Then H:.(G, A @A’) = 0 
for all i. 

Proof Let C be defined in terms of A as in (7.1.2). Define in the same 
way C’ in terms of A’. We may clearly assume that C = C’. Let & (resp. 8’) 
be the local system on ,Z such that A= 8[d] (resp. A’= &‘[d]) on C,, 
where d = dim C. We must show that H:.(X, 6 @ 8’) = 0 for all i. The local 
system d @ 8’ on C is equivariant for the action (g,, z): g -+ z”gO gg; ’ of 
G x 90, on 2 (for some n 3 1, invertible in k); moreover, it is semisimple 
and contains no summand ~0, (since &’ is not isomorphic to a*). It is 
enough to show that Hf.(C, 9) = 0 for all irreducible local systems 
9 k-k Q(, which are equivariant for the G x 3’: action above. Let 
G, c G x 3% be the stabilizer of some base point y E C. Let z = 
(GxY”O,)/Gy and let,f:z+E be the map (g,,~)HzngOyg;‘. Thenfis a 
principal G,/Gpcovering (G,/Gy acts on z by right multiplication) and 
every local system 4 as above is a direct summand of f,a,. It is then 
enough to show that H:(C, ,f,Q,) = Hi,(C, 0,) or equivalently, that G,/Gy 
acts trivially on H:.(f, Q,). 

Consider the map f’: (G/Z?!:) x Z?$J 4 z defined by (g!?:, Z) + class of 
(g, z). It is clear that ,f’ is surjective. Moreover, the fibres of f' are the 
orbits of the group (H,/5?2”0,) acting on (G/Y:) x 3: by right mul- 
tiplication, where H is the centralizer of y in G. (Note that Gy = Ho x {e}.) 
By (7.1.2), p/.F”o, is a (connected) unipotent group. Hence f' is an affine 
space bundle, so that Hf.(z:, 0,) = Ht.+ “( (G/3-~) x 5Yz, 0,) with 
a = dim ~/P’)“o,. Moreover, the action of G,/Gy on C and the action of 
G,/Ytc”, on (G/F:) x 3: (by right multiplication on the first factor) are 
compatible with the map ,f”. Hence to prove that G,/Gy acts trivially on 
Ht(z:, Q,) it is enough to show that G,/.S?$ acts trivially on 
Hi+ ‘“((G/b”~) x ~3’~. 0,). But this is clear since the action of Cl/T”, is the 
restriction of the action of the connected group GJzY”O, and a connected 
group must act trivially on cohomology. The proposition is proved. 

PROPOSITION 7.9. Let A be a strongly cuspidal irreducible perverse sheaf 
on G and let C, 8 be as in (7.1.2). Assume that G is semisimple and that any 
Levi subgroup L of a proper parabolic subgroup of G has the following 
property: any irreducible cuspidal perverse sheaf on L whose support contains 
some unipotent element is strongly cuspidal. Assume that Z is a unipotent 
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class and that for any cuspidal pair (Cl, &‘I) in G with C’ c .% C, the 
character by which the centre of G acts (in the conjugation action) on any 
stalk of 8 d$fers from that by which it acts on any stalk of 8’. Then A is 
clean. 

Proof: Assume that A is not clean. Let Cc E - z be a unipotent class 
of minimal possible dimension such that @iX’(A)Ic#O. Let i, be ,the 
largest i such that S’(A)1 c # 0. Let 9’ be a direct summand of the local 
system &@(A)[ c. The center of G acts on each stalk of &O(A) by the same 
character by which it acts on each stalk of &‘. Therefore, from our 
assumption it follows that (C, 9) cannot be a cuspidal pair in G. By 
[4, 2.53, (C, 9*) is also not a cuspidal pair in G (9* =dual of 9). 
According to [4,6.5] there exist P, L, K,, as in (7.1.7) with P $ G such 
that the support of K, contains unipotent elements and such that if K is the 
corresponding induced complex on G, then for some direct summand A’ of 
K the following property holds: The restriction of A’ to the unipotent 
variety of G is (up to shift) IC(C, 9*) extended to the unipotent variety by 
zero outside C. By our assumption, K,, is strongly cuspidal. We may apply 
Proposition 7.2 to A, A’. (In our case, the two Levi subgroups appearing in 
7.2 are L and G, hence are not conjugate.) It follows that Hi.(G, A 0 A’) = 0 
for all i. As supp A = z;, we have also supp(A@ A’) c c hence 
H:,(G, A 0 A’) = HI.(z, A @ A’). As supp(A’) n r c C, we have 
Hi(E, A @A’) = H:.(C, A @A’). As A is zero on C- C (by minimality of C) 
we have wi,(C, A @A’) = Hf.(C, A 0 A’). Comparing the last four equalities, 
we see that H:.( C, A 0 A’) = 0 for all i. Since A’ ) C is equal to 9* up to a 
shift, it follows that H<(C, A 0 Y*) = 0 for afl i. In particular, we have 
Hfd+‘o(C, A @ 9*) = 0, where d= dim C. Consider the spectral sequence 
E,p,‘!=H,P(C,~4(A)O~*)jH~+q(C,AO~*).ThenE,P.Y=Oifq>iO(by 
our choice of i,) or if p > 2d. It follows that Egdio = Ezd,‘o= ... = E2”‘o. But 
E$o is a subquotient of Hf”+i~ (C, A @ dip*), hence it is zero. It folldpws that 
0 = EjdiO= Hfd(C, X’O(A) @ 6p*), Since 9 is a direct summand &?““(A)1 c, 
it follows that Hfd(C, 9 @-I??*) = 0. This is clearly a contradiction. The 
proposition is proved. 

7.10 

Let (JY, 8) be a cuspidal pair for G and let K= IC(E, &)[d], extended to 
the whole of G, by 0 on G - z (d = dim C). Let ,?Y;, be the set of semisimple 
parts of elements in ,Y (or, equivalently, in its closure E). Let s be an 
element of C,. We denote G’ = Z’(s) and C = {U E G’ ( u unipotent, su E z>. 
This is a single orbit under the conjugation action of ( g E G 1 gsg-’ E s%O,> 
which contains G’ as a subgroup of finite index. Hence C is a union of 
finitely many unipotent conjugacy classes of G’. Let 8 be the local system 
on 3%. C defined as the inverse image of & under the map 9%. C -+ C, 
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g + sg. We define K’ = IC(YE. c, &‘)[d,], extended to the whole of G’, by 
0 on G’ - 9’:. c (d, = dim 5?&. C). Note that S?““, . c has all its irreducible 
components of the same dimension d, and 3:. C is open, dense, smooth in 
5?‘““, . c so that the intersection cohomology complex K’ is well defined. 

With these notations, we can state 

PROPOSITION 7.11. (a) K’ is a cuspidul peroerse sheaf on G’. 

(b ) If K is strongly cuspidal, then K’ is a strongly cuspidal pewerse 
sheqf on G’. 

(c) C is a single unipotent class of G’. 

(d) if and only if K is clean, K’ is clean. 

Proof: We first prove (b). Let P’ be a proper parabolic subgroup of G’ 
with unipotent radical UP,. We must show that for any 2 E a$, u E C n P’, 
we have H:.(=uU,,, K’) = 0 for all i. We may assume that ; = e. Hence we 
must show that Hf(uU,. n C, K’) = 0 for all i. The restriction of K’ to C 
coincides (up to a shift) with the inverse image of K under the map C -+ 2, 
u HSZ~, (because the map 7~: E + C, defined by taking semisimple parts is a 
locally trivial libration and C, is smooth). Hence we must show that 
H:.(suU,, n cc, K) = 0 for all i, or equivalently, that H:.(suU,, n c, K) = 0. 
Let P be a parabolic subgroup of G such that P’ = Pn G’. Define 
p: suU,nC+ sU,nZ, to be he restriction of 7~: c -+ C,. The group U, 
acts by conjugation on both the source and the target of p and the action is 
compatible with p; moreover, this action is transitive on sU,n C,. We 
have p ~ ‘(s) = SUU,~ n c, hence we must only show that H:.(p -l(s), K) = 0 
for all i. Consider the Leray spectral sequence for p: 

E$,q= H,P(sU,nZ,, Yqp,K)+Hf+q(suUpn~, K). 

The last vector space is zero since K is strongly cuspidal. Thus, Eg“ = 0 for 
all p, q. Now YPP! K is a UP-equivariant local system on sU,nL’, and 
sU,nC, g U,/U,‘?affine space. Hence EFq= 0 for p # 2 dim U,/Up,. 
This implies that E;.Y = EgY for all p, q; it follows that Er.4 = 0, for all p, q, 
so that Xcyp! K= 0 for all q. Taking the stalk at s, we see that 
H;(p-l(s), K) = 0 for all q, and (b) is proved. 

The proof of (a) is similar; it will be omitted. It is clear hat the previous 
argument, together with (c) also proves (d). 

We now prove (c). It is easy to show that our statement for G follows 
from that for G/F”,; hence we may assume that G is semisimple. Assume 
that C contains at lest two unipotent classes C, # C, of Z’(s). As we have 
seen in 7.10, there exists ge Z,(s) such that gC, g-’ = C,. Moreover, from 
(a) we see that there exist irreducible local systems 6, on C, and F2 on C, 
such that (C,, 8,), (C?, gz;) are cuspidal pairs for G. Let 7t: G -+ G be the 
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simply connected covering of G. Let c,, e, be the sets of unipotent 
elements in zn-‘(C,), 71 -‘(C,); let & = rc*(E1), & = rc*$, ge x-‘(g), 
FEZ-‘(S). Then (c,, &,), (ci2, ,$) are cuspidal pairs for Z,(T), c, # c, and 
we have $, g-’ = c2, ,@g-’ = z?, z E ker rc. Thus it is enough to prove 

LEMMA 7.12. Let G be simply connected, let s E G be an isolated semisim- 
ple element. Assume that Cl, C2 are two unipotent classes in Z,(s), and 
g E G is such that gC, g-’ = C,, gsg-’ = zs, z E centre of G. Assume that 
there exist irreducible local systems 8, on C,, &!! on C2 such that (C,, &), 
(C,, E2) are cuspidal pairs for Z,(s). Then C, = C,. 

By decomposing G into a product of almost simple groups we are 
reduced to the case where G is almost simple and simply connected. We 
may assume that z #e, for otherwise the result is obvious. In this case, by 
results of [4], Z,(s) has at most one unipotent class C which can carry a 
cuspidal pair (except possibly when G is a spin-group in odd charac- 
teristic); hence C, = Cz. It remains to consider the case where G is a spin- 
group in odd characteristic. Then Z,(s) is of type D, x D,. If conjugation 
by g preserves both D factors of Z,(s), then it leaves stable each unipotent 
class of Z,(s) except possibly for some classes of unipotent elements con- 
tained in a proper Levi subgroup; such classes cannot carry cuspidal pairs, 
by 14, 2.81, hence C, = C,. 

We may therefore assume that conjugation by g switches the two D-fac- 
tors of Z,(s). Then Z,(s) = (Spin,, x Spin,,)/(e, E), where E is the generator 
of the kernel of Spin,, + SO*,. In this case, any unipotent class of Z,(s) 
which can carry cuspidal pairs for Z,(s) is of the form C’ x C’, where C’ is 
a unipotent class in Spin,,, (strictly speaking, C’ x C’ is a unipotent class of 
Spin,, x Spin,, ; we identify it with its image in Z,(s)). This follows from 
the following result [4, $13, 14-J: given a character x of the group { 1, E>, 
there is at most one unipotent class Ck of Spin,, which can carry a cuspidal 
pair (Ci, 8’) for Spin,, such that E acts on each stalk of 6” as mul- 
tiplication by X(E). This completes the proof of the lemma and also the 
proof of 7.11. 

(Note that in the proof of the lemma we have made use of the results in 
[4] on classification of cuspidal pairs carried by unipotent classes only in 
the case of classical groups.) 

8. GENERALIZED GREEN FUNCTIONS 

8.0 

In this chapter, k denotes an algebraic closure of a finite field F, with q 
elements and G (see 2.1) has a fixed F,-rational structure compatible with 
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the group structure. We denote by F: G + G the corresponding Frobenius 
map. 

8.1 

We consider the following data in G: 

(8.1.1) L is the centralizer of a torus in G, C is a subset of L which is the 
inverse image under L + L/T”, of an isolated conjugacy class of L/Z”,, d is 
a local system on L which is isomorphic to a direct sum of irreducible local 
systems 4. on C such that each (C, 4.) is a cuspidal pair for G, (see (7.1.2)). 

To (L, C) we associate the open set Greg of C and the locally closed 
smooth irreducible subvariety Y = YcL,=) = (J,, G xC,,$ xP1 of G, as in 3.11. 
Consider the diagram 

C&Pa,jQ+Y, 

where 

P={(~,xL)EGx(G/L)I~-‘gxd,,,}, 

P= {(g,x)EGxG / x-‘gxdreg}, 

a(g,O)=x-‘gx, B(g, x)= (g, XL), 4g,xL)=g. 

The local system cr*b on Y is L-equivariant for the action of L on Y given 
by I: (g, X)H (g, xl-‘) hence it is equal to fl*b for a well-defined local 
system d on y. (We take d = R’/?,(E*&).) The map 7c is a finite principal 
covering map, hence n,z is a semisimple local system on Y. Consider the 
closure P of Y in G and let 

(8.1.2) K=IC( y, rr,b)[dim Y], extended to the whole of G (by 0 on 
G - I% 

(8.1.3) In the case where FL= L, FC=C, and there exists an 
isomorphism cpo: F*b 7 d of local systems over C, we can define an 
isomorphism cp: F*Kr K as follows. The varieties Y, 7, P have natural F,- 
structures and ‘p. gives rise to an isomorphism F*c? 3 ,? of loal systems 
over y, to an isomorphism F*n,$%n.$ of local systems over Y and 
hence to an isomorphism cp: F*K 3 K (in MG). 

8.2 

Another construction of K is given in [4, 4.5). We shall recall it briefly. 
Let P be a parabolic subgroup of G having L as a Levi subgroup. Let 
rcP: P -+ L be the canonical projection. Consider the diagram 



238 

where 

GEORGE LUSZTIG 

X={(~,XP)EGX(G/P)I~-‘~~E~.U,}, 

8=((g,x)~GxGIx~‘gx~~.U~), 

y= closure of Y in G (see 8.1), 

~(g,x)=~,(x-‘gx), h7g,x)=(g,xP), Ic/( g, w  = g. 

(According to [4, 4.31 we have P= uxeG xZUpx-l.) 
There is a canonical perverse sheaf R on X such that (f)K= (02) 

(IC(Z, b)[dim Cl). 
The following results are proved in [4, 4.3, 3.1, 4.51. 

(8.2.1) The map (g, XL) + (g, xP) gives an isomorphism of P onto the 
open dense subset Ic/ ~ ‘( Y) of X. The map I+$ is a proper map of X on F. 

(8.2.2) Y is locally closed in G, smooth irreducible of dimension equal to 
dimG-dimL+dimC. 

(8.2.3) There is a canonical isomorphism K 1 Fr tj!R 

The model $,R of K has the disadvantage that in the situation of (8.1.3), 
there is no direct way to define an isomorphism F*$! Rr Ic/!K. This is due 
to the fact that, although FL = L, we do not necessarily have FP = P. On 
the other hand, if we denote P’= FP, then we may define rG/‘: X’ + Y, 
FE J%!(Y) in terms of G, L, P', Z, d in the same way as t,k X-, Y, 
KE A(X) were defined above in terms of G, L, P, C, 8. Then (8.2.3) applies 
again and gives an isomorphism KG $IK’. Moreover, the map 
cpO: F*br d in (8.1.3) gives rise in a natural way to an isomorphism 
F*p rK in k’X (note that F maps naturally X onto X’); hence it gives 
rise to an isomorphism $: F*($ip)r tj!R in JZF, such that the following 
diagram is commutative 

(8.2.4) 

(The vertical maps are defined by (8.2.3)) 

8.3 
Let L, Z be as in (8.1.1); assume that Z = .F”“, . C, where C is a unipotent 

class of L. Assume also that FL = L, FC = C. Let F be a local system on C 
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and let cpr: F*4 $9 be an isomorphism. We assume that there exists a 
local system B on C, as in (8.1.1), such that 9 = 8 / C, and that there 
exists an isomorphism cp,,: F*$ r & extending the given isomorphism 
cp,: F*9r9. 

We define K, cp: F*Kz K in terms of d as in 8.1. We define a function 

QL,G,C,.P,q,: (unipotent elements in G’) -+ 0, 

by 

QL.G.C.,.F,d,(~) = c ( - l)‘Tr(cp, xf,K). (8.3.1) 

(The map induced by cp: F*KzK on the stalk .X”IK (uEG~), is denoted 
again by-q; the trace is taken over O,.) 

This definition makes sense in view of the following result: 

(8.3.2) The function QL.G,c,,B,r, is independent of the choice of d and 
‘po: F*B Y f; extending 4 and cp ,: F*9 3 9 to Z. 

(In particular, to compute this function we may take &, qO to be the 
inverse image of 9, q 1 under the canonical map C --t C.) We consider two 
local systems d, , &? on Z as in (8.1.1 ) and isomorphisms cp,,,: F*&, s&,, 
(p02: F*& 3 & such that over C we have a commutative diagram 

‘PO, 
I 
1 [pz 

8, I c + c$ / c 

Let K,, K, be defined in terms of &,, & in the same way as K was 
defined in terms of & and let cp, : F*K, r K, , q2 : F*K2 7 K, be the 
isomorphisms induced by ‘pO,, ‘pOz. It is enough to show that 
Tr(cp,, X:K,)=Tr(qZr XiK2) for any unipotent element UEG~. We may 
assume that u E P = supp K, = supp K,. 

Let P, P’ be as in 8.2. We shall use the notations in 8.2 except that we 
shall write R, (resp. K2) for K defined in terms of 8, (resp. &) and we shall 
write F, (resp. R;) for F defined in terms of (r, (resp. 6). 

From (8.2.4) we get commutative diagrams 
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where the vertical maps are given by (8.2.3). It is therefore enough to con- 
struct isomorphisms 6’, 6 such that the diagram 

is commutative. This would follow from the existence of two isomorphisms 
E’: ~; )unir~*Iunl, E: ~~I”“~1 R, luni which are compatible with the 
isomorphisms F*pl s K,, F*F; % R, induced by (p,,i, cpOz. (Here luni 
denotes restriction to the subvariety of X or X’ which is inverse image 
under $ or t+V of the set of unipotent elements of y.) 
But from the definition of z, it is clear that R, 1 uni can be defined purely in 
terms of the restriction of &i to C (without using any information on d on 
C - C). A similar statement holds for zl, pl, R;. It follows that 
y: & 1 Cr &” 1 C induces the required isomorphisms E, E’; their compatibility 
with ‘pO,, (p02 follows from the compatibility of y with cpO,, cpOz. 

This completes the proof of (8.3.2). The function (8.3.1) is called a 
generalized Green function. 

8.4 

Given an algebraic variety 2 defined over F, (with Frobenius map 
F: G + G), an object A E 9X and an isomorphism cp: F*A 5 A, in 9X, we 
define the characteristic function xA,q : Z” - 6?, by 

xA,Jz) = c ( - 1)’ Tr(cp, H’d 1 (z E Z’). (8.4.1) 

(cf. (8.3.1)). 
We wish to state a result expressing the characteristic function x~,~ of 

K, cp (defined from L, ,Y, 6, ‘pO as in 8.1) in terms of generalized Green 
functions. We shall assume that & is irreducible. 

Let s be a semisimple element of G” and let u be a unipotent element of 
GF, commuting with S. (In the rest of this chapter s and u will be fixed.) 

Let ,Y, be the set of semisimple parts of elements of C. Assume that 
XEG~ is an element such that x~‘xKEC,. Then SEXLX-’ so that the 
group L, defined by L, = xLx-- ’ n Z:(s) is a Levi subgroup of some 
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parabolic subgroup of Z”,(s). Let C, be the set of unipotent elements in 
Z”,(s) such that su E XCX-‘. Let & be the local system on C, defined as the 
inverse image of 6 under the map C., -+ C, u M x-‘SUX. Since this map is 
defined over F,, cp ,: F*b 5 8 induces an isomorphism cp ~ : F*SC. r S$ of 
local systems over C,. By 7.1 l(a) and (c), the set C, is a single unipotent 
class of Z:(s) and ,FY, ~p.~: F*S?, + 9TY are as in 8.3. We can now state: 

THEOREM 8.5. With the notations and assumptions of 8.4, we have 

xmP(su) = c WflllZO,(s)“l IL”I) QL,,~(s,,c,..~,,~p,(~). 
.XEG! I ‘3.x E z, 

(In the case where L = C = C, is a maximal torus of G, this formula 
should be compared with the character formula in [3,4.2].) 

The proof of the theorem will make use of the following result. 

LEMMA 8.6. Let P be a parabolic subgroup of G having L as a Levi sub- 
group. There exists an open set % in Z:(s) containing e and satisfying 
properties (a)-(e) helob\,: 

(a) g,)/g-‘=‘I(,for all gEZi(s). 

(b ) .Y E t/)( ox,, E J//, (x, = semisimple part of s). 
(c) I+/ = Jl/. 

In this section we fix P and J& as in 8.6. Let 

x,= j(g,.UP)EXI gEs”li), (8.7.1 ) 

where X is as in 8.2. Let 

.N= (XEG I .Y ‘sxd,), r = ZO(s)\..ll/L, (8.7.2) 

.#= (XEG I x ‘SXEZ, U,), r-= ZO(s)\..d/P. (8.7.3) 

We shall assume that ,M is nonempty. It is easy to see that f is finite and 
that the natural map f + P is bijective. We shall regard elements of r 
(resp. f) as subsets of G: double cosets with respect to ZO(s), L 
(resp. Z’(s), P). We define 

x,,, = ((sg, XP) E X,,l.x E 8}, 6 E f. (8.7.4) 
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The orbits of Z”(s) on (XPE G/P I x - ‘sx E C, U,} are clearly complete 
varieties, hence they are closed. The number of these orbits being finite (in 
l-l correspondence with f) they are also open. From 8.6(d) it follows that 
the sets X*.8 (8 E f) cover X,. Thus 

(8.7.5) The sets X%,&, (6 E f), are open and closed in X, ; they form a 
finite partition of X,&. 

For 0 E r we denote by b the corresponding element of 2: We choose a 
base point xg E Lo for each 0. We may assume that this choice is such that 
F(x~)=x~(~) for all 0. (Note that F acts naturally on r.) Let P, = 
x, Pxc,’ n Z:(s); it is a parabolic subgroup of Z:(s) with Levi subgroup 
L, =x6 Lx;’ nZz(s), since sEx,Lx;‘. Let C, = {uEZi(s) 1 u unipotent, 
x0 lsuxo E z}; as we have seen in 8.4, C, is a unipotent class in Z”,(s). Let 
C, = 3!‘$. C,. Let b, be the local system on Xc- obtained as the inverse 
image of d under the map z, + C, g + x; ‘sgx,. 

(8.7.6) Let 7~;~: pK -+ Y;,, &,, K,, I,+~,: X;, -+ PO;, K, be defined in terms 
of Z”(s), LB, C,,, &‘, in the same way as rr: 8+ Y, 2, K, t,b: X--f y, K were 
defined in 8.1, 8.2 in terms of G, L, C, 6. 

Let 

We now show 

X&fr=Ic/,‘(@)cX;i. (8.7.7) 

(8.7.8) The map (g, zP,) -+ (sg, zxC. P) de@nes an isomorphism 
x’*,flr X@,@. 

Assume that (g, zP,) E X!,, Then z-‘gz E S?‘& zi, U,, hence 
(zxfi)-‘sg(zxe) Ex,‘siY;p c, uppxp c x~‘s~~&@lc~,xxc up c a0,,cu,= 
‘N,. 

(We have 5?:, = 3tcLxF~, since s is isolated in xcr Lx;‘, and 
U,, c xc U,x;‘.) Hence (sg, zxc P) EX*,& so that the map (8.7.8) is well 
defined. Now let (sg, ZX~ P) E X,,,- (z E Z:(s). Then x; ‘z-‘sgzx, E EU,; 
hence, by 8.6, we have x; lz-‘gSxP E .3’““, U,. Thus, we have zP igsz E 
(~~,L.~~~~ uroPxc-~)n~~(~)= (~?&~~lnZoG(4) 6,. We have 

z-‘gzE (S-~XJX+J~EP.~; I) n Z”,(s) = ((s~‘x~Ex~~) n Z’(s)) U,, 

Thus, z-‘gz E 5UpC, where ~~(s-‘x~~x~~‘)nZO,(s). Let l= <,5, be the 
Jordan decomposition of 5. Then 5, E P&,I n Z:(s) c T&L.y;l = T&. We 
have 5 E Z”,(s) hence r, E Z”,(s). We have st,<, = s5 E x,,??x;‘. Hence ~5, E 
x,~x;i<; * c x,2’3”o,x& l= xeExcl. Thus, <,{, E 9&C. Hence the map 
(8.7.8) is onto. It is injective: if zP,, z’P~, (z, z’ E Z’&(s)) satisfy zx,,P = 
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z’xc, P, then 2 - ‘2’ E xc, Px, ’ n 20,(s) = P, hence zP, = ,-‘P,. Thus, the map 
(8.7.8) is bijective. The proof of the fact that its inverse is a morphism is 
standard and will be omitted. 

We now define 8,=nP’(Yns%)c F, 

From (8.2.1) (8.2.2), we deduce: 

(8.7.9) The map ( g, XL) H ( g, xP) gives an isomorphism of 8, onto the 
open subset $ ~ ‘( Y n ~“2) of x ?,. The map $ is a proper map of X,,, onto 
yn s?/ and Y n s’& is open, dense in Yn SO&!. 

From (8.2.1), (8.2.2) applies to Z’)(s), L,, P, , C, (instead of G, L, P, C) 
we deduce: 

(8.7.10) The map (g, zL, )N( g, zP, ) gives an isomorphism of 8:,,,’ onto 
the open dense subset $,‘( Y>, n@) of X’?,,,. The map lclc is a proper map 
of x:,,, onto FL, n ‘1% and YP n “?/ is open, dense in yii n “a. 

We now prove: 

(8.7.11) 8,,, is a nonempty, open and closed subset of 8,. The subsets 
B d,c (6 E f), ,form a finite partition of F,. 

From 8.6(e) we see that the sets Fg,c (0 E r) cover 8,. Note that (8.7.9) 
identifies $?, with an open subset of X,. It also identifies 8, c with the 
intersection of Fe with X,,,-. Since X,,,,p is open and closed in X, (see 
(8.7.5)) it follows that 8,,, is open and closed in P,. We now show that 
P ?,,(, is nonempty. Let v be an element of C, The intersection ?$ n %v ~ ’ 
is an open dense subset of yt, (it contains e, since v E J!/ by 8.6(b), and is 
open since 4’ is open in Z”,(s)). Clearly, the intersection .3Fc n 
s- ‘(.~C~regx~‘)v-’ is also an open dense subset of 3’&. Hence 
yF(, n J&!o ’ n s If-\-(, Greg-y; ’ ) L: ’ is an open dense subset of ytyoL(, ; in par- 
ticular, it is nonempty. Hence there exists CE To L( such that 
(.s~u, x,L) E Y,,, , proving that Y,,,,,, is nonempty. 

(8.7.12) The map $1 X9,., + Yn s@ is proper, with image equal to 
s( F;,, n -V), and X,,,i is irreducible. We have I,!J( Fjti,, ) = Y,,, , 8,,,,. = 
$ ~- I( Y,.,.) n X,.,: and Y 41, r is open, dense in s( PC n 3%). 

The fact that $: X,,,; + Yns% is proper follows from (8.7.9) and (8.7.5); 
the statement about its image follows from (8.7.8) and (8.7.10). The 
irreducibility of X,.,; follows from (8.7.8) and the fact that X;, and Xi,, are 
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irreducible. As ye,, is nonempty and open in X*,6, (8.7.11), and X, B is 
irreducible, it follows that F* 0 is dense in Y, p. It is clear that y9 0 ‘is a 
union of libres of I,+: X&,6 + s(& n !&). Since this map is proper, the image 
of Rg,, must be open and dense in s( F0 n a). 

We now describe the irreducible components of the locally closed subset 
Yns% of G. The map rt: P + Y is proper hence its restriction rc: Ye + 
Y n s@ is also proper. Using (8.7.11), it follows that the sets Y,,, (images of 
L.0 under x) cover Yns% and are closed in Yn 3%‘. It is easy to see that 
for 0, 0’ E r, the sets Yw,o, Y,,,, are either disjoint or coincide; more 
precisely, they coincide if and only if 0, 0’ are in the same orbit of the 
group N(L, C)/L = (n E G 1 n -‘Ln = L, n-‘Cn = 2C)/L which acts on r by 
right multiplication. Since Y,,, are irreducible, (see (8.7.12)) it follows that 

(8.7.13) The irreducible components of Yns@ are disjoint. They are in 
l-l correspondence with the orbits of N(L, 2)/L on r. The irreducible com- 
ponent corresponding to the orbit of 0 E r is Y,,,. 

We now define for each N(L, 2)/L-orbit Z in r an open subset Vz of 
YnsW 

G= n (S(Y;,nWn Ye,,). (8.7.14) 
c1 E z 

Then “y^z is an open dense subset of Y*,[) (Lo E Z), as we can see from 
(8.7.10) (8.7.12). Note that Vz is smooth, since it is an open suset of 
s( Y0 n a’) hence it is isomorphic to an open subset of Y;,, which is known 
to be smooth. This shows also that dim V== dim Yy = dim Z:(s) - 
dim L, + dim P&C, (see (8.2.2)). Note that L, is the connected centralizer 
in L of an element in C, hence dim L, = dim L - dim(C,/TZ”o,). Moreover, 
dim 9Fr, = dim 90, and dim C, = dim C - dim z, . Thus, 

(8.7.15) dim V= = dim Z:(s) - dim L + dim 2I is independent of Z. 

It is easy to check that F(V=) = V&. Let 

(8.7.16) V = Uz V= (union over all N(L, z)/L-orbits Z in r). 

(8.7.17) v is an open dense smooth equidimensional subset of Y n sf& and 
F?f = A+‘“; the subsets V, are its irreducible components. 

8.8 

We now prove Theorem 8.5, assuming Lemma 8.6. We may assume that 
SUE F; otherwise, su is not in the support of K and the identity in the 
theorem is trivial. This implies in particular that &! in (8.7.2) is nonempty. 
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From (8.7.8), (8.7.9), (8.7.10), (8.7.11) we see that we have a com- 
mutative diagram 

(8.8.1) 

where 71 V= {(g,xL)E F\ ge?-}, 

P; I s-l”+“= ((g, ZL,)E r;, 1 gES-‘%,;} (CEZ) see (8.7.14)), 

a( g, ZL,) = (sg, zxp L), 

4 g) = a, 

and the vertical maps are projections to the first component. 
All maps in the diagram (8.8.1) are clearly defined over F,. (The 

parabolic group P which is in general not defined over F,, does not enter 
in (8.8.1).) It follows that we have a canonical isomorphism of local 
systems over S- ‘$“: 

&*(n*(b) ( Y/^)z @ ((71;)*@(f) (s ‘Y‘) (8.8.2) 
c t r 

and this isomorphism is compatible with the liftings of the Frobenius map, 
given by cp. (Here, (K>~)*(c?(~) I s -‘$’ has the following meaning. For each 
0 E r, (&),b, may be restricted to only one irreducible component s-’ ‘z 
of SC’%‘; we regard it as zero on the other irreducible components of 
s ~ ‘V.) By the definition of K, K, , (8 8 2) . . ca n be also regarded as In 
isomorphism 

E*(K 1 Y)[ -61~ @ (K, I s- If‘), (8.8.3) 
(‘El- 

where 6 = dim Y-dim Y> = dim G-dim Z’&(S) (see (8.2.2)). Assume that 
we can show that the isomorphism (8.8.3) is the restriction to SC’ $ of an 
isomorphism 

c*(K I rnsUZ!)[-61~ @ (K, ( sp’y’ndlz’). 
ctr 

(8.8.4) 

(Here, E is regarded as an isomorphism s-‘Yn% -+ Pns%, g+-+sg.) The 
isomorphism (8.8.4) extending (8.8.3) is unique (if it exists) and is 
automatically compatible with the liftings cp of the Frobenius maps since 
(8.8.3) is. This follows from properties of intersection cohomology com- 
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plexes. (We use the following fact: The right-hand side of (8.8.4) is (up to 
shift) an intersection cohomology complex on 3-i Pn 02 associated to a 
local system on the open dense smooth equidimensional subset sP IV“.) The 
isomorphism (8.8.4) gives rise to an isomorphism of stalks: 

(for all i) which is automatically compatible with the action of cp and (pO, 
where cpO: F*F,-, 3 Kc is the isomorphism induced by cp. Taking now alter- 
nating sums of traces of cp in (8.8.5), we find 

(Note that 6 in (8.8.3) is even since it is the dimension of the conjugacy 
class of s in G.) This implies the theorem, in view of the definition (8.3.1) of 
generalized Green functions and the identity [OFI = IZO,(.S)~] . (LFI . IL:] -I. 
It remains to construct the isomorphism (8.8.4). Using (8.2.3) we find 
isomorphisms 

(8.8.6) 

From (8.7.5), (8.7.8) we get an isomorphism 

E*(ICI!G I X,*))C -61 r CD Wd!(& I xj,,,). (8.8.7) 
L” E r 

(We regard ($&(R, 1 XL&,@) as a perverse sheaf on s-‘Fn@, equal to 
zero outside PC, n a.) The shift [ -61 in (8.8.7) comes from the fact that 
under (8.7.8), the restriction of K[ -S] to X,,p corresponds to the restric- 
tion of RP to X, c^. 

Combining the’isomorphisms (8.8.6), (8.8.7) we find an isomorphism as 
in (8.8.4); from the definitions it follows that it extends the isomorphism 
(8.8.3). This completes the proof of Theorem 8.5 assuming Lemma 8.6. 

8.9. Proof of Lemma 8.6 

A subset % of 20,(s) is said to be stable if it has the properties (b) and (c) 
in 8.8. 

(8.9.1) There exists a stable open subset 02, c Z”,(s) containing e such that 
Fe, = %‘I and such that x E %Y, * Z,(sx,) c Z,(s). 

We imbed G into G = GL,(k) as a closed subgroup defined over F,. Let 
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‘2; = ( g E (2 I -cd g,) = Z,(s) 1, and let d!, = s ‘SY, n Z:(s). It is clear that 
%Y, has the required properties. 

Let C,, C2,..., C, be the inverse images under L + L/S”o, of the various 
isolated semisimple classes in L/Y:. (We number them in such a way that 
the first one of these sets is the set C, introduced in 8.4.) 

Let ,q= {.~EG 1 .xC’sx~~,j (1 <j<m). Let ci;,, (1 <i<rr(j)), be the 
orbits of Z:(s) x L acting on J[, by x H :.x1 ’ (c E Z:;(s), I E L). 

Let 

Let 9’ = ( g E Z:;(s) 1 g, E ,cP 1. Then Y’ is a closed stable subset of Z:(s) 
not containing e. 

(8.9.2) The set J&~ = &, - ,Y’ is a stable open subset sf Z:(s) containing e 
and \re have g E ‘2/ ?, XEG, s-‘sg=E~~.\.-‘sxEC,. 

Assume that gE ‘iY2, LEG, x’sgx~z,. Then ~~‘sg,,x~~,. By (8.9.1) 
we have Z,(x ‘sg,x) c Z, (x ‘sx). It follows that xP’sx is isolated in L, 
i.e., x ‘SSEC, for some j. If j# 1, then by the definition of Y, we have 
g,> E.Y’, hence gE,Y’. Thus, if gE&, -.4p’, we have j= 1, i.e., .Y~‘S,YE E‘,, 
as required. 

Let.~=ZZO,(s)nU....,((s-‘.~~,.u-’nL,~)-~’O,~),whereL.,isasin8.4. 
Let Y’ = .( g E Z:(s) 1 g, E Y). Then .Y’ is a closed, stable subset of Z:(s) 
not containing e. 

(8.9.3) The set II/~ = Xl? - .F’ is a stable open subset of Z”,(s) containing e 
and ti‘e have g E ‘2/, .Y E G, .Y .- ‘sgx E z =S x - ‘g,x E Sy,. 

Let g E j&x, x E G be such that x ‘sgx E C. Then .v- ‘sg,, E C,. From 
(8.9.3) we know that we must have x -‘.sx~C,, i.e., .uE.&,,. Assume that 
.Y- ‘g,x $27.. Then g, 6 zYt,,.-, = gF\, hence g, E Y, hence g E Y’, con- 
tradicting g E “r/,. Thus, we have x ‘g,sc Yy-, as required. 

(8.9.4) I f  gEtV3, XEG, .up’.sgxdUp, then s-‘SXEC, I/, and 
x Ig,.aq,L$. 

We have x ~ ‘sgSx E C, UP. Replacing x by xp for some p E P, we can 
assume that ~~‘sg,x~C,. But then x~‘sxEC,, x’g,x~P’~ by (8.9.2), 
(8.9.3). Thus (8.9.4) follows. 

We may take “I/ = 02~ ; Lemma 8.6 is proved. 
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9. ORTHOGONALITY FOR THE GENERALIZED GREEN FUNCTIONS 

9.1 

In this chapter we preserve the assumptions of 8.0. Let L, C, 6, cpO: 
F*drd, K, rp: F*Kq K be as in 8.1. Let L’, C’, d’, t&,: F*b’r&‘, R, 
q’: F*K’ N -,K’ be another set of data of the same kind in G. Let 2, be as in 
8.4 and let C; be defined similarly, in terms of Z’. 

Let 6’ be the set of all n E GF such that nLn PI = L’, n.Zn ~’ = 2’. 
We shall make the following assumption. 

(9.1.1) Assume that K, = IC(.J?, b)[dim ZJ, Kb = IC(c’, b’)[dim C’] are 
strongly cuspidal complexes for L, L’, respectively. (We regard these as 
complexes on L, L’ equal to 0 on L-2, L’-Z’.) Assume also that either 
L, L’ are not conjugate in G or L, L’ are conjugate in G and both K,, Kb 
are clean. 

With these assumptions, we can state the following two results, which 
will be prove in 9.4-9.6. 

THEOREM 9.2. Zf &, 8” are irreducible, then 

I@ - ’ 1 xK,J 8) x,c,cpp’( 8) 
gtGF 

= ILFl--I IL’FI -’ 1 C x~,~~(S) k,,@3-‘). (9.2.1) 
ne0 SSZF 

THEOREM 9.3. Zf Z = ZZt C, Z’ = ZZ’t, c’ (C, C’ are unipotent classes in 
L, L’) and $9, q, (resp. F’, 40;) is the restriction of 8, qn, (resp. &‘I, &) to 
C (resp. C’), then 

= lLFI -’ ILfFI-’ C C xF.,,(5) 5,,,,;(n5n-‘). (9.3.1) 
?lEBtECF 

9.4 
First we note that 

(9.4.1) Theorem 9.2 holds if L, L’ are not conjugate under an element of 
G. 

Indeed, by the trace formula for Frobenius maps, the left-hand side 
of (9.2.1) is equal to ,Z( -1)j Tr(Fr, H:((G, K@ K’))). (The map Fr is 
defined as the composition HL(G, KOK’) +F* Hi(G, F*K@F*K’) -+q@@ 
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Hf.(G, KOK’)). By 7.2 we have H:.(G, K@K’) =0 for all i, hence the left- 
hand side of (9.2.1) is zero. The right-hand side is also zero since, under 
our assumption, 9 is empty. 

We now prove that 

(9.4.2) Theorem 9.2 holds under the following assumptions: C = Y:C, 
C’ = SYt, C’ (as in 9.3), 8’ 1 2:. is a constant sheaf, & 1 .Z: is a nonconstant 
sheaj: 

We first show that H:,(G, K@ K’) = 0 for all i. We may assume that L, L’ 
are conjugate in G (see (9.4.1)). Then K,, Kb are clean, see (9.1.1), and by 
7.2 it is enough to show that Hf.(L, K,@f*Kb) = 0 for any i and any 
isomorphism f: L z L’ given by conjugation by an element in G; the last 
equality follows from 7.7 and our assumption on 8, 6’. From the vanishing 
of H:(G, K@K’) we deduce, as in the proof of (9.4.1) that the left-hand 
side of (9.2.1) is zero. We now show that the right-hand side of (9.2.1) is 
zero. It is enough to show that for any n E 8, the sum 
c. ~x~.,,!t) x,.,&n&‘) is zero. By the trace formula for Frobenius 
ma’,,, thi., sum is equal to the alternating sum of traces of the Frobenius 
map on Hf(Z, &@ad(n)*&‘). It is enough to show that the last space is 
zero for all i. This follows from 7.7 and our assumptions on &, 8’. 

Next we show: 

(9.4.3) Theorem 9.3 ,follows -from its special case in which Z?‘““, n 2tSn 
TG= (e). 

- - - -, Let r= Z’““, n 2:. n YG and let G = G/r. Let L, L’, C, C be the images of --- 
L, L’, C, C’ under the canonical map p: G + G. Note that G, L, L’, c, c’ 
have natural F,-structures. Let B (resp. Y’) be the local system on C 
(resp. C’) defined by 4 (resp. 9’) by the isomorphism C % C 
(resp. C’ 1 Cl) induced by p. Let (PI : F*F z g, Cp’, : F*g-’ z F’ be induced 
by cp, , cp; . Then 9 is L-equivariant (since f c a”,) and similarly 9’ is Z’- 
equivariant. We can define a complex R on G in terms of G, E, 1 H P,..., in 
the same way as K was defined in 8.1 in terms of G, L, b,.... We define -- 
similarly R’ on G, in terms of G, L, 1 IX! 8’,.... We have K= p*K[dim r], 
K’ = p*pCdim rl, QL.G,c,.s,,,(~) = ( - 1 Idimr PL,G,c,F.~,(P(u)~ and 

Q ~~,~,c,,w.,&4 = (- 1 )dim’Qz,,c,c,.s,,,;(~(~)). 
It follows immediately that the truth of (9.3.1) for G implies the truth of 

(9.3.1) for G. We have ZZ’F n Z?‘p, n Z& = {e> and (9.4.3) follows. 
We now show: 

(9.4.4) Theorem 9.2 holds under the following assumption: there exist 
parabolic subgroups P, P’ of G, defined over F,, having L, L’ as Levi sub- 
groups. 
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We may assume that L, L' are not conjugate in G (see (9.4.1)), so that 
K,, Kb are clean (see (9.1.1)). We shall use the description (8.2.3) of K; note 
that in our case, the map II/ is defined over Fq. We deduce that 

Similarly, we have 

xK’,Jg) = lPfFl -’ c XO’,&&- ‘gx’)). 
X’EGF 

x’ - ‘gx’ E Z’ up 

It follows that 

lGFl ~’ 1 xcpP( g) xtc.qA g) 

= I@ -’ lPFl -‘I prFl -’ 

x c 
geGF 

xg,&P(x-‘g4) xl’,~pb(~P,(x’-‘gx’)). 

x,.x’ t GF 
x - ‘gx E zup 

x’ ‘g-x’ t Z’ Up’ 

We partition he last sum into partial sums according to the P-P' double 
coset of xP ‘x’. The partial sums corresponding to double cosets PnP' such 
that n-'Pn, P' do not have a common Levi subgroup are zero. This follows 
from the identity: C UE U; x~,~P( gu) = 0 valid for any F-stable parabolic 
Q $ L and any gE QF (which follows from the fact that K, is strongly 
cuspidal and clean) and from the analogous identity for B’. 

Consider the partial sum corresponding to a double coset Pn,P' such 
that n;'Pn,, P' have a common Levi subgroup. We may assume that 
no-'Ln,=L'; our partial sum can be rewritten as 

lLFl -’ IL’FI -’ 1 c L?,,,(5) k.,@W) 
nt@ St‘rF 

WE PnoP' 

and (9.4.4) follows. 

9.5 
We now prove that Theorem 9.2 holds for G under the assumption that 

Theorem 9.3 holds for G replaced by Z:(s) where s is any semisimple 
element of CF. 

We shall evaluate the left-hand side of (9.2.1) using Theorem 8.5. We 
have 
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(The notations L,, C,,..., are as in 8.4; these depend on S. The notations 
L:., C:.,..., are defined similarly in terms of L’, C’,....) By our assumption, 
we have 

(To be able to apply our assumption, we must first verify that the 
appropriate complexes on L.,, Lt.. are strongly cuspided. This follows from 
the assumption (9.1.1) together with 7.11(b).) Note that 

Note also that for n E Z’(s), the condition nL,n-’ = L:. is equivalent to 
the condition nxLx ~ ‘n ~ ’ = x’L’x’ -~ ’ (since s is isolated in xLx -‘) and the 
condition nC,n ~ ’ = C’,, is equivalent to the condition ?zxC.~~‘n--’ = 
s’C’x’ ~ ‘. Hence 
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We now make the change of variable (x, x‘, n)~--+ (x, n, n’), n’ = x’- ‘nn. 
The condition nxLx-‘n-l = x’L’x’-’ becomes n’Ln’-’ = L’; the condition 
X ‘-‘sx’EZ, becomes n’x-ln-lwzxn’pl.C;, i.e., x-lsx E n’+‘C; n’. Since 
n’-‘C;n’nC, = 125, we must in fact have n’-‘C;n = C,, hence n’ E 8. Our 
sum becomes 

We now make the change of variable (s x, o) H (cr, x, u’), (T = x- ‘.sx E 27, 
“‘=x-l ux E aC n Z’(O)~. Our sum becomes 

as required. 

9.6 

We shall now prove that Theorem 9.3 holds for G under the assumption 
that it holds for groups of dimension strictly smaller than that of G. We 
can easily reduce the general case to the case where E, &’ are irreducible, 
which we now assume. By (9.4.3) we may also assume that EZFn 2’:. n 
TG = (e}. The argument in 9.5 can still be partly carried out using 8.5; it 
gives the following identity: 
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Since 3: n 5:. n $Y’G = {e}, by assumption, we must have s = e in the 
last expression, which is therefore equal to: 

IG’I -’ 1 Qus.c.~,&) Qw,c~.F.&) 
utCF 

- lLFl IL’“1 1 c x,-.,,(5) xF.,~,(~w’). (9.6.2) 
neR <EC+ 

We can write & in the form Ce EX 9 (if we identify Z?‘““, . C with ZE’E”“, x C); 
here ?? is a local system of rank 1 of Z?““, . Moreover, ‘pO: F*6 7 d may be 
identified with 6, IZ $1, where 6, : F*C!Y 13. Similarly, we identify 6’, & 
with g’ EX 9’, 8; EX 4; where ie’ is a local system of rank 1 on 2:’ and 
6;:F*Yr%'. 

Note that in (9.3.1) (8, cpO) and (e’, &) do not enter explicitly; only 
their restrictions (9, ‘p, ), (9’, cp’, ) to C, C’ matter. Hence to prove 9.3 we 
are free to choose (<YY’, 6, ), (Y, S’,) as we please. 

Assume first that (SO,.)“‘# (e>. We consider a nontrivial character 
8, : (~~,,)“- Q 7. There is a unique pair (?Y’, S’,), where 3’ is a local system 
of rank 1 on YF, and S’, : FY‘ 3 +?‘, such that x!$,,~; = 8,. Then 3’ is not 
isomorphic to 0,. We take 9 to be the local system Q, on Z?‘““, and we select 
any isomorphism 6 I : F*Y 5 Y. With this choice of (??,6, ), (Y’“, S’, ), the left- 
hand side of (9.6.1) is zero, by (9.4.2); hence, the expression (9.6.2) is zero. 
Thus, 9.3 holds for G, (,F, 4,) and (5’, 4;). It also holds in the case where 
(20 )“= [ej and (y(‘)I’# fp) . since L, L' play a symmetric role. We are 
thefefore reduced to the caie where (Y(j-)‘= (zY(:,)~= {e). 

A torus over F, which has no rational points over F, other than e is 
necessarily an F,,-split torus and we must have q = 2. (This fact is also used 
in [3, Proof of 6.91.) Thus -Cry-, YZ’F, are F,-split tori. It follows that L (resp. 
L’) is a Levi subgroup of a parabolic subgroup P (resp. P') of G, defined 
over F,. Therefore, we may use (9.4.4) and we see that the left-hand side of 
(9.6.1) is zero. Hence, the expression (9.6.2) is also zero, so that 9.3 again 
holds. 

It is clear that the arguments in this section and the previous one provide 
an inductive proof of both Theorems 9.2 and 9.3. 

9.7 
We preserve the setup of 9.1. We denote by 8” the local system on C 

dual to &: the stalk 8; is equal to Hom(&, 0,). We denote by 
cp;:F*& - 1 R’ the contragredient of ‘pO: F*& % 8 (i.e., the isomorphism 
characterized by the property that for any 4 EC, 9”“: 8, % 8’; is the 
isomorphism contragredient to cpO: &Ft 3 &(. Assume that 8,&’ are 
irreducible. Let Q(S, 8’) be the set of all elements n E 13 such that ad(n)*&’ 
is isomorphic to Q-. We associate to 12 EO(&, 6’) a number E(IZ)E a,? as 
follows. Let [: ad(n)*&’ 3 6” be an isomorphism (it is unique up to a non- 
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zero scalar in 0,). Then s(n) is characterized by the property that in the 
diagram 

we have [. &, = s(n) #(I. [, for all < E 2. Clearly, s(n) is independent of the 
choice of [. One checks that s(nl) = s(n) for all ZE LF so that E factors 
through a function on 13(&, 8’)/LF denoted again E. 

We have the following result: 

LEMMA 9.8. If n E 8, then 

E(n) 4 dim,.-dimL (LFI if n E 0(&. 8’) = 
0 otherwise. 

Proof: The fact that this sum is zero when n +! 0(8,&‘) follows from 7.7, 
exactly as in the proof of (9.4.2). Assume now that n E t9(S, 6’). Then the 
local system 8= ad(n)*&‘@& is isomorphic to the direct sum 0,@8,, 
where 8, is a direct sum of irreducible nonconstant local systems, which are 
3: x L-equivariant. From the proof of 7.7 we see that Hi.(C, $I ) = 0 for all 
i. It follows that Hf.(Z, b)rHf(C, Qe,). 

The isomorphisms qDo, & induce an isomorphism @: F*8% 8, which 
respects the summand Q, and induces on it e(n) times the obvious 
isomorphism F*012i0,. By the trace formula for Frobenius maps, our 
sum is equal to the alternating sum of traces of the Frobenius map on the 
spaces H:,(C, 8). Hence it is equal to s(n) C,( - l)‘Tr(F*, H’,.(C, 0,)). 
Consider the map f: E -+ C constructed in 7.7 (for L instead of G) in 
terms of a base points y E Z. By choosing VEZ~, we may assume 
that c and f are defined over F,. From the proof of 7.7 we see that 
Tr(F*, H:.(C, 0,)) = Tr(F*, Hf.(z:, 0,)). Hence our sum is equal to 
s(n) C( - l)‘Tr(F*, Hf.(z:, a,)) = s(n) Ic”I = E(H) lLFl [Y~‘l~ IiT”“,(y)‘I -I. 
By (7.1.2), a”,(y)/%““, is a (connected) unipotent group. It follows that 
I~CJ(~)FI. Iop~l = I(oJ”,(~)/~~“O,)F[ =qdim~‘LO(~)--dim~.OL=qdimL-dimZ, This 

completes the proof of the lemma. 

Using the lemma, we can now reformulate Theorem 9.2 as follows. 
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COROLLARY 9.9. With the assumptions of 9.2, we have 

I@ -’ c xtdg) x,c.qAg) 
gtGF 

= (.,,,f, ,,L E(n)) qdimzpdimLd. (9.9.1) 
I f 7% 

In particular, the left-hand side of (9.9.1) is zero unless there exists n E G’ 
such that nLn - ’ = L’, nCn -’ = C’, and ad(n)*&’ is isomorphic to 8”. 

9.10 

Now let C = 2: C, C’ = ai. C’, 9, cp,, 8’, cp; be as in 9.3. We assume 
that B, 9’ are irreducible as local systems on C, C’. Let b, qpo (resp. 
&‘, cpb) be the inverse image of 9, ‘p, (resp. 9’, cp’,) under the canonical 
map C -+ C resp. C’ -+ C’. If n E 8, we have clearly 

With the notations in 9.7, this equals E(n) qdlmL-dlmZ lLFj IZ??zpo,“I -’ if 
ad(n)*&’ is isomorphic to &” and is zero otherwise. 

We now assume that L’= L, C’= C, &’ = I” qb = cp;. We shall prove 
that in this case 

E(n) = 1 for all nE e (9.10.2) 

(notations of 9.7). 
According to [4, 9.21, the local system x,(6’) on Y (notation of 8.1) has 

a canonical direct summand 9 which is characterized by the properties 

(a) 3 is an irreducible local system and it has multiplicity one in 
x*(8 

(b) X:IC( Y, 9) # 0 for .Y in a dense subset of the set of unipotent 
elements in E 

Clearly F*Y also satisfies (a) and (b). Hence the isomorphism 
cp’: F*rc,($)~rr~(z:‘) induced by qb maps F*S isomorphically onto 9. 
Now let [: ad(n)*&’ + b’ = 6’ be an isomorphism. Then [ induces an 
isomorphism [, : ~~(2’) s ~~(2’) ( see [4, 3.53 or 10.2), which necessarily 
preserves the summand 9. From the definitions it follows immediately that 
in the diagram of isomorphism 

h07!?7 3.4 
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~*@‘)F(y) -L ~*@‘)FoJ) 
‘p’ I I ‘p’ 

n*(b),, A x*m, 
we have ii .d’ = s(n)@ * i,, for any y E Y. The same identity must then hold 
in the diagram 

Since 3 is irreducible, ii must act on each FV as multiplication by a scalar 
in 07, independent of y. This forces s(n) to be equal 1, as stated in (9.10.2). 

We note also that, according to [4, 9.21, for any element g E N,(L) we 
have automatically gCg - ’ = C’ and ad( g)*$’ z &‘. Using this and (9.10.1), 
(9.10.2), we can reformulate Theorem 9.3 as follows: 

-COROLLARY 9.11. We make the assumptions of 9.3; in addition, we 
assume that B. 9’ are irreducible. Then 

uecF 
uni 

IN~(L)F/LFI . (opF( --1 qdimC-dim(U~~) 

if L’ = L, C’ = C, F’ = F, cp; = cp I- 
= 

0 if there is no g E GF such that 

gw’ = L’, gCg-‘= c’, ad(g)*F’xF” . 

(Here, F is the local system on C dual to F and cpi : E*F 5 F is 
the contragradient of cp 1, (cf. 9.7).) 

10. ORTHOGONALITY FOR CERTAIN CHARACTERISTIC FUNCTIONS 

10.1 

In this chapter, we preserve the assumptions of 8.0. (Note, however, that 
the definitions in Sections 10.1-10.3 make sense for any algebraically closed 
ground field k. ) 

Let L, C, b, K be as in 8.1. We assume that d is irreducible. Let A be an 
admissible complex on G which is isomorphic to a direct summand of K, 
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(see (8.1.2)). Then V, = Hom(A, K) is a finite dimensional Q,-vector space. 
Let d = End(K) be the endomorphism algebra of K in A’G: it is a finite 
dimensional semisimple algebra over 0,. Composition of maps (0, u) -+ 0. u 
(0 E J$, v E V,) makes V, into a left (irreducible) d-moule. 

Note that A H V, is a l-l correspondence between the set of irreducible 
components of K (up to isomorphism) and the set of irreducible left .al- 
modules (up to isomorphism). 

10.2 

The algebra d is at the same time the endomorphism algebra of the 
local system n,$ on Y (notation of 8.1). We now describe & following [4, 
3.41. Let ./lr be the set of all n E NG(L) such that nCn- ’ = C and such that 
ad(n)*6 is isomorphic to b, (ad(n)g=ngn-I). Then M=, L and we set 
w  = ..Y’/L; it is a finite group. 

if M’E O-, let ‘J,, : 8-t 7 be the isomorphism defined by yn( g, XL) = 
(g, WC’L), where n is a representative for MI in ,/t‘. 

Let &,,,. be the one dimensional Q,-vector space of all homomorphisms of 
local systems 2-t ~$2, over y. Since rr,y,*z= IC,~, we have a natural 
imbedding zJ,,.~E~~(Jz,~) =&rd; we identify &,,. with its image in d. We 
then have 

Under the multiplication in the algebra A!, we have &,V. &We = J&,,,; 
moreover the unit element of d is contained in A$,, where e is the unit 
element of PV~. If we choose a basis element O,V in S& for each w, we then 
have 

8,,. . e,,., = i( w, w’)Q ,,,,,, I, where EL( ~1, w’) E &a:. (10.2.1) 

In particular, each 8,. is invertible. We also see that J& is the group algebra 
of %+-, twisted by a 2-cocycle. 

10.3 

We now state two orthogonality relations for d. 
Let 1: JZ? --f & be an automorphism of the algebra d. Let V,, I’,,..., V, 

be a set of representatives for the isomorphism classes of irreducible left ZZ’- 
modules V with the following property: there exists an isomorphism 
z 6J: V+ V of a,-vector spaces such that I~,(&) = ~(0) I Jv) for all 8 E -oi’, 
1) E V. Let us choose such an isomorphism t V, : Vi + V, for each i (1 d i < r); 
11,, are defined uniquely up to a nonzero scalar. We can now state 
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i 

1 if i=j = 
0 if i#j (foranyl<i, j<l). 

(10.3.1) 

= trace of the linear map eHe,l~-‘(0) 8,, 

of & into itself (for any w, w’ E w). 

Here, all traces are taken over 0,. 

(10.3.2) 

The proof of (10.3.1), (10.3.2) is essentially the same as that of the Schur 
orthogonality relations in the case of ordinary group algebras. 

10.4 

Assume now that K (see (8.1.2)) is isomorphic to F*K. Let cp: F*Kr K 
be an isomorphism. 

If A is an admissible complex of G which is isomorphic to an irreducible 
component of K, then so is F*A. Let V,, I’,*, be the corresponding left 
&‘-modules (see 10.3). We define a map p: VA + I’,*, as follows. Let 
v E V, = Hom(A, K) and let F*(v) be the corresponding homomorphism 
F*A + F*K. By definition, p(u)= qo F*(v): F*A + K. Then p is an 
isomorphism of Q,-vector spaces. It is &-semilinear in the following sense: 
p(Bv) = r(0) p(v), where z: d -+ d is the automorphism of the algebra &’ 
defined by z(8)=cpoF*(0)ocp-1 (f3Ed). 

If qA is an isomorphism F*A 7 A, then the map I’,*, -+ V, defined by 
Vl++V1°4D,4 -’ is an isomorphism of &-modules and its composition with p 
is an d-semilinear map oA: V, + V,, (TV =P(v)o(P;~, which is an 
isomorphism of Q,-vector spaces. (Conversely, if there exists an d- 
semilinear map V, + VA which is a Q,isomorphism, then F*A is 
isomorphic to A.) We have a natural isomorphism 

0 (A@ VA)zK, 
A 

where A runs over the set of irreducible components of K (up to 
isomorphism). It gives rise, for any ge G and any integer i, to an 
isomorphism at the level of stalks: 

This isomorphism can be described as follows: Let a E &‘;(A ), v E V, . Then 
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u defines a homomorphism ug: Xi(A) -+ XL(K) and a @ v corresponds 
under (10.4.1) to v,(a). 

Now cp: F*Kr K defines an isomorphism Y?&~)( K) s LP~( K) which will 
be denoted again cp; similarly, pa : F*A % A defines qa : JY?~F(~)(A) % &‘:(A). 

If F(g)=g and (p,:F*A-+ w A, it follows from the definitions that the 
endomorphism qa @ cA of X;(A) @ I’, is compatible, via (10.4.1), with the 
endomorphism cp of Xi(K). On the other hand, if F*A 8 A, then cp maps 
the image of Xi(A)@ V, CT S’;(K) onto a summand corresponding to a 
different A. It follows that 

Tr(cp, Z~(K))=~Tr(cp,, X;(A)) Tr(a,, V,4), 
.4 

(10.4.2) 

sum over a set of representatives A for the isomorphism classes of 
admissible complexes which are isomorphic to irreducible components of K 
and which are isomorphic to their inverse image under F, for each such A, 
we assume chosen an isomorphism qA: F*A 7 A and we define oA(u) = 
cp~F*(v)o (PA’ as above. (The traces are are taken over a,.) 

If we now replace cp: F*K+ K by 8,,.0 cp (see 10.3) for some w  E W and 
keep qA unchanged, then (TV is changed to 0,,0 eA (0, acts on V, by the 
d-module structure of V,). The identity (10.4.2) remains valid and gives: 

Tr(8,.ocp,~6(K))=CTr(cp,,~h(A))Tr(B,.oa,, VA), (10.4.3) 
.4 

where A, cpa, (TV are as in the sum (10.4.2). 
We now multiply both sides of (10.4.3) by Tr((8..oa,.,)-‘, V,,) (where 

A’ is one of the terms of the summation in (10.4.3)) and we sum over all 
UJ E #“. Using (10.3. I), we obtain 

Tr(cp,,, %;(A’)) 

= I-ly-J --’ c Tr(e,.ocp, ~h(K))Tr((B,,~a,,)~‘, V,,) (10.4.4) 
1 E * 

for any admissible complex A’ which is isomorphic to an irreducible com- 
ponent of K, such that there exists qDAS: F*A’% A’. Taking alternating sum 
over i in (10.4.4), we obtain the following identity for characteristic 
functions (see (8.4.1)): 

XA .rpA = I-JU -’ c Tr((~,.oa,)-‘, VA) x~,~, ‘p (10.4.5) 
H,E I 

valid for any admissible complex A which is isomorphic to an irreducible 
component of K and any isomorphism (P,~ : F*A r A. (Recall that gA(v) = 
qoF*(u)ocp,‘.) 



260 GEORGE LUSZTIG 

10.5 

Formula (10.4.5) is applicable to any admissible complex A on G such 
that F*A is isomorphic to A. Indeed, given such A, we can find L, C, 8, K 
as in (8.1.1), (8.1.2) such that A is isomorphic to an irreducible component 
of K. Then F*K is obtained from F-IL, L- ‘C, F*b in the same way as K is 
obtained from L, Z, 8 (see (8.1.2)) and PA is isomorphic to an irreducible 
component of PK. Since PAZ A, it follows that A is isomorphic to an 
irreducible component of PK. Using 7.6, we see that there exists gE G 
such that gLg-‘= F-IL, gEg-’ = F-‘2, ad(g)*(F*&)w& (ad(g): 
.E’+ F-‘Z, ad(g)x= gxg-‘). By Lang’s theorem we can write F(g) = 
g;‘F( g,) for some g, E G. Let L, = g,Lg;‘, C, = g,Eg,‘, C$ = ad( gi)*&‘. 
Then FL, = L,, FZ, =.X1, E*&‘i E 8,. Since replacing (L, C, &) by 
(L,, C,, &i) does not change K, we see that we can assume that FL = L, 
FZ = C, and that there exists an isomorphism cpO: F*l r d of local systems 
over C. 

This gives rise to an isomorphism cp: F*Kr K, as in (8.1.3). The formula 
(10.4.5) is then applicable to this K and cp. 

10.6 

Now let w  be an element of w; choose a representative n for w  in JV and 
an element ZEG such that z~‘F(z)=n-I. We set Lw=zLz-‘, CW=zCz-‘, 
6” = ad(z-i)*b (a local system on C”‘). Then FL, = L” and F.E” = C”. We 
define an isomorphism cp;: Fb” r 8’” in terms of qq, : F*d r & and of the 
fixed basis element 8, of dw, (see 10.2), as follows. The basis element 8,. 
defines for each 5 E C and isomorphism of stalks &t r &n)nenm~. Hence, 0, 
defines for each 5’ E Z”’ and isomorphism Gim~F(cl)Z + &n:n;-lF(C.)Znm~ = &FcZ-le,Z,. 
Composing with the isomorphism qo,: ~F(Z~~s,Z)+&i-~5.1, we get an 
isomorphism &Z-+(5,)z --f &== i5,;, i.e., an isomorphism && -+ 8;:; this is 
induced by a well-defined isomorphism cp;: F*&” s d”‘. We define 
rr”‘: p-, Y’“, d”‘, K”, cp”‘: F*K” SK”’ in terms of L”, C”, B”, cp; in the 
same was as rc: B--t Y, 2, K, cp: F*Kr K are defined in 8.1 in terms of 
L z, 6, vo. 

We have r” = Y and the map (g, XL) -+ ( g, xz - ‘LW’) is an isomorphism 
j: P-+ p commuting with the projections q xw onto Y. It is clear that 
j*z”’ is canonically isomorphic to 8. Hence j induces an isomorphism 
rc,$~ 7cTz”w hence an isomorphism j’: KS K”‘. One checks from the 
definitions that the following diagram is commutative 
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It follows that for any g E GF and any integer i, we have the equality 

Tr(f3,.0 cp, Z’gK) = Tr(cp”, XiK”‘). (10.6.1) 

We now replace K by its Verdier dual DK. (Note that DK is obtained 
from L, C, &’ in the same way as K is obtained from L, 2,&T.) The 
isomorphism cp[: P*& ” %6- (see 9.7) gives rise to an isomorphism 
cp”: F*DKr DK. We consider an element w’ E WA, and we choose z’ E G 
such that z’-‘F(Y) = n’-‘, where n’ E A’” is a representative of MI’. We 
define L”“, Z”“, (6’ )““, (DK)““, (~p”)~‘, as above, in terms of z’. Then we 
have an identity analogous to (10.5.1): 

Tr(B,ocp” XiDK)=Tr((cp”)““, X;(DK)““), (10.6.2) 

where 0, denotes the automorphism of DK contragredient to 8,... From 
(10.6.1) and (10.6.2), we deduce that 

lGFI--l 1 xX.,o,, Jg) XDK,e;.:m-(g) 
gGGF 

= I@-1 -I c xw,++(g) xcm)n,(qp- p(g). (10.6.3) 
,qEC;F 

We now make the assumption that IC(z’, I)[dim C] extended to L, by 0 
outside 2, (as well as its Verdier dual) are strongly cuspidal, clean com- 
plexes on L. This implies that the analogous statement is true for 
IC(EiM’, b”‘)[dim LY] extended to L”‘, by 0 outside En’, and for its Verdier 
dual. Hence we may apply 9.9 to evaluate the right-hand side of (10.6.3); 
we find that it is equal to (C, E(V)) qdimreddlmL, where v runs over the set 
0(P, (&“)““)/(Lw’)F (see (9.7)) and E(V) is defined as in 9.7. 

The map v-+~*=z’~’ vz is a bijection between @a”‘, (cS’“)“‘)/(L”‘)~ and 
the set of elements $E w  such that F(G) = w’OW-‘. Moreover, from the 
definitions, we see that E(V) can be expressed in terms of v* as follows: 

e,;J-‘(e,)e,, =&(V)e$? (w’-‘F(P)w = C), (10.64) 

where I is the automorphism of the algebra d, defined in 10.4. 
On the other hand, for arbitrary 0 E w, we have 

e,lz-ye,)e, = 2. en,.-LFcO,w. (A E Oh:) (10.6.5) 

(using (10.2.1) and the identity r(~&,) = J&I,,,,.) 
From (10.6.4) and (10.6.5), we see that C, E(V) is equal to the trace of the 

linear map 0 -+ 8,’ rP’(fJ)O, of & into itself. (The elements 8,, (0 E %‘“), 
form a basis of ~2.) This trace can be expressed as in (10.3.2). 
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Hence (10.6.3) becomes 

gem” 

= dh-dimlC y-r(ewoA, 4 VA) Tr((B,.a,)-‘, VA), (10.6.6) 
A 

where A runs over a set of representatives for the isomorphism classes of 
irreducible perverse sheaves which are components of K and are such that 
there exists VA : F*A 1 A. (Then gA is defined in terms of (Pi, cp as in 10.4.) 

10.7 

Let A,, A, be two admissible complexes on G and assume that we are 
given isomorphisms (Pi,: FrA, 2 A,, qAI: F*A,r A,. For j= 1,2, there 
exist Lj, Cj, &J as in (8.1.1) (with 3 irreducible) such that Aj is isomorphic 
to a direct summand of the complex Kj constructed in terms of Lj, Zj, 5. in 
the same way as K is constructed in (8.1.2) in terms of L, X, 6. By 10.5, we 
may assume that FLj= Lj, FZj = Cj and hat there is an isomorphism 
v,,~: F*c$s &J (j= 1,2). Let ‘pi: E*Kjr Kj be the isomorphism defined by 
cpoj, (see (8.1.3)). Let Koj= IC(E,, q)[dim Z;.] extended to Lj by 0 outside 
Zj. We make the following assumption: 

(10.7.1) rf L, is conjugate in G to L,, then the complexes K,,, DKO,j are 
strongly cuspidal and clean on Lj, for j = 1, 2. 

We shall denote ((Pi,) “: F(DA,)rDA1 the isomorphism con- 
tragredient to (Pi,: F*A, 3 A,. 

We can now state 

THEOREM 10.8. With the assumptions in 10.7, we have 

I@ -I c XA,.v.&) XA~,q&f) 
geGF 

= 
i 

0 $A, is not isomorphic t DA, 
-c (10.8.1) 

9 ifA, = DA, and VA, = (q&) -. 

Here, c = codim. supp A,. 

Proof: Assume first that (L,, .X1, 8;) is not conjugate in G to 
(L2, Z;,, &&). Then, by 7.5, A2 is not isomorphic to DAl. To show that the 
left-hand side of (10.8.1) is zero, it is enough, by the trace formula for 
Frobenius maps to show that Hi.(G, A, 0 AZ) = 0 for all i. Using 7.2 we see 
that it is enough to check that for any isomorphism f: L s L’ which can be 
realized by conjugation by an element of G, we have 
Hi.(L, K,,, @f*K,,*) = 0. But if f exists at all then, by our assumption 
(10.7.1), K,,, and f *K,,, are clean; since f *K,,2 is not isomorphic to DK,.,, 
the equality Hf.(L, K,,, 0 f *KO,*) = 0 follows from 7.8. 
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We now assume that (L,, C,, 8,“) is conjugate in G to (L2, C,, $). We 
cab then assume that Lz = L,, YE’, = C,, & = 8;; we shall write 
L, C, 8, K, cp instead of L,, C,, Fl, K,, ‘pl. 

We shall use the identity (10.4.5) for x~,,~~,. The analogous identity for 
x~~,+,~? can be written in the following form: 

(10.8.2) 

where aDA*: V,,, + V,,, is defined in terms of qA2 : F*DA, 3 DA, and 
cp-: F*DKrDK. 

I@-1 ~ ’ gFGF XAwp,,(g) XAW& A’) 

= lwl-* C Tr((@,aA,)-‘, VA,) Tr(ew,aDAZ2 VDA,) 
w.w’t x. 

Using (10.6.6) we see that the last expression is equal to 

lwlp2 c W(~,a,4,)p’, VA,) Tr(en.,amz, VDAz) 
M.,w’ t *f 

.4 

xTr(B,.a,, V,4) Tr(B,.,a,))‘, V,).q- 

(where A runs over the set described in (10.6.6)). Using now (10.3.1) twice, 
we see that this equals 0 if A, ~5 DA, and it equals q-” if A, = DA, and 
(Pi, = (p&. This completes the proof of the theorem. 

10.9 

We shall state a variant of Theorem 10.8. We keep the notations and 
assumptions of 10.7. In addition, we assume that Cj = Z?‘:, . C,, where C, is 
a unipotent class in L, and that (4, ~p~,~) is the inverse image under the 
projection Cj + C, of (9, ~p,,~), where 8 is a L-equivariant irreducible 
local system on Cj and cpI.j: F*F”19, (j= 1,2). 

We then have 

THEOREM 10.9. 

(10.9.1) 
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(The notations in the last sum are as follows: we set L= L, = L,, 
‘x=c,=z,, c.T=&1=$ ‘po=cpo,J: F*JTl r &. Then YV, K, cp: PK 5 K, 
VA,’ VLJ.4,~ QV”,P GVDA are defined in terms of L, Z:, 8, ‘p. as in 8.1, 10.2, 
10.4, and we set L” =2.zLz-1, where z-‘F(z) is a representative for w--l in 
N,(L). We set c = codim, supp A, .) 

Proof. Assume first that (L,, C,, LP,“) is not G conjugate to 
(L2, C2, FZ). By the trace formula for Frobenius maps it is enough to show 
that Ht(G,,i, A, @AZ) = 0 for all i, where Guni is the variety of unipotent 
elements in G. Using (7.3.1) we see tha it is enough to check that for any 
isomorphism f: L, z L, which can be realized by an element of G, we have 
Hz((L,)““i, K,,, Of*&,,) = 0 for all i. If such f exists at all then, by the 
assumption (10.7.1), K,,, and f*K,,, are clean. We may clearly assume that 
they have the same support (i.e., f.Z= C’). By 7.8, we have 
Hi(L,, K,,, Of*Z&J = 0 for all i, hence Hi(Z’“,, . C1, &r Of*&) = 0 for all 
i. This implies that Hr(C,, $i @f*P*) =0 for all i, and hence HL((Ll),,i, 
K,,, of*&,) = 0 for all i, as required. 

We now assume that L, = L, = L, C, = C, = C, &I = 6’; = 8, ‘po,, = cp&. 
We shall use the following analogue of (10.6.6): 

ucGF 
uni 

=q-‘~.Z?~~-‘#{P~W 1 w’-‘F(O)w=O}. (10.9.2) 

The proof is entirely parallel to that of (10.6.6); it uses 9.11 instead of 9.9. 
(Note that in the present case there is a canonical choice for the basis 0, of 
d, see [4, Sect. 91; it satisfies 8,0,. = (I,,,,. and l(0,) = OF-~(,).) 

Using (10.9.2), (10.4.5) for xa,,,, and (10.8.2) we see that 
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(We have used the following fact: 

This completes the proof of the theorem. 
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sheaves and its applications. 15. Induction, restriction, and duality. 16. The two- 
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This paper is part of a series [S, 131 devoted to the study of a class G of 
irreducible perverse sheaves (called character sheaves) on a connected 
reductive algebraic group G. (The numbering of chapters, sections, and 
references will continue that of [S, 131.) 

This paper is a step towards the classification of character sheaves on G. 
One of the main results is the following one: under certain assumptions, 
there is a natural surjective map with finite fibers from G to the set of all 
pairs (9, c) (up to conjugacy by the Weyl group), where 9 is a tame local 
system on the maximal torus and c is a “two-sided cell’ in the stabilizer W:’ 
of 9 in the Weyl group. The assumptions made on G are 

(a) G is clean (see (13.9.2)); 

(b) for any 2, the pair (G, 2) satisfies the parity condition (15.13). 

These assumptions are actually statements about cuspidal character 
sheaves and are trivially satisfied when G = GL,. In the general case, the 
assumptions will be verified (in good characteristic) in another paper in 
this series. 

The main results of this paper are rather similar to results in [6] 
(especially the disjointness theorem [6, 6.171). The proofs in the present 
case must proceed in a quite different way, although towards the end the 
two proofs become almost identical. 

The following convention will be used in this paper: From 12.2 to 14.14 
the ground field k will be assumed to be Fq. Several results in these sections 
are valid for arbitrary k; they can be reduced, by general principles, to the 
case Fq. We shall mark such results by a (*). In the other sections, k is 
arbitrary (algebraically closed). 

* Supported in part by the National Science Foundation. 
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11. SOME INVARIANTS OF CHARACTER SHEAVES 

11.1. In this chapter, k is any algebraically closed field. Let 
Y, Y E .Y’( T) (see (2.2). We have the following result. 

PROPOSITION 11.2. (a) If Y, 9’ are in the same W-orbit in Y(T) (see 
2.2), then the sets e,, G,, (see 2.10) coincide. 

(b) [f .YE W is such that 6p’= (x- ‘)* 6p then the map w --+xw.~~’ is 
an isomorphism W, Z, W”, (see 2.2) and for any MJE W” we have 
xi ( - 1)’ PH’( Kz) = C, ( - 1)’ “H’( K$:,- ,) (equality> in the Grothendieck 
group XC qf J4G; see 6.3). 

(c) If Y, Y’ are not in the same W-orbit in Y(T), then the sets 
Gy, G,. are disjoint. 

(d) The Verdier d&it?* D: ,XG + ./MC defines a bijection 
G,& y’+~. It takes cuspidul character sheaves to cuspidal character 
sheaves. 

Proof. To prove (a) and (b) we may assume that Y’ = s$6p where s0 is 
a simple reflection in W. 

If P”lP’, then (a) is obvious and (b) follows from 6.5. Assume now 
that 6p’# Y. Let s= (sl, So,..., s,) be a sequence in S such that 
S,S*“‘. r F E W’. Let s( 1) be the sequence (so, s,,, sl, So,..., s,) and let s(2) be 
the sequence (so, s, , s2 ,..., s,, so). From the results in 2.15, it follows that 
“H’(K&) = “H ‘- ‘(KF)( - 1) (using the fact that so+ W’) and from 2.19 it 
follows that PHi(Kzl,) = “H’(K$i,). It follows that PH’~ *(Kz)( - 1) = 
J’H’(K$,), so that G, c G,T.. (The reverse inclusion is proved in a 
similar way.) This argument implies also that 1 ( - l)“‘H’(KT) = 
C (- 1)’ “H’(K$,) in X(G). Using 6.5, this equality can be rewritten as 
C (- )i “H’(KT) = C ( - 1 )i “H’(K$,,,,,) where \1’ = s, s2.. s,. Thus, (a) and 
(b) are proved. 

We now prove (d). Let s = (s,, s?,..., s,) be a sequence in S such that 
.Y1S* “‘S,E w,. The Verdier dual of “H’(Ky) can be determined as follows: 

D( PH’(KT)) = PHpi(D(KF)) (see [l, 2.1.161) 

= “Hi ‘( D(YC,)! 2’) (see 2.8) 

= PHpi((5,)! 02) (since 71, is proper) 

= PHpi((71,)! (Y’))[2d] (where d = dim Y, ) 
(11.2.1) 

= PH*d- I 
t(4)! (F’)) 

= "H*d7x3. 
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The first statement in (d) follows from (11.2.1) and the definition 2.10. If 
A E G, is a cuspidal character sheaf, then DA is cuspidal in the sense of 
(7.1.1). (See the proof of 7.6.) Since DA is a character sheaf, it must also be 
cuspidal in the sense of 3.10 (see (7.1.6)), and (d) is proved. We now prove 
Cc). 

If G, and G,, are not disjoint then there exist two sequences 
s = @I, ~z,..., s,), s’ = (s;, s;,..., s:,) in S such that s,s~~..s,.E W&, 
s; s; ...s;rE WY, and an irreducible perverse sheaf A on G such that A is a 
direct summand of both PH’(Kz) and PH”(E:‘) for some i, i’. Then DA is a 
direct summand of PHi”(i?~~‘) f or some i” (see (11.2.1)). By (7.4.2), we 
have q(G, DA @A) # 0, hence HF(G, PHi”(xT-‘) @ PH’(KT’)) # 0. Since 
E:-‘, KT’ are semisimple (1.12, 2.17(a)) it follows that Hi(G, RT-‘@ 
KT’) # 0, for some j. 

Using the method in 2.13, 2.14, we see that, by replacing, if necessary, s, 
s’ by subsequences, we have H{( G, K,“-’ @ K$‘) # 0, for some j’. Using the 
method in 2.15, 2.16, we deduce that there exist WE wi’, W’E IV”, such 
that H<(G, Kf-’ 0 KS’) # 0, for some j”. It is therefore enough to prove 
the following result. 

LEMMA 11.3. If 9, 3’ are not in the same W-orbit then Hi,(G, Kz-’ @ 
K$‘) = 0 for all w  E W”, w’ E W”. and all integers i. 

Proof: An equivalent statement is (with the notations of 2.4) 

Hf( Y, x Y,,,, (3) q 9’) = 0 
G 

for all w  E Wlfpr w’ E lKP9 and all i. The variety 

Y, x Y,, 
G 
= ((g, B’, B”)~GxS?x33 ) (B’,gB’g-‘)EO(W), B”,gB”g-‘NW)) 

can be partitioned into finitely many locally closed pieces Z, (y E W); the 
piece Z, is defined by the condition (B’, B”) E O(y). It is then enough to 
show that 

Hf.(Z,,, (c?) EX 8’) = 0 (W, (11.3.1) 

for all YE W. (We denote the restriction of (9) q 8’ to a subvariety of 
Y, x G Y,. again by (p ) q 8’.) 

Let us map Z, (for fixed y E W) to the space 

R= ((~1, B”, B~~‘,P)E~x~~x~~xX 1 

(B’, B”) E O(y), (B”‘, B”) E U( y ), 

(B, B”‘) E 0( w  ), (B”, B”) E 0( w’) 1 
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by (g, B’, B”)H (B’, B”, gB’g-‘, gB”g- ‘). The Leray spectral sequence of 
the map Z, -+ R shows that (11.3.1) is a consequence of the following 
statement. 

Let 9,. be any libre of the map Z,, -+ R described above. Then 

JY:(+~,(F)X~‘)=O for all i. (11.3.2) 

Consider the tibre I/~ at (B’, B”, B”‘, B’“) = (x’ Bx; ‘, x2 Bx; ‘, x3 Bx, ‘, 
x,Bx;‘). Let g,EG be such that g,x’Bx;‘g;’ =x,Bx,‘, g,x,Bx,‘g; ’ = 
x4Bxq’. We can assume that x3 = g,x’, xq = g,x,. A point in $., is com- 
pletely determined by its g-component. Thus, we may identify 

Here xl, x2 are two fixed elements of G such that XI ‘x2 = BjB (3 E N(T) 
represents y). The map z-,: $: --f T defined by x; ‘go ‘gg,x, E t,.(g). U 
makes II/?, into an afline space bundle over T and one checks that the local 

system (E’) q ? on II/, is isomorphic to the inverse image under 5,, of 
the local system Y- * @ (y- ‘)* Y’ on T. Hence to prove (11.3.2) it is 
enough to prove that Hi(T,YP’@(y-‘)*Y’)=O for all i. By 
assumption, d;p and 2’ are in different W-orbits. It follows that 
Y, = 5? - ’ @ (y ~ ’ )* Y’ is a non-constant local system of rank 1 on T, 
which belongs to F(T) (see 2.2). We are reduced to proving the following 
statement. For any 2, EY(T), 2, non-constant, and any i we have 
Hr( T, 9’ ) = 0. This follows from ( 1.11.1) and the Kiinneth formula. This 
completes the proof of the lemma and hence that of Proposition 11.2. 

COROLLARY 11.4. There is well-defined map G + { W-orbits in Y(T) j 
given by attaching to A E C? the W-orbit of Y, where A E II?,. 

11.5. Let K be an H-equivariant perverse sheaf on the variety X, 
where H is a connected algebraic group (see 1.9). Let H, be a closed sub- 
group of H which acts trivially on X. Then we have a natural 
homomorphism H,/Hy -+ Aut(K). In the case where K is irreducible, the 
group Aut(K) is canonically isomorphic to QP:, hence we have a natural 
homomorphism y: HI/H: + QI*; note that each of the sheaves &“K is 
H-equivariant and that the induced action of HI/e on any stalk of Z’K is 
a multiple of the character y. 

11.6. We shall apply this in the case where H = G x T and H, = ZYG 
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(= centre of G), imbedded diagonally into G x T. We take X to be one of 
the varieties in the diagram (see 2.5, 2.6) 

T+ ps’,- Y, c=-+ F$+G (11.6.1) 

where s is a sequence (s,, s2 ,..., s,) in S such that w  = si s2.. ’ s, E IV”, The 
action of H is defined as follows: 

-on T by (go, t,): t + w’(t,,) tt;‘; 

--on fs by (a,, to): (g, h,U, h,&.., h,B)-+(g,ggi’, gohot,ylU 
gd, 4-v a,h,W; 

--on Y, and ys by (go, to): (g, 4, B,,..., &.I+ (g,ggi’, g,Ag;‘, 
b@, 8, lY.., go& go l); 

--on G by (go, to): g-, g,gg,P 

Each of the maps in (11.6.1) is H-equivariant and H, = .Z& acts trivially on 
each of the varieties in (11.6.1). By (2.2.2), the local system 9 on T is 
H-equivariant. Let yO: HI/q --f Q,+ be the character by which H,/fl acts 
on each stalk of 9’. The local system $’ on Ys (see (2.5) is H-equivariant 
and the induced action of HI/H: on 2 is via the character y,, on each stalk 
of 2. The local system 2 on Y, (see 2.5) is H-equivariant and the induced 
action of H, /fl on g is via a character y , on each stalk of 2. Since .J? is 
the inverse image of 2 under Ys + Y,, it follows that yi = y,,. 

The constructible sheaf B on Fs (see 2.8) is H-equivariant, and is 
irreducible as a perverse sheaf (after a shift). Hence the induced action of 
H, /Hy on 8 is via a character y2 on each stalk of p. Since 2 1 Y, = 2, it 
follows that y2=y0. 

It follows that for each of the H-equivariant constructible sheaves 
Xi((it,)! 9) the induced action of HI/q is via the character yO on each 
stalk. Since (7~~)~ P=% is semisimple (1.12, 2.17(a)) it follows that for 
each of the H-equivariant constructible sheaves z@~(~H~(~~)) the induced 
action of H,/q is via the character yO on each stalk. The same is then true 
for Z’(A) where A is any irreducible direct summand of PH,‘(%) (in 
4’(G)). It follows that for such A (which is necessarily H-equivariant as a 
perverse sheaf) the corresponding homomorphism HI/H7 + Q,? = Aut(A) 
is given by y,,. 

Let us write 9 = ;1*(&,,$), as in 2.2. (We recall that 1: T-t k*, n 2 1 is 
invertible in k and $: ,u, + 07.) As w  E IV”, we have w(n) = II. 2; for some 
character ii: T-+ k*. We show that 

Y,(Z) = cl/(n,t=)) for all I’E%?~. (11.6.2) 

(Note that A,(t) E p,, whenever t E T is fixed by w, and in particular 
A,(z)E~,, if zeZFG. We also have n,(z)= 1 if .zEZZ’s.) 
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Consider the n-fold covering T +K T where T’ = {(t, z) E TX k* 1 
A(t) = 2”). The action t,: t -+ wP ‘( to) tt; l of T on T lifts to an action 
t,: (t, z) + (w-‘(to) tt;‘, zn,(t,)) of T on T’. Since 9 is the local system 
associated to the principal In-covering T’ -+z T and the character 
$: pL, -+ Q.Y, it follows that y(z) is given by (11.6.2) for any z. 

We therefore have the following result: 

PROPOSITION 11.7. Let A be a character sheaf of G. Assume that A is a 
component of PH’(i?3) where s= (s,, s2,..., s,) is a sequence in S such that 
w=s,s2” ‘S,E w,,, 2’ = i*(&&) E 9’( T). Let y: Z&/ZZ~ -+ 0: be the 
character associated to the G-equivariant perverse sheaf A, as in 11.5 with 
(K, H, H,) = (A, G, 3:). Let 2,: T+ k* be the character defined by w(A) = 
2 .,I;. Then 

for all zEE&. 

11.8. We define for any Y E Y(T) a map 

a: WY/W, + Hom(b”,/P’“o,, Q,?) (11.8.1) 

as follows. Write 9 = L*(&n,.j,) as in 2.2 and let I,.: T + k* be the character 
defined by w(1) = ME,. We define U(W): ZZ’o/EE~-+ a)* by LX(W)(Z)= 
$(A&)), z E f&a (Note that L,,(z) E pL, for 2 E 5?& and L,,.(z) = 1 for z E S”,.) 
When wE W,, then 1,. is in the root lattice, hence A,.(z) = 1 for z E Z& and 
M(W) = 1. It is easy to check that IX is a homomorphism and it is indepen- 
dent of the choice of 2, n, $. 

We now prove that 

the homomorphism c1 is injective. (11.8.2) 

Assume that WE WY is such that $(A,(z)) = 1 for all ZE ZZG, i.e., such 
that L,.(z) = 1 for all z E Z&. We must prove that w  E W,. This is clear if 
ZZYG is connected since then, as it is well known, we have W, = W”. In the 
general case, we imbed G into G = (G x T)/J& (where L& is imbedded 
diagonally into G x T) by g -+ (g, 1) 5YG. Then (? has connected centre 
( z T) and has maximal torus T= (T x T)/YG. The Weyl group of G with 
respect to T may be naturally identified with that of G with respect to T; 
the action of w  on p is (t, t’) 3” -+ (w(t), t’) FG. 

We extend I: T-+k* to a character 1: T-+ k* by X((t, t’) YG)= 
4 t) n(w(t’)) ‘. We have w(x) = 1.2. where I,,: T + k* is defined by 
X,.((t, t’) &) = L,.(t). (Note that 1,. is well defined, since J,,(z) = 1 for all 
ZETG, by our assumption.) Since G has connected centre, the equality 
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w(x) = X.2:: implies that w  is a product of reflections si E W each of which 
satisfies s,(x) = 1% (xi: T+ k*). Restricting to r, we find si(n) = A. A; where 
li = Xi ) T. It follows that w  E W, (see 2.3), as required. 

We can now state 

PROPOSITION 11.9. Let us fix 2’ E Y( T). There is a well-defined map 
G, + WY/W, given by A + w  W, where w  E WY is any element such that 
w=s1s2 .. * s, (SUE S), and A is an irreducible component of PHi(Kz), 
s = (Sl, sz,..., s,), for some i. 

Proof Assume that A is also a component of pH’(KT) where 
s’ = (s; )...) SF,) is a sequence in 5’ such that w’ = s; s;. * . s:, E I&. We must 
prove that w  W, = w’W,. Let y: 5!YG/~~ + 0: be as in 11.7. It is an 
invariant of A. From 11.7, it follows that cx(wW,) = y, CI(W’ W,) = y. Since 
c1 is injective (11X2), we deduce that w  W, = w’ W,, as required. 

COROLLARY 11.10. Let us fix TEE(T). Zf AE 6, is a component of 
both PHi(Kz) and PHi(K$,) (w, w’ E W”) then wW, = w’ W,. Let 
y: 2&/52’~ --f Q,?, 2, n, $ be as in 11.7. Then y(z) = $(,4,(z)) (ZE To), where 
w(A) = 3,. 17. 

Proof Let s = (sr, s2 ,..., s,), s’ = (s;, s; ,..., s:,) be sequences in S such 
that sis2 . . . s, = w, r = Z(w), s; s; . . . s:, = w’, r’ = 1( w’). 

As in 2.11, we see that KT = KF, hence A is a component of PHi(Kz). 
We define Z, and s,, (Jc I,), as in 2.6, 2.12, and let J be a maximal subset 
of Z, with the property that A is a component of pHh(Kz) for some h. From 
the proof of (2.14.1) we see that A must also be a component of “Hh’(Kz). 
We define I,,, s;, (J’cZ,.) in terms of Y, s’ in the same way as Z,, s, 
(Jc Z,) were defined in terms of 9, s; we then see that A must be a com- 
ponent of pHh’(K”S;,) for some h’ and some S c Z,.. From 11.9 it follows that 
the product of the terms in s, and the analogous product for s;, are in the 
same W,-coset. On the other hand, from the definition of Z, (2.12), it is 
clear that the product of terms in sJ is in the same W,-coset as the product 
of terms in s, which is w. Similarly, the product of terms in s;, is in the 
same W,-coset as w’. This shows that w, w’ are in the same W,-coset. The 
last statement in the corollary follows from 11.7. 

12. THE COMPLEXES Kz 

12.1. Let dR E Y(T) and let w  E W&. We shall complete the 
diagram 

Y,,,L G (12.1.1) 



CHARACTER SHEAVES III 273 

of 2.4 into a diagram 

V-77" 

2 - 
Y,.- Y,. 

(12.1.2) 

where 

P,,.= {(g,B’)EGxg I (B’, gB’g-‘)d(w))}, 

P,,= {(g,h)eGxG 1 h-‘gkBwB}, 

?,= ((g,h)eGxG (h-‘gkBwB}, 

p,,,-+ Y, and ?,- P ,_is (g, h) + (g, hBh - ’ ) (a principal fibration with 
group B), and P,,, 4 Y,, Y, 4 P, are the obvious imbeddings. (Here, 
O(w) is the closure of O(w) in a x 99 and &% 5 the closure of BwB in G.) 
Then ii,. is a proper map, Y, is open dense in Y,., hence Y, is open dense 
in 9,,. 

Let ti be a representative for w  in N(T), let 2, be the inverse image of 9 
under the map Y,. -+ T given by (g, h) + pr&(h-‘gh) (see 2.4); then p* is 
B-equivariant for the free B-action on Y,, given by right translation on the 
h-factor. Hence there is a canonical local system gi, on Y, whose inverse 
image under Y,, + Y,. is pti. This is the same as the local system P on Y,, 
defined in 2.4. Its isomorphism class is independent of the choice of 
representative 6. (However, we shall want to consider rational structures 
for this local system and for that the choiceof tt does pl_ay a role.) 

Let JF=IC(8,., P++)E9y8,,, j$=IC(Y,, &,)E~(Y,); then 95 is 
canonically the inverse image of Jz under Y,. -+ P,. Define 

RT = (fi,,)! Jff’ E 9G, K$ = (n,)! PC, E 9G. (12.1.3) 

The isomorphism class of Kz, K$ depends only on w, not on k; when we 
are interested only in its isomorphism class, we shall write Rz, Kf instead 
of Rz, Kc. (The notation Kz is compatible with that in 2.4.) 

12.2. Assume now that k = Fq and that we are given an F,-rational 
structure on G such that B, T are defined over F, and T is split over Fq. 
We assume also that Pa”‘y- “~a,. 

The varieties and maps in (12.1.2) are naturally defined over Fq; we shall 
denote by a subscript zero the corresponding schemes over Fq. The local 
system 9’ is also defined over F,. More precisely, let us write 9 = n*(6$,) 
as in 2.2. (Here 1: T + k* is a character, n > 1 is an integer dividing q - 1, 
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and $: ,u,, + QT.) Then there is a unique F,-rational structure on 6p such 
that the trace of the Frobenius map at the stalk of dp at CE T(F,) is 
@(n(t)+ y. 

We assume that ti E N( T)(I;,). Then &,, pti inherit natural F,-structures 
from 9’. (These F,-structures depend on +, since the map P, + T used to 
define pti depends on a.) It follows that Jz, .?$, E$, K$ can naturally be 
regarded as objects in the derived category of mixed complexes over the 
F,-scheme ( j$‘),, (?z),, G,, G,, respectively. It follows also that PHi(Ez), 
PH’(K$) can naturally be regarded as mixed perverse sheaves on G,. 

J, is a pure complex of weight 0 (by Gabber’s theorem 
Cl, 53.41). (12.2.1) 

IZ$ is a pure complex of weight 0 (by Deligne’s theorem 
[2, 6.2.61, by (12.2.1), and by the properness of il,). (12.2.2) 

12.3. Write l+Y9 =Q,. W, as in 5.1 and let E W& -+ N be the 
length function defined in 5.1. Let Z = w. W, be the W,-coset containing 
w  and let w, be the unique element in Zn 0,. Under the assumptions in 
12.2, we say that a subset Z of N(T)(E;) is a coherent lifting of Z if it has 
the following properties: 

(a) The natural map N(T) -+ W defines a bijection Zr Z (we denote 
by jj the element in Z corresponding to y E Z). 

(b) For any yeZ, the element (+r)-‘Ji can be written as a product 
nlnz...n,, where r = ?(w; ‘y); each nj is a representative of N( T)(F,) for a 
simple reflection of W, of the form u a u’ . u”, where u, u’, U” belong to the 
union of the corresponding two root subgroups (over F,). 

(The notion of coherent lifting appeared in the work of Kilmoyer on 
principal series representations of Chevalley groups over Fq; see also [6, 
1.231.) 

We can now state the following result which is analogous to [6,2.4]. 

THEOREM 12.4. Assume that we are in the setup 12.2. Assume that 
w  E W& and that 2 is a coherent lifring (12.3) of Z= w  W,. Let YE W be zn 
element such that y G w, for the standard partial order of W, so that Yy c Y, 
and Y, c P,. The restriction X’j(J,+) 1 Y, is a local system with finite 
monodromy. It is zero unless y E Z and i is even. If these conditions are 
satisfied and $j, ti are chosen in 2, then it admits a filtration (defined over 
F,) by local systems, with all subquotients isomorphic (over F,) to 
L$ @ Q,( -i/2) and with a number of steps equal to ny,w,i, where ny,,+ is the 
coefficient of Xi” in X (1/2)(l(w)--l(Y)-~w)+~Y))p -, ,,,, ,,+;lJX), where P,, are the 
polynomials of [ 121 for the Coxeter group W,. 
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ProoJ: We shall deduce the theorem from Theorem 1.24 in [6]. Recall 
that dp = A*(&&). Let N,, = BwBx k*, P, = N,,/B (where B acts on N, by 
6: (g, Z) --$ (g&l, k(b) z)), and let N, + P,, be the canonical map. Con- 
sider the principal p,-covering of P,. (defined in terms of k E 2): 

(U/UntiiX-‘)xk*-,P,, (u, z) -+ B-orbit of (ulii, 9). (12.4.1) 

Let Gti be the local system on P, attached to the pm-covering (12.4.1) and 
to $: 11, -+ &et. It is in a natural way a local system defined over F,. Let 
N,V = BwB x k*, P,. = m,/B, where B acts on i?,, by the same formula as on 
N,,.. Then N,,. is open dense in p’,., hence P,,, is open dense in B,,,. We have 
NJ c ii’,,,, P,. c P,. in a natura1 way. The following result is proved in 
[6, 1.241: 

The restriction of S’(IC(B,,, 8$,)) 1 P, is a local system 
(defined over F,,) with finite monodromy. It is zero 
unless y E 2 and i is even. If these conditions are 
satisfied then it admits a filtration by locai systems 
(defined over F,) with all subquotients isomorphic 
(over F,) to Tc@ 0,(-i/2) (where FEZ) and with a 
number of steps equal to n,:,,.i. ( 12.4.2) 

We now prove 

In the diagram Y,,. c Y,,, cprl P,. x k* -+= N,,, + P, 
where a(g, x, z) = (x-‘gx, zn), the inverse image of 2, 
(to Y,. x k*) and the inverse image of &* (to P,,. xk*) 
are isomorphic (as local systems defined over I;,). (12.4.3) 

First we note that the inverse image of PG. under P,. -+ Y, is gti and this is 
the local system associated to the following principal p,-covering of P,.: 

{(g,.q<)eGxGxk* (x-’ gxE BwB, A(pr,&x-‘gx))=t”} -+ P,., 

(g, x, Cl I--+ (8, xl. 
(12.4.4) 

(From this we see that 2, is B-equivariant for the free B-action on 3,. 
given by 6: (g, h) + (g, hb-‘); indeed this B-action on P, lifts to a B-action 
on the space (12.4.4), b: (g, x, 5) + (g, xb-‘, <A,(tb)) where I,: T+ k* is 
the character defined by w(A) = 1. A; and t, is the T-component of b E B,) 

Next we note that the inverse image of &‘,. under N, + P,,. is the local 
system associated to the following principal p,-covering of N,.: 

N,,. -+ N, , (g, z)-(g, Qx,Ag))-’ z”). (12.4.5) 
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(Indeed, we have a Cartesian diagram 

NW (12.4.5) b N w 

B 
I I 

(U/Un WK’) x k* (12.4.1) p 
* w 

where P(uti?u’, z) = (u, z), U, U’E U, ?E T.) Hence to prove (12.4.3), it is 
enough to show that the p,-coverings (12.4.4) and (12.4.5) have the same 
inverse image under ?, x k* + pw, fW x k* + N,. This follows from the 
Cartesian diagram 

{(g,x,z,S)EGxGxk*xk*Ix-‘gx~BwB,I(pr,(x-’gx))=5”)~ N, 

6 
I I 

(12.4.5) 

{(g,x,z)eGxGxk*)x-‘gx&vB} “, N, 

where y(g, x, 2, 5) = (x-$x -4% Jk, x, z, 5) = (g, x, z), E(g, x, z) = 
(x-‘gx, z”). Thus, (12.4.3) is proved. 

Consider the diagram 

Y, +--- rvxk* - P.v 

1 1 1 
~/-~wxk*-P, 

Consider the following three statements: 

(a) the statement (12.4.2); 

(b) Jhe statement obtained from (12.4.2) by replacing fv, P,, by 
YJ x k*, Y, x k* and Jj, &, by their inverse images to f.P x k*, Y,, x k*; 

(c) $e statement obtained from (12.4.2) by replacing PJ, P, by 
fy x k*, Y, x k* and 6$, gti by the inverse images of Zj, LX’,, under 
Yyc ?,,xk*, Y,,,c ?,xk*; 

(d) the statement obtained from (12.4.2) by replacing P,, P, by 
Y,, 7, and gj, &$, by L$, L$ 

Then (a) + (b) since P, x k* + P,,,cis a locally trivial libration with smooth 
fibres. Moreover, (c)o(d), since Y,,, x k* + P, is a locally trivial fibration 
with smooth and connected libres. From (12.4.3), it follows that (b)-(c). 
Thus, (a)*(d). Since the statement (a) is true, it follows that the 
statement (d) is true and the theorem is proved. 
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COROLLARY 12.5. The following identity holds in the Grothendieck group 
of mixed perverse sheaves over GO (for y < w): 

pfw~y)! WVJ I Yy,) 
n,,w.iPH’((~y)! (P+))( -i/2), if yEZ, )iEi, and i=even 

= 
0, if y$Zor i=odd. 

We now prove: 

PROPOSITION 12.6. With the assumptions of 12.4, the following identity 
holds in the Grothendieck group of mixed perverse sheaves over G,: 

c (-l)‘VP(R~)=C (-l)‘VP(K~) 
i 

i C C 1 ( -l)‘n,,,,iPHj(K~~)( -i/2) 
y < w j  i 
.!Jcz even 

where I; are chosen in 2 for all y E Z. 

Proof: Consider the distinguished triangle 

cr.;-,J,, r <iJ*y X”JJ,[-i]) 

in the derived category of mixed complexes on ( Y’,), (z gi denotes ordinary 
truncation). Apply to it (it,),; we get a distinguished triangle 

(CEw)! z <iL I J+, (E,.)! T<iJ*y (E,,)! 2PJ,[ -i]). (12.6.1) 

This implies the following identity in the Grothendieck group of mixed per- 
verse sheaves on G: 

c (- l)i+’ PH’((ti,)! (Xi&,)) 

=c (-l)‘PH’((E,,) ! z<iJ*)kC (-l)‘pH’((jlwb)! T<i-lJg,). 
j I 

Taking now the sum over all integers i in a large interval, we get 

c (-l)i+‘pffj((5w)! (c@J,))=~ (-l)jPH’(R,,). (12.6.2) 
4 i I 

Consider now the partition F, = u,, w  Yy. Let 

za= u r,. 
Y<W 

I(y)<a 
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Then Z,,cZrcZ,c ... are closed subsets of F,,,. Let #a: Z, 4 F,+,, 
$a: Z, - Z,- 1 4 P, be the inclusions. We have a distinguished triangle 

((ICI,)! ewJ*, (da)! h$@J,, (tiPI)! 4,*-l~iJ,) 

in the derived category of mixed perverse sheaves over (Y,,,),. 
Applying to it (E,)! we get a distinguished triangle 

((%)I (ti,h $,*@J,, (G)! (4,)! KS@Jti, (C)! (4,- I)! k- 1 x”‘J,). 
(12.63) 

This implies the identity 

C (- 1)’ pH’((%v)! (4,h 4S@J,) 

= C (- l)‘PH’((K,)! (+a)! k%@J,+). 

We have 

(q$,)! &?f’iJ, = PJ,, for a > > 0 

= 0, for a<O; 

hence by taking the sum over all integers a in some large interval we get 

1 (-l)jpH’((il,)! ZiJ,) 

= ; 7 ( - 1)’ PH’(kv)! ($a)! kW”J,+) 

= VFW T (- lY pH%~yh WiJ, I Yy)) 

= y;w 7 (- )j ny,w,i pHj(Kj)( -i/2), 

1 

if i = even 

YCZ 

0, if i= odd, 

the last step being given by 12.5. This, together with (12.6.2) gives the 
proposition. 

PROPOSITION 12.7*. Let 9 E Y(T) and let Z be a W,-coset in W$. Let 
A be an irreducible perverse sheaf on G. The following two conditions are 
equivalent: 

(a) A is a constituent of pHi(K$?) for some w  E Z and some i. 
(b) A is a constituent of PH’(Rf) for some w  E Z and some i. 
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Proof We use notations and results in the proof of 12.6. It is enough to 
verify the following statement. 

Let WEZ be such that (A: PH’(K-F))=O for any i and 
for any y E -5 y < w. Then (A: PH’(KT)) = - 
(A: “H’(KF)), for any j. (12.7.1) 

(Here, for any perverse sheaf K on G, (A: K) denotes the multiplicity of 
A in a Jordan-Holder series of K. ) 

From the long perverse cohomology exact sequence associated to 
(12.6.3) and the hypothesis of (12.7.1) we see that 

(A: PH’((?L)! (d,), d,*lPJ,)) = (A: PHj((fi,.)! (d,- I)! 42 $PiJ*.)), 

for any i, j and any a < f(w); in particular, 

(A: PH’(it,)! (d,)! (b:sPJ,., =o for a=f(w)- 1 (12.7.2) 

(since it is zero for a < 0). 
The same long exact sequence and (12.7.2) show that 

(A: PHq(itw,)! (q5,)! b,*X’J,.)) = (A: PH’((il,.)! ($,)! +:ivJ*)), 

if a = I(w), hence 

(A: PH’((il,), i7PJ,.)) = if i=O 
if i#O. 

(12.7.3) 

Next, we consider the long perverse cohomology exact sequence associated 
to (12.6.1). For i > 0, we see that 

(A: pH’((TT,,)! T<;-, .I,,)) = (A: PH’((fi,.)! T<J,.)) 

It follows that 

(A: PH’(f,.)! tGoJ,,)= (A: PH’(R,;,)). 

The same long exact sequence for i = 0 gives 

It follows that 

(A: pH’((fi,,), Af’J,.)) = (A: PHJR,.). 

Combining with (12.7.3) we see that (A: PH’(K,.)) = (A: PHj(i?,.)). This 
completes the proof of the proposition. 

607:57.3-h 
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PROPOSITION 12.8*. Let w  E WI. Then x% E 9G is semisimple (see 
1.12). 

Proof This follows from (12.2.2) and the decomposition theorem [ 1, 
54.51. 

12.9. Let @” denote the set of isomorphism classes of irreducible 
&p,[ I&]-modules. With each EE l@” one can associate canonically an 
Z!& O& Q,[z?, u-“*]-module E(u) as in [14, 1.1, 1.2; 6, 3.31; the 
corresponding modules E(u) Q &a,(~‘/*) form a complete set of irreducible 
representations of HY @& Q,(&*). Under the specialization d -+ Q,, 
u1/2 + q1’2, where ql’* is a fixed square root of q in Q,, E(u) becomes an 
f&(q) = HP @& Qrmodule E(q) and the E(q) form again a complete set 
of irreducible representations of H&(q). It is clear that 

Any d-linear function f: H&. --) QI(ul’*) such that 
f(h,h,)=f(h,h,) for all h,, h,EH is a a,(u”*)-linear 
combination of d-linear functions fE of the form 
fE(T,)=Tr(T,,,, E(u)) (EE @“). (The trace is taken 
over Q,[zP*, u-l’*].) (12.9.1) 

For each w  E IVY we set 

(12.9.2) 

(the sums are taken over all y E wW,; w1 is the unique element in 
Q2,n w  W, and P,, are the polynomials defined in [12] for the Coxeter 
group WA. 

We shall need some properties of Tr(T,, E(u)). (Compare [6, 3.3, 
(6.9.5)].) 

Tr(T,, E(u))E~.Z[U”*], (12.9.3) 

where i is a root of 1 of order dividing (Q,I, which depends only on E and 
on the W,-coset of w  E Wk. 

Tr(T;!,, E(u))=Tr(T,, E(u)) (12.9.4) 

where the bar denotes the involution of the ring 0pI[u1’2, uPi”] which is 
identity on or and takes u”* to u-“*. 

Tr(T,-1, E(u))=Tr(T,, E*(u)) (12.9.5) 

where E* is the representation of WY dual to E. 
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2/- ““‘Tr(T,, E(u))Tr(T,-I, E’(u)) 
9 

= (w,I?wT u”“‘)D,(u)-‘*dimEI, if ECZE 

/ 0, if E & E’. (12.9.6) 

Here D,,(~)E Q[u] denotes the “formal dimension” (or generic degree) of 
any irreducible WY-module E, appearing in the restriction of E to W,. 

Tr(T ,,,, (E@E)(u))=(-l)‘(w)z.?w)Tr(T;!,, E(u)), (12.9.7) 

where F: IV” + +l is the restriction to IV” of the sign representation 
w-+(-l)@V’ of w. 

PROPOSITION 12.10*. There is a unique function 

G, x Ivy --f Qh,(ul”), (.A El H c/w(~) 

such thar 

1 (- l)i (A: VI@?:)) LP 

u(~‘*)‘~~~~+“*“)c~.~(u) Tr(C:, E(u)) (12.10.1) 

for all w E W”, A E G,. (Identity in QJu”*, u-l”].) For any A and E there 
exists a root [ of 1 of order dividing JsZ,I and an integer f 2 1 such that 
c-lzJ(~wE w’y &,) ) c,.(u)~Q[u”*]. Zn particular, the identity (12.10.1) 
can be specialized for u ’ l’* = q”‘2 (s = 1, 2, 3 )... ). 

Proof: The uniqueness of the c~,~(u) satisfying (12.10.1) is clear. We 
now prove the existence. We shall consider the mixed complex I?$ as in 
12.2. From (12.2.2) and [i, 5.4.41 it follows that PH’(K$) is pure of weight 
i. By the definition of xu (see 6.3) it then follows that the left-hand side of 
(12.10.1) is equal to x,(R$). Using now 12.6 and the additivity of x, (which 
follows from [ 1, 5.3.51) we get the following identity in X(G) Oz & (see 
6.3): 

L(RZ)= C ( C ny.w,iUi’2) X,(J$F) 
yewWy i 

y< n, me” 

= c 
u(l/2)(/(w)~I(V)--T(H')+7(Y))p ~, 

W', ,.w;d4 L!(q) 
y E n' WY 

Y  6 w 

(notations of (12.9.2)). 
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By (6.3.2) this is equal to 

c 
U(1/2)(dimG+I(w)-7(w))P -, WI ,,+.(4 E’(Tyh (12.10.2) 

YQW 

where E’: H$-+X(G)@d satisfies s’(hlh2)=s’(hzh,) for all hi, ~,EH’. 
By (12.9.1) we can write 

my)= c c cA.A4 Tr(T,, W4) A (‘dye W”), (12.10.3) 
AeGrp EE WY 

where cA,Ju) E &P,(u”~). 
Now (12.10.2) becomes 

c c u(~‘~)(~‘~~+‘(~))c~,~(u) Tr(C’,, E(u)) A, 
AeC?y EE wp 

as desired. 
By the definition of c,,,(u), we have: 

where K~,~(u)EZ[U~‘~, ~“~1 is zero unless y is in a fixed W,-coset of IV” 
(depending on A). (Here we use 11.10.) Applying now (12.9.6), we get 

CA.E(U)’ c uPT”“Tr(T,, E(u)) Tr(7&I, E(u)) 
.VE Iv& 

=c ny;A(~) W+, E(u)). (12.10.4) 
?‘E W$ 

In the right-hand side of this equality we may assume (by the previous 
remark) that y runs through only one W,-coset of WY; using (12.9.3), it 
follows that the right-hand side of (12.10.4) is in [. Z[U”~, ~“~1 where [ is 
a root of 1 of order dividing JR,I. By (12.9.6), the factor multiplying 
c~,~(u) in the left-hand side of (12.10.4) is a divisor in Q[u, K’] of 
c W’E u/y uRn’). The proposition follows. 

12.11. The function c~,~(u) is defined with respect to 8. If we 
replace P’ by ,lip-‘, then cDA,Ju) is defined in the same way with respect to 
Y-l. (See 11.2(d) and note that IV”= W”-,.) We have 

CDA.E(U) = CA,E(U)* (12.11.1) 

Indeed, let d= dim Y,. We have D(PHiK$) = pH2d-ix$-’ = PH’K$m’. (The 
first equality is proved as in (11.2.1); the second equality is the hard 
Lefschetz theorem of [l, 5.4.101.) Now (12.11.1) follows from (12.10.1). 
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12.12. Let us write c A,E(~)=[P where c is a root of 1 and 
PEQ(u”*) (see 12.10). We show that 

c,,,*(u) = [-‘P. (12.12.1) 

To prove this, we use the following observation. The representation E* can 
be obtained from E by applying an element y in the Galois group of a, 
over Q which takes each root of 1 to its inverse. Since the construction 
E + E(u) is compatible with the action of this Galois group, it follows that 
Tr(T,,, E*(u)) is obtained from Tr(T),, E(u)) by applying y to each coef- 
ficient. The effect of y on c,,& ) u can be determined from (12.10.4). Since 
TQ(U) in (12.10.4) h as integral coefficients, it is invariant under y. From 
(12.10.4) it then follows that y carries C-,&U) to c,~,,.(u), and (12.12.1) 
follows. 

13. PRINCIPAL SERIES REPRESENTATIONS 

13.1. In this chapter we assume that we are given an F,-rational 
structure on G such that B, T are defined over F, and T is split over F,. 
We also assume given 9 = A*(&.,) E Y( T) as in 2.2 and that n divides 
q - 1. We regard 9 as a local system defined over F,, as in 12.2. Let 
F: G + G denote the Frobenius map. 

13.2. Let 9 be the vector space of all functions f: Gl’/U’-, a,. It is 
a G’-module: 

k,f)W”)=f( g,W”). f~9, g, g,eG’-. 

If fi~lV(T)‘, we define r,:P-+.P by 

Then h)riEN,T) F is a basis for End,F(P), and each 5, is invertible. Let 
8: T”+ 0: be the character defined by 

e(t) = $(i(t)‘“- I)‘y, lETF. (13.2.1) 

We define 

Then 9” is a GF-submodule of 9” and the maps tA: P* --P @’ (where ti runs 
through a set of representatives in N( T)F for the elements in HYP) form a 
basis for End& 9’). 
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The structure of the algebra End&S’) has been described by Kilmoyer 
and Howlett [ll]. We shall now describe their result. 

Let (WT)‘= { * 1 w  w  E IV”} be a set of representatives 
in N( T)F for the elements w  E WT with the following 
properties: 

(a) (3 1 ye WY} is a coherent lifting (see 12.3) of W, 
such that t=e. 

(b) (i 1 XGQ,} is any lfting of R, (see 5.1) such 
that P = e. 

(c) If xgQ, and YE W,, then (xy)‘=ip. (13.2.2) 

Choose an algebra homomorphism (preserving unit) h: End&B’) -+ Q,. 
(The existence of h is equivalent to the existence of an irreducible 
GF-module appearing in Be with multiplicity 1; this follows from the fact 
that the restriction of BB to UF contains any generic l-dimensional 
representation of iJF exactly once.) 

We define a Orlinear map c: f&(q) + End&@) by 

c(T,,) = q-(1/2)(l(.rv)--~-~)~~~~))h(Z*)-l z.eo: 90 --) gj3e (13.2.3) 

(x E Q,, y E W,), where ii-, 3, h are as above, H$ is the Hecke algebra over 
AZ’ defined in 6.1, and H’(q) is its specialization (12.9). Then 

[ is an algebra isomorphism (see [ 111). (13.2.4) 

For future reference, we note also the formula 

(q~~(-~)/2~~)(q-/(~‘)/2zi,) = q-mw2T,,,: gji3e + 90, 

valid for any representatives i, i’ in N( 7’)F for x, x’ E 0,. 

(13.2.5) 

13.3. For each w  E W$, the complex K$ E 9G (tin ( W$)‘, see 
(13.2.2)) comes naturally from an object in the derived category of mixed 
perverse sheaves on Go (over F,), cf. 12.2. Hence for each ge GF we may 
consider the alternating sum (see (8.4.1)): 

xKf,F(g) = 1 ( - 1 Ii Tr(F, ~#Gf’)), (13.3.1) 

where F denotes the map induced by the Frobenius map. Similarly, we may 
consider 

(13.3.2) 

We now prove 
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PROPOSITION 13.4. With the notations in 13.2, 13.3, we have for any 
gEGF: 

x,-pk) = ‘Wz, g, @I. (13.4.1) 

Proof From the definition of Kz (see (12.1.3)) we see that 

&?F(g) = c (- 1 Ii Tr(F; ff:.(n,‘(g), -%v), 

= i 1 Tr(F, stalk of P,, at (g, B’) E Y,) 
B’EJF 

(&B’)E yw 

(by the Lefschetz fixed point formula for the variety 7-c;‘(g)) 

=lBFI-’ 1 Tr(F, stalk of $*, at (g, h) E P,,) 
h.sGF 

h-‘gh E Bu,B 

+y-’ 1 Tr(F, stalk of 2 at pr,ti(h-‘gh) E T) 
htGF 

h-‘ghe BwB 

= )BFl-’ 1 ~(lz(pr,,(h-‘gh))‘Y-l’i”) (see 12.2) 
he@ 

h-‘gh E BwB 

=/p-l 1 B(pr,.(h-‘gh)) (see 13.2.1) 
heG6 

h-‘ghE B,vB 

= Tr(r, g, PO). 

COROLLARY 13.5. The sum 

is equal to the trace of the linear transformation of the Hecke algebra H”(q) 
(see 12.9) given on the basis elements T, (ZE W”) by 

T;+ T,,~-I. T,, T,;q (1/2)(l(w)i/(w’)-or)-~w,)) 

(Here w’ is another element in W’= WY-,, k’ is its representative in 
(W”)‘, and 9-l = (A-‘)* (&,+) is regarded as a local system (over I;,) on 
Tsuch that the trace of Frobenius on the stalk at t E TF is $(A~‘(t)cq~ ‘I’“) = 
q-‘(t).) In particulur, our sum is zero unless w W, = w’ W,. 

Proof The sum in the corollary is equal (by ( 13.4.1) to 

IGFJ -’ 1 Tr(z,, g, 9’) Tr(z,, g, .P”-‘) 
gtGF 

= Tr(z @ t w  W’) (9’” @ cP’~‘)~~) 3 (13.51) 
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where Be-l is defined just as Be, replacing 8 by O-r, and GF acts 
diagonally on 9’0 9 . ‘-’ Under the natural duality Ye@ Ye-’ +oyI giv;: 
by Lf’+C,u~,c~u F ~(ff’)(gU”), the automorphism r+ 
corresponds to the contragredient of z~,+,)-~: 8e+Pe. Hence (13.5.1) is 
equal to the trace of the linear transformation of End&Be) into itself 
given by r -+ rC,.)-~ 5ta. Using the isomorphism (13.2.4), we see that it is 
enough to prove the identity 

q,,,-,[(T,) zti = [(y-,,&l T,T,). q(l/*)([(n,)+‘(w’)-~w)-liw’)). c( (z E %?), 
(13.5.2) 

where ~1 E 0: satisfies CI = 1 whenever w  W, = w’ W,. 
Using the definition (13.2.3) and the fact that [ is an algebra 

homomorphism, we see that (13.5.2) is equivalent to the formula 

h(Q-1, Ti) = q’(x) 

and this follows by applying h to (13.2.5) with A? = (a))‘. 

PROPOSITION 13.6. In the setup of 13.4, we have for any g E GF: 

X&Y) = c p.x-b4x-dq)~ 4 (l/*)(i(w)-I(u)-~w)+T(u))X~~(g), 
UGWW9 

where P,, denote the polynomials [ 123 for the Coxeter group W,, x is the 
unique element in 0, n w  W,, and the representatives ti are taken in ( WY)’ 
(see (13.2.2)). 

Proof There is a natural spectral sequence 

E~b=~u(PHbR~)=>~a+b(R~) 

in the category of mixed constructible sheaves on GO. Taking stalks at g, 
we get a spectral sequence E$b = A?;( “HbR$) * Zf + b( K$). Taking alter- 
nating sums of traces of the Frobenius map, we get 

xQ4g) = 1 (- 1) u+b Tr(F, .X;( “HbEz)). 
4 

(13.6.1) 

Similarly, we have 

xK;,F(g) = 1 (- l)a+b Tr(F, Xf(pHbK$)). 
a,b 

(13.6.2) 

The desired formula follows now from (13.6.1), (13.6.2), and 12.6. 
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COROLLARY 13.7. In the setup of 13.5, the sum 

is equal to the trace of the linear transformation of the Hecke algebra H>(q) 
(see 12.9) into itselfgiven on the basis elements T, (ZE W”) by 

Tz + q 
(1/2)(/(~)+/(M’))C~,,~, T,C:,. 

(Here CL., Cw.-f are as in (12.9.2)) 

Proof. This follows immediately from 13.5 and 13.6. 

13.8. We recall that Y = A*(c?‘,~) is fixed. 

In the rest of this chapter, we shall assume not only 
that n divides q - 1, but also that every complex A E Gy 
is isomorphic to F*A, where F is the Frobenius map 
corresponding to the F,-structure on G. If n only 
divides q- 1, then each “H’(K$‘) (FEZ, @E (IV,)‘) is 
defined over F, (see 12.2), hence F* defines a per- 
mutation of the set G,. Replacing q by a power, if 
necessary, we may therefore assume that F* acts 
trivially on the set G, .) (13.8.0) 

In the rest of this chapter we shall assume chosen a 
specific isomorphism qSA: F*A% A, for any A E Gy, 
with the following property: for any r> 1 and 
any g E YT-:, (supp A = YL,L. of dimension 4, 
(5;: .X,“A --+ .X,q “A has all eigenvalues of the form root 
of 1 times yldlmG ~/IV’?, (13.8.1) 

(such $A exists, since A 1 Y,,, is a local system with finite monodromy.) 
Since PHi(Rz) is semisimple, we may write canonically 

PH’(I?:) = @ /, (A 0 VA.i,k) ( 13.8.2) 

(A runs through G2), where V,,i,,. are finite-dimensional vector spaces over 
0, endowed with endomorphisms GA: V,,i,ti + VA,i,k such that under 
(13.8.2) the map dA @ tjA corresponds to the isomorphism F*(PH’(R$)) 5 
PH’(K$) arising from the fact that PHi(R$) comes from a mixed perverse 
sheaf on G,. Passing to stalks, it follows that 

Tr(F, Xi pti(KT)) = 2 Tr(d,$, ZiA) Tr($,4, Va,i,G) 
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for all g E GF, all i, j, and all w  E IV”. Taking alternating sums over i and j, 
and using (13.6.1), we find 

XK:,F(g) = 1 (XA,dA(g) C ( - 1 Ji Tr(vQA 9 VA,i,ti)) (13.8.3) 
A I 

(A runs through G,); see (8.4.1). 
From (12.2.2) and [l, 54.41, it follows that PHixz is pure of weight i. 

From [l, 53.41 and by the choice of #A, we see that (A, 4A) is pure of 
weight dim G. From (13.8.2) we can now deduce that the endomorphism 
$A of VA,i,C is pure of weight i-dim G. In other words: 

The eigenvalues of QQ A: VA,i,C + VA,i,ti are algebraic 
numbers all of whose complex conjugates have absolute 
value q (i- dimG)/Z (13.8.4) 

13.9. We now replace 2 by 9-l in 13.8. We have W$= IV,-,, 
and for each w’ E II& PH’(K$-‘) is defined over F,, where ti’~ ( WY)‘. 
(The F,-rational structure on 2-l is taken as in 13.5.) The set G,-, con- 
sists of {DA 1 A E G,} ( see (11.2.2)) and for A E G,, we define 
&,: F*DA r DA to be the contragredient of #A: F*A % A, times qdimG-’ 
(where d is as in (13.8.1)). We define VDA.lC, and its endomorphism $bA as 
in (13.8.2): 

*LA is defined in terms of 4 LA, just as $A is defined in terms of 4A. We 
then have for all g E GF 

b,+?-‘,Fk) = 1 ( h,c&Ak) 1 (- 1 Ji Tr($‘bA, vDA,j,~‘)). 
A I 

Multiplying this with (13.8.3) and summing over all g E GF, we find 

= c( lGFl -’ 1 (XA,#h) h,A’&(d) 
A,A’ geGF 

xc (-ly+j Tr($‘A, ‘A,i,$) Tr($“,A’, vDAr,j%$c) (13.9.1) i.i 
(here A, A’ run over G,). 

We shall say that G is clean if for any Levi subgroup L 
of a parabolic subgroup in G, any cuspidal character 
sheaf of L is clean (see (7.7). (13.9.2) 
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If we assume that G is clean, then the sum lGFl -1 

CgecF XA,&) XDA’,dd in (13.9.1) is equal, by 10.8 and the choice of 

dA 3 &A’, to 1 if A = A’ and to 0 if A #A’. Hence, for G clean, the right- 
hand side of (13.9.1) is equal to 

(A runs over G,). The resulting identity clearly remains true if F, is 
replaced by an extension Fti. Thus, we have the identity 

where 

IGF51 --I 1 x+(g) xK;-L,Fsk)=~ (- l)h Ph.57 (13.9.3) 
gtGFS h 

Ph,s= 1 1 -Q-(3/“,, VA,,,,) ‘JWGX v~A,,,,y) 
A i. i 

i+/=h 

(13.9.4) 

(A runs over G,). According to 13.7, the left-hand side of (13.9.3) is equal 
to Ii’( where 17 is a polynomial with integral coefficients depending on 
2, w, w’, but not on q or s. On the other hand, from (13.8.4) and the 
analogous property I,&,: VDA,i.,ti, + VI&+,, it follows that ph,,s is of the 
form C, (cc,,,)~ where uh,r are algebraic numbers all of whose complex con- 
jugates have absolute value q(h’2’pd’mG. From the identity 

; (( - 1)” c (cch,,)s) = n (4.‘) 
r 

(valid for all s 3 1) it follows then that, for fixed h, the set { CC~,~} is empty if 
h is odd and that @,,r = q(h’2’- dimG if h is even. This implies that 

LiM 0 VDA , &’ is zero for i + j odd (A E G,). It also implies that, for i + j 
even, any e&&value of GA on VA,i,C, multiplied by any eigenvalue of +‘,, on 
VDA.,,+, gives q(i+j)12-dimG. 

Since, for A E G,, we have V,, j es # 0 for some j and w’ E W’, it 
follows that the parity of i such that VA.*,& #O for some w  E w’ is an 
invariant of A and that, for an eigenvalue 5 of $A on VA,i,n;, the product 
w  i/2 +(dim ‘)!’ is also an invariant of A. Thus, we have the following result, 
which is analogous to [6, 2.181. 

THEOREM 13.10. In the setup of 13.8, we assume that G is clean (see 
(13.9.2)). 

(a) With each AE~,, one can associate a sign Ed E { + 1) with the 
following property: if A is a component of PH’(Rz) (WE W’), then 
(-1) jtdimG=EA. 
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(b) With each A E G2, one can associate an element 5, EQ,? 
(depending on the choice of lifting (WY). in (13.2.2), the choice of 4A in 
(13.8.1), and the choice of a square root of q in 0,) such that for any i and 
any w E W$, all eigenvalues of tiA: VA,,, + VA,,, (see (13.8.2)) are equal to 
~AqCi--dimG)12; moreover, tA is an algebraic number all of whose complex con- 
jugates have absolute value 1. The eigenvalues of *LA: VL,,i,,C + I&+, (see 
3.9) are equal to <~‘q(iPdimG)‘2. 

13.11. Consider the identity (13.9.3). Its left-hand side is equal to 
the trace of the linear map &(q”) + H&(qS) given by 
Tz -, q (42)0(W) + ““‘“C--,_ 1 T C’ Hence it is equal to q(s/2)(~(W)+I(W’)) 

c EE wY Tr(CW.,-I, E(q”)) Tt(&, E(q”)) and hence to 

4 
(@)(l(w) + I(n,‘)) c Tr(G, E*(q”)) WC’,, E(q”)), (13.11.1) 

EB b8$ 

where E* is the representation of WY dual to E. 
The right-hand side of (13.9.3) can be expressed as in (13.9.4), and under 

the assumptions of 13.10 can be written as 

c (_ l)i+j (SAq.r(i-dimG)/2 ~AsqS(i-dimG)/2 

A 
iJ 

x dim VA,i,L, dim VhAJ,+’ 

=; ($ (-lY9 s(I-dimG)/Z(A: pHiR5 

x 

i 

1 (_ 1)’ qd /-dimGP(DA: PffKz-’ 

i 4 

= 

I( 
4 

d(w)/2 
c cA,,(q”) Tr(C:,~, Hq”)) 

A Et WY 1 

sl( w’ j/2 
c cDA,E’(qs) J’r(CL, E’(f)) 

E’E PVp > 

(by (12.10.1), with u Ii2 = q”j2). This equals 

qw2w(w) + I(w’)) 

= cc 
cA,E(q”) cDA,E’(@) 

EXE @-&, AeG9 > 

x Tr(CL., E(q”)) Tr(CL.., E’(q”)). (13.11.2) 
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Thus (13.9.3) can be expressed as the equality of (13.11.1) and (13.11.2), for 
all w, w’ E IK,. Since the functions fE,E’: W’ x IV” -+ Qe,, 

(w, w’)t+Tr(C:,, E(q”))Tr(&, E’(q”)) 

(E, E’ E pP) are linearly independent, it follows that 

if E’= E* 

3 otherwise. 

Since here s is any integer > 1, this identity remains true when qS is 
replaced by the indeterminate u. 

Using now (12.11.1) we get the following result: 

PROPOSITION 13.12. Under the assumptions of 13.10, we have, for any 
E,E’E I&, 

if E’=E* 

otherwise. 

14. A DISJOINTNESS THEOREM FOR 
COHOMOL~GY SHEAVES AND ITS APPLICATIONS 

14.1. In 3.11, we have defined a canonical partition of G into 
finitely many locally closed smooth irreducible subvarieties Y(,,, stable by 
conjugation. We shall prove the following result. 

THEOREM 14.2*. Let Y= Y,,,, be a piece in the partition 3.11 qf G and 
let A’ be any admissible complex on G (see (7.1.10)). 

(a) The cohomology sheaves .X’A’ restricted to Y are local systems 
with finite monodromy. 

(b) Assume that G is clean (see (13.9.2)), that A is a character sheaf 
of G whose support is equal to y, and that A’ is a character sheaf of G which 
is not isomorphic to A. Let d = dim Y, so that 2 -d(A) is the only 
cohomology sheaf of A which is non-zero on Y. (It is an irreducible local 
system on Y.) Then for any i, the local system %“(A’) ) Y has no irreducible 
direct summands isomorphic to #-d(A) / Y. 

Proof. We refer to 8.1 for the notations L, C, Zreg, Y = Yo,,,. Let 2 be 
the variety of all pairs (M, S) where M is a closed subgroup of G and S is a 
semisimple element of M/Z% such that there is an element of G con- 
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jugating A4 to L and S to the semisimple part of some element in the image 
of z in L/SO,. 

Let p: Y + Z be defined by p(g) = (M, $), where A4 is the unique con- 
jugate of L containing p(g,) and S is the image of g, in M/90,. Then p is 
a locally trivial libration. Moreover, G acts naturally on Y and Z by con- 
jugation (compatibly with p) and the action on Z is transitive. Since 
%‘(A’) 1 Y is G-equivariant, we see that in order to prove (a) it is enough 
to show that the restriction of #‘(A’) to some tibre of p is a local system 
with finite monodromy. We shall consider the fibre @ of p at (L, S), where 
su = US is an element of Greg (s semisimple, u unipotent) and S is the image 
of s in L/S!?“,. 

Note that, if Z”,(zs) c L (z E 5?‘;), then Z”,(zs) = Z”,(s). (Both are equal to 
Z”,(s).) It follows that @ is the set of all g E L which are of the form g = zsz), 
where z E %“i is such that Z”,(zs) c L, v is unipotent in Z:(s), and zsv is 
conjugate to an element in Greg (s is fixed). 

We now define 6 to be the set of all g E L which are of the form g = zsv, 
where z E bO,, v is unipotent in Z”,(s), and zsv is conjugate to an element in 
C (s is fixed). 

It is clear that @ is an open dense subset of 6 and that SC’& c Z:(s). 
Let r be the isotropy group of (L, S) for the transitive action of G on Z 

by conjugation. Note that Z:(s) is contained in r as a subgroup of finite 
index. The action of 9: x r on 6 given by (z, y ): g + zygy -’ is clearly 
transitive. Hence d (or s-i&) is a union of finitely many 9: x Z:(s)-orbits. 

Now let R be a perverse sheaf on G obtained by inducing a cuspidal 
admissible complex from a Levi subgroup of a parabolic subgroup, and 
such that A’ is a direct summand of ZC’ (see (7.1.10)). Let E: Z:(s) + sZO,(s) 
be multiplication by s. In (88.4) we have constructed an isomorphism 

(E*r 1 %)[ -S]z e (in 9@), (14.2.1) 

where % is an open subset of Z:(s) as in 8.6 and K& are finitely many per- 
verse sheaves on Z”,(s) of the same type as K’. More precisely: 

Km is obtained by inducing an irreducible cuspidal per- 
verse sheaf K& from a Levi subgroup ( = L& n Z:(s)) of 
a parabolic subgroup of Z:(s), where L& is a Levi sub- 
group (containing s) of some parabolic subgroup of G 
such that supp K’ = PCLh,zb,. ( 

The support of K& is the closure of the piece in the par- 
tition 3.11 of Z’&(s) corresponding to the pair 
(L&n Z%(s), {v E Z:(s) unipotent 1 sv E rE} . 9Fk,zoC,,. ( 

14.2.2) 

14.2.3) 
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Now A’ is a direct summand of K’, hence (&*A’ 1 @)[ -S] is a direct 
summand of (0 tl Em) 1 % (in 9%, hence in A%)). Since % is open in Z”(s), 
and @ oL Km is a semisimple perverse sheaf, there exists a direct summand of 
Or K& whose restriction to % is isomorphic to (&*A’ 1 a)[ -61. (We use 
the fact that any irreducible perverse sheaf on Z’(s) gives upon restriction 
to f% either 0 or an irreducible perverse sheaf on a.) Now, any direct sum- 
mand of 0, Kj, is a direct sum of irreducible admissible complexes of 
Z”(s). Thus, (&*A ( a)[ -S] is isomorphic to a direct sum of admissible 
complexes on Z”(s), restricted to %!. Since any admissible complex A, on 
Z”(s) is equivariant for the action (z, go): g + zngO gg;’ of .F”“, x Z”,(s) on 
Z”,(s) (for some n > 1) and since s- ‘6 is a union of finitely many orbits for 
this action, it follows that #(A 1) ( s ~ ’ & must be a local system with finite 
monodromy, hence X’(A 1) 1 S-I 6 n 0x is a local system with finite 
monodromy (for all i). Since (&*A ( @)[ -S] is isomorphic to a direct sum 
of such A, I %, it follows that %“(&*A’) ) s-‘&n%! and %‘(A’) 1 &ns@ 
are local systems with finite monodromy. In particular XO’(A’) 1 @ n so& is a 
local system with finite monodromy. 

The set 95! considered above depends on s; we now denote it &(s). When 
s runs over the set of all 0 E L such that 0 is mapped to S under L -+ L/SO,, 
and such that Z’&(a) c L, the sets @n%!(s) form an open covering of @. 
Since A?‘(A’) is a local system with finite monodromy when restricted to 
any of the open sets of this covering, it follows that #‘(A’) I @ is a local 
system with finite monodromy. This completes the proof of (a). 

We now begin the proof of (b). We may assume that supp A’ contains P 
as a proper subset; otherwise, there is nothing to prove. Let K be a perverse 
sheaf on G obtained by inducing a cuspidal admissible complex of L to G, 
such that A is a direct summand of K. 

Let su E C,,,be as in the proof of (a) and let @, be the set of all g E L 
which are of the form g =zsv where z~9’; is such that ZO,(zs)c L and 
u E C (C = Z’(s)-cnjugacy class of u). Then Q1 is a connected component of 
@J above. If E and % c Z’(s) are as above, we may assume that, besides 
(14.2.1), there is an isomorphism 

(&*KI @I[-G]z (in @&)), (14.2.4) 

where Kp are finitely many perverse sheaves on Z’(s) satisfying properties 
similar to those satisfied by K& in (14.2.2), (14.2.3). In our case, however, 
each K, must necessarily be a cuspidal perverse sheaf, with support equal 
to V, where V= .9”$+, . C. 

Using our assumption that G is clean, together with 7.11 and 11.2(d), we 
see that each Km,, (as well as DKE,o) is a strongly cuspidal, clean, 
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irreducible perverse sheaf on Z’&(s). Similarly, each K, (as well as DKP) is a 
strongly cuspidal, clean, irreducible perverse sheaf on Z:(s). 

It is enough to show that the local systems %?‘(K’) 1 @i nsQ, 
X’j(K) ( @i n se have no common irreducible direct summand, for any i, j. 
Using (14.2.1) and (14.2.3), we see that it is enough to show that the local 
systems #‘Km 1 s-‘@i n a’, XjKs ( SC’@, n Q have no common 
irreducible direct summand, for all i, j, a, p. Since *‘(Km) is .P&,,, x Z’(s)- 
equivariant, it must be a local system on Y (which is a single orbit). 
Similarly, %j( Ks) is a local system on V. Since s ~ ‘@, n 42 is open dense in 
V and V is irreducible, it is enough to show that the local systems 
&K:, 1 V, XjKB 1 V have no common irreducible direct summand. Since 
supp Ks = V, we see that it is enough to check the statement (14.2.5) and 
Lemma 14.3 below: 

For any CI, fl, we have supp K:, # supp K,. (14.2.5) 

LEMMA 14.3*. Let K be an irreducible cuspidal perverse sheaf (7.1.10) on 
G such that DK is strongly cuspidal and clean. Let R be a perverse sheaf on 
G obtained by inducing to G a strongly cuspidal, clean, irreducible perverse 
sheaf of a Levi subgroup of a parabolic subgroup. Let Y(o,s, = z be the piece 
in the partition 3.11 of G such that supp K = E, and let 6’ be the irreducible 
local system JP -d(K) ) z, d = dim 2. Assume that supp K’ # 27. Then the 
local system (S’K’) ) z (see part (a) of Theorem 14.2) does not contain d as 
a direct summand. 

14.4. Proof of (14.2.5). Assume that supp Km= supp KB = V. From 
(14.2.3) it follows that L&nZO,(s) =P,(s), and that SUEC~. Thus, 
Z”,(s)c L&; since L= H&s) (see 3.11), we must have L c L&. From our 
assumption PC supp A’, i.e., PCL.zJ c FCL;,z,j (see (14.2.2)), it follows by 
applying the Steinberg map (r (see 7.3) that dim a( PCL,zJ < dim (r( PCL,,z, ,). 
But it is clear that dim a( YCL,zJ) = dim %Di, dim Q( PCL6,z;j) = dim ?$, , 
hence dim 20, < dim 3:;. This, together with L c L&, implies L = L&. From 
su E C&, it follows that X n ,Y:& # a, hence ,E = C&, since L = Lk. Thus, we 
have jLzl = %~.z;~~ contradicting our assumption 7 # supp A’, and 
(14.2.5) is proved. 

14.5. Proof of Lemma 14.3. If R is itself cuspidal, then it is clean by 
assumption, so that (#‘R) 1 C=O. Assume now that K’ is not cuspidal. 
Then by 7.2, we have H$G, DK@ K’) = 0 for all j. Since DK is clean, we 
must have H<(.X, DKQ K’) = 0 for all j, hence Hj(z:, b* 0 K’) = 0 for all j, 
where B* is the local system on C, dual to 8. We must prove that the local 
system X’(b* @ (R I ,?Y)) on E contains no direct summand isomorphic to 
0,. 
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Assume that %“O(b* @ (K’ 1 C)) contains a direct summand isomorphic 
to 0, and that i, is maximum possible with this property. We shall reach a 
contradiction as follows. Our assumption implies Hzd(C, %‘O(&‘* 0 
(K’ 1 C))) # 0. Hence Ezd,” # 0 in the usual spectral sequence 

Q-q= HF(Z, 3P(8* 0 (K’ ( C))) =a Hf:+qz, CT* 0 (R 1 C)). 

In the proof of 7.8, we have seen that HL(C, 9) = 0 for any irreducible 
5”: x G-equivariant (see 2.18(b)) local system B on Z:, which has no direct 
summand isomorphic to 0,. In particular, we may take F = &(a*@ 
(K’ 1 C)) for i > i,. It follows that Epq = 0 if q > i,. It is clear that Epq = 0 if 
p > 2d, since d = dim C. This implies that Esd,” = E:“‘o = . . = E2,d,‘0. Since 
Ei”‘O # 0, it follows that Hfd+ h(C, d* @ (K’ 1 C)) # 0, a contradiction. 

This completes the proof of Lemma 14.3, and hence that of Theorem 
14.2. 

14.6. In the rest of this chapter, we assume that we are in the setup 
of 13.1 and, moreover, that q is large enough so that (13.8.0) is satisfied. 
We fix Y= YCL,=) and A E G, with support Y, as in 14.2. From 14.2(a) it 
follows that there exists a principal covering rr: 8+ Y with finite group r 
(acting on F on the left), with y irreducible such that each of the local 
systems %‘A’( Y (for various i and various A’ E G,) is associated to 71 and 
to a representation of r (denoted [X’A’]). For a large enough integer 
Y > 1, both P and rt are defined over F,, ( Y is defined over I;,, as a con- 
sequence of (13.8.0) and, in particular, is defined over F,,). Moreover we 
can assume that the Frobenius map F: F-+ P with respect to the 
F,,-structure is such that F(yv) = y&) for all y E r and all j E y. 

There exists an integer c0 B 1 such that for any integer c > c0 and any 
y E r, we have py = yj for some j E t, which depends on y on c. (Indeed, 
y ~ ‘E: 8--+ P is the Frobenius map for an E;,,-rational structure on y, 
hence for large enough c it must have some fixed point, since P is 
irreducible: the number of its fixed points tends to co as c tends to co.) We 
set (for c>c,): y,,, = n(j), where j E P is some point such that pj = yj. 
Then for any i and any A’ E G,, we have 

Tr(CL z.L,,,(A’)) = bA’,rc,i Tr(y, C-@(A’)l) (VY E r, c 2 co). (14.6.1) 

Here dA, is as in (13.8.1) and bAs,rc,i is independent of y. If A’ = A, then 
b A.rc.-d is a root of 1 times qcdimG - d)(rc’2’ (d = dim Y), and we have 

Tr((&,)“> ~,,f(W) (14.6.2) 

= b~,~c,~d.q(dimG-dd)rc.Tr(y-l, [Xpd(A)]) (b E r, c 3 d 

where $LA is as in 13.9. 

607’57’3.7 
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By 14.2(b), the r-module [JP(A’)] contains no irreducible components 
isomorphic to [X-d(,4)], if A’ZA. Hence, from (14.6.1), (14.6.2), and the 
orthogonality relations for the characters of r, we deduce 

ZZ (-l)ib A,,rc,ib~~.,E,-dq(dimG--d)‘c 

x Ir( --I c Tr(y, [%‘(A’)]) Tr(y-‘, [%+dA]) 
YCf- 

i 
0, if A’#A = 
qCdirn G - d)rc 

(c 2 cg). 
3 if A’=A 

(14.6.3) 

14.7. Under the assumptions of 13.10, the identity (13.8.3) can be 
written as follows: 

&d&.(g) =c XA,Jg) <A 1 (- l)i q(i-dimGy4: WRY) 

A 1 

= c xA,&d {A. dew)‘* 1 CA,E(d ‘WC:, &) k E G”). 
A E 

(14.7.1) 

Using 13.6, 13.4, and (13.2.3) we can write 

XKFF(g) = Tr(q(“*“““‘-‘(“I))~(~~,) CL g, 9’) W’ (gEGF), (14.7.2) 

where w, is the unique element in QP n w  W, and h is as in 13.2. Since 
H$(q)rEnd,F(9@) (see (13.2.4)), we can decompose 8’ as a H"(q) x 

GF-module as Be = @ E= w9(E(q) 0 9’:), where P”, = Hom,$,,,(E(q), 9’) is 
an irreducible GF-module. Then (14.7.2) becomes 

xK&)= c 4 (1/2)(‘(w)- ‘(“ll)h(z,,) Tr( g, P”,) Tr( C;, E(q)). (14.7.3) 
EE cv, 

From (13.2.5), it follows that q- ‘(wl’h(z ) is a root of 1 of order dividing 
nlQ,j. From 11.10 and 12.7 it follows tha? for A EG,, the W,-coset of an 
element w  E W” such that (A: *HiKz) #O is an invariant of w. It follows 
that there exists a function v: G9 -+ {roots of 1 of order dividing nllR,I} 
with the following property: if (A: PNiK$‘) #O (WE W”), then 
v(ft)=q- ‘(w’)h(t. ), where wr is the unique element of minimal length in WI 
ww,. 
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Comparing (14.7.1) and (14.7.3) we then have 

AEGV E 

= c ‘Wg, S”,) ‘WG, E(q)) (g E GF). 

E 

Since the functions w  -+ Tr( cl,, E(q)) on W (EE I@,) are linearly indepen- 
dent, the previous equality implies 

(14.7.4) 

for all geGF and all EE @“‘. This identity holds also if we replace q by a 
power q’ (s > 1). It implies 

,L GVAA) cA,,(q”) XA,+4;(g) E lq (VgE GF) (14.7.5) 
Y 

where 0 is the ring of all cyclotomic integers and v,(A) is a root of 1 of 
order dividing nlQ,I and depending possibly on s. We fix A E G, with sup- 
port ? as in 14.6. We take s = YC, c > cO, and we select yy,c E Y, for y E f, as 
in 14.6. Then x~~,),;~(Y,,,.) is a root of 1 times qs*j2, where 6 = codim E 
Multiply (14.7.5), for g= Y?,~, by x~~,+.;~(Y~.~) and sum over all YE r. We 
get 

Using now the identity (14.6.3), we deduce 

Irl t”A v,(A) cA,,(@) qs6 E qs6’2 ’ Lo, 

hence 

[ fl <“, CA.E(qs) qsb’* E 0 (s=rc, c>,c,) 

for all A E G, and all E E @“. We now prove 

(14.7.6) 

LEMMA 14.8. Under the assumptions of 13.10, we have C.&U)E 
[. Qpcu1/2, u-w 1, where [ is a root of 1 of order dividing IsZ,I (AE G,, 
EG I@“). 

Proof: Write c~,~(u) E i. Q(u ‘j2) with [ a root of 1, as in 12.10. Let K be 
a finite Galois extension of Q of degree a, containing rA and i, and let 
N: K--r Q be the norm map. Then N({,) has complex absolute value 1 
since all complex conjugates of tA have absolute value 1 (see 13.10). It 
follows that N(ta)= + I. Hence by applying N to (14.7.6) we get JTJ” 
([-&(qy qf13d’2 E Co. 
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Let H(X) E Q(X) be defined by H(X) = Irl” ([-‘c,,,(X~))~ A’“‘. Then 
H(q”)E 0 for s= rc, ca c,/2. Since H(q”) is a rational number and an 
algebraic integer, it is an ordinary integer. Thus we have H(q”) E E for 
infinitely many integers s > 1. This implies, as it is well known, that H(X) E- 
Q[X]. The lemma follows. 

We can now prove 

THEOREM 14.9*. Under the assumptions of 13.10, we have C&U) E <. Q, 
where { is a root of1 of order dividing 152,1 (Ace,, EE @“). 

Proof: We fix E E @L. By 14.8 we can write c~,~(u) = CA P,, 
PA E Q[u”2, u-l’* ) J [a”~’ = 1 and by (12.12-l), we have c~,~* = [;‘PA. 

We now consider the identity 13.12 for E’ = E*. It gives 

c Pz,=l. 
AEGP 

This forces each PA to be a constant (i.e., independent of u”‘). The theorem 
follows. 

We remark that the proofs of 14.8 and 14.9 bear some similarity to 
proofs in the paper [lo] of Digne and Michel. 

14.10. From now on we shall write cA,E instead of c~,~(u). Let us 
now specialize the identity (12.10.3) for u”‘-+ 1. Then s’(T,) =xJK-F) 
becomes 

Using the orthogonality relations for IV”, this can be also written as 

C A,E= ( W&l -’ c Tr(y-‘, E) 1 (- l)i (A: PH’(Kp)), 
y E ru$ I 

hence 

C A,E= (- l)dimG(A: RZ), (14.10.1) 

where we use the following notations: 

X0(G) = subgroup of the Grothendieck group X(G) of 
A(G) spanned by the character sheaves of G (14.10.2) 

I$ = 1 WY\-’ c Tr(y-‘, E) c (- l)i+d’mG PH’(Kf) 
Ye+, i 

E%(G)@Q~ (14.10.3) 
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(for EE I@Y or, more generally, for E an element of L%( IV’) 0 &PI, where 
a( WY) is the Grothendieck group of virtual representations of II?,). 

(:) is the symmetric &P,-bilinear form on X0(G)@ 0, 
with values in 0, such that (A,: A*) = 6,,,,, for any two 
character sheaves A i, A 2 on G. (14.10.4) 

Substituting (14.10.1) into (12.10.1) we get the following 

COROLLARY 14.11*. Under the assumptions of 13.10, we have 

C ( - 1 )i (A: pjyiK;tP) &2 

=,& C-1) d:mG U(l/2)(dimG+Qw))(A: RF) T~(cI,, qu)) (14.11.1) 
Y 

for all w E W”, A E G,. (Identity in O,[U”~, ~~‘~1.) 

(Compare with [6, 3.83.) 

COROLLARY 14.12*. Under the assumptions of 13.10, for any A E G,, 
there exists E E I@” such that (A: RF) # 0. 

Proof There exist w  E W:, and i such that (A: PH’(Rz)) # 0. From 
(14.11.1) it follows that (A: Rg) #O for some ,?ZE I%“‘, as desired. 

COROLLARY 14.13*. 
EMQ: 

Under the assumptions of 13.10, we have for any E, 

if E’=E* 

otherwise. 

Proof In view of (14.10.1) and (14.10.4), this is just a reformulation of 
13.12. (Compare with [6, 3.91.) 

COROLLARY 14.14. Under the assumptions of 13.10, the identity (14.7.4) 
can be rewritten as 

Tr( g, S”,) = ( - 1 )dimG Atc, ilAA)WR:) xa,&) (ge @I. 
2 

COROLLARY 14.15. With the assumptions of 13.10, let s be a simple 
reflection in W such that s # W,. Let 9’ = s*.Y. Then for any w E W$ we 
have sws E W”. and 
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Proof We write the identity (14.11.1) for (9, w) and for (P, sws). The 
right-hand sides of these two identities are related to each other using 
11.2(b). Hence we get a relation between the left-hand sides, which is just 
the desired equality. (Compare with [6, 6.5(i)].) 

15. INDUCTION, RESTRICTION, AND DUALITY 

15.1. In this chapter G is assumed to be clean (13.9.2). Consider 
the functors ind, res delined in 3.8, 4.1, respectively, with respect to G, P, 
where P is a parabolic subgroup of G. We shall denote them ind& res:. Let 
Q be another parabolic subgroup of G. Let L, M be Levi subgroups for 
P, Q, respectively. Let r be a set of representatives x for the double cosets 
Q\G/P such that Q, XPX-’ contain a common maximal torus. For x E r, 
MnxPx-’ is a parabolic subgroup of M with Levi subgroup MnxLx-‘; 
similarly, x-‘Qx n L is a parabolic subgroup of L with Levi subgroup 
X -lMxn L. 

PROPOSITION 15.2. Let A be a character sheaf of G. Then 

resgindzA= @ ind*L~,exnr,res~nx,,-,A 
xcr 

(15.2.1) 

(equality in ML). 

(The formula has the following meaning. By 4,8(b), ind;A is a direct sum 
of character sheaves of G, hence, by 6.9(a), resp: ind$A is a direct sum of 
character sheaves of L. By 6.9(a), resg,,PX-, A is a direct sum of character 
sheaves on Mn XLX-‘; we transfer it to x-‘Mx n L using conjugation by 
x-l; applying to it indk-,ax,,l we get, by 4.8(b), a direct sum of character 
sheaves of L.). 

Prooj The operations resg, indg are also defined at the level of class 
functions on groups over a finite field. Thus if G, P, L are defined over F,,, 
we may define ind? { 1 c ass functions on L(F,)} --) {class functions on 
G(F,)} as lifting to P(F,) via the natural projection P(F,) + L(F,), 
followed by usual induction from P(F,) to G(I;,); we may also define res? 
(class functions on G(F,)} + {class functions on L(F,)} as restriction to 
P(F,) followed by averaging over the libres of P(F,) --) L(F,). These 
operations are related to the corresponding operations on complexes as 
follows. If (A, 4: F*A --) A) is a character sheaf of G defined over Fq, then 
res:A has a natural 41: Fr(resgA)Sres,GA and 
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If (A’, 4’) is a character sheaf of L defined over F,, then ind:A’ has a 
natural 4;: F*(indzA) 1 ind:A and &“d$‘,@; = indz(~~~,~,). (These formulas 
follow immediately from definitions and from the trace formula for 
Frobenius maps.) 

We shall now choose an F,-rational structure on G such that all groups 
appearing in 15.1 are defined over F,, and such that (a) A is defined over 
Fq and (b) all character sheaves of L which are components of the left- or 
right-hand side of (15.2.1) are defined over Fq. 

Let K,, K2 be the two sides of (15.2.1); we have natural isomorphisms 
dI: F*K,rK,, I+$ F*K2rK,. 

The analogue of (152.1) for res. ind is well known. It implies that 

x,,.,;(g) = XK2,&) for all g E L(F,,) and all t > 1. (15.2.2) 

Now let A’ be any character sheaf of L which is a component of K, or 
K, and let cJ,,,, be an isomorphism F*A 7 A. We can write 

K, = 0 (A’@ VA,,1), K2 = 0 (A’@ J,‘,v.z), 
A’ A’ 

where I’,,,, , VA.,, are &vector space with natural endomorphisms $A.,I, 
$ A’,27 respectively, such that 

XK,,d:(g) = C XA’,#>,tg) Tr(ll/f4’.i, ‘A’,i) (15.2.3) 
A’ 

(i = 1, 2, g E L(F,,,)). Using now the orthogonality formula 10.8 for L 
(which is applicable since L is clean) we see from (15.2.2) and (15.2.3) that 

for all A’, all t > 1, and for i = 1 or 2. From (15.2.2) it follows that the left- 
hand side of (15.2.4) is independent of i. Hence the same is true for the 
right-hand side 

TrbL,, , vAs,,) = WtiLF.2, VA,.,) 

for all A’ and all t > 1. 
This remains automatically true for t = 0 so that dim VA,,, = dim VA,*, for 

all A’. It follows that K, z K, and the proposition is proved. 

15.3. For each subset Z of the set S of simple reflections of W, we 
denote by P, the parabolic subgroup of G generatted by B and by represen- 
tatives in N(T) of the simple reflections si E Z. Let L, be the unique Levi 
subgroup of P, containing T and let WI be the subgroup of W generated 
by 1. 
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If ZC J and A, is a character sheaf of L,, the complex ind$,,,(A,) will 
be denoted $(A,); it is a direct sum of character sheaves of L,; see 4.8(b)). 
By linearity, this extends to a homomorphism if: Xo(L,) + Xo(L,) (see 
(14.10.2)) and to a linear map if: .&(L,) @ 0, + &(L,) @ 0,. 

If Zc J and A, is a character sheaf of L,, the complex res$,,,(A,) will 
be denoted ri(A2); it is a direct sum of character sheaves of L,; see 6.9(a). 
By linearity, this extends to a homomorphism rf: &(L,) + X,(L,,) and to a 
linear map r:: X0( L,) @ 0, + S$(L,) 0 0,. By 4.2, we have the transitivity 
formula 

‘K ‘K _ ‘K 
lJ 11 - 11 , for ZcJcK. (15.3.1) 

From 4.4(d) and the semisimplicity of ind(A,), res(A,), it follows that 

(rG2): Al)= (A,: ii( (15.3.2) 

for any A,, A2 as above. The same formula is then automatically true if 
A,, A, are replaced by any elements of Xo(L,)@ Or, Xo(L,)@ &e,, respec- 
tively. Here ( : ) is defined by (14.10.4) for L,, L, instead of G. From 
(15.3.1), (15.3.2), and the non-degeneracy of ( : ) it follows that 

JK K 
rlrJ = r, for ZcJcK. (15.3.3) 

We can restate (15.2.1) as 

rfif=C i’,- I 
lJxnJYxrlnxJx-l (4 Jc S), (15.3.4) 

x 

sum over all elements x E W which have minimal length in W,x W,. (Here 
-ix: &dL,n,J.d) + %(Lx-h,J) is induced by the isomorphism LlnxJx-~ r 

LX- I,*-. J defined by conjugation by a representative of x-’ in N(T).) 

15.4. We now define a homomorphism 

d=d,= 1 (-1) “’ if rf: X0(G) + X0(G) 
ICS 

(or .6,(G) 0 &PI -+ x,(G) @ 0,). (15.4.1) 

This is entirely analogous to the well-known duality operation on the 
class functions on a reductive group over a finite field, which is defined 
replacing ind and res in (5.4.1) by ind, res (see the proof of 15.2). Here are 
some properties of d: 
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dG is = ifdL, 

d2 = identity 

(dA,: dA,) = (A,: A,) (A,7 ACE%) 

(dA,: A,) = (A,: dA,) t-41, A2 E &dG)h 

(154.2) 

(154.3) 

(154.4) 

(154.5) 

which are analogous to the known properties of the duality operation for 
class functions (Curtis, Alvis, and Kawanaka). (See [S].) They are formal 
consequences of the identities (15.3.1~(15.3.4), and of the following iden- 
tity (see [9, 2.51): 

c (-1)‘J’ #{XE WI ZnxJx-‘= K, x has minimal length in W,xWJ} 
JcS 

=(-1)‘Kl (for Z, KC S). 

We shall call d the duality operation (on character sheaves). It should 
not be confused with the Verdier duality D. 

From (15.4.4), it follows that 

If AEG, then +dAEe. (15.4.6) 

(More precisely, dA or -dA is the class in X0(G) of a character sheaf.) 
If A E G is cuspidal, then r?A = 0 for all (I $ S); from (15.4.1) it follows 

that 

dA=(-l)‘s’A (A E G, cuspidal). (15.4.7) 

We now prove 

PROPOSITION 15.5. For any character sheaf A of G we have dA = 
(- 1)6 A’, where 6 = codim, supp A, and A’ is a character sheaf with the 
same support as A. 

Proof. By 4.4(a), we can find Zc S and a cuspidal character sheaf A, of 
L = L, such that (A: iSAl) >O. From (15.4.2) and (15.4.7) it follows that 
d(i”,A,)=(-1) I11 if A,. Since if A, is a linear combination with > 0 coef- 
ficients of character sheaves, we deduce that dA = ( - 1)“’ A’, where A’ is a 
character sheaf such that (A’: iSAl) > 0 and hence such that supp A’ = 
supp A = Pct,aj (see (4.3.1)); here .X c L is as in 4.3 and its closure is equal 
to supp A,. It remains to show that codim r(L,z.) = (II (mod 2). By (8.2.2) 
we have 

codim P (,-=) = dim L - dim z = dim(L/%“O,) - dim(C/%‘i). 



304 GEORGELUSZTIG 

But z/S!““, is a single conjugacy class in L/bO,, hence it has even dimension. 
Hence codim P CL,z) = dim(L/di) - [I( (mod 2). The proposition is proved. 

15.6. We shall now investigate the behavior of the elements Rg 
(see (14.10.3)), with respect to induction, restriction, and the duality 
operation d. We first introduce some notation. Let Z be a subset of S and 
let 9 E 9’(T). We define w$ ,, K9J, K9,‘~ 9L, (w E w9 ,) in terms of 
L,, 9 exactly as WY, Kz, &!’ ;ere dkned in terms of G, 9. Then 
fK&= W,n IV”. For any virtual representation E, of fV”,I, we define 
RAKE XO(L,) @I 0, in terms of L,, 9 just as Rz was defined in terms of 
G, 9. Let ind(E,) or indf(E,) be the virtual representation of IV” obtained 
by inducing E, from ?KY,I to w$. For a virtual representation E of W& 
we denote res(E) or ress(E) the restriction of E to IV”,, (a virtual represen- 
tation of IK9,,). 

For XE W, we denote by “E the virtual representation of K, 
(“9’= (x-l)* S), obtained from E by composing with the isomorphism 
W$ r W:, given by conjugation by X; res(“E) is the restriction of “E to 
w:,,,. We can now state: 

PROPOSITION 15.7. (a) if(Rg’) = Rf&,), for any virtual representation 

El of w$,,. 
(b) rf(Rz) = C,, w 1 W,xW”( -’ R:zGtE,, for any virtual represen- 

tation E of W9. 

(c) (A: r;Rz) = (A: R$‘,), for any virtual representation E of W” 
and any A E (LI)y. 

(d) iS(PHij?51) = pHi+dimG-dimL~ff for any w E W$,, and any integer 
i. 

Proof: (a) From 4.8(a) and 6.5, it follows that 

if 
(i 
c ( - 1 )i PHi(Ks’) 

=(-1) dim G - dim L, ; ( -l)iPHi(K$) E%(G) 
> 

(157.1) 

for any WE FVz,I. Using the definition (14.10.3) we have 

if( Rg’) = 1 WY,,1 - ’ we2 
9.I 

Tr(w-‘, E,) ii (c (- l)itdimLJPHi(K$‘)) 
I 

= 1 W$,,l-’ 1 
WE TV,, 
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and 

Edd(E,, = 1 WY1 PI 1 Tr(w-‘, ind(E,)) c (- l)i+dimG PH’(K$‘) 
W’E u’y I 

=(W,,,(-’ pvcy-’ 1 Tr(zw-‘z-‘, E,) 
w  E WY> 
ZE WY 

;M.-‘Z-‘E w;,, 
x 1 (- l)i+dimG P~(K$‘) 

I 

= 1 wp,,i -I c Tr(u-‘, E,) 2 (- l)‘+dimG Phi. 
UC %,, 1 

(We have used the fact that for WE VP, C, (- 1)’ PH’(Kz)~XO(G) 
depends only on the conjugacy class of w  in IV”; see 6.5.) This proves (a). 

(b) From (14.10.3) and 6.5, we see that, for fixed 2, the following 
four Q,-subspaces of X,(G) @ Q, coincide: 

-the subspace spanned by all x(KT) (see 6.5), where s is any sequence 
($1, 32s..5 s,) in S such that s~s~“‘.s,E W’; 

-the subspace spanned by all x(KT) (see 6.5), where s is as above; 

-the subspace spanned by all x(K$), w  E IV” (see 6.5); 

-the subspace spanned by all Rz (EE t@“). 

From (3.8.2) and 6.9(a) we see that 

r.;( x( Ez )) = 1 ( - 1)’ PH’( res I?:) 
I 

and the last sum has been expressed in (6.7.1) (with u = 1) as a Z-linear 
combination of elements x( KiPJ ), where x are various elements of W and t 
are various sequences in I whose product is W:,,,. (Here KiY,I is defined 
like K,” for LI, “Y instead of G, A?.) 

It follows that rf(Rz) is a orlinear combination of elements 
R>~*‘E XdL,) 0 0, for various x E W and various E’ E &14 ,. Hence in 
order to prove (b) it is enough to show that the two sides of (b) have the 
same inner product ( : ) with any R.Lzx’ (y E W, E’ E I@” ,). We compute 

(rf( Rz): RI;.‘) = (Rz: if( Rzz*‘)), by (153.2) 

= (RF: R;f&), by (a) 

= (RF: Rgd’,,), by 11.2(b) 

= multiplicity of E’ in restriction of E 

to W$,,, by 14.13. 
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The inner product (R:z&: R:?) is zero unless “9 = ZYLZ for some 2 E W, 
(see 11.2(e)), i.e., unless XE W,yW$. If the condition x =zyu, z E W,, 
u E W$ is satisfied, then by 11.2(b) we have R:z& = Rfz&. Hence the inner 
product of the right side of (b) with Ri$,’ is equal to 

By 14.13, this is equal to the multiplicity of YE’ in the restriction of YE to 
w  ~Z,l~ hence to the multiplicity of E’ in the restriction of E to W$,,. This 
proves (b ). 

(c) From (b) and its proof we see that 

(A: rfRz) = c ( W, Wll-’ (A: R:z$,) (see 11.2(c)) 
XE w,Fvp 

= (A: Rz;;) (see 11.2(b)). 

Property (d) follows from (a) and (14.11.1). The proposition is proved. 

COROLLARY 15.8. (a) If w E W$ and no W-conjugate of w is contained 
in W,, then rf(Ci (- l)i PHiK;tP) = 0. 

(b) For any w E W;, , we have 

= ( - 1 )@“) 1 ( - 1 )i PHiK;. 
I 

(c) For any virtual representation E of W$ we have 

d(G’) = R&z> 

where E denotes the representation w + ( - l)/““’ of W”. 

Proof: (a) From (14.10.3) we get 

C(-i)ip~i~:=(-i)~~mG 1 Tr(w,E)Rz. 
I EB t@,, 

We now apply 15.7(b): 

rf 
(i 

c (- l)i PHiKz 
> 

= (- l)dimG c Tr(w, E) rf(Rg) 

=(-l)dimG i c 1 W,xW”(-‘Tr(w, E) R:z& 
E x 
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=(-1) dimG+dimLz C 1 1 (wxy, 11-l 

E .xEEyI.ECt;y,, 

x 1 W,xW,I -’ Tr(w, E) Tr(y-‘, “E) 

x c ( - 1 )j PH’( K:“.‘). 

To show that this is zero, it is enough to show that 

c Tr(w, E)Tr(y-‘, “E)=O 
EE &VP 

for any y E W, and any x E W. But this is equivalent to 

1 Tr(w, E) Tr(xy-‘x-l, E) = 0, 
EE CtY 

which follows from the fact that w, xyx- ’ are not conjugate in W” (they 
are not conjugate even in W). 

(b) If w  is as in (a), the desired formula follows from (a), the 
definition of d, and the well-known congruence l(w) E ISI (mod 2) (see, for 
example, [6, p. 1931). 

Assume now that xwx-’ E W, for some x E W and some I $ S. To prove 
our formula, we may assume by 11.2(b) that w  E W,. In this case, using 
(15.7.1) and (15.4.2) we are reduced to the case where G is replaced by L,, 
for which our formula may be assumed to be already known. 

Property (c) clearly follows from (b). The corollary is proved. 

COROLLARY 15.9. v A E G,, then *dA E G,. 

ProoJ Let E E I?‘9 be such that (A: Rz) #O (see 14.12). Then 
(dA: dl$‘) # 0 hence (dA: R&e ) #O (see 15.8(c)). It follows that 
+_dAEG,. 

COROLLARY 15.10. 

for all wE VT, A EG,. (Identity in Q,[u”*, up”*]; C, is as in (12.9.2).) 

Proof. Using (14.11.1) and (15.4.5) we see that the left-hand side of 
(15.10.1) is equal to 
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1 (- l)dimG U(l/*)(dimC+‘(w))(dA: g’) T~(,--& ,qu)) 

E 

=I (- l)dimG U(l/*KdimG+~(w))(A: gibe) T~(c,, qu)) 

;y (15.4.5) and 15.8(c)) 

= 1 (- l)di”G u(~/*)(~~~~+‘(“‘))(A: Rc) Tr(C:,, (E@&)(U)) 
E 

and it remains to use the identity 

WC’,, (E@E)(u)) = (- 1)““) Tr(C,,, E(u)), 

which follows from (12.9.7). (Compare with [6, 6.91.) 

15.11. Let A be a character sheaf of G. Then A is a component of 
PH’(Kz) for some integer i, some P’ E P’(T), and some w  E FVP. We define 

EA = (_ l)i+dimG (15.11.1) 

(cf. 13.10(a)) and 

tA = ( _ 1 )codimwwA. (15.11.2) 

It is clear that EIA is an invariant of A. We now show that E, is also an 
invariant of A. It is enough to show that 

(A: PH’K$) # 0, (A:PH”R$‘)#O=t-izi’ (mod2). (15.11.3) 

By 11.2(c), we have dp’= (x-l)* 2 for some XE W. 
Writing x as a product of simple reflections and using 14.15 repeatedly, 

we see that (A: PH”K$‘) # 0 * (A: pHi”K$) # 0 for some i”, w” E W” such 
that i” = i’ (mod 2). 

Thus, to prove (15.11.3), we may assume that P’= $P. In that case, we 
have i= i’ (mod 2) by 13.10(a). Thus, (15.11.3) is proved. 

15.12. The invariants sA, E*A are conserved by induction, in the 
following sense. Let A, be a character sheaf of L, (see 5.3) and let A be any 
irreducible component of indF,( A, ). Then 

E A,=&Av E*A, =tA. (15.12.1) 

The formula Ed, =E~ follows from 15.7(d); the formula EIA, = E*A follows 
from (4.3.1) and (8.2.2). 
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15.13. We say that (G, 9) satisfies the parity condition if 

&A=E*A (1513.1) 

for all A E I?,. If this condition is satisfied, then 

(-1) i+dim’G) (A: dPHiR$‘) is an integer 20 for all 
A&& all w  E IV”, and all i. (1513.2) 

Indeed, the expression (15.13.2) is 

t-11 
i+dimG(&: pHiR?$‘). 

If this is non-zero, then it is equal to 

&,,(dA: PHiK;) = Z,r(dA: PHiRff) 

=(A’:PH’Kf’)>O, 

where A’ E GY is defined by dA = kA A’ (see 15.5); we have El,+, = tA., again 
by 15.5. 

16. THE TWO-SIDED CELL ATTACHED TO A CHARACTER SHEAF 

16.1. In this chapter we shall fix Y E Y(T). We shall define a par- 
tition of IV” into “two-sided cells” and we shall define (under certain 
assumptions) a map of G, into the set of two-sided cells of IV’. 

16.2. The group W, is a Coxeter group. 
We refer to [6, p. 1391 for the definition of the relations E, 6 LR x, 

E, - LR-x, E, <LRX (Ed+“,, XE W,) and to [6, p. 1603 for the 
definition of the relation E, - LR E; (E, , E; E RY). We refer to [6, p. 761 
for the definition of the invariants uE,, AE,, fE, of E, E WY, in terms of the 
formal dimension polynomial D,,(U). 

We shall extend these definitions to WY = Sz,. W, which in general is 
not a Coxeter group. 

IfEE@“andxEW’wesaythatE<..x(resp.E-..x,E<..x)if 
there exists an irreducible W,-submodule E, of the restriction E 1 W, and 
an element 2.~ W, nQ,x.Q, such that El G LR E (resp. E, - LR 2, 

E, < LR 2). 

If E, E’ E I@” we say that E - LR E’ if there exist irreducible 
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W,-submodules E, c E ( W,, E; c E’ 1 W, such that E, N LR E;. If 
E2 E @“‘, we define uE = uE,, A, = A,, , where E, is any irreducible W,- 
submodule of E( W,. For any E E F?” any h E HI, and any integer i, we 
define Tr(h, E(u); i/2) E al by 

Tr(h, E(u)) = c Tr(h, E(u); i/2) uv2 

(see (12.9.3)). 
For any x E W” and any Ecz @” we define 

c x,E= (- I)““) Tr(u- nx)‘2Tx, E(u); -a,/2) 

= ( - 1 )‘(I) Tr( C,, E(u); -a,/2) (16.2.1) 

(compare [6, (5.1.21), (5.2.1)]). 

c:,,= Tr(u-7’““2Tx, E(u); (v - A,)/2) 

= Tr(Cx, E(u); (v - A.)/2) (16.2.2) 

(compare [6, (5.1.23), (5.11.1)]); v is the number of reflections in W,. 
From (12.9.3) it follows that c,,~, cI,,~ are integers times roots of 1. From 

(12.9.5) it follows that 

c,- I>E = c,,E*, 

From (12.9.7) it follows that 

(16.2.3) 

&,E= C~.E@~ (16.2.4) 

where E: WY + f 1 is as in (12.9.7). 
By considering the coefficient of U- (aE+aE’)‘2 in the two sides of (12.9.6) 

we obtain 

1 c,,,$,-I,E = {b”-’ fE’ dim E1’ tthetziE (16.2.5) 
XE WC2 9 7 

where El is an irreducible W,-submodule of E ) W,. 

If c,,~ # 0 then E - LR x 

(compare [6, 5.2(ii)]). 

(16.2.6) 

We now define, for any x E W’, 

‘G=&E~ J?I=C GEE (16.2.7) 
E 

(both sums are taken over all EE I&,). These are elements of 
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a( IV”) @ or, where &?( IV”) is the Grothendieck group of virtual represen- 
tations of IVY. 

From (16.2.4) it follows that 

dr=a.@&. 

From (16.2.5) it follows that 

1 c,-I,~M~= IQ,1 (fE, dim E,).E, 
‘E WY 

(16.2.8) 

( 16.2.9) 

where E, is an irreducible IV,-submodule of E 1 W,. 

16.3. The two-sided cells of the Coxeter group W, are defined as 
in [ 121. A subset of IV” is said to be a two-sided cell if it is of form 
Q,c,Q, for some two-sided ceil cr of W,. The two-sided cells form a 
partition of IV”. They are in l-l correspondence with the Q2,-orbits on 
the set of two-sided cells of W, (Sz, acts on that set by conjugation). Each 
two-sided cell of IV” is stable under the map x -+ x- ’ (see [6, 5.2(iii)]). If 
c is a two-sided cell of IV” then ~1~. c = c * us0 is again a two-sided cell of 
WY, where wO is the longest element of the Coxeter group W,. 

If EE I@” and x E IlJ” then the following two con- 
ditions are equivalent: E - LR x, EC3 E - LR wO x. (16.3.1) 

(Compare [6, 5.14(ii)].) 
We now prove the following result. 

LEMMA 16.4. Let c be a two-sided cell of W”. The following three 
a,,-subspaces of .%?( WY) @ Q, coincide: 

(a) the subspace spanned by ail E (Ef plip) such that E - LR .Y for 
some x E c; 

(b) the subspace spanned by all c(,(x E c); 

(c) the subspace spanned by all J&,, (x E c). 

Proof The subspace (b) is contained in the subspace (a) by (16.2.6). 
The subspace (a) is contained in the subspace (b) by (16.2.9) and by the 
invariance of c under x + x ~ I. By (16.28) the subspace (c) coincides with 
the subspace spanned by all CL,@& (XE woe), hence (by the first part of the 
argument) with the subspace spanned by all E@ E (E E I$“‘), such that 
E-u x for some x E wOc. By (16.3.1) this also coincides with the subspace 
(a). 

16.5. We refer to [ 15, Sect. 23 for the definition of the function 
a: W,+N. 

607,57’S8 
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It has the following property: if El E pY, x E W, satisfy El - LR x then 
aE, =a(~). (See [15, 6.41 and [6, 5.271.) 

We extend this to a function a: IV” + N by setting a(x. y) = a(y) 
(xEQ~, YE W,). Note that we also have a(y.x)=a(y) (xEQ~, 
YE W,). Then a is constant on the two-sided cells of WY. 

If EE lk9, x E II?;, satisfy E - LR x then uE = u(x). (16.5.1) 

This follows from the corresponding property of W,. 
We can now state the following result. 

THEOREM 16.6. Assume that G is clean and that (G, 2) satisfies the 
purity condition ( 15.13 ). 

(a) Let WE W&. The elements R$ and (- l)‘(w)-a(w)R~c of 
X0 (G) @a, (see (14.10.3), (16.2.7)) have the property 

(A: RE) is an integer20 

(A: (-1) ‘(n”-a(w)R~r) is an integer 2 0 

for any A E G. 

(b) Let AEC?~ and let E, E’ E I@” be such that (A: Rz) # 0, 
(A: Rz) # 0. Then E z E’. 

COROLLARY 16.7. There is a unique (surjectiue) map G, + {two-sided 
cells of W”} with the following property: If A E G, is mapped to the two- 
sided cell c, and if (A: R?$,) # 0 (E E I@“), then E z x for some x E c. 

16.8. For the proof of Theorem 16.6 we shall need the following 
result. 

Let V be a orvector space with a given basis {e,>, GiGn, and with a 
bilinear form ( , ): I/x V + 0, such that (pi, pi) = ~5,~ for all i, j. Given o E V 
we shall say that u satisfies (P) if all coordinates of v in the {ei}-basis are 
integers 20. Let I be a finite set with a preorder relation x d y and let - 
be the associated equivalence relation on I; we write x < y for “x d y and 
x & y.” Assume given two families of elements r, E V, F, E V (xe I) such 
that 

(a) (r,, r,,) =0 whenever x + x’. 

(b) When x runs through a fixed equivalence class for -, the rx span 
the same subspace of V as the FX. 

(c) For any x E 1, there exists a linear combination rx + xx, Cx d,,,,r,, 
(d,,,, E CIe,), which satisfies (P). 
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(d) For any x E Z, there exists a linear combination P, + C,<,. d,.,,?,. 
(d,.,, E Qe,), which satisfies (P). 

The assumptions imply that for any x E Z, both T.~ and 7, satisfy (P). 
This is proved by repeating, essentially word for word, the proof in 

[6, 6.161. 

16.9. Proofof Theorem 16.6 (compare with [6,6.17]). In 16.8 we shall 
take Y to be the Q,-subspace of X0(G) @ 0, spanned by all A E G,. These 
A define the basis of I/ which was denoted {rif in 16.8. The form ( , ) is ( : ) 
of (14.10.4). We take Z in 16.8 to be the set IV” with the preorder relation: 
“x d x’ if there exists EE I&Y, such that E - LR x, E d LR x’.” (The 
corresponding equivalence classes are just the two-sided cells of IV”.) For 
XE wy, we take r, = Rz E V, 7, E (- l)“~or’~U(k.O”) Rz 
the longest element in W,. 

W’ E V, where u10 is 

We must verify that the elements r,, F,E V satisfy conditions (a)-(d) in 
16.8. Conditions (a), (b) in 16.8 follow from 16.4 and 14.13. 

If AEey and XE WY, we have 

(- 1)“” & Tr(C,, E(u); -a(x)/2)(A: R$) 
EE w, 

=(-l)“~ri-or-r)(A:d(pHdimG+“~)-U~~’(~Q))), by(15.10.1). (16.9.1) 

The part of the sum (16.9.1) corresponding to those E for which E - LR x is 
equal to 

(-])‘I” c Tr(C.,, E(u); -a,/2)(A: Rz) 
E I5 -IA 

= 1 c-&A: R$‘) = (A: Rz) 

(cf. (16.5.1) and (16.2.6)). The part of the sum (16.9.1) corresponding to 
those E for which E SLR x is zero. (See the proof of [6, 5.21.) The part of 
the sum (16.9.1) corresponding to those E for which E cLR x is a o,-linear 
combination of terms (A: Rzy.), for x’ in two-sided cells strictly lower than 
that of x (by 16.4). Hence (16.9.1) can be written as 

(A: Ray) + 1 d,,,,(A: KY,) 
= (_ lpbu(-~) (A: d(pHdlmG+((.~)--u(.~J(~~))) 

= integer 2 0 by (15.13.2), (16.9.2) 

(d,:, E Q,), where X’ runs over elements in two-sided cells strictly lower 
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than that of x. Hence the condition (c) in 16.8 is verified. Replacing x by 
wOx in (16.9.2) and using the identity 

which follows from (16.2.8) and 158(c) we get 

(A: (-1) I- a(wOx) R, 
wx 

) 

t-Cd w(Ixf. .,o.Y( - 1) /(W’(p) ~ a(mp) + /(Wi.Y’l - a( WAX’) 

x(A: (-1) /(W’O”) ~ U(W&X’) Ry 
+J 

= (A: p~dimG+l(wo-~)--u(wo.~)(~~~~)) 

= integer > 0. (16.9.3) 

(Here wOx’ runs over elements in two-sided cells strictly lower than that of 
w,x; or equivalently, x’ runs over elements in two-sided cells strictly higher 
than that of x.) Hence the condition (d) in 16.8 is verified. 

From 16.8 it now follows that part (a) of Theorem 16.6 holds. We now 
prove (b). With the assumption of (b), we see from 16.4 that there exist 
x,x’~W~suchthatE-~.x,E’-,,x’,(A:R~)#O,(A:R~.)#O.By(a), 
the last two inner products are 20 hence they are >O. It follows that 

(Rz: R;,) > 0. (16.9.4) 

(By (a), it is a sum of 20 terms, one of which is >O.) Using 16.4, we can 
write 

(dE”, 4E”’ E a,), and (16.9.4) implies 

Using now 14.13, we see that there exists E” E @” such that E” - LR x and 
E” NLR x’. It follows that x,x’ are in the same two-sided cell of W$, so 
that E N LR E’. The theorem is proved. 

16.10. COROLLARY (of the proof). (a) For any x E W’, the element 
Rgx E X0(G) is the class of a semisimple perverse sheaf on G which is a direct 
summand of ( - 1 )‘(z)Py(s) d( pHdimG + ‘(x)-u(x)(~~)) (which is itself realizable 
as a semisimple perverse sheaf on G, by (1513.2)). 
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(b) For any XE W’, the element ( - 1 )‘(-y)-a(s) R~,T E X0(G) is the 
class of a semisimpie perverse sheaf on G which is a direct summand of 
pHdimG+/(r)-u(x)(R~). 

REFERENCES 

Part I 

1. A. A. BEILINSON, J. BERNSTEIN, AND P. DELIGNE, Faisceaux pervers, AstPrisque 100 (1982). 
2. P. DELIGNE, La conjecture de Weil, II, Publ. Malh. IHES 52 (1979), 138-252. 
3. P. DELIGNE AND G. LUSZTIG, Representations of reductive groups over finite fields, Ann. of 

Mafh. 103 (1976), 103-161. 
4. G. LUSZTIG, Intersection cohomology complexes on a reductive group, Invent. Math. 75 

(1984), 205-272. 

Parr II 

5. G. LUSZTIG, Character sheaves, I, A&. in Math. 56 (1985), 193-237. 
6. G. LUSZTIG, Characters of reductive groups over a finite field, Ann. of Math. Studies 107, 

Princeton Univ. Press, Princeton, N.J., 1984. 
7. T. A. SPRINGER. Trigonometric sums, Green functions of finite groups and representations 

of Weyl groups. Invenr. Math. 36 (1976), 173-207. 

Part III 

8. D. ALVIS, The duality operation in the character ring of a finite Chevalley group, Bull. 
Amer. Malh. SK. 1 ( 1979), 907-9 I 1. 

9. C. W. CURTIS, Truncation and duality in the character ring of a finite group of Lie type, J. 
Algebra 62 (2). (1980), 320-332. 

10. F. DIGNE ANU J. MICHEL, Descente de Shintani des caracttres d’un groupe de Chevalley 
lini. C. R. Arad. Sci. Paris S&r. A 291 (1980), 571-574. 

11. R. B. HOWLETT AND R. W. KILMOYER, Principal series representations of finite groups 
with split BN pairs, Comm. Algebra 8 (6)(1980), 543-583. 

12. D. KAZHIIAN AND G. LUSZTIG, Representations of Coxeter groups and He&e algebras, 
Invent. Math. 53 ( 1979). 165-184. 

13. G. LUSZTIG, Character sheaves, II, Adv. in Muth. 57 (1985), 226-265. 
14. G. LUSZTIG. Unipotent characters of the symplectic and odd orthogonal groups over a 

linite lield, Inaent. Math. 64 (1981 ), 263-296. 
15. G. LUSZTIG, Cells in alline Weyl groups. in “Algebraic groups and related topics,” 

(R. Hotta, ed.) Advanced Studies in Pure Math., vol. 6, 1985, North Holland and 
Kinokunia. 



ADVANCES IN MATHEMATICS 59, l-63 (1986) 

Character Sheaves, IV 

GEORGE LUSZTIG* 

Department of Mathematics, MIT Cambridge, Massachusetts 02139 

Conreno. 17. Parametrization of e, (statement and first reductions). 
18. Groups of type A. 19. Classical groups of low rank. 20. Groups of type &, E,, 

and Gz. 21. Groups of type E8 and F4. 

This paper is part of a series [S, 13, 173 devoted to the study of a class G 
of irreducible perverse sheaves (called character sheaves) on a connected 
reductive algebraic group G. (The numbering of chapters, sections and 
references continues that of [S, 13, 171.) This paper contains a 
classification of the character sheaves of G assuming that G is almost sim- 
ple of type A or an exceptional group (in good characteristic). It is proved 
that such G are clean (in the sense of (13.9.2)), that they satisfy the parity 
condition (15.13), and that the class of character sheaves coincides with the 
class of admissible complexes defined in [4]. We also prove (for the groups 
in question) a multiplicity formula rather analogous to the main theorem 
(4.23) in [6]. The case of classical groups will be considered in part, V. 

17. PARAMETRIZATION OF 6, (STATEMENT AND FIRST REDUCTIONS) 

17.1. In this chapter, W denotes the Weyl group of a root system 
with a fixed set S of simple reflections. An isomorphism of Weyl groups is 
always assumed to come from an isomorphism of root systems and to map 
simple reflections to simple reflections. This applies in particular to the 
group of automorphisms Aut W of W. 

17.2. Let (r E Aut W be an automorphism of order c and let C, W 
be the semidirect product of the cyclic group C,. of order c with generator 0 
and W (with W normal and crwc-l =a(~), WE W). 

Let E be an irreducible W-module (over aI) which is extendable to a 
C,W-module. Then E can be extended in c different ways to a C,W- 
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module. We shall single out one particular extension B and call it the 
preferred extension; this is done separately in the various cases. 

(a) W irreducible, (T = 1. Take $ = E. 

(b) W of type A, (n > 2) or E, and c = 2. Define E by the condition 
thata:E-+Eactsas(-l)“E. wO where wO is the longest element in W and 
uE is as in 16.2. 

(c) W of type D4 and c = 3. Define 6 to be the unique extension of E 
which is defined over Q [6, 3.21. 

(d) W of type D, (n 3 4) and c = 2. The irreducible representations of 
C,W which remain irreducible upon restriction to W have been 
parametrized in [6, 4.181 by certain symbols with two rows (an upper row 
and a lower row) and an even number of entries; the two representations of 
Cz W which extend a given irreducible representation of W correspond to 
symbols which differ one from another only by interchanging the two rows. 
We say that ,!? is preferred if the corresponding symbol has the following 
property: the smallest entry which appears in only one row appears in the 
lower row. For example, the preferred extension of the unit representation 
of W is the unit representation of C,W; its symbol is (;;). 

(e) Assume that W = W, x W, x ... x W, with Wi irreducible Weyl 
groups and that cr permutes cyclically the factors Wi: cr(~y,, We,..., wr) = 
(O,(w,), h(w,),..., 4,- l(w,- ,)I where 4, : W, -, Wz, h: W2 + WI..., d,-, : 
W,-, + W,, and 4,: W, + W, are isomorphisms of Weyl groups (see 
17.1). Then E can be written as an external tensor product E = 
E, W E, W ... H E, where Ei are irreducible W,-modules (1 6 id r). Since 
E is extendable to C,.W, there exist isomorphisms of Q,-vector spaces: 

h,:E, -,Ez,h,:E,~E3,...,h,-1:E,~, +E,,h,:E,-+E, 

such that 

hi(w;et) = 9z(wi) hi(ei) (Vwi E W, ei E E,). 

for 1 < i < r. (These isomorphisms are unique up to non-zero scalars.) We 
normalize them in such a way that h,-, . ..h.h, h,: E, + E, defines a 
preferred extension (see (a)(d) above) of the W,-module E, to a C,.,,W,- 
module where the generator of C,.,, acts on W, as dr-, . ..&drd..: W, + W,. 
(Note that E, is extendable to C,.,,W, since E is extendable to C,.W.) We 
then define E to be the extension of E to a C,.W module for which CJ: E + E 
is given by 

a(e, EG e, Ed ... iX e,) = h,(e,) iH h,(e,) q ... IX h,- ,(e,- ,) (e, E Ej). 
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This is independent of the choices of hi, by the normalization condition 
for h,-,...&h,h,. 

(f) In the general case, we can write uniquely W = 
w’xw2x .*. x W’ and E= E’ q E2 RI ... IX E’ where W’ are o-stable 
Weyl subgroups , E’ are irreducible W’-modules and W’ and E’ satisfy the 
conditions of (e) for all i. The preferred extension B is given by the map cr: 
E + E which is the external tensor product of the maps cr”‘:E’ -+ E’ defined 
as in (e). 

(g) When W is of type D, or D3 and c = 2 then the method of (d) 
still gives a preferred extension of E to C2W. On the other hand, in the 
case D2, the method of (e) gives a preferred extension and in the case 
D, = A, the method of (b) gives a preferred extension of E to C2W. It is 
easy to check that these definitions of the preferred extension coincide. 

17.3. Now let R be a finite abelian group with a given 
homomorphism R -+ Aut W. This gives rise to the semidirect product I1W, 
with W normal and ~WK ’ = (T(W) for 0 ES& w  E W. The irreducible 
representations of RW can be described as follows. Start with an 
irreducible representation E of W. Let QE be the set of all u E n such that 
E can be extended to a C,.W-module. where C,, is the cyclic subgroup of 
Aut W generated by the image of G in Aut W. For beaE, there is a well 
defined map r.r: E --, E which gives rise to the preferred extension (17.2) of E 
to the group C,.W just considered. The maps cr: E + E for the various 
(r ~0, define an extension of E to a representation E of the semidirect 
product Qz,W. Now let 8 be an one-dimensional representation aE --+ Q:; 
we regard it as a representation of fi,W, trivial on W, and we consider the 
induced representation 6, = ind$$,, (0 q E) of S2W. It follows from 
Mackey’s theorem that & is irreducible and that the existence of an 
isomorphism E, z&. (where E, E’ are irreducible representations of W) 
implies that E, E’ are in the same a-orbit and that 6’= 8’ as characters of 
CbE=S-&. 

17.4. The set W of irreducible representations of W (up to 
isomorphism) is partitioned into families (see [6, 4.21). By a result of Bar- 
basch and Vogan [6, 5.251, E, E’ E W are in thEame family if and only if 
E- LREl (see 16.2). More generally, the set fiW of irreducible represen- 
tations of fiW (see 17.3) can be partitioned into families as follows. We say 
that two irreducible representations of nW are in the same family if their 
restrictions to W each contain some irreducible component which is in the 
same family (of W). 

Thus we have a l-l correspondence between the set of families of fiW 
and the set of families of W modulo the obvious action of Q: if 9 is a 
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family of W and 9’ is the corresponding family of fiW, then 9:’ consists of 
the representations E,, where E runs over the representations in 9 and 6 
runs over the characters of QE (see 17.3). Moreover, the set of families of 
QW is in 1-l correspondence with the set of two-sided cells nW defined as 
in 16.3 (for S’lW instead of Q, IV,). It is characterized by the property: if 
E E 9”’ and E,FX E fiW (EL7 defined as in 16.2) then 9’ corresponds to 
the two-sided cell containing x. 

17.5. In [6, 4.44.133 we have attached to each family 9 of W 
(assumed irreducible) a finite group SF, isomorphic to a symmetric group 
6, (n < 5) or to a product of cyclic groups of order 2. Moreover, we have 
defined an imbedding SG&!(S,), where for any finite group 9, the set 
.R;e(‘S) is defined as follows. A(%) consists of all pairs (x, r) where x is an 
element of 9 and z is an irreducible representation over 0, (up to 
isomorphism) of Z,(x) modulo the equivalence relation 
(x, r) N (gxg-‘, 7”) for any g E 9, where r” is the irreducible representation 
of Z,(gxg-‘) = gZ,(x) g-’ defined by composing T with conjugation by 

-1 
g ’ 

This can be extended to the case where W is no longer assumed to be 
irreducible. Write W = W, x W, x ... x W, with Wi irreducible. A family 
F of W is of the form 6 H R* q . . . EK 9, where Fi are families of W;. 
We define Y,s to be gY, x Y,Fz x . . . x 9,F--,. Then we have a natural bijec- 
tion JY(%,~) = ~&‘(9~,) x ,&‘(9,,) x ... x J%‘(%,,~) (see [6, (4.3.1)]) and 
the product of the embeddings Fj CF~(%~,) gives the required imbedding 
5 4 A(3.p). 

The group 9,F is functorial in the following sense: an isomorphism of 
Weyl groups W, , W, which takes a family % to a family F? induces an 
isomorphism gF-, + Y.,. We require that this isomorphism be compatible 
with the decomposition of W into a product of irreducible Weyl groups 
and the corresponding decomposition of qe,. Hence to define it we may 
assume that W, = W, is irreducible. If F1 # F1 then we have necessarily 
%,, = gFz = (e} (and W, if of type D,,) so there is a unique isomorphism 
9 F, s ?JY12; if & = 4 we define 9,F, + Y, to be the identity map. 

17.6. Now let 9’ be a family of OW, and let 9 be the 
corresponding family of W (defined up to the action of a). Let 0, be the 
stabilizer of 9 in Q. Then Q,, acts naturally on the group g9 (by the 
functoriality of gF). Using this action we construct the semidirect product 
fi9Y, (with 9, normal). We define 

Note that 9 is not uniquely determined by F’ (only its a-orbit is). If 6 is 
another family of W in the Q-orbit of 9, then any element c ofi which 
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takes 9 to 9i defines an isomorphism g9 r Y, (by the functoriality of 
Y*) and hence an isomorphism i,: aFYF + O,s,, which is the iden- 
tity on 0, ; note that a, = nPp, since Sz is abelian. If we replace u E R by 
gyro where oO E a2, then i,,, = i, 0 i,, where i,,: n9C9$ --) Q9Y, is con- 
jugation by B,,, hence an inner automorphism. Now i,, i,,, induce 
isomorphisms j,, j,,, : A(a9%F) -, ~Vfi~,~~~). W have L, = .Lj,, 
where joO: A(Q,9,) -+ ,&i/(Q,gY) is induced by an inner automorphism 
of RP9J9 and hence j,, = identity. Thus j,,, = j,. It follows that 

(17.6.2) g9 is well defined up to isomorphism and A(%,) is well 
defined up to unique isomorphism. 

17.7. For any family F’ of QW, we consider the subset 

h!O(%~~) = {(x’, 7’) E AqYF,) Ix’ E 2&F} 

of A(g9,), with notations in 17.6. We shall define an imbedding 

(17.7.1) 9’4JVO(~.P,). 

We choose a family 9 of W as in 17.6. For simplicity, we shall write Y 
instead of Y9 and 9’ instead of 9JF,. Let E E 9 and let 9 be a one-dimen- 
sional representation of II, (see 17.3). We want to associate to E, (see 
17.3) an element of A,(%‘). The imbedding ~cGJH(~) (see 17.5) associates 
to E an element (x, z) E &!(g9). 

We write W = W, x *.. x W,, with Wi irreducible. Accordingly, we have 
%=Y, x ... x3,, where 9Ji=YF, and Pi is a family in Wi. The group fi 
acts on W and induces a permutation of the set of indices [ 1, n]. By 
functoriality of Y,, we may identify canonically gi, gj for i, j in the same 
orbit of Q9 on [ 1, n]. Then the action of a, on 9 is simply by per- 
mutations of the n coordinates. Let gi be a set of representatives for the 
conjugacy classes in gi; we may assume that Qi = gj whenever ~9~ = sj. We 
may assume that x = (xi ,.,., x,) E 9 satisfies xi E gi. 

Let fi, be the centralizer of x in Sz,. Then Cl, normalizes Z,(x). 
Moreover, Z,*(x) is the semidirect product &Z,(x). Indeed, let 
oy E &$4x), fJ E a,, Y ~9. Then o-‘xa=yxy-‘. We have u-~xo=(x,(,), 
X a(2p-7 x,(,,)) where a is a permutation of [l, n]. It follows that xaCi) = 
yixiyil (yi E 9Ji) for all i. Since x,(~), xi E B,, it follows that xOCi) = xi for all i. 
Thus, we have CJ -ixc~ = x = yxy - ‘, hence Z,(x) c &Z,(x). The reverse 
inclusion is trivial. The group Q, normalizes Z,(x), hence it acts on the set 
of irreducible representations of Z,(x). We now show that 
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(17.7.2) The stabilizer of r in Q2, is equal to QE. 

Let CJE~,. Since the imbedding Pc;J%‘(~) is functorial, it maps E” to 
(a(x), T”), where E”, ta have an obvious meaning. If E” = E then 
(a(x), P’) = (x, T) in J!(S). In particular, a(x) is conjugate to x in 9’. As we 
have seen earlier this implies rr(x) =x, i.e., CJ E Q,. We also have P = r, 
hence 0 stablizes r. Conversely, if cr E a, stablizes r, then we see that E and 
E” have the same image under 9 -+ .,&z’(g). Since this map is injective, we 
have E = E”, hence o E fiE and (17.7.2) is proved. 

We can write Z,(x) = Z,,(x,) x ‘.+ x Zy.(x,,), and QE acts on Z,(x) by 
permuting the coordinates. We have z = t1 q .. H z,, where r, are 
irreducible Z,,(xi)-modules and we may assume that zi = t, for i, j in the 
same S1,-orbit on [I, n]. Hence t extends naturally to a a2,Z,(x)-module 
?; an element of R, acts on r by permutations of components of a tensor. 
We now consider the Z,.(x)-module z”, = Ind$&, (e EX 7). (Recall that 
Z,(x) = R,Z,(x)laZ,Z,(x).) Here 8 is regarded as a character of 
f12,Z,(x), trivial on Z,(x). Fom (17.7.2) and Mackey’s theorem it follows 
that fB is irreducible. We now define the map (17.7.1) by E, E+ (x, Yn). It is 
easy to see that it is well defined and injective. 

17.8. Let us fix 9 E Y(T); recall that T is a maximal torus of G. In 
the discussion of 17.1-17.7, we take W= W,, Q=Q2, (see 5.1) so that 
Q, W, = WY. The imbeddings (17.7.1) give rise together to an imbedding 

(disjoint union over all families 9’ of W’); the restriction of this 
imbedding to 9’ is just (17.7.1). We denote by mE the image of E E @‘II 
under (17.8.1); it is an element of &(4e,,,) for some 9’. 

Consider the pairing { , } on &(9,,,) defined by 

(17.8.2) ((x, ~1, (x’, 0) 

(see [6, (4.14.3)]). 
We extend it to a pairing { , } on LI,,,JV(~~,) as follows. If m, m’ are 

in the same piece &(g9,) then (m, m’} is given by (17.8.2); otherwise, 
{m, m’} is defined to be zero. 

We consider the following statements for (9, 2). 
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(17.8.3) There exists a bijection 6, c*ll,.~I’(S~.), (A -CA), (S’ 
runs over all families in W9) such that 

(A : RZ) = E ,̂ {tiiA : rnE> 

for all A E e, and all E E a’. (Here 2 A = f 1 is defined as in (15.11.2) and 
Rz is defined in (14.10.3).) 

(17.8.4) G is clean and any character sheaf A E c?~ satisfies the con- 
dition sA =iA (see (15.13.1)). 

We shall also consider the following statement for G. 

(17.8.5) Any irreducible cuspidal perverse sheaf on G is a character 
sheaf (see (7.1.1)). 

We would like to prove that the statements (17.8.3)-(17.8.5) are always 
true. In this paper we shall verify them in the case where G is of type A or 
an almost simple exceptional group (with some restrictions on the charac- 
teristic on k). 

In Sections 17.9-17.16, we shall give some reductions of the statements 
(17.8.3)-( 17.8.5). 

17.9. Let &’ be a local system of rank 1 on G which is the inverse 
image under G + G/Gd,, of a local system b, E Y(G/Gd,,). (Here Gder is the 
derived group of G, hence G/G*,, is a torus. The class of local systems 
Y(G/G,,,) is defined just as Y(T) in 2.2.) For each 3 E Y(T) we define 
dp@ d as the tensor product of S? and the restriction 6 1 T; then 
.L?@OdE(T). It is clear that IV”= IV&B8 and that Rz@‘“=KT @&for 
all WE IICY. It follows that 

(17.9.1) A -+ AmI is a bijection GY rGYB,, 

(17.9.2) Rz@‘=Rg@b, for all EE Fk&,, 

(17.9.3) (A:Rz)=(A@&:Rz@“), for all AEG~ and all EEL@& 

(17.9.4) PH’(~~@“)=pHi(I?~)@~, for all WE IV” and all i. 

It follows that the statements (17.8.3) (17.8.4) hold for (G, 3) if and only 
if they hold for (G, 2 0 8). 

17.10. Let G’ = G/Z& T’ = T/Z& 9’ E Y(T), 2 = inverse image of 
8’ under the canonical map T + T. Then 2 E ,Y( T). Let rc: G + G’ be the 
canonical map. It is smooth, with connected tibres, hence it takes 
irreducible perverse sheaves on G’ to irreducible perverse sheaves on G (see 
1.8). From the definitions it follows immediately that n*(R$‘) = RF for all 
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WE W”= W”,, where Kc ’ is defined with respect to G’. From (1.8.1) it 
then follows that for all i, we have Z(PH’Pd’mG’R~‘) =J’Hi-dimG(R$). 
From this and (1.8.1)-( 1.8.4) we deduce 

(17.10.1) A’+itA’ is a bijection c;‘&. se,, 

(17.10.2) itR$’ = R$ , for any E’ E I&“, = IkY, 

(17.10.3) (A’ : Rf$‘) = (5A’ : R$), for any A’E: Glty, and any 
EIE bk/= I?& 

(17.10.4) q,, =E*~,, iA. =&,‘, for any A/EC?&.. 

It follows that the statements (17.8.3) (17.8.4) hold for (G’, 9’) if and 
only if they hold for (G, 2). 

Since any local system in Y(T) is of form Y @ 6 with 9 as above (com- 
ing from 9’) and d as in 17.9, we see, using 17.9, that the statements 
(17.8.3), (17.8.4) hold for G’ and any 2’ E ,u?( T) if and only if they hold for 
G and any -4p, EY(T). In the same way we see that (17.8.5) holds for G’ if 
and only if it holds for G. 

17.11. Assume now that G is a product G, x ... x G, where G, are 
reductive connected groups over k. The character sheaves of G are precisely 
the complexes of form A, H . . q A,,, where Ai is a character sheaf on Gj 
for each i. If the statements (17.8.3)-(17.8.5) hold for each Gi then they 
hold also for G. (The proof is left to the reader.) 

17.12. Let YE Y(T) and let I be a subset of the set S of simple 
reflections in W such that IV” = IV”., (notation of 15.6). Let L,, RF.’ be as 
in 15.6 and let if be as in 15.3. Assume that G is clean. We shall prove that 

(17.12.1) if defines a bijection (i,), %GY, 

(17.12.2) if(Rz,‘) = Rz for any EE I&” = I@“.,, 

(17.12.3) (ifA : Rz) = (A : RzJ) for any A E (L,), and any EE I@“, 

(17.12.4) If I# S, then G, contains no cuspidal character sheaves. 

From (15.3.4) and (15.3.2) we see that 

(17.12.5) (ifA : i;A’)=C,(r:-I,,,,A : yx~;nr,r-IA’) 

where A, A’E (E,), and the notations are as in (15.3.4) with Z=J. Con- 
sider the term in the last sum corresponding to a fixed x; assume that it is 
non-zero. From the proof of 15.7, we see that 

I r,-,,,,,A= sum of character sheaves in (i,-,,.Y,,),, 
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for various y E Wx-llxn,, 

9 

Y.Arinxlx- ,A’) = sum of character sheaves in (~X~l,Xr\,)X-,Zrp 

for various ZE W,nx,xm~. Since our term is non-zero, it follows that there 
exist y, z as above such that (2,)91, 
J=x-‘IxnI, L$ =yzY, dz; =I-” 

(L,),, are not disjoint, where 
9. Using now 11.2(c), it follows that 9r;, 

=!& are in the same W,-orbit. It follows that uy=x-‘zu for some 
UE Wx-l,.rn*, UE WY. We have y, z, u E W, and v E W” = W$,, (by 
assumption), hence v E W, and XE W,. Since x has minimal length in 
W,xW,, we must have x= 1. Hence (17.12.5) simplifies to 

(17.12.6) (i;A : $A’) = (A : A’). 

This implies that if: (E,), -+ ey is well defined and injective. Now 
(17.12.2) follows from 15.7(a) and our assumption W, = W9,,. Consider 
LEGS. Then (A: Rg)#O for some EE l@9 (see 14.12). Using (17.12.2), 
we then have (A” : i;Rz’) #O. Hence there exists A, E (e,)P such that 
(A” : ifA ,) # 0. Since ifA, is a character sheaf, we must have 2 = if.4 r , and 
(17.12.1) is proved. Now (17.12.3) follows from (17.12.2) and (17.12.6). 
Finally, (17.12.4) clearly follows from (17.12.1). From (17.12.1), (17.2.3), 
and 15.12 we deduce that 

(17.12.7) ifthe statements (17.8.3), (17.8.4) holdfor (L,, 2) then they 
also hold for (G, 9) (assuming that G is clean and that W” = W”,,). 

17.13. We preserve the notations ,& 17.12, but we drop the 
assumption w$ = W$,*. For each E, E W!!,1 we define a W$-module 
J(E,) = Jz, (E,) as the I&submodule of ind$, (E,) generated by all 
irreducible IV&,-submodules E satisfying aE = aE1 ; for any irreducible sub- 
module E of ind2 (E,), we have uE B aE, [6, (4.1.5)]. (Here aE is defined 
with respect to Wzand uE, is defined with respect to IV”,, (see 16.2).) We 
extend J by linearity to a homomorphism J: a( WY,,) --+a( W”) or J: 
B( W$ I) 0 Q, + B( W$) @ QI (notation of (14.10.3)). From the definition 
of families in [6, 4.21 and 17.4, it follows that given a family %0 of WY,, 
there is a unique family % of WY with the following property: for any 
E, E%~, any irreducible IV-submodule of J(E,) is in 9. We say that % is 
the family of W” induced by %O. 

We shall make the following assumption: 

(17.13.1) the statement (17.8.4) holds both for (G, 9) and for 
(Lo yip)- 

We then have a partition 
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(17.13.2) GY =FG,,9 

(F runs over the families in I@“): we say that A E G, is in G,,, if the 
two-sided cell in IV” attached in 16.7 to A corresponds by 17.4 to 9. We 
define similarly a subset (%,)u,FO for any family Y0 in I@!.,. 

We now define for any character sheaf A, E (~,)v.,qo, (PO as above) an 
element jf(A,) E X0(G) as follows. Let 9 be the family in pY induced by 
9$. Consider $(A i) (see 15.3); it is a linear combination CAmA A of 
character sheaves A E G9 with integral, 3 0 coefficients mA (see 4.8(b)). 

We set, by definition, jf(A , ) = Cm, A, sum over all A E e,., . We also 
define by linearity j;(x) for any element x E A&(L,) @Q, which is a Q,- 
linear combination of character sheaves in (i,),,,,. From 16.7 and 157(a) 
it follows immediately that 

(17.13.3) jf(Rg,‘) = RgE,,, 

for any E, l 9( IV”,,)@Q, which is a Q,-linear combination of represen- 
tations in 9$. (Here R~~‘EX,(L,)@Q,, RgE,,~Xo(G)@Q,, and J: 
a( W’.l) 0 0, + 9( IV”) 0 0, is defined as above.) 

It is easy to see that for any WE I%?,., in the two-sided cell corresponding 
( 17.4) to FO, we have 

(17.13.4) J(@ ,(,, $J = y&y 

where CI,,, w, iy,, (rev. %,w$ ) is the element CI,. of (16.2.7) defined with respect 
to W&,,(resp. WY). (Compare [6, [S.lOS)].) 

Introducing this into (17.13.3) we get 

(17.13.5) jf(RE;$y,,l = R&,9. 

Next, we note that if EE R( WY) @ Q, is a Q,-linear combination of 
representations in 9 and A, E (L,),,, then 

(17.13.6) (jf(A,) : RF) = (A, : R$‘,). 

(Here ‘J: B( WY) @ Q, + W( WY,,) 0 a, is the linear map defined by: coef- 
ficient of E, in ‘J(E) = coefficient of E in J(E,), (E, E L@“,,, EE b&“‘).) 
Indeed, by the definition of jf, the left-hand side of (17.13.6) is equal to 
($(A,) : Rg). Similarly, the right-hand side of (17.13.6) is equal to (A, : 
Rf$L) = (A, : $RF) (see 15.7(c)). It remains to use (15.3.2). 

In the remainder of this section we shall assume (in addition to 
(17.13.1)) that 9, & have the following property. The map E, -+J(E,) is a 
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bijection Jz%~ r %; moreover, there is an isomorphism Y, r Y, (see 
17.5) such that the diagram 

is commutative. (The bottom arrow is induced by gFO s gS.) In this case 
we shall say that 9 is smoothly induced by %O. 

Under these assumptions we shall prove the following. 

(17.13.7) Zf (17.8.3) holds for (L,, Y), then (17.8.3) also holds for 
(G, 2’) as far as C?,., 
k% 

is concerned, in other words, there exists a bijection 
-JH(S,), (A-m,) such that the equality in (17.8.3) for (G, 2’) 

holds for all A E G,,, and all E E 9. 

More precisely, we shall prove 

(17.13.8) jS defines a bijection (L,),,, r eTe.F. 

We can then define the bijection in (17.13.7) in such a way that the 
diagram 

is commutative. (The left vertical arrow is provided by (17.8.3) for 
(L,, Y).) This bijection has the required property, by (17.13.6). 

It remains to prove (17.13.8). First, we show thatjs(A,)#O for all A, E 
chL%o. If we had jS(A,) =0 then, from (17.13.6), it would follows that 
(A, : R<i ) = 0 for all E E I@“. From our assumption J: %0 2 % it follows 
that (AI : Rz’) = 0 for all El E %0, contradicting 14.12. Thus, jS(A , ) # 0 for 
all A, E (~I)g,Fo. 

We now fix A, E(E,)~,~~. From 14.12 and 16.4 it follows that there 
exists w  E IVYqI such that (A, : RF) # 0, where a, is defined as in (16.2.7) 
with respect to WY,,. By 16.6 we have 

(17.13.9) Rz’=n,A, +n,A, + .-. +n,A, 

where Ai E (E,),,, are distinct (1 < i < r) and n,, n2,..., n, are integers > 0. 
Let d, be the element a, of (16.2.7) defined with respect to Wk. We have 
J(a,) = E, (17.13.4); since J: %0 3 9 it follows that 
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(17.13.10) ‘J(L?,) = ~1, + a linear combination of representations in 
lPp., not in &. 

We have 

i n,n,(jf~, : j;~~) = (j;(R$‘) : j;(R~9 (by (17.13.9)) 
i,j= 1 

= (jf(R$') : RE,) (by (17.13.5)) 

= (RZJ : RTy(&) (by (17.13.6)) 

= (Rz’ : Rz,‘) (by (17.13.10)) 

(by (17.13.9)). 

On the other hand, j;A, is a non-zero linear combination of character 
sheaves with integral > 0 coefficients. Hence (j;A, : jfAj) is 2 1 for i=j 
and is > 0 for i # j. Hence from the equality 

jclnj= i n,n,(jfA, : jfA,) 
r,,= I 

it follows that (jfAi : $Aj) is 1 if i = j and is 0 if i # j. In particular, j;A, is 
a character sheaf in G,,,,. Hence jf defines a map (E,),., + G,,,. We 
show that this map is surjective. Let A E G,,,. By 14.12, there exists EE F 
such that (A : R$) # 0. We have E= J(E,) for some E, E F& hence 
O# (A : RzE,,)= (A : jf(Rg-I)) (by (17.13.3)). Hence there exists 
A i E (z,),., such that (A i : Rz’) # 0 and (A : jf(A , )) # 0. This implies 
A = jS(A,); thus jS is surjective. We now show it is injective. Assume that 
A=jW,)=jfl~d (Al,A2e@) , Y.50). Let E E 9 and let E, E F. be such 
that J(E,) = E. Then ‘J(E) = E, + a linear combination of representations 
in PVY., not in &. We have for i = 1 or 2: 

(A : Rg) = (jf(A ;) : R$) = (A; : Rs&) (by (17.13.6)) 

= (Ai : R;,‘). 

Hence (A,: Rg.‘) = (A,: Rz’) for all E, E&. This implies that 
(A,: RE,‘) = (A,: Rz,‘) for all w  E IV”,, where ~1, has the same meaning as 
in (17.13.9). We now choose w  such that (A,: Rz,,‘) #O. Then 
(A,: Rz’) # 0 and we may assume that A i, A, are the first two terms in 
the right-hand side of (17.13.9). But we have shown earlier for these A, that 
(j;A I : j:A,) = 0. This contradicts the assumption j;A, = j;A *, and com- 
pletes the proof of (17.13.8) and of (17.13.7). 
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We also note the following. 

(17.13.11) In the setup of (17.13.7), assume also that L,#G. Then 
Gs= contains no cuspidal character sheaves. 

Indeed, (17.13.8) shows that any AE~,,, is of form jf(A,) 
(A, ~(2 1 I P,YO), hence it is a direct summand of indg, (A,), with PI as in 
15.3. Hence A is not cuspidal. 

17.14. We now assume that we are given 9 E Y(T) and a family 
9 c &“’ such that (17.8.4) holds for (G, 9) and such that (17.8.3) holds 
for (G, S?) as far as GP,F is concerned (see (17.13.7)). Then FOE (with E 
as in (12.9.7)) is again a family in WY. 

Assume that we are given a bijection 4: A(%,) --) J(gF BC) such that 

(17.14.1) {b(m), &m’)} =EA(m, m’} for all m, m’E&(g*), 

where m corresponds to A E c?,,, under (17.8.3) and m’ corresponds to 
EEF under (17.7.1). Recall that { , } is given by (17.8.2). 

We assume also that the following diagram is commutative. 

(17.14.2) 

We show that under these assumptions, the statement (17.8.3) holds for 
(G, 9) as far as Gz,F B)E is concerned. 

Indeed, we define a bijection 

(17.14.3) ~lP,m3~ - + -4Y.F@E) 

by the requirement that the diagram 

G 5e.F N ’ “%;“(%.%=I 

+dl 

e 
I t 

Y.F@E ----+ Jw9.F @J 

be commutative. Here, the top arrow is the bijection of (17.8.3) for G,,, 
and +d is defined by A++E^,d(A) (see 15.5). The fact that +d is well 
defined and bijective follows from 15.8(c), (15.4.5), and (15.4.3). It is then 
clear that the bijection (17.14.3) has the property required in (17.8.3). 

17.15. Let YEY(T) be such that (17.8.3) (resp. (17.8.4)) holds for 
(G, 2). Let w  E W, we set Y= w*g. Then (17.8.3) (resp. (17.8.4)) holds 
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for (G, 9’). This follows easily from 14.15. (We may assume that w  is a 
simple reflection of W.) 

17.16. Let G’ be a connected reductive group over k and let x: 
G’ -+ G be a surjective homomorphism with finite kernel. Let 9’ E Y( T) 
and let 9’ be the inverse image of 9 under rc: z-l(T) -+ T. We have 
w, = w,, cw;,cwp~ in a natural way. If w  E I+“’ and iE Z then it 
follows from definitions that 

(17.16.1) x*K: = K;‘, 71 * Pffp = PH’KY 1 
w H’ 3 

and 

(Here & runs over the one-dimensional local systems on T which are direct 
summands of the direct image of a, under rc: K’(T) -+ T. They are in 
Y(T).) 

It follows that if A is a character sheaf of G then n*A is a direct sum of 
character sheaves of G’ such that the associated action (11.5) of ker TC is 
trivial. Conversely if A’ is a character sheaf of G’ such that the associated 
action (11.5) of ker rr is trivial, then xc* A is a direct sum of character 
sheaves of G. From this we can deduce: 

(17.16.3) If (17.8.5) holds for G’ then it also holds for G. 

Indeed, let A be an irreducible cuspidal perverse sheaf on G. Then A is a 
direct summand of rc,rc*A. It is clear that n*A is a direct sum of 
irreducible cuspidal perverse sheaves on G’ with trivial action of ker z. By 
(17.8.5) for G’, it is a direct sum of character sheaves of G’ with trivial 
action of ker rc. Hence z,n*A is a direct sum of character sheaves of G, and 
therefore A is a character sheaf of G. 

We also see that: 

(17.16.4) If (17.8.4) holds for G’ then it also holds for G. 

Indeed, let A be a cuspidal character sheaf, and let A’ be a direct sum- 
mand of z*A. Then A’ is a cuspidal character sheaf of G’, hence it is clean, 
by assumption. It follows that n, A’ is clean. Since A is a direct summand 
of 7t*A’, it is also clean. Applying this argument to the Levi subgroups of 
parabolic subgroups of G, we see that G is clean. 

If A is a character sheaf on G and A’ is a direct summand of x*A, then 
by (17.16.1), we have cA =E~,. Since A, A’ have supports of the same 
dimension, we also have 2A = 8,,. Thus, the equality sAz = taz implies 

A 
E,, = sA, and (17.16.4) follows. 
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17.17. For each element z E 2, = centre of G, we denote tZ: G + G 
the map g + zg. It follows easily from definitions that 

(17.17.1) t,*R;E”=KF 

for any LZEE(T) and any WE IV’. 
This implies that: 

(17.17.2) If A EC?, then ~:AEG~. (But t,*A is not necessarily 
isomorphic to A.) 

Hence t,* defines a homomorphism tf: &(G)@Q, +X0(G) @Q,. From 
(17.17.1) it follows that 

(17.17.3) t,*RF = Rz 

for any 9 E P’( 7’) and any E E If”‘. 

PROPOSITION 17.18. Assume that G is clean and let 3 E 9’(T). 

(a) For any w  E WY, the elements RE,, Rz, pf X0(G) QQ, are Z- 
linear combinations of character sheaves A E G9 such that E~ = 
t-11 ‘(w)PO(W). (Here sA is given by (15.1.1) and f(w), a(w) are as in 16.6(a).) 

(b) Zf A E 6, satisfies (A: RE) #O then the map 11.9 attaches to A 
the coset w  W,. 

(Note that this is variant of Theorem 16.6(a) in which the parity condition 
(15.13) is not part of assumption; part (a) is similar to the integrality 
theorem [6, 6.14(i)].) 

Proof In the proof of [6, 6.14) it is shown that (with notations in 16.2 
and 16.5) 

(17.18.1) CI, = (- l)““‘~Tr(C, -~ay,,,Cy, E(u); -a(w)/2)E 
E Y  

where E runs over I@Y and y runs over the set of elements in w  W, such 
that y zw; we have 

a y,w = c 
a(i) i/2 

Y.W 7.l . 

icH 
i>0 

ir/(w)+/(y)(mod2) 

Strictly speaking, the proof in [6] applies in the case w  E W,; however, in 
the general case, the proof is the same. From (17.18.1) and (15.10.1) it 
follows that 



16 GEORGE LUSZTIG 

(17.18.2) 

(A: Rz)= ( - l)“““c Tr(C,, E(u); -Q(w)/~)(A: R;) 
E 

-1 c 1 ( - l)““‘)a$,Tr(C,,, E(u); -a(w)/2 - i/2)(A: RF) 
E y i>0 

This shows that (A: RE) is an integer. Since in the last sum over y, i we 
have the restriction i E Z(w) + I(y) (mod 2) it follows that (A: Rz) = 0 
unless E +dA = (_ l)l(n+dN. (Here, the sign is taken so that f dA is a 
character sheaf.) From the definition of d (154.1) and from the conser- 
vation of E,,, by induction (5.12) it follows that dA is a Z-linear combination 
of character sheaves A’ such that sA. = E,., Hence, we have 

(17.18.3) E+& =&A. 

Thus (A: R”) = 0 unless E 
follows from the formula A 

- ( - l)“““P”‘““. The analogous result for Rzs 
- 

(17.18.4) Rzw = dR< 

(see 15.8(c) and (16.2.8)). 
We now prove (b). In the sum over y in (17.18.2) y runs over elements 

in wW,. Hence if (A: Rz)#O, then we have (dA: PH’E-ff)= 
(A: dPHiKf)#O for some y~wW,. From 13.10 it follows that (dA: 
Ci( - l)i @H’K~y) #O and from 12.6 it follows that (dA: C( - l)iPH’K.T) #O 
for some y’~ wW,. Now using 15.8(b), we deduce (A: Ci( - l)ipHiK.$‘)#O 
hence (A: PH’K.T) #O for some j. From 11.10, we see that under the map 
11.9, A is sent to y’ W, = w  W,, as required. 

17.19. Let S!EY(T). In (a)(f) below, we consider the following 
pairs (E,, E2) of irreducible representations of IV”. 

(a) If W, is of type E,, Q, = {e}, take E, =512:, E, =512, 
(notation of [6, 4.121). 

(b) If W, is of type E, x A,, Q, = {e}, take E, = 512: q 1, E, = 
512, q 1 or E, = 5121, q E, E, = 512, EX E (E = non-trivial character of 
A i - factor). 

(c) If W, is of type Es, Q, = {e}, take E, = 4096,, E, = 4096, or 
E, = 40961,, E, = 4096,’ (notation of [6, 4.133). 
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In the cases (d), (e), and (f), assume Q, = Z/22 acts non-trivially on 
W,, E, is the preferred extension (7.12) of EE @‘T to WY and E2 is the 
other extension. 

(d) If W, is of type A,, E is the unique 16-dimensional represen- 
tation in PY. 

(e) If W, is of type A,, E is one of the two 64-dimensional represen- 
tations in Pg. 

(f) If W, is of type E6, E is one of the two 64-dimensional represen- 
tations in WY. 

In all cases, there exist an element x E W$ such that ( - 1 )‘(x)-Rx)-l~x = 
E, - E,, ‘I(x) = a(x) + 1 (mod 2) and an element x’ E W, such that 

a,, = E, + Ez, t(x) = u(x) 

(See [6, 5.21, 5.22, 5.23, (7.6.2), 7.101.) 

(mod 2). 

17.20. Let 9 E Y( T). Assume that W, has no irreducible factors 
of type E, or E, and that for any irreducible factor IV’ of W, of type A, or 
E6, the following condition is satisfied: if WEQ, normalizes IV’, then it 
centralizes IV’. Then: for any x E I+?$ such that a, # 0 we have I(x) = a(x) 
(mod 2). The same conclusion holds if IVY is as in 17.19 and if XE WZ is 
assumed to be outside the two-sided cell corresponding to E, and E2 where 
(E,, E,) is one of the pairs in 17.19. (See [6, (6.18.10) and pp. 231, 2321.) 

PROPOSITION 17.21. Assume that G is clean and let 8 E 9’(T) be such 
that w19 is as in 17.19(e) or (f). Assume also that the generator of !2r;p has 
odd length in W. Let A E G, be such that Ed = 1 and such that dA = E^A A. 
Assume that under the map 11.9, A is mapped to the non-trivial coset in 
W”fW,. Then t)A=A for all z~Zo, (see 17.17). 

Proof Let EE tiY be such that (A: Rz) #O. By 16.4, we have 
(A: RE) # 0 for some x in the two-sided cell corresponding to E and from 
17.18(a) it follows that l(x) E a(x) (mod 2). From 17.18(b) it follows that 
XE wy- w,, hence l(x) E T(x) + 1 (mod 2), since the generator of Sz, has 
odd length in W. Thus, T(x) = a(x) + 1 (mod 2). 

From 17.20, it now follows that E= E, or E,, where (E,, EJ is a pair as 
in 17.19 for w$. In the same way, we see that (A: Rg + Rg) = 0. Since 
(A: Rg) #O, it follows that (A: Rg - Rg) #O. By 17.18 and 17.19, 
Rg - Rg is a Z-linear combination of character sheaves and by 14.13, it 
has inner product (:) with itself equal to 2. It follows that R$ - Rg = 
VA + v’A’ where v, v’ E { f 1 } and A’ E @g is different from A. Applying d 
and using 15.8(e) we see that RgBE - RgBz =v dA +v’ dA’. We have 
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{E,, E,}n (E, BE, E2 @E} =fzI hence, by 14.13, we have (Rg -Rg: 
R&m -R&m )=O. Thus, we have (VA +v’A’: v dA+v’dA’)=O. By our 
assumption we have dA = E^,A. It follows that (A’: dA’) + ga = 0 hence 
dA’= -gAA’, and I,, = -iA. Since the operation tr (17.17) clearly preser- 
ves the dimension of support and hence E ,̂ it follows that A’ # t* A for any 
ZE2G. 
By (17.17.3), Rg - Rg is invariant under t,*. It follows that VA + #A’= 
vt$A+v’t,*A’. Hence we have either t:A=A, trA’=A’ or trA=A’, 
tT,4’ = A. We have just seen that the second alternative cannot hold. It 
follows that t: A = A and the proposition is proved. 

18. GROUPS OF TYPE A 

18.1. The main result of this chapter is Proposition 18.5, which 
states that the statements (17.8.3)-( 17.8.5) hold for groups of type A. We 
shall begin with a result characterizing the cuspidal character sheaves for 
any clean G. 

PROPOSITION 18.2. Assume that G is clean and let A E 6,. Then A is 
cuspidal if and only if the following condition is satisfied: zf (A: xi 
( - l)iPHi(Kz)) # 0, (w E W”), then w: T/Z: + T/Z”, has only finiteZy many 
fixed points. 

Proof: Assume first that A is not cuspidal. Then there exists Z$ S such 
that r;A # 0. Since r:A is a combination with 3 0 integral coefficients of 
character sheaves of L,, there exists 9’ E Y(T), w’ E IV”,,, and i E Z such 
that (rSA: PHiK$Y,r) >O (notations of 15.6) Applying (14.11.1) with G, A, 
9, w  replaced by L,, rSA, Y’, w’, we see that (rSA: Rg’,‘)#O for some 
E, E b&t. It follows that ($A: Cj( - 1 )iPH’K$‘,‘) # 0 for some w” E IV”.,,. 
Now using (15.3.2) and (15.7.1), we deduce that (A: Ci( - l)iPHiK$‘)#O. 
(Here, KS,’ is defined with respect to G.) From 11.2(c) we see that 9’ must 
be in the W-orbit of 9 and from 11.2(b) we see that (A: 
Ci( - l)jPH’Kz) # 0 f or some element w  E W which is W-conjugate to 
w” E Wt. The fixed point set of w’: T/20, + T/S?‘“, contains a”,,/%“, hence it 
has dimension 2 1. Since w  is conjugate to w”, the fixed point set of w: 
T/S’: + T/2’“, also has dimension 2 1. This proves one-half of the lemma. 
Conversely, assume that A E 6, satisfies (A: Ci( - 1 )ipHi( K$)) # 0 for 
some w  E WY such that w: TjS”o, -+ Tj57: has a fixed point set of dimension 
> 1. Replacing w  by a conjugate, we may assume that w  E IV”,,, (Z$ S). 
Using (15.7.1) we see that (A: $(C( - l)iPHi(K~~f))) ~0, and using (15.3.2) 
we see that $A # 0 so that A is not cuspidal. The lemma is proved. 
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18.3. Assume that G is clean and let A E 6, be cuspidal. Let XW 
(x E Q,) be the coset in W”lW, attached to A in 11.9 and let N be the 
number of orbits of the permutation of ST (see 2.3) defined by SI+XSX-‘. 
Assume that for any E E I@” such that (A : R$) # 0, we have 

(18.3.1) Tr(T,,,, E(u))Eu~“?,[u, u-l] for all w~xW, 

(notation of (12.9.3)). Then sA =E:, (see (15.13.1)). 

Proof. Let w  E II?* be an element of minimal possible length in W such 
that (A: j’H’K;EP) # 0 for some i. Then, by (12.7.1), we have (A: pHjI?z) = 
(A: PH’Kz) for any j and, in particular, (A: pH’j?$) #O. It follows that 
ci( - l)j(A: pHjKz) #O. (By 13.10(a), only the terms corresponding to 
jr i (mod 2) can be non-zero, hence they all have the same sign.) It also 
follows that cj( - l)j(A: pHjK$‘) #O. Using 10.2, we see that w  acts on the 
vector space V spanned by the roots (in the character group of T) without 
eigenvalue 1. Since w: I’+ V is of finite order and defined over Q, its deter- 
minant on V must be equal to ( - l)dim ‘. Hence l(w) E dim Y (mod 2). On 
the other hand, we have dim V- dim(G/S’t) (mod 2) hence 

(18.3.2) I(w) = dim(G/S$) (mod 2). 

We now write the identity (14.11.1) for our A and w. The left-hand side 
is a non-zero element in udim “2Q [u, u ~ ‘1 if E, = 1 and in 
U(dimG+1V2~[U, u-I ] if sA = - 1. The right-hand side is, by (18.3.1), in 
U(N+l(w)+dimG--T(W))12~,[U, u-l]. It follows that 

(18.3.3) cA = (- l)N+‘(w)-Rw); 

on the other hand, we have 

(18.3.4) E^* = ( - 1) dim (G/2$) - dim(supp A/St) = ( _ 1 )dim(G/S$) 

since, by 3.12, (supp A)/ZZ”O, is the closure of a single conjugacy class in 
G/SO, and hence, it has even dimension. The identity sA = E ,̂ is therefore 
equivalent to the congruence 

N + I(w) +?(w) + dim(G/%“L) = 0 (mod 2). 
By (18.3.2), this is equivalent to the congruence 

(18.3.5) I(w) = N (mod 2). 

This is proved as follows. Let V, be the subspace of V spanned by the 
roots in R, (see 2.3) and let rrS be the basis of V1 formed by the simple 
roots of R,. Then w: V+ V leaves V, stable, and being of finite order, 
defined over Q, without eigenvalue 1, it satisfies det(w, Vi) = ( - l)dim ‘1. 
We have w=xwlr where XEB~, w1 E W,, and det(w, Vi)= 
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det(x, V,) det(v,, V,)= ( - 1)““‘) det(x, V,) = ( - l)%“‘det(x, V,). Since x: 
V, + V, permutes the elements in the basis 7~~ of V,, we have 
det(x, V,)= (- l)dim ‘1-N where N is the number of orbits of the per- 
mutation defined by x. It follows that ( - l)dim ‘I = ( - 1)7’“)( - l)dim ‘1~ N 
and (18.3.5) follows. The corollary is proved. 

LEMMA 18.4. Assume that G/TG is a product of projective general linear 
groups and let 9 E Y(T) be such that W, = {e}. Assume that (17.8.4) holds 
for (G, 2’) and that there exists x E 0, such that x is a Coxeter element of 
W. Let u, be the element defined in (16.2.7) in terms of G, 2, x. Then 

(a) IQ,1 = I~G/.f.W. 
(b) RE = @,A,,, (sum over all ZE S,/2’0,), where A,, is a cuspidal 

character sheaf of G with support contained in ~22’: (unipotent variety of G}. 
In particular, the A,,= (z E 9’,/2~) are distinct. 

Proof: We may assume that G is semisimple. The following statement is 
a reformulation of (a) in terms of the dual group G’. 

(18.4.1) Let s be a regular semisimple element of G’ such that there 
exists a Coxeter element w  of the Weyl group of G’ with respect to the 
maximal torus Z’(s), such that w  E Z(s). Then 1 Z(s)/Z”(s) 1 is equal to the 
order of the kernel r of the simply connected covering 71: G -+ G’ of G’. 

Let SEE-‘(S). We have Z,.(s)/Z$(s) = {XE G’Ixixx’ EX’}/Z~JS). This 
shows that I Z,,(s)/Z&(s) I d I rl and that to prove equality is equivalent to 
showing that for any YET, s” is conjugate to Sy. This statement clearly 
follows from the statement (18.4.1) in the case where G’ is adjoint. We can 
further reduce ourselves to the case where G’ is adjoint, simple, hence, 
G’ = PGL,(k). In this case our assumption on s implies that n is invertible 
in k and that s can be represented by the image in PGL,(k) of the diagonal 
matrix (1, [, [* ,..., [“-I) where i is a primitive nth root of 1 in k. In this 
case it is clear that I Z,,(s)/Z”,.(s) I = n and (a) is proved. 

We now prove (b). Since W’ =QP, each character 13: Q, + QT may 
also be regarded as a representation of PV,. For any x’ ESZ~,, we have 
CI,~ = (- l)flX”~B~(x’)~ and from 16.6(a) we see that 

(18.4.2) R$ = ( _ 1 p’) Ce qx’) R; = ( - 1 p’) xi ( - 1 )I + dim G 

“H’(KT) is a combination with integral 20 coefficients of character 
sheaves. By (14.13), we have 

(18.4.3) (RE.: RE.) = IQ, 1, if X’ZX” 
(x’, x” E 0,). 

= 0, if x’ #x” 
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Hence, if A is a character sheaf such that (A: Rz) # 0 then (A: R,$) = 0 for 
x’#x. Using (18.4.2) and 18.2, it follows that A is cuspidal. From 3.12 it 
follows that the support of A is contained in the set zZ~ * {unipotent 
variety of G} for some z E SG. Then supp( t,* A) c 3% * { unipotent variety} 
(see 17.7). Note that t,*A is again a character sheaf (17.17.2) and it is a 
component of R,$ by (17.17.3). When z runs over a set of representatives 
for S,/%oO,, then the t,*A have distinct supports hence they are distinct. 
This gives at least 1 S?‘,JTEI distinct character sheaves which are com- 
ponents of Rf. By (18.4.3) and (a), we have (RE : Rz) = (QYp( = 
I S“G/S“s 1, so that all components of Rz must be obtained as described, and 
they all have multiplicity one. The lemma is proved. 

PROPOSITION 18.5. Assume that G/S”, is a product of adjoint groups of 
type A. Then 

(a) G satisfies (17.8.5). 

(b) (G, 2’) satisfies (17.8.4) for any 9 E Y(T). 

(c) Let 9 E 9’( T), let 9 = (E} be a family in fiY and let 9’ = 
{ & ) 0 character of Q,( = Q, } be the corresponding family in I& (see 
(17.3)). Recall that the imbedding .sF’cc&(Y~,) (see (17.7.1)) is I!$ H (1, 6). 

Let GY+FT be de$ned as in (17.13.2). There exists a bijection 

G&P ,-A(S,.), A-(xA, (?,)EJY(Y~,), such that 

(A:R~)=(~/I~,I)EA~(xA)-~, &A =(-1) ‘(-), (A E G2 $cf, E, E 9’). 

(I is the restriction of the length function of W to a, ; we have 
xA E GF, = a,.) In particular, (17.8.3) holds for (G, 2’). 

Proof The proposition is trivial when G has a single element. Assume 
now dim G > 1 and that the proposition is true for groups of the same type 
as G, of strictly smaller dimension than G; we shall prove that it is also true 
for G. If G is not semisimple, then dim(G/ZO,) <dim G and the method of 
17.10 reduces us to the case of G/S?‘“, to which the induction hypothesis 
applies. Hence, we may assume that G is semisimple. 

We now prove (b). To prove (b), we may assume by (17.16.4) that G is 
simply connected and, by 17.11, that G = S&(k). Using the induction 
hypothesis, we see that it is enough to show that any cuspidal character 
sheaf A on G is clean and satisfies E~ = 1,. 

From 3.12 it follows that the support of A is contained in the set 
z(unipotent variety of G }, for some z E &. As in the proof of 18.4, by 
replacing A by t,*A (z~52’o; see 17.7) we see that we are reduced to the 
case where the support of A consists of unipotent elements. We shall apply 
7.9 to A. The hypothesis of 7.9 are verified. Indeed, since A is a character 



22 GEORGE LIJSZTIG 

sheaf, it is strongly cuspidal (7.1.13). From 3.12 it follows that for any 
cuspidal pair (Z, 6) for G with ,E a unipotent class we have C = regular 
unipotent class. Finally, if 9 is a Levi subgroup of a proper parabolic sub- 
group of G, then any irreducible cuspidal perverse sheaf on L is a character 
sheaf (by the induction hypothesis) hence it is strongly cuspidal. Thus, 7.9 
is applicable to A and shows that A is clean. 

Let Jo Z, Y E Y( T), and w  E Wb be such that (A: PHjKz) # 0. Since A is 
an irreducible cuspidal perverse sheaf on SL,(k) with support in the 
unipotent variety, we see from [4, 10.31 that n is invertible in k and that 
the action (11.5) of TOG on A is through a character of order n. From 11.10 
we see that the image of the coset wW, c W”/W, under the 
homomorphism (11.8.1) has order n. Using (11.8.2) it follows that this 
coset has order n in the group WY/W,. 

It is easy to check the following statement: if d%; E Y(T) and w1 E W”, is 
such that w1 WY, has order n in W”,/W,, then w, is a Coxeter element in 
Wand W,, = {e}. (An equivalent statement is: ifs is a semisimple element 
in PGL,(k) such that the group of components of its centralizer has some 
element p of order n, then s is regular (hence contained in a unique 
maximal torus) and p represents a Coxeter element in the Weyl group of 
that torus.) 

In our case it follows that w  is a Coxeter element and that W, = {e}. 
Then 18.3 is applicable and shows that Ed = E ,̂ . This completes the proof of 
(b), assuming the induction hypothesis. 

We now prove (c). As we have seen earlier, we may assume that G is 
semisimple. Assume first that either E is not the sign representation of W, 
or that W, = (e} and no element of 0, is a Coxeter element of W. Then 
it is easy to see that (after replacing if necessary Y by w*Y for some 
w  E W, see 17.15), there exists a proper subset I of the set of simple reflec- 
tions in W and a family 96 of WP,1 such that 9’ is smoothly induced by 
Fb, as in i7.13. By the induction hypothesis, (17.8.3) (or, more precisely, 
(c)) holds for (L,, 9) and (17.8.4) holds for both (G, U) and (L,, 3). 
Using (17.13.8) we see (just as in the proof of (17.13.7)) that (c) holds for 
our family 9’. Next, assume that E is the sign representation of W, and 
that W, # {e}. We have gP, =gFIBE =QP, where E: WY + ( f 1) is 
given by E(W) = (- 1)““‘. Define a bijection 4: JZ(g,,) + A(‘??,.,,) by 
4(x, 0) = (x, 8 0 (E IQ,)), (x E Q,, 8 E Hom(B,, a:)). Then the diagram 
(17.14.2) with this 4 (and 9 instead of F) is commutative. It is also clear 
that {4(x, e), &l, e’)} = ( - l)““‘{ (x, e), (1, e’)} for all XEQ,, and all 
characters 0, 0’ of Q,. (Both sides are ( - 1)““‘0’(x))‘.) Hence the identity 
(17.14.1) is satisfied in our case. (Since (c) is already established for F’, we 
have sA = ( - I)““) for A ++m = (x, 0) in (17.14.1).) The proof in 17.14 then 
shows that (c) holds for B’ @ 8. (Note that E f dA = sA, as a consequence of 
15.12 and (15.4.1)) 
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We can therefore assume that W= {e} and that Qfi contains some 
Coxeter element of W. We now show that 

(18.5.1) for each XEQ,, the element R,“: of (18.4.2) is a sum of 
character sheaves, each with multiplicity 1. 

When x is a Coxeter element of W, this follows from 18.4. Assume now 
that x~s2, is not a Coxeter element. Replacing 9 by a W-conjugate, we 
may assume that x is a Coxeter element of W, where Z$ S. From (17.13.5) 
we see that RE is obtained by applying jS (see 17.13) to the analogous 
element R”,’ defined in terms of L,, 8, x. We can apply 18.4 to RzJ 
(instead of%:) and we see that REX* = A 1 @ A, @ . . . 0 A, where A i ,..., A, 
are distinct cuspidal character sheaves on L, such that supp A, = z,?Z’~, 
{ unipotent variety of L,} and z, ,..., z, is a system of representatives for the 
cosets 9’,,/9’~,. We shall assume, as we may, that each zi E sG. We have 
jf.4, = ifA, since W, = (e}. Hence it is enough to prove the following two 
statements. 

(18.5.2) For any i, ifA, is a sum of character sheaves, each with mul- 
tiplicity 1. 

(18.5.3) (ifAi: ifAj) = 0 for i#j. 

To prove (18.5.2) we argue as follows. From the definition of induction 
we see that ind(Ai) (the perverse sheaf on G induced by AJ has the 
property that its restriction to zi x {regular unipotent class of G} is, up to 
shift, a local system of rank 1. This forces ind Ai (which is semisimple) to 
have at least one irreducible summand with multiplicity one. According to 
[4, 3.5, (4.1.1)], the endomorphism algebra of ind(A,) is a twisted group 
algebra of a certain finite group: the isotropy group ri in NG(LI)/LI of Ai. 
Any element y of ri can E represented by an element in N,( W,). Since it 
keeps Ai fixed, and Ai E (L,),, it must map 9’ to a local system in the W,- 
orbit of 9 (by 11.2(c)). Replacing y by an element in the same WI-coset, 
we see that y can be represented by an element in W$nN& W,) = 
52, n N,( W,). It follows that ri is abelian. Our twisted group algebra has 
some one-dimensional representation (since ind(A i) has some irreducible 
component with multiplicity one); hence it is an ordinary (untwisted) 
group algebra. Thus, the endomorphism algebra of ind(Ai) is abelian and 
(18.5.2) follows. 

Next, we prove (18.5.3). From (4.3.1) we see that ind(A,) is a direct sum 
of irreducible perverse sheaves on G with support equal to the closure of 

(18.5.4) Xi = u X(Z~(LT~,)~~UL,)X-~ 

XEG 
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where UL, is the set of regular unipotent element in L, and (a”,,),,, is the 
set of all g E a:, such that %O,(g) = L,. It is enough to show that 

(18.5.5) xinxi =@ for if j. 

Assume that we have X, nX, # 0. Then there exist g, g’ E (9’F,)reg, 
4 u’ E UL,’ x, x’ E G such that xzi gux ~ ’ = x’zj g’u’x’ - ‘; we want to deduce 
that i = j. We may assume that x’ = 1. By uniqueness of Jordan decom- 
position, we have xzjgx-l = zj g’. We have zi?;(xzigx-‘) = 
xzi%““,( g)x ~ i = xL,x- ’ = 9’E(zj g’) = L,. Hence x E NJL,). It follows that 
x%“o,,x - I = z;,. Hence from xzigxP1 = zjg’ we deduce zi’z, = 
xgx-’ . g’-’ E a;,. But the zi are representatives for the cosets ZZL,/ZF,, 
hence z,: ‘zj E Zi, implies i = j. Thus (18.4.3) is proved. At the same time, 
(18.5.1) is proved. 

From (18.5.1) and (18.4.3) it follows that, for any XEQ~, Rz has 
exactly 1 Qlp 1 irreducible components (with multiplicity one) which can be 
put in l-l correspondence with the various characters 8 of Q,; we shall 
denote them A,,, E G Y; thus e, consists of ) Q,I z character sheaves AI,@ 
(XEQ,, 8: 52, + Q:). We have 

(A,,,: R:.)= 1, if x=x’ 

= 0, if x#x’. 

Let Rf’ be as in the proof of 18.4. Then 

Rz= IL&-’ c (- l)‘%(x)-IRE, 
xsRy 

see (18.4.2), hence, 

(A,,: R~)=(-l)“x’)~2,)~‘8’(x)~‘. 

By (17.18(a), we have E~,,~ = ( - 1)““‘. This completes the proof of (c), 
assuming the induction hypothesis. 

We now prove (a). Using (17.16.3) we see that we may assume that G is 
semisimple, simply connected and using 17.11, we are reduced to the case 
G= SL,(k). From [4, 10.3, 2.101 we see that the number of irreducible 
cuspidal perverse sheaves on G is rib(n) (if n is invertible in k) and is zero 
otherwise. Here d(n) is the Euler function. Hence to prove (a) we may 
assume that n is invertible in k. Let w  be a Coxeter element in W. We can 
find 9 E 9’(T) such that w  E IV”, W, = {e}. The group II?, = 0, is cyclic 
of order n and each generator of it is a Coxeter element in W. By 18.4, 
applied to 9’ and any generator of 9,, we see that there are at least n4(n) 
cuspidal character sheaves in 6 9 ; they are indexed by pairs (x, z) where x 



CHARACTERSHEAVES,IV 25 

is a generator of 52, and z E ZZOG. It follows that each of the nqS(n) 
irreducible cuspidal perverse sheaves on G belongs to GY. This proves (a) 
and completes the proof of the proposition. 

19. CLASSICAL GROUPS OF Low HANK 

19.1. The main results in this chapter are 19.3, 19.4, 19.6 which 
assert that the statements (17.8.3k( 17.8.5) hold for certain classical groups 
of low rank. This prepares the ground for the study of character sheaves on 
exceptional groups in the following two chapters. 

FROP~SITION 19.2. Let 9 E .40(T) be such that 

(a) (G, 2) satisfies (17.8.4). 

(b) W, has all irreducible components of type A, except possibly for 
one component which is of type D, (4<m 68), B,(2 <m < 5), or C, 
(2<m<5). 

(c) I WLJW,I <3. 

Then (17.8.3) holds for (G, 9). 

Proof We fix a family % in RY and let %’ be the corresponding 
family in pY (see 17.4). The family % consists of either a single represen- 
tation E or of three representations E, M, N where E is a special represen- 
tation [6, (4.1.4)]. 

Case 1. Assume tirst that IV” = W9. From results in [6, 4.53 we see 
that if % = {E}, then there exists an involution x E W, such that CI, = E, 
Rx) E a(x) (mod 2), while if % = {E, M, N} then each of the four elements 
E + M, E - M, E + N, E - N is of the form LX, for some involution x E W, 
such that T(x) E a(x) (mod 2). 

If % = {E}, we see from 16.6 that Rz is a combination with integral > 0 
coefficients of character sheaves, and from 14.13 that Rg is a single charac- 
ter sheaf A. From 17.18(a) we see that sA = 1. 

If 9 = {E, M, N}, we see from 16.6 that Rg + R& Rz -R-& RF + R$‘, 
Rg - R$ are combinations with integral > 0 coefficients of character 
sheaves. From 14.13 we see that the inner products ( : ) of these four 
elements are described by the matrix i 0 2 1120 1102. 0 2 1 1 1 1 1 
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It follows that there exist four distinct character sheaves A,, A,, A,, 
A4 E e, such that 

R$+Rz=A, +A, 

R$-Rs=A,+A, 

Rz+R$=A, +A, 

Rz-R$=A2fA4. 

Thus, we have 

R:=&% +A,+A,+A,) 

%=$(AI +A,-A,-A,+) 

R$=$(A, -A, +A, -A.& 

Moreover, from 17.18(a) we see that Ed, = 1 (1 d id 4). Hence the pattern 
of (17.8.3) is established. 

Case 2. Next, we assume that WY/W, has order 2 or 3 and Q, = {e>. 
Then E and M, N (if defined) do not extend to IV”-modules; 9’ consists 
of E’=ind E (if P= {E}) or of, E’ = ind E, M = ind M, N’ = ind N (if 
9 = {E, M, N} ). Here, ind = ind “;. The arguments in Case 1 remain valid 
if we replace RF, Rf$, R$ by R[ R$., R$. 

Case 3. Assume that W”/ W, has order 2 and that Sz, = St,. Then E 
and M, N (if defined) extend to WI’-modules; we shall denote by $ and fi, 
n (if M, N are defined) the preferred extensions (see 17.2), and by p and 
I@, F (if M, N are defined) the non-preferred extensions. 

When 9 = {E}, the following result can be extracted from [6, (7.6.6)]: 
there exist X, x’ E WY such that E+ ,!?’ = c1,, I(x) = a(x) (mod 2), E-p = 
( - l)f(+@‘)ax,. Now using 16.6 we see that RF+ Rg and 
( - 1 )‘(~“)pa’i’)(Rf - Rf$) are linear combinations with integral 2 0 coef- 
ficients of character sheaves. From 14.13, the inner products ( : ) of these 
two elements are described by the matrix (z t). Hence there exist four dis- 
tinct character sheaves Ai (1 6 i 6 4), such that Rf’ + R$T = A, + A,, 
( - l)‘(x’)pa(x’)(R$ - Rg) = A, + A,, and from 17.18(a), we see that E,, = 
E A~ = 1, EAT =&A,, 

= ( - 1)/(x’) ‘J(x’). We have 

Rg=i(A, + A2 + EA~A~ + &A4A4) 

R$=+(A, +A, -E~,A, -tA4A4) 

so that the pattern of (17.8.3) is established. 
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When 9 = {E, M, N}, the following result can be extracted from [6, 
(7.6.7)] : There exists xi E w$ ( 1 < i < 8) such that 

E+El+A+iiil=a,, 

E+EyA+liil)=cc,, 

E+6+(rn+P)=,,, 

E+E-(rn+iv)=rx,, 

( - p-4.~5)(~- E + (fi- Jp)) = ax5 

( - l)~(x6)--O(x6)(~- 6 _ (fi- &j’)) = cI, 

( - l)‘h--a(xq- E + (fi- p,, = a,, 

(- l)‘(x8)-U’x8’(&& (&~))=~~r8 

and I(x,) E a(~,) (mod 2) for 16 i Q 4. 
Now using 16.6, we see that the eight elements RF where ? runs over the 

last eight expressions are linear combinations with integral > 0 coefficients 
of character sheaves. From 14.13, the inner products ( : ) of these eight RF 
are described by the matrix 

4 0 2 2 

0 4 2 2 
2 2 4 0 0 
2 2 0 4 

4 0 2 2 

0 0 4 2 2 

2 2 4 0 

2 2 0 4. 

It follows that there exist 16 distinct character sheaves Ai (1 < i< 16) such 
that 

Rf’+Rg+R$+R$=A, +A*+A,+A, 

Rg+Rg-R.$-Rj$=A,+A,+A,+As 

Rg+Rg+R$+Rg=A,+A,+A,+A, 

Rg+Rg-Rg-R$=A3+Aq+A7+Ag 

( - l)r(x5)-n(Xs)(R~ - Rg + Rj$ - R$) = A, + A,, + A,, + A,, 
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( - l)‘(x6)--a(x6)(R$ - Rg - R$ + R$,) = A,, + AI4 + A,, + A,, 

(-1)““7)~“(“7)(R~-R~+RW-~~)=As+A,o+A1~+A14 

(-l)““8’-a’*g’(R~-R~-R~+R~)=A1, +A,2+A,5+A16. 

From 17.18(a), we see that sA, = 1 (1 <id 8) and E^,r = (- l)‘C-‘/)-a(-X~) for 
9<i<16, S<j<8. 

From this we can express each of RF, Rf$, R& R& Rj$‘, R$, as an 
explicit combination of ea,Ai (1 < id 16) with coefficients of form _+ a, and 
we see that the pattern of (17.8.3) is established. 

Case 4. Assume that W”/ W, has order 3 and that 52, = Q,. 
Then E and M, N (if defined) extend to IV”-modules; we shall denote by E 
and fi, fi (if M, N are defined) the preferred extensions (see 17.1), and 
by & and I@#, fid (if M, N are defined) the extensions obtained from 
,?, M, fl by tensoring with a non-trivial character d of Q, (regarded as a 
representation of K”’ with kernel W,). Let q5’, 4” be the two non-trivial 
characters of Q,. When 8 = {E}, the following result can be extracted 
from [6, (7.6.6)]: for any OEQ~, there exists x, EO W, such that 
E+ qY(o)E,. + qY’(W)B,. = ct& and I(x,) = a(x,) (mod 2). 

Using 16.6, we see that the three elements RF + q5’(w)R$ + q5”(w)R$,, 
(w E 52,) are linear combinations with integral 3 0 coefficients of character 
sheaves. From 14.13, the inner ,products ( : ) of these elements are 
described by the matrix 

i 0 0 3 0 0 3 0 0 3 i 

Hence there. exist nine distinct character sheaves A,,, (o E Q,, 1 <i< 3) 
such that 

Rg + f(w) Rg, + #“(co) R$ = A,,, + Au.2 + A,,, (w E Q,). 

Moreover, from 17.18(a), we see that Ed,,, = 1 for all w. i. We have 

Rg=$A,,i 
WI 

R~=$W%L,;, for d=q5’ or d”, 
0J.I 

and the pattern of (17.8.3) is established. When 9 = {E, M, N), the follow- 
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ing result can be extracted from [6, (7.6.7)]: for any o~S2~, there exist 
x,7 Y,, ZUJP u, E o W, such that 

and I(x,) c a(~,) (mod 2), I(y,) = a(y,) (mod 2), l(z,) = a(~,) (mod 2) 
Z(u,) s a(u,) (mod 2). Using 16.6 we see that the four elements R% where ? 
runs over the last four expressions (for fixed w) are linear combinations 
with integral B 0 coefficients of character sheaves. The inner products ( : ) 
of these four Ry are described by the matrix 

Moreover two Rf' corresponding to distinct w  have ( : ) = 0. It follows 
that there exist 36 distinct character sheaves A,,j (~ESZ~, 1 <i< 12) 
such that 

R~+R~/~'(o)(R~.+R~,.)+ &'(o)(R~,,+R&) 

=&1 + 4A, + &,, + A,,, + A,,, + A,,, 

Rf'-Rfi+4'(4(R~.-Rf&)+~"(w)(R~.-R~,.) 

=A%7 +&8 +40,, +&,,, +A,,,, +A,,,* 

R~+R~+~'(o)(R~.+R~~)+~"(o)(R~.+R~~) 

= 4Al + AA2 + Au,, + 4u.m + ‘&Jl + Ao,J* 

R~-R~+~'(~)(R~.-R~~,.)+~"(~)(R~..-R~~) 

=40,4 +40,5 +A&, +A,,, +A,,, +A(+ 

From 17.18(a), we see that cA,,, = 1 for all o,i. We can now express each 
of R%, RX, R$, R$,,... as an explicit combination of the A,,i with coef- 
ficients of form 4 x sixth root of 1, and we see that the pattern of (17.8.3) is 
established. This completes the proof of the proposition. 
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PROPOSITION 19.3. Assume that G/9”, has all its irreducible factors of 
type A, except possibly for one factor which is of type D, (4 < m Q 7) or C, 
(2 d m < 3). Assume also that )9,/Z”, 1 6 3. Then (17.8.3)-( 17.8.5) holdfor 
G. 

ProofI We may assume that dim G > 1 and that the proposition is 
already proved for groups satisfying the same assumptions as G, but of 
dimension strictly smaller than that of G. If we can prove (17.8.4) for G 
then (17.8.3) will also hold for G, by 19.2. Thus, it is enough to prove that 
(17.8.4), (17.8.5) hold for G. 

Let G, , G, ,..., G, be the set of almost simple closed normal subgroups of 
G. Applying the results in 17.16 to the finite covering map G, x G2 x ... x 
G, + G given by multiplication in G, and applying 17.11 to the product 
G, xG, x ... xG,, we see that we are reduced to the case where G is 
almost simple. Since the case where G is almost simple of type A is covered 
by 18.5, we see that we are reduced to the case where G is almost simple of 
type D, (4 d m d 7) or C, (2 <m < 3), and the centre of G has at most two 
elements. To check the statement (17.8.4) for G it is enough, using the 
induction hypothesis, to check that any cuspidal character sheaf A on G is 
clean and satisfies E, = CA. We now consider the classification of irreducible 
cuspidal perverse sheaves on G, following [4]. (This list contains as a sub- 
list the cuspidal character sheaves of G; at this stage we do not know that 
the two lists coincide.) We shall write for any G: 

(19.3.1) Irr’G = set of irreducible cuspidal perverse sheaves on G. 

(a) G = SO,(k), char k # 2. There are exactly two complexes A’, A” 
in Irr’G. They have the same support: the closure of the class of su whre s 
is a semisimple element with Z,(s) z O,(k) and u is a regular unipotent 
element in Z’&(s). Then A’ and A” are clean by 7.1 l(d) and 18.5 for SO,(k). 
Assume that A’ E G,. To verify the parity condition ( 15.13.1) for A’ we use 
18.3. The possibilities for Y are restricted by 17.12: we must have W” = 
W,= Wor W”= W,oftypeA, xA,. In both cases, N in 18.3 is even and 
the representations of the corresponding Hecke algebra have traces in 
ecu, u -‘I. Thus, 18.3 is applicable. We see that if A’ or A” is in G then it is 
clean and satisfies the parity condition. (If neither A’, A” is in G then there 
is nothing to prove.) Thus G satisfies (17.8.4). Now, by 19.2, we see that 
(17.8.3) holds for G. 

Let bj (i= 1, 2) be the two local systems in Y(T) whose stabilizer in W 
is W itself. From 11.2(e) it follows that G,, #G,,. Let 2 be either d, or 
82. We have W” = W, = W. Let A E G, be the character sheaf 
corresponding under (17.8.3) to the family 9 c fi such tat gfl = z/22, 
and to the pair (g2, E) E &(6,); here g, is the element #e of 2122 and E is 
the non-trivial character of gF. From (17.8.3) we see that (Ed A: Rz) = t, 
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(EAA:Rfg= -1, (EAA:Rz)= -1, where p is the two-dimensional 
irreducible representation of W and si, s2 are its one-dimensional represen- 
tations other than 1 and sign; we also see that (sAA: Rf’)=O, 
(sAA: R&) = 0. It is easy to check that the character of the virtual 
representation p - .si - Ed of W vanishes on elements with some eigenvalue 
1 in the reflection representation of W. It follows that (sAA: x(KF)) = 0 (see 
6.5) whenever WE W has some eigenvalue 1. From 18.2, it follows that A is 
cuspidal. We thus find two cuspidal character sheaves of G (one for 
P’ = 8,) on for 2 = $). As the set of cuspidal character sheaves of G is 
contained in the set {A’, A”}, these two sets must coincide and (17.8.5) is 
verified. 

(a’) G = Sp,(k), char k # 2. There is a unique complex in Irr’G. It is 
A = n*A’ = n*A” (A’, A” as in (a)), where rc: Sp,(k) -+ SO,(k) is the stan- 
dard double covering. Using (a) and the arguments in 17.16, we see that A 
is a character sheaf of G, that it is clean and that it satisfies sA = ta. 

(a”) G is simple of type B,, char k = 2. There is a unique complex A 
in Irr’G. Its support is the unipotent variety of G. If A is a character sheaf, 
then it is clean by 7.9, and, as in the proof in (a) it satisfies the parity con- 
dition. Thus (17.8.4) is satisfied by G. (If A is not a character sheaf, there is 
nothing to verify.) By 19.2, we see that (17.8.3) holds for G. Arguing as in 
(a) with 2 = Qr, we see that G, contains a cuspidal character sheaf which 
is necessarily A. Thus, G satisfies (17.8.5). 

(b) G = PSp,(k), char k # 2, or a simple group of type C,, 
char k = 2. The set Irr’G is empty, hence there is nothing to check. 

(c) G= Sp,(k), char k#2. The set Irr’G consists of two complexes 
A’, A”. The centre of G acts (11.5) nontrivially on both A’, A”. The support 
of A’ is the closure of a unipotent conjugacy class and A” is obtained by 
applying t,* to A’ for z = - 1 E G (see 17.17). If A’E G then it is clean by 
7.9; from (17.17.1) it then follows that A” E G and is also clean. If A” E 6, 
then by ( 17.17.1) we have A’ E G’, hence again both A’, A” are clean. In any 
case, G is clean. If A’ E G, we show that sAS = iA. as follows. The 
possibilities for 9 are restricted by 17.12: we must have W$ = W, = W or 
W,=A, xA, xA1, alp of order 2 acting non-trivially on W,, or 
W, = A,, Q, of order 2 acting-nontrivially on W,, or W, = B,, Q2, of 
order 2. In the case where IV” = W, = W, we see from 11.10 that the cen- 
tre of G acts trivially on any character sheaf in 6,; thus A’ cannot be in 
6,. In the remaining cases, the hypothesis of 18.3 are verified: in all cases, 
N in 18.3 is even and the representations of the corresponding Hecke 
algebras have traces in Q[u, u-l]. From 18.3 we see that sA, =E^,,. The 
same argument applies to A” if A” E 6,. Thus, G satisfies (17.8.4). By 19.2, 
we see that G also satisfies (17.8.3). Now let 9 E .Y( T) be such that W, is 

607/59/l-3 
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of type B, and Q, is of order 2. Let 8 be the family {p, E,, sZ} of 
W, = B, (see (a)), and let 9’ be the corresponding family of W’. Then 
3Ff=39 xQ2,. Consider the character sheaves A’, 2” in G, 
corresponding under (17.8.3) to ((g,, gz), E q 1) or ((g2, g2), E H E) in 
A(gYiF,). Here g2 denotes the element #e of %T or Q,, E denotes the non- 
trivial character of gF or Q,, . when we write E IX 1, the factor E refers to 
gF and the factor 1 refers to 52,. We now use the fact that the character of 
the virtual representation (p q s-p q 1 -8, q E + E, q 1 -E* H E + 

&2 q 1) of wiz= w, xsz, vanishes on elements of W:’ which have some 
eigenvalue 1 in the reflection representation of W. As in (a), we see that A’, 
A” are cuspidal. Hence they are A’ and A” and (17.85) is verified for G. 

(d) G = PSO,(k), char k # 2. There are exactly four complexes Ai 
(I< i < 4) in Irr’G. They have the same support: the closure of the class of 
SU, where s is a semisimple element such that Z:(s) is isogenous to 
S&(k) x S&(k) x S&(k) x X,(k) and u is a regular unipotent element in 
Z”,(s). The Ai are clean by 7.11(d) and 18.5 for Z:(s). To verify the parity 
condition (153.1) for Ai (assumed to be in GY) we use 18.3. The 
possibilities for Y are restricted by 17.12: we must have IV = W, = W or 
W,= W, of type A, xA, xA, xA,. In both cases, N in 18.3 is even and 
the representations of the corresponding Hecke algebras have traces in 
Q[u, u-l]; thus, 18.3 is applicable. It follows that G satisfies (17.8.4). Using 
19.2, we see that (17.8.3) holds for G. 

Let 4. (1 < i < 4) be the four local systems in Y(T) whose stabilizer in W 
is W itself. From 11.2(e), it follows that the sets G,, (1 < i < 4) are disjoint. 
Let 9 be one of the 4. We have W’ = W, = W. Define A E G, exactly as 
in (a). From (17.8.3), we see that (EVA: Rz)=$, (EVA; Rz)= -i, 

(EVA: Rg) = -& where {ps, p6, p2) is the unique family in W with three 
members, dim pi = i. Moreover, we have (E, A: Rz) = 0 for all other p E I&‘. 
It is easy to see that the character of the virtual representation 
+(pp - p6 - p2) of W is concentrated on elements without eigenvalue 1 in 
the reflection representation of W. As in (a), it follows that A is cuspidal 
and that each of A 1, A,, A,, A, is a character sheaf. Thus, (17.8.5) holds 
for G. 

(d’) G = SO,(k), char k # 2. Let X: SO,(k) + PSO,(k) the standard 
double covering. There are exactly two complexes A’, A” in Irr’G. We may 
arrange notation so that A’= n*A, = n*A,, A” = n*A, = n*A,. Using (d) 
and the arguments in 17.16, we see that A’, A” are clean character sheaves 
satisfying the parity condition. 

(d”) G is simple of type D,, char k = 2. There is a unique complex A 
in Irr’G. Its support is the unipotent variety of G. If A is a character sheaf, 
then it is clean by 7.9 and as in the proof of (d) it satisfies the parity con- 
dition. Thus (17.8.4) is satisfied for G. By 19.2, we see that (17.8.3) holds 
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for G. Arguing as in (d) with Y = 0, we see that GY contains a cuspidal 
character sheaf which is necessarily A. Thus, G satisfies (17.8.5). 

(e) G is simple of type D, or D,, char k= 2, or G = PSG,,(k), 
SO,,(k), PSG,,(R), or SO,,(k), char k # 2. The set Irr’G is empty, hence 
there is nothing to prove. 

(f) G = $pin,,(k), char k # 2. (The half spin group @pin,,(k) is the 
quotient ( # SO,,(k)) of Spin,,(k) by a central subgroup of order 2, for 
n > 3.) There are exactly four complexes A r, A,, A,, A, in Irr’G. They 
have non-trivial action of the centre of G. They have the same support: the 
closure of the class of su, where s is a semisimple element such that Z”,(s) is 
isogenous to X,(k) x S&(R) and u is a regular unipotent element in Z:(s). 
Each Ai is clean by 7.1 l(d) and 18.5. Hence G is clean. Let 2 E Y(T) be 
such that W, is of type A, and Sz, is of order 2 acting non-trivially on 
W,. (Up to W-conjugacy, there are two such 9.) Let E be the unique 16- 
dimensional irreducible representation of W,, let E be its preferred exten- 
sion (17.2) to WP and let ,!?’ be the other extension of E to a W”-module. 
From 17.19 we see that there exists XE W$ such that ,!?- ,!? = 
(_ l)l(.Y)-7(x)+ la,, r(x) + a(x) (mod 2). Such x must necessarily be in 
WY - W,, since for any y E W,, E and p appear with the same coef- 
ficient in cl,,. It is easy to check that for our 2, the non-trivial element of 
Q, has odd length in W. Hence I(o) E?(V) + 1 (mod 2) for all 
UE W”- W,. It follows that E-E=@,, ,(x)=a(x) (mod2). From 17.18 
we see that Rg - Rg is a Z-linear combination of character sheaves A such 
that E~ = 1. From 14.13, it follows that (Rg - Rg : R-j’- Rj$) = 2, hence we 
have Rg - Rg = f A’ f A” where A’ #A” are two character sheaves. We 
have E~, = sA” = 1. Now let E, be any irreducible representation of W, and 
let E,, & be its extensions to WY. It is known from [6, 5.161 that 
~,-R1=+cr,forsomey~W~- W,. From 17.18 we see that Rg - Rg 
is a Z-linear combination of character sheaves A such that &A = - 1, 
whenever E, #E. Hence (A’: Rg - R$) = 0. On the other hand, for any 
E,, the character of E, + 8; is concentrated on W, and it follows from 
11.10 that Rj$ + Rg is a Q,-linear combination of character sheaves A with 
trivial action of thd centre of G. The same result shows that A’ has non- 
trivial action of the centre of G. It follows that (A’: Rg + Rg) = 0. We 
deduce that (A’: Rg) = -(A’: Rj$I) = f l/2, (A’: Rg) = (A’: R-&) = 0 for 
E, #E. 

The virtual representation J!?- 81 of W$ has character concentrated on 
elements in Wz - W, without eigenvalue 1 in the reflection representation 
V of W. (This is proved as follows. Let V= V, 0 V,I be the W,-stable 
decomposition of V with V,I one-dimensional, and let y be the generator of 
Sz,. Any element yw, WE W,, acts as -1 on V,l and as - wow on V, 
where w. is the longest element in W,. Its trace on E- ,?’ is, up to sign, 

607/59/1-3% 
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the trace of wow on E. Hence, it is enough to show the following: if 
Tr(w,w, E) # 0 then - wow has no eigenvalue 1 on V,,. We can choose an 
isomorphism W, %Sp,(F,); then E becomes the Steinberg representation 
of Sp4(F2). Its character is zero on elements of order divisible by 2. Hence 
we are reduced to the following obvious statement: if r~ E W, has odd 
order then it has no eigenvalue -1 on VO.) 

It follows that (A’: x(KyW)) =0 (see 6.5) whenever WE IV” has some 
eigenvalue 1 on V. From 18.2 it follows that A’ is cuspidal. Similarly, A” is 
cuspidal. Thus, e, contains at least two cuspidal character sheaves. Since 
there are two choices for 2, as above, we see that Ai (1 6 id 4) are exactly 
the cuspidal character sheaves of G, so that (17.85) is verified. To verify the 
parity condition it is enough to show that sAf = Zas for A’ as above. We 
have seen already that &AS = 1. From (18.3.4) we see that tAZ = 1 since 
dim G is even. Thus, (17.8.4) is verified for G. 

(g) G is simple of type D,, char k = 2 or G = PSO,,(k) or SO,,(k), 
char k # 2. The set Irr’G is empty, hence there is nothing to prove. 

This completes the proof of the proposition. 

PROPOSITION 19.4. Assume that G satisfies one of the following: 

(a) G/Z”o, = SO,(k) 

(b) G = SO,(k), char k # 2. 

(c) G = PSO,,(k), char k # 2. 

Then (17.8.3)-( 17.85) hold for G. 

Proof (a) Since Irr’G (19.3.1) is empty, the statement (17.8.4) for G 
follows form the analogous statement for Levi subgroups of proper 
parabolic subgroups, where 19.3 applies. Using 19.2, we see that (17.8.3) 
holds for G. The statement (17.85) is empty in our case. 

(b) In this case Irr’G consists of a single complex A. It support is the 
closure of a unipotent class in G. Since (17.8.5) holds for the Levi sub- 
groups of proper parabolic subgroups by 19.3 and (a), we see from 7.9 that 
A is clean if it is a character sheaf. It follows that G is clean (without 
assumption on A). We now assume that A E G, and prove that sA = E^,. 
The possibilities for 9 are restricted by 17.12: IV” = W, must be of type 
B4, B, x A,, or B, x B,. In each case, N in 18.3 is even and the represen- 
tations of the corresponding Hecke algebras have traces in Q[u, u- ’ 1. By 
18.3, we see that sA = .&. Hence (17.8.4) holds for G. We now prove that 
A E 6. Let 9 E Y(T) be such that WY = W, is of type Bz x B,. The proof 
of 19.2 (Case 1) applies without change as far as the families with one or 
three members in W, are concerned and establishes (17.8.3) for them. We 
now consider the remaining family 9; it consists of nine representations 
E I% E’ where E, E’ run over the representations p, E,, s2 (see the proof of 
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19.3 (a)) of the Weyl group B,. As in the proof of 19.2 (Case 1) we see that 
the following are combinations with integral 2 0 coefficients of character 
sheaves: 

By 14.13, the inner product ( : ) of any two of these 16 expressions is 
known (it is 4, 2, 1, or 0). This forces the decomposition pattern of these 
expressions: there are 16 character sheaves A,, AZ,..., A,, such that 
(Ai: Rgm E ) = k$ with th e pattern of signs described by (17.8.3); from 
17.18(a) we see that sA, = 1. (In our case, S, =2/22x2/22.) We now 
consider the character sheaf A,, i, E [l, 161, which under (17.8.3) 
corresponds to the pair ((g2, g2), E EX E) E &(a,). (Here, g, is the element 
#e of Z/22 and E is the non-trivial character of iZ/2Z.) We have 

(A,: RF, Er) = a, if E~E’=p~p,~~O~~,i,j~{1,2} 
1 

= -a, otherwise. 

It is easy to check that the character of the virtual representation p I% p + 
Ci,j~i iZ sj -zip q E, -& El p of W, vanishes on elements which have 
some eigenvalue 1 in the reflection representation of W. It follows that 
(A,: x(K;s”)) = 0 whenever WE W, has some eigenvalue 1. From 18.2, it 
follows that A, is cuspidal. Hence A = A, and (17.8.5) is verified for G. We 
have also verified (17.8.3) for one particular 2. For the other 9, the proof 
of 19.2 is applicable; thus (17.8.3) holds for all 2. 

(c) In this case, Irr’G consists of a single complex A. The proof of 
(b) applies with minor changes; the various 2 such that GP can possibly 
contain a cuspidal character sheaf have IV” = W, of type D,, 
D, x A, x A,, D, x A,, D, x A,, and for the 9 such that W, is of type 
D, x D,, we see exactly as in (b) that G, contains a cuspidal character 
sheaf (which must be A). 

19.5. Let G = Spin,,(k), char k # 2. From [4] it follows that Irr’G 
consists of eight complexes Ai (1 d i < 8). We may arrange notation, so that 
A,, A, have the same support, the closure of a unipotent class, and Ai 
(3 < i < 8) are of form t;* A, or t;* A, (17.17) where z runs through the non- 
trivial elements of the centre of G. Moreover, the centre of G acts on each 
Ai by characters of order 4. We now state the following result. 
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PROPOSITION 19.6. With the notations in 19.5, Ai (1 <id 8) are clean, 
cuspidal character sheaves of G. 

Proof: If L is a Levi subgroup of a proper parabolic subgroup P of G, 
then either L/b, is a product of groups of type A, hence, 18.5 applies to it, 
or EZ’,/ZZ’F has order at most 2, hence, 19.3 applies to it. In particular, 
(17.8.4) and (17.85) hold for L. Now using 7.9, we see that if A, (or AZ) is 
a character sheaf, then it is clean. Since any other Aj is related to A, or A, 
by t;* (see 19.5) it follows that those Ai which are character sheaves are 
clean. Hence G is clean. 

Let .Y E Y(T) be such that W, is of type A, and 0, is cyclic of order 4, 
acting non-trivially on W,. (Note that 9 is uniquely determined up to W- 
conjugacy. It corresponds to a semisimple class in the dual group 
PSO,,(k): the class containing the image of a semisimple element in 
SO,,(k) with two eigenvalues 1, two eigenvalues - 1, three eigenvalues 
i= G, and three eigenvalues - i.) 

Let E be the two-dimensional irreducible representation of W,, 1 the 
unit representation, and 0 the sign representation. For each character 0: 
Q9 -07 we define the W’,-modules E, =E@tl, ‘i, =I@& C0=5@8 
extending E, 1, and (T, as in 17.3. Fix a generator o of Q,. Let si, s? be the 
simple reflections of W,, so that ws, w  - ’ = s2, os2 w  ~ i = s 1. We have 

~w.~2.s, = CI, .s,. y2 = ( - l)‘(o)+ i 1 e(o)& 

a, = ( - 1)““’ 1 e(w)?, 
e 

a WS,S~S, = ( - 1)““’ c @o)C:, 

The same formulas remain valid when o is replaced by o ~ ‘. On the other 
hand, for i = 0 or 2, we have 

%~s, = %J’S> = c tqo’)E, 

C(,r, = 1 e(w’)i, 
e 
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From 17.18, we see that &0(o)Rg is a Z-linear combination of character 
sheaves A such that sA = ( - l)@)+’ and such that A is mapped by 11.9 to 
the coset w  W,. From the same result we see that &B(o) R<, C 0(o) R$ 
are Z-linear combinations of character sheaves B such that .sB = ( - l)‘@‘; 
so these B are not among the A above. From 17.18(b) we see that for any 
p E fi2, &8(d)R$ (w’# w) is a Z-linear combination of character 
sheaves C which are mapped by 11.9 to the coset w’W, # w  W,; so these 
C are not among the A above. It follows that if AE eY is such that 
(A: &d(o)Rf$) # 0 then we have: 

(A: cf3(oi) Rg) = 0, 
0 

(A: CO(oi) RfJ = 0, 
e 

(A: 1 d(d) R$) = 0, 
e 

if o’#o 

for all i 

for all i. 

Hence we have 

(A: R<)=O, 

(A: R$,)=O, 

(A: R$J = r(o) 0(o) - ‘, 

for all 0 

for all 6 

for all 8. 

where T(W) # 0 is independent of 8. 
From this we can deduce (as in the proof of 19.3 (f)) that A is cuspidal, 

using 18.2. It is enough to check that the character of &0(o)-‘& vanishes 
at all elements of WY which have some eigenvalue 1 in the reflection 
representation of W. The value of this character at O’X (x E W,) is zero if 
oi # o and is + Tr(s, s2sIx, E) if wi = o. The last trace is nonzero precisely 
when x = si, s2 or sis2s1. Thus we must prove: if x E W, is a reflection, 
then wx has no eigenvalue 1 on the reflection representation V of W. We 
identify the roots with vectors in V. We denote the simple roots by ai 
(1 <i<5) so that c1i, a4, a5 correspond to ends of the Dynkin diagram, a3 
to a branch point, and ~1~ is joined to a*, a4, a5. Let si be the simple reflec- 
tion corresponding to ai. We may assume that W, is generated by si, s2. 
There are exactly two elements of order 4 in W which map a1 to a2 and a2 
to a,. One of them maps a4 + a5 + - 01~ -+ - aj + a4 and the other maps 
a4 + - a5 + - a4 + a5 + cr,; both map t13 to - u3 + a combination of 
al, a2, a4, as. It follows that o must be one of these two elements. From 
this, we see that the characteristic polynomial of sio or s2w on V is 
(q3 + l)(q2 + 1) and the characteristic polynomial of sis2sio on V is 
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(q + 1)3(q’ + 1). Neither of these polynomials has q= 1 as a root. This 
proves that A is a cuspidal character sheaf. It is one of the Ai (1 d i < 8) in 
19.5. 

From 19.5 we see that t$A (z E centre of G) are distinct. They are com- 
ponents of &~(o)R& with the same multiplicity as A, since &0(0)Rg is 
invariant under all t: (see (17.17.3)). Since (&0(0)Rg : &~(o)R$J = 4 
(by 4.13), it follows that &8(w)Rj$ = +C=t,*A (z runs over the centre of 
G). An analogous result with the same proof holds for &e(o-‘)Rg; it is 
up to sign a sum of four distinct cuspidal character sheaves. Moreover, 
these must be different from the t:A above since by 17.18(b), the first four 
are mapped by 11.9 to w?V, and the last four are mapped to w- ’ W,. 
Thus, there exist at least eight different cuspidal character sheaves on G. It 
follows that each of the Ai (1 6 id 8) in 19.5 is a cuspidal character sheaf. 
From this we deduce, as we have seen at the beginning of the proof, that 
each Ai is clean. The proposition is proved. 

20. GROUPS OF TYPE E,, E,, G, 

20.1. The main results in this chapter are 20.3, 20.5, 20.6 which 
assert that the statements (17.8.3)-(17.8.5) hold for the groups E,, E,, G,, 
at least under certain restrictions on char k. 

PROPOSITION 20.2. Let 3’ E 9’(T) be such that (G, 9’) satisfies (17.8.4) 
and W9 = W,. Assume that one of the following conditions is satisfied: 

(a) W, is of type E, x A,. 

(b) W, is of type E, x A,. 

(c) W, is of type G,. 

Then (17.8.3) holds for (G, 9’). 

ProoJ We fix a family 9 in fiP. When 9 consists of one or three 
representations, the argument in the proof of 19.2 (Case 1) applies without 
change and shows that the Rz (E E 9) decompose according to the pat- 
tern of (17.8.3). Assume now that 9 is a family consisting of two represen- 
tations. Then we are in case (b) and we have 9 = {E, E’ } where E = 
512, q p, E’=512: q p where 512,, 512: are as in 17.19 and p is an 
irreducible representation of the An-factor of W,. From [6, 5.221, we see 
that there exist x, x’ E W, such that 

a,=E-E’, 7(x) = a(x) + 1 (mod 2) 

a,, = E+E’, ‘Ijx’) = a(x’) (mod 2). 
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From 16.6 it follows that Rg - Rg and Rz + Rg are combinations with 
integral >O coefficients of character sheaves. By 14.13, the inner products 
( : ) of these two elements are described by the matrix (i.;). It follows that 
there exist four distinct character sheaves Ai (1 6 i< 4) in G, such that 
Rg--R$=Al+Az, Rz+Rz=A3+A4. Thus, we have RF= 
h(A, +A, +A3 +A& Rz = 4( - A, -A, + A, + A4). Moreover, by 
17.18(a) we have aA, =aA2 = - 1, cA3 = cAq = 1. Hence the pattern of 
(17.8.3) is established. 

Next, we assume that in case (a) with n = 0, 9 is the family consisting of 
80,, 60,, 90,, lo,, 20, (notations of [6, 4.111). By [6, 7.31 each of the vir- 
tual representations 80, + E. 60, + lo,, 80, + E .60, + 90,, 2.80, - lo,, 
2.80, - 90,, 80, - 20, (E = + 1) is of the form a, for some x E W, such 
that qx) ra(x) (mod 2). From 16.6, we see that the expressions 
R& + ER& + REl$“O,, R& + ER& + Rg”o,, 2-R&-R& w3, - R& 
R& - R2”o, (E = f 1) are combinations with integral > 0 coefficients of 
character sheaves. Using [6, 7.7(iii)] we deduce that the pattern of decom- 
position of each R, (EEF) is as in (17.8.3). (For each A E G,, we have 
&A = 1 by 17.18(a).) The same argument applies whenever 9 is a family 
with live representations. Essentially the same argument, using [6, 7.7(ii)] 
instead of [6, 7.7(iii)], applies in the case where 9 is a family consisting of 
four representations (which can only arise in case (c)). Since in our case, 
there are no families with more than five representations, the proposition is 
proved. 

PROPOSITION 20.3. Assume that G is one of the following: 

(a) an adjoint group of type E,, 

(b) a simply connected group of type E6, with char k # 2, 

(c) an adjoint group of type E,. 

Then (17.8.3~( 17.8.5) hold for G. 

Proof. In many respects the proof is similar to that of 19.3. 

(a) To any Levi subgroup of a proper parabolic subgroup of G, we 
may apply 19.3. Hence to check (17.8.4) for G it is enough to check that 
any cuspidal character sheaf of G is clean and satisfies the parity condition. 
The complexes in Irr’G are classified as follows [4]. If char k # 3, Irr’G 
consists of six complexes with the same support: the closure of the con- 
jugacy class of su where s is a semisimple element whose connected cen- 
tralizer is isogenous to X,(k) x S&(k) x X.,(k) and u is a regular 
unipotent element in PG(s); these complexes are clean by 7.11 (d) and 18.5. 

If char k = 3, Irr’G consists of two complexes with the same support: the 
unipotent variety of G; if one of these complexes is a character sheaf, then 
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it is clean by 7.9, since (17.8.5) is known to hold for proper Levi subgroups. 
Hence G is clean. 

If G, contains a cuspidal complex, we see from 17.12 that the 
possibilities for Y are restricted: we must have WY = W, of type E6, 
A, x A, x A, or A, x A,. In each of these cases, 18.3 shows that the parity 
condition is satisfied. 

Thus, G satisfies (17.8.4). Now using 20.2(a) and 19.2, we deduce that G 
satisfies (17.8.3). To prove (17.8.5) it is enough to prove the following 
statement: if W, = W then G, contains at least two distinct cuspidal 
character sheaves. (When char k # 3, there are precisely three 6p such that 
W, = W; when char k = 3, there is only one such 2.) 

We consider B E Y(T) such that W, = W. Let A, be the character sheaf 
in G,, which under (17.8.3) corresponds to the family F = { 80,, 60,, 90,, 
lo,, 20,) (notation of [6,4.11]) and to the element (gj, ~)EJ~‘(Y~) where 
g, is an element of order 3 of $z:S, and 8 is a non-trivial character of 
zF&L) f Z/32. 

From (17.8.3) it follows that 

(c/&o : R&J = f, (c,&o : R&l = 0, (&,,,A0 : Rr$)= -4; 

(E,& : R$>,) = - f, (EA~,AR : R$,J = f, 

and 

(EDGAR : RF) = 0 for all EE I&‘,, E$F. 

In order to prove that A, is cuspidal it is enough, using 18.2 as in the 
proof of 19.3(a), to show that the character of the virtual representation 
80,Y - 90, - 10, + 20, of W vanishes on all elements of W which have some 
eigenvalue 1 in the reflection representation W. This is easily verified, using 
for example the character table of W. Thus the A, for the two choices of 8 
are cuspidal and the proposition is proved in our case. 

(b) If char k = 3, this is proved exactly as in (a). Hence, we may 
assume that char k # 2, 3. As in (a), to check (17.8.4) for G it is enough to 
check that any cuspidal character sheaf of G is clean and satisfies the parity 
condition. The complexes in Irr’G are classified as follows (see [4]). The 
set Irr’G consists of 14 complexes. Two of these have trivial action of E& 
and are of the form rc*A where A is one of the cuspidal character sheaves 
of G/?& described in the proof of (a). (Here, rc: G -+ G/TG is the canonical 
map.) Hence these two complexes are clean character sheaves satisfying the 
parity condition. In addition, there are six complexes in Irr’G whose sup- 
port has the following form: the closure of the conjugacy class of an 
element su where s is a semisimple element whose centralizer is isogenous 
to Z,(k) x S!,,(k), and u is a regular unipotent element in Z,(S); these 
complexes are clean by 7.1 l(d) and 18.5. 
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Next, there are two complexes A’, A” in Irr’G with the same support: the 
closure of a unipotent class in G. Finally, t,* A’, t: A” (see 17.7), where z is 
a non-trivial element in &, are in Irr’G. If one of the complexes A’, A” is a 
character sheaf, then it is clean, by 7.9. The same is then true for t,*A’, 
QA”. Thus, G is clean. Assume now that A E G, is a cuspidal character 
sheaf. The possibilities for 2 are restricted by 17.12: we must have W$ = 
W,=Wor W”=W,oftypeA,xA,or W,oftypeA,xA,xA,with 
8, of order 3 acting by cyclic permutation of the factors, or W, of type 
D4 with Q, of order 3 acting non-trivially on W,, or W, of type 
A, x A, x A, x A, with Sz, of order 3 acting non-trivially on Sz,. Using 
18.3, we see that A satisifes the parity condition. Thus, G satisfies (17.8.4). 
Using 19.2 and 20.1(a), we see that G satisfies (17.8.3). It is then enough to 
show that G has at least 14 distinct character sheaves. As we have seen 
earlier in the proof (as a consequence of (a)), G has at least two character 
sheaves with trivial action of .?&. 

Let dp E Y(T) be such that W, is of type D4 and 52, is of order 3, 
acting non-trivially on W,. Then 5? is uniquely determined up to W-con- 
jugacy. It is enough to show that G2 contains at least 12 character sheaves 
which are mapped by 11.9 to some nontrivial coset in W&,/W,. Let 
5 c l+‘2 be the family {ps, p6, pz} (notations as in the proof of 19.3(d)), 
and let 9’ be the corresponding family ((&&, (p6)s, (&),> in J@” 
(Notations are as in the proof of 19.2 (Case 4); 8 is any character of Q2,.) 
We have gFP = a, x Z/22. We denote by g any element of Z/22, by w  
some generator of Q,, and by E the non-trivial character of Z/22. Then 
6 q E is a character of 8,, and we denote by Ao,g,B the character sheaf in 
GP corresponding under (17.8.3) to 9’ and to (wg, 0 q E) E J%(%,.). 
When w, g, 0 vary, we get 12 different character sheaves. We shall show 
that &g,e is cuspidal. From (17.8.3), we see that 

(El 4&J : R&,) = g’(o)-‘, h4g.e : R&J = - gqo) -1, 

(61 &,g,e : R$-6,,.)=:e’(o)-‘c(g), (E,A~,~,~ : Rg) =0 

for any E, E kkg - F’. Here, .zi E { + 1 }. To show that Ao,g,B is cuspidal, it 
is enough, using 18.2 as in the proof of 19.3(a), to show that the character 
of the virtual representation 

of W$ vanishes on all elements of Wz which have some eigenvalue 1 in 
the reflection representation of W. This, in turn, follows from the following 
statement. 
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(20.3.1) The characters of both virtual representations ps - p2 and p6 
of W$ vanish on all elements of form ox E IV” (o = generator of 52,, 
XE W,) which have some eigenvalue 1 in the reflection representation 
of w. 

This can be checked as follows. We may assume that W, is generated by 
four simple reflections of W. The normalizer IV’ of W, in W is isomorphic 
to a Weyl group of type F4 and W& is a subgroup of index 2 of W’. The 
representations ps, )?*, p6 of WY extend to representations of IV’. We can 
then make use of the character table of a Weyl group of type F4 and see 
that (20.3.1) holds. This completes the proof of the proposition in case (b). 

(c) If L is the Levi subgroup of a proper parabolic subgroup of G, 
we may apply either (a) or 19.3 to L/Z?‘:. Hence (17.8.4) holds for L/S?“o, 
and for L. Hence to check (17.8.4) for G it is enough to check that any 
cuspidal character sheaf of G is clean and satisfies the parity condition. The 
complexes in Irr’G are classified as follows. If char k # 2, then Irr’G con- 
sists of four complexes with the same support: the closure of the conjugacy 
class of su where s is a semisimple element whose connected centralizer is 
isogenous to SL,(k) x SL,(k) x SL,(k) and u is a regular unipotent element 
in Z”,(s); these complexes are clean by 7.1 l(d) and 18.5. If char k = 2, then 
Irr’G consists of two complexes; they have the same support: the unipotent 
variety of G. If one of these is a character sheaf, then it is clean by 7.9, since 
(17.85) is known to hold for proper Levi subgroups. Hence G is clean. 

Let S? E Y(T) be such that W$ = W, = W. If char k # 2, then there are 
two such 2, and if char k = 2, there is a unique such 9. If we show that 
G, contains at least two cuspidal character sheaves A,, A, with 
EAl = EA2 = -1 then it will follow that (17.8.4) and (17.85) are verified for 
G. (We have necessarily 8,, = EIA2 = - 1, since G has odd dimension; see 
(18.3.4).) By [6, 5.221 there exist x, x’ E W, such that 

u, = 512, - 512;, Z(x) = u(x) + 1 (mod 2) 

~1.~8 = 512, - 512;, Z(x) E u(x) (mod 2) 

(notations of 17.19). If we set E=512,, E’= 5122, it follows from 17.18 
that Rz - Rz is a Z-linear combination of character sheaves A such that 
Ed = -1 and that R$ + R$ is a Z-linear combination of character sheaves 
A’ such that Ed, = 1. By 14.13 we have (Rz- Rz : Rz - Rz)=2, hence, 
there exist two character sheaves A, # A, such that Rz - Rg = f A, f A,. 
Moreover, we have sA, = &A2 = -1 hence, (Aj : R$+ Rz)=O, for i= 1,2. 
Any E, E fiY othen than E, E’ is a Q-linear combination of elements uY for 
y in a two-sided cell other than that of x (see 16.4). From 17.19, for all such 
y, we have Z(y) = a(y) (mod 2); now using 17.18, we see that Rg is a @ 
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linear combination of character sheaves A such that E~ = 1. It follows that 
(Ai : Rg) = 0, for i = 1,2 and El #E, E’. We also see that 

(Ai :Rg)= -(Ai :Rj$)= +J (i= 1,2), 

We shall show that A,, A, are cuspidal. Using 18.2 as in the proof of 
19.3(a), we see that it is enough to show that the character of the virtual 
representation 512, - 5121, of W vanishes on all elements of W which have 
some eigenvalue 1 in the reflection representation V of W. This is proved as 
follows. We identify W with Sp,(F,) x Z/22 and 512,, 512: with the two 
extensions of the Steinberg representation of Sp6(F2) to Sp6(F2)x Z/22. 
(The Z/2Z-factor is generated by the longest element w0 of W.) The charac- 
ter of the Steinberg representation is zero on elements of order divisible by 
2. Since w0 acts as -1 on V, we are reduced to the following obvious 
statement: if w  E W has odd order then it has no eigenvalue -1 on V. 
(Compare with the proof in 19.3(f).) Thus, A,, Az are cuspidal. This shows 
that (17.8.4) (17.8.5) hold for G. We may now apply 20.2(b) and we see 
that (17.8.3) also holds for G. This completes the proof of the proposition. 

COROLLARY 20.4. Assume that G is an aa’joint group of type E,. Let 
f: G + G be the non-trivial outer automorphism of G such that f(B) = B, 
f(T) = T. Let 5? = Q, E Y(T). Then for any A E e,, we have f *A z A. 

ProojI We have W, = W. It is clear that f * takes G, to itself. For any 
EE I@, we have f *Rg = Rg where i? is the W-module obtained from E by 
composition with the automorphism of W induced by f. As this 
automorphism of W is inner (conjugation by the longest element), we have 
i?= E hence, f *Rg = RF. Hence, for any E E I@ and any A E 6, we have 
(f*A: Rf)= (A : Rz). From (17.8.3) for (G, U), we see that AE &, is 
completely determined by the multiplicities (A : Rz), (E E I@), except when 
A is cuspidal. 

Hence, f *A w  A if A E 6, is non-cuspidal. Assume now that A E ez is 
cuspidal and char k = 3. Then A is completely described by a (non-trivial) 
one-dimensional representation of the group Z(u)/Z’(u) of components of 
the centralizer of a regular unipotent element UE G. (The support of A is 
the closure of the class of u.) We can choose u such that f (u) = u; it is then 
enough to show that f acts trivially on Z(u)/Z’(u). This follows from the 
known fact that Z(u)/Z’(u) is a cyclic group (of order 3) generated by the 
image of u. 

Assume next that char k # 3. Let s E T be a semisimple element such that 
the simple root corresponding to the branch point takes the value 8~k* 
(d3 = 1, 8 # 1) on s and all other simple roots take the value 1 on s. Then 
Z’(s) is isogenous to SL,(k) x SL,(k) x SL,(k). Let u E Z”(s) be a regular 
unipotent element. We have f(s) = s and we may assume that f(u) = u. The 
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group of components Z(su)/Z”( su is isomorphic to C, x C; where C3, C; ) 
are cyclic groups of order 3 and C3 is generated by the image of SU. The 
action off on Z(su)/Z”(su) is as follows: f is the identity on C, and facts 
asg+g-’ on C;. The six cuspidal character sheaves of G are supported by 
the closure of the class of su; they are completely described by a one- 
dimensional representation of Z(su)/Z”(su) = C3 x C; which is non-trivial 
on C3. From the description of the action off on C, x C; given above it 
follows that there are exactly two cuspidal character sheaves of G which are 
fixed by f *. If a cuspidal character sheaf is in G,,, 9’ # .Y, then it is not 
fixed by f *, since f maps .P” to Y’- ’ which is not in the W-orbit of Y’. 
This implies that the two cuspidal character sheaves in GY must be fixed 
by f *. The corollary is proved. 

PROPOSITION 20.5. Assume that G is simply connected of type E,, 
char k # 3. Then ( 17.8.3 t( 17.8.5) hold for G. 

Proof If char k = 2, this is proved exactly as in 20.3(c). We assume now 
that char k # 2, 3 and we denote by z the non-trivial element in ?&. By 19.3 
and 20.3(a), the statements (17.8.3t(17.8.5) hold for L/Z?!; where L is any 
Levi subgroup of a proper parabolic subgroup of G; hence they also hold 
for L. 

According to [4], the set Irr’G consists of eight complexes. Two of these 
have trivial action of SYG and are of form z*A, where A is one of the 
cuspidal character sheaves of G/& described in the proof of 20.3(c). (Here, 
n: G + G/TG is the canonical map.) Hence, these two complexes are clean 
character sheaves satisfying the parity condition; they belong to G,, where 
Y. = 0,. In addition, there is a unique complex A E Irr’G whose support is 
the closure of a unipotent class. If it is a character sheaf, then it is clean, by 
7.9. The same is true for tfA E Irr’G. Note that t;* A #A since they have 
different support. 

Next, there are two complexes A, A” E Irr’G with the same support: the 
closure of the conjugacy class of SU, where s is a fixed semisimple element 
whose centralizer is isogenous to SL,(k) x SL,(k), and u is a regular 
unipotent element in Z,(s). Then A’, A” are clean by 7.11(d) and 18.5; the 
same holds for tr A’, t: A” E Irr’G. 

Note that tf A’, t,* A” have the same support which is different from the 
support of A’, A” since zs is not conjugate to S. This completes the list of 
complexes in Irr’G. The complexes A, t,* A, A’, A”, t;* A’, t:A” all have 
non-trivial action of ?& and none of then is fixed by tr. We see that G is 
clean. 

To prove that G satisfies (17.8.4), it is now enough to prove that for any 
cuspidal character sheaf A of G on which SYL acts non-trivally, we have 
&A = ia. 
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If A E GT, then 52, must be of order 2 (since Z& acts non-trivially on A) 
and the possibilities for dR are further restricted by 17.12. We must have 

(i) W, of type A, x A, x A,, with 52, switching the two A,-factors. 

(ii) W, of type A,, with 52, acting non-trivially on W,. 

(iii) W, of type E,, with Q, acting non-trivially on W,. 

(iv) W, of type D, x A, x A,, with Q, acting non-trivially both on 
the D,-factors and on the A, x A, factor. 

(v) W, of type A, x A2 x A,, with a, switching two of the A,- 
factors. 

In all cases, 52, has four orbits on the set of simple reflections of W,. If 
we are in case (i), (iv), or (v), the representations of the Hecke algebra 
corresponding to IV2 have traces in Q[u, u-l], and from 18.3, we see that 
sA = ZA. Assume now that we are in case (ii) or (iii). Since A is cuspidal, we 
have dA = 2,A (see 15.5). Since JZ?‘~ acts non-trivially on A, we have 
t,*A #A, as we have seen earlier in the proof. Now using 17.21, it follows 
that sA = - 1. (It is easy to check that the generator of QP has odd length 
in W.) Since G has odd dimension and A is cuspidal, we have E^A = - 1 (see 
(18.3.4)). Hence, again we have E ,̂ = aA. This shows that G satisfies 
(17.8.4). 

We now show that (G, 2) satisfies (17.8.3) for any PEP’(T). If 2 is 
not as in (iii) above, this follows from 20.2 and 19.2. Hence we may assume 
that 9 is as in (iii) above. We may also assume that W, is generated by a 
subset I of S. Any family in WY consists of 2, 6, or 10 representations. For 
families with 2 or 6 representations, we may argue exactly as in the proof of 
19.2 (case 3). 

Let us now consider the family 5’ in pY consisting of the represen- 
tations Gs, 6?j,, !%-, EJ, %, (preferred extensions to W’ of the represen- 
tations 80,, 60,, 90,, lo,, 20, of W,; see [6, 4.111) and @,, a,, m,, m,, 
zs (the non-preferred extensions). We have W, = W, = IV”,, (notation of 
15.6). Let 9 be the family {80,, 60,, 90,, lo,, 20,) of P@‘,. Let L,, Rg*‘be 
as in 15.6 and let if be as in 15.3. If A, A’E (L,),, we have 

(20.5.1) (ifA : $A’) = (A : A’) + (A : f*A’) 

where f: L, + L, is the map given by conjugation by a representative in 
ZV( T) of the non-trivial element in BY. The proof of (20.5.1) is almost iden- 
tical to that of (17.12.6); the only difference is that x in that proof is not 
necessarily 1; it can be any element of Q,. We have Y = n$$ I T, where 

: L, + L,/(L,)der is as in 17.9 and $ E Y(L,/L,),,,) is the unique local 
iistern such that $ #Q,, SF2 = 0,. Let rcl: L, + (L,)ad be the canonical 
projection, T the image of T under z,, and let Y1 be the local system QI 
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on T. From 17.9 and 17.10 it follows that A, + ii,A 0 rc$b, is a bijection 
((L:),,), -+ (E,),. Now using 20.4, and the isomorphism f*(~$&) = 
z$$, we see that f*A’=A’ for all A’E (e,)Y. Hence (20.51) becomes 

(20.5.2) ($A : ifA’) = 2(A : A’). 

This implies that for each character sheaf A E (L,),, there exist two charac- 
ter sheaves A #A”’ on G such that 

(20.53) i;A = A” + A”‘. 

Moreover, A is uniquely determined by either A” or 2’. If EE 8, we have 
indz=E+E; using 15.7(i) it follows that $(R$‘) = Rg + R$‘. Since 
(17.8.3) is already known for (L,, 6p) (it follows from 20.3(a)), we know 
that @A,,, consists of eight character sheaves A r, A*,..., A, and we know 
explicitly the coefficients cLE in 

Applying if and using (20.5.3) we find 

(20.5.4) Rg + Rff = i ci.& + A”;.) (EE F). 
i=l 

In particular, the 16 character sheaves Ai, A”( (1 <i< 8) are in (G),,,, and 
the multiplicities (Ji: Rg + Rg) = (A”(: R$ + Rg) = ci,E are known. 

Note also that Ai, A”: have trivial action of L!&. (Indeed, L, has a connec- 
ted centre; this implies that each ifA, has trivial action of Zo, hence our 
asserition.) 

This gives only a part of the pattern (17.8.3) for 9’. To get the full pat- 
tern we must also decompose the differences Rg - Rg (E E 9). We shall do 
that using the following statement. 

(20.5.5) For any AE G,,,. with non-trivial ?&-action, we have 
?;*A #A. 

Assume for a moment that (20.5.5) is proved. From [6, 7.101, we see 
that the following seven virtual representations of IV” are of form c(, for 
some XE &-- W, such that T(x) =a(~) (mod 2): 
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(20.56) (~~-~,)+E(~,--~)+(m,-~,), 

(8ij,-~,)+E(~,--~)+(~,-~S)) 

2(Ej, Xl,)-(E, -i0,), 

2(87jS -rn,)- (iq -W,), 

(tq -so,)- (26, -rns). 

Here, E= + 1. 
By 16.6 and 17.18(b) the elements Ry, where ? is one of the expressions 

(20.5.6), are combinations with integral 20 coefficients of character 
sheaves with non-trivial action of ZG. Moreover, from (20.55) and 
(17.17.3) we see that these Rf’ are combinations with integer, > 0 coef- 
ficients of expressions (A + t,*A) where A are character sheaves in GY,FS 
with non-trivial action of Z&. The inner product ( : ) of any two such Rf’ 
is known from 14.13. We may apply [6, 7.7(ii), (iii)] to the real vector 
space V spanned by all A + t,* A (where A is any character sheaf in GY,S, 
with non-trivial action of Z&), with orthonormal basis (l/d)(A + t:A), 
and to the orthonormal set (l/$)(Rz -RF) (EE 9). 

This gives each of (l/a)(Rz - Rg) as an explicit Q-linear combination 
of ;(A i + t,* A i, (1 Q i < 8) where A ’ ,..., A 8, t,* A ’ ,..., t,* A8 are distinct charac- 
ter sheaves with non-trivial action of Z&. (Hence, they are distinct from 
A” I)...) &, 2; )..., 2, above.) This gives the pattern of decomposition of each 
R% - Rg (EE 9). Since the pattern of decomposition of each Rg + Rg is 
already known, we find the pattern of decomposition of each Rf and Z$’ 
in terms of the 32 character sheaves A’,..., A*, t!A’,..., t,*A’, A”, ,..., A,, 
-1 A ,,..., Al;, and we see that the pattern of (17.8.3) is verified. 

Let us now verify (20.5.5). If A (as in (20.5.5)) is cuspidal, then we have 
t,* A # A. (As we have seen earlier in the proof, for any A’ E Irr’G with non- 
trivial Z&-action, we have tr A #A.) Assume now that A is noncuspidal. 
Then A is a direct summand of a complex induced by a cuspidal character 
sheaf A’ of the Levi subgroup L, of a parabolic subgroup P, of G of type 
D6 or Al x Al x A,. (In the last case, P, is defined by the following three 
vertices of the Coxeter graph of E,. One is the end point v1 at distance one 
from the branch point, one is the end point v2 at distance three from the 
branch point and one, v3, is at distance two from both vr and v,; see [6, 
15.11.) 

The case where P, is of type D, cannot actually occur. Indeed, in that 
case we would have EIA = 1 (see the proof of 15.5), hence, sA = 1 (since 
(17.8.4) holds for G). On the other hand, from (18.3.3) we see that eA = -1 
for all A E GY,S*. (Indeed, in (18.3.1) we have N even for all EEL’.) 
Hence PJ must be of type Al x A, x A, (described above). In this case, it 
follows that the support of A is the closure of one of the following two sets 
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where TOOL,Leg, U,, are defined as in (18.54) and z, = e, z2 = z. Just as in 
the proof of (18.55) we see that X, n X, = a, hence, 8, # X2. We have 
X, = ~1,. Hence, if A has support R, (resp. R,) then t:A has support T? 
(resp. x,), so that t;*A #A, and (20.5.5) is verified. This also completes the 
verification of (17.8.3) for G. It remains to prove that G satisfies (17.8.5). 
We have seen already that if Ypo = Q,, then G,,, contains at least two 
cuspidal character sheaves. It is then enough to show that, if 2 is as in (iii) 
above, then GY contains at least six distinct cuspidal character sheaves. 
Consider the family 9’ in W’ consisting of 10 representations. We have 
gFS = QY x 8,. We consider the character sheaves Ati, E G,,,. (1 <i 6 6) 
which under (17.8.3) correspond to the elements (og,, v q 0), (0, v q 1) 
in A’(gF,); here v is any character of Q, zZJ22, o is the generator of 
sz Y, g, is an element of order 3 of ZG,(g3) z z/32, 0 is a non-trivial 
character of Z,,(g,), and 1 is the unit representation of 8,. We show that 
Aci, (1 <id 6) are cuspidal. Using 18.2 as in the proof of 19.3(a), we see 
that it is enough to show that the characters of the virtual representations 

of IV” vanish on all elements of IV” which have some eigenvalue 1 in the 
reflection representation of W. This, in turn, is equivalent to the following 
statement. The characters of the virtual representations 

80, - 90, - 10,y + 20, 

of W, vanish on all elements of W, which have some eigenvalue -1 on 
the reflection representation of W,. This can be checked using the charac- 
ter table of W,. This completes the proof of the proposition. 

PROPOSITION 20.6. Assume that G is simple of type G2 and char k # 2.3. 
Then (17.8.3))( 17.8.5) hold for G. 

Proof: By 18.5, the statements (17.8.3)-(17.8.5) hold for L/ZE’“o, where L 
is any Levi subgroup of a proper parabolic subgroup of G; hence, they also 
hold for L. The complexes in Irr’G are classified as follows [4]. The set 
Irr’G consists of four complexes. One of them is supported by the closure 
of the conjugacy class of su where s is a semisimple element with centralizer 
xSO,(k) and u is a regular unipotent element in Z(S). This complex is 
clean by 7.1 l(d) and 18.5. Two other complexes in Irr’G are supported by 
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the closure of the conjugacy class of s’u’ where s’ is a semisimple element 
with centralizer w,%,(k) and u’ is a regular unipotent element in Z(S). 
These complexes are clean by 7.1 l(d) and 18.5. Finally, there is a complex 
in Irr’G which is supported by the closure of the subregular unipotent class 
in G. If this is a character sheaf, then it is clean by 7.9. It follows that G is 
clean. 

To prove that G satisfies (17.8.4) it is now enough to show that for any 
cuspidal character sheaf A E G, we have eA = tA. The possibilities for 8 
are restricted by 17.12; we must have W$ = W, of type G2, A 2 or A 1 x A 1. 
In each case, we see from 18.3 that eA = iA. Thus, G satisfies (17.8.4). Now 
using 20.2(c) and 19.2, we see that (17.8.3) holds for G. To prove that 
(17.8.5) holds for G, it is enough to show that if 9 = @, then G, contains 
at least four cuspidal character sheaves. Let Ai, A,, A3, A4 E 6, be the 
character sheaves corresponding under (17.8.3) to the family F = { V, V’, 
cl, e2} of W (notations of [6, 4.8]), and to the elements (1, E), (g2, E), 
(gj, e), (g3, 8’) in J%‘(%,) = A(@,). Here g, is an element of order 2 of 
(fJ3, E is the sign character of ej3 or its restriction to Z&g,), g, is an 
element of order 3 of (5,, and 8, 8* are the nontrivial characters of Zo,(g3). 
We shall show that A,, A,, A3, A4 are cuspidal. Using 18.2, as in the proof 
of 19.3(a), we see that it is enough to show that the characters of the vir- 
tual representations 

V-31/‘+2~, +2&*, v- v, V--E1 -&* 

of W vanish on all elements of W which have some eigenvalue 1 in the 
reflection representation of W. This is easily checked using the character 
table of W. This completes the proof of the proposition. 

21. GROUPS OF TYPE E, AND F4 

21.1. In this chapter we shall prove that the statements 
(17.8.3k(17.8.5) hold for the groups of type Es and F4, assuming that we 
are in good characteristic. 

PROPOSITION 21.2. Assume that G is simple of type E, and char k # 2, 3, 
5. Then G satisfies (17.8.4). 

ProoJ By 20.3, 19.3, the statements (17.8.3~(17.8.5) hold for L/S”, 
where L is a Levi subgroup of any proper parabolic subgroup of G; hence, 
these statements also hold for L. 

According to [4], the set Irr’G consists of 13 complexes. 

(a) There is a unique complex in Irr’G supported by the closure of a 
unipotent class; if it is a character sheaf, then it is clean, by 7.9. 
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(b) There is a unique complex in Irr’G supported by the closure of 
the class of SU, where s is a semisimple element with Z,(s) isogenous to the 
product of SL,(k) with a simply connected group of type E, and u is a cer- 
tain unipotent element in Z,(s); this complex is clean by 7.1 l(d), 18.5 (for 
SL,(k)), and 20.5. 

(c) There are two complexes in Irr’G with the same support: the 
closure of the class of SU, where s is a semisimple element with Z,(s) 
isogenous to the product of SL,(k) with a simply connected group of type 
E6 and u is a certain unipotent element in Z,(s); these complexes are clean 
by 7.11(d), 18.5 (for SL,(k)), and 20.3(b). 

(d) There are two complexes in Irr’G with the same support: the 
closure of the class of SU, where s is a semisimple element with Z,(s) 
isogenous to Spin,,(k) x SL,(k) and u is a certain unipotent element in 
Z,(s); these complexes are clean by 7.11(d), 18.5 (for SL,(k)), and 19.6. 

(e) There are four complexes in Irr’G with the same support: the 
closure of the class of SU, where s is a semisimple element with Z,(s) 
isogenous to SL,(k) x SL,(k) and u is a regular unipotent element in 
Z,(s); these complexes are clean by 7.11(d) and 18.5 (for SL,(k)). 

(f) There are two complexes in 1rr”G with the same support: the 
closure of the class of SU, where s is a semisimple element with Z,(s) 
isogenous to SL,(k) x SL,(k) x SL,(k) and u is a regular unipotent element 
in Z,(s); these complexes are clean by 7.11 (d) and 18.5. 

(g) Finally, there is a complex in Irr’G whose support is the closure 
of the class of SU, where s is a semisimple element such that Z,(s) is 
isogenous to Spin,,(k) and u is a certain unipotent element in Z,(s). This 
complex is clean by 7.11(d) and 19.4(c). (Note that from [4] it follows that 
any complex in Irr’ Spin,,(k) supported by the closure of a unipotent class, 
comes from a complex in Irr’ PSO,,(k), so that 19.4(c) is applicable.). 

This completes the classification of complexes in Irr’G and shows that G 
is clean. Assume now that A E GY is a cuspidal character sheaf. To com- 
plete the proof it is enough to show that sA = iA. The possibilities for 9 
are restricted by 17.12; we must have IV” = W, of type E,, E, x A,, 
E6 x A,, D, x A,, A, x A,, A, x A, x A,, A,, A, x A,, D,. In all cases but 
the first two, we may apply 18.3; the integer N in 18.3 is even in these cases. 
Hence, we may assume that W, is of type E, or E, x A,. Assume first that 
W, is of type E, (hence, W, = W). From (18.3.4) we see that E^A = 1. 
Assume that sA = -1. We shall reach a contradiction as follows. 

Let Ai (i= 1, 2) be the two cuspidal character sheaves in (2,)P, where 
ZC S is such that LI/S~ is an adjoint group of type E, (see the proof of 
20.3(c)). If LEG normalizes L,, then conjugation by n leaves each Ai 
stable; indeed Ai come from cuspidal character sheaves of L,/%“$, and con- 
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jugation by n induces an inner automorphism of L,/St,. It follows that in 
our case, (17.12.5) simplifies to 

($A, : ifA]) = 2(A, : A,), i, jE { 1,2}. 

Hence, we can write iSA, =A”i +A”;, ifA, =& +A”; where A”,, A;, A”*, A”; 
are four distinct character sheaves of G. By (17.83) for L,, we have 
R”.’ 

512, 
_ ~2.’ = A, + AZ. Applying if to both sides and using 15.7(i), we find 

512; 

(21.7.1) R&: - R&,; + R&,,x - R.$& = A”, + A”; + A”, + A”;. 

From 17.18 and 17.19 we see that both Rf&,. - Rfmhr and RG6, - R&,,Z 
are Z-linear combinations of character sheaves; since both of these 
elements have self inner product ( : ) equal to 2, we see from (21.7.1) that 
each of them is the sum of two of the character sheaves A”,, A”;, AZ, A”;. 
From the definition of A”,, A”;, J,, J;, we see that neither of them is 
cuspidal. We deduce that our given cuspidal character sheaf A satisfies 
(A : Rf& - RGhf) = (A : R$& - R&,,:) = 0. From 17.8 and 17.9 we see 
that RF&,;. + R$,,: and R&,X + R$&, are Z-linear combinations of charac- 
ter sheaves A’ such that aA, = 1. Since E, = - 1, we must have (A : R$,,, + 
R&,,,) = (A : R&.,x + R&,J = 0. It follows that (A : R&,6:) = (A : R&,. i = 
(A : ii&,,) = (A : R$,,j = 0. For all EE I@ such that dim E # 4O96,x the 
character of the corresponding representation E(u) of the Hecke algebra 
has values in Q[u, u-l]. We may therefore use 18.3 and we see that 
EA =tA, a contradiction. 

The case where W, is of type E, x A, is treated in an entirely similar 
way. (In this case, the .trouble is created by the four irreducible represen- 
tations of degree 512 instead of those of degree 4096 for W, of type Es.) 

This completes the poof. 

PROPOSITION 21.3. Assume that G is simple of type F4 and char k # 2, 3. 
Then G satisfies (17.8.4). 

Proof: By 19.3 and 19.4(a), the statements (17.8.3)-(17.8.5) hold for L 
where L is a Levi subgroup of any proper parabolic subgroup of G. 

According to [4] the set Irr’G consists of seven complexes. 

(a) There is a unique complex in Irr’G supported by the closure of a 
unipotent class; if it is a character sheaf, then it is clean, by 7.9. 

(b) There is a unique complex in Irr’G supported by the closure of 
the class of SU, where s is a semisimple element with Z,(s) isogenous to 
Sp,(k) x SL,(k) and u is a certain unipotent element in Z,(s); this complex 
is clean by 7.11(d), 18.5 (for SL,(k)), and 19.3. 

607/59/l-4 
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(c) There are two complexes in Irr’G with the same support: the 
closure of the class of SU, where s is a semisimple element with Z,(S) 
isogenous to X,(k) x X,(k) and u is a regular unipotent element in 
Z,(S); these complexes are clean by 7.1 l(d) and 18.5 (for SL,(k)). 

(d) There are two complexes in Irr’G with the same support: the 
closure of the class of SU, where s is a semisimple element with Z,(S) 
isogenous to X,(k) x S&(k) and u is a regular unipotent element in 
Z,(s); these complexes are clean by 7.1 l(d) and 18.5. 

(e) There is a complex in Irr’G supported by the closure of the con- 
jugacy class of SU, where s is a semisimple element such that 
Z,(s)zSpin,(k) and u is a certain unipotent element of Z,(S); this com- 
plex is clean by 7.11(d) and 19.4(b). (Note that from [4] it follows that 
any complex in Irr’ Spin,(k) supported by the closure of a unipotent class 
comes from a complex in Irr’ SO,(k), so that 19.4(b) is applicable.) 

This completes the classification of complexes in Irr’G and shows that G 
is clean. To complete the proof it is enough to show that sA = EA for any 
cuspidal character sheaf A E 6,. The possibilities for 9 are restricted by 
17.12; we must have W& = W, of type F4, Cd, B, x A,, A, x A,, A, x A,. 
In each case, 18.3 shows that CA = sA. This completes the proof. 

COROLLARY 21.4. Assume that G is as in 21.2 and 21.3. 

(a) If $P E Y(T) is a focal system # QI then (17.8.3) holds for (G, 9). 

(b) If 9’ E Y(T) is the local system a, and 9 c W, is a family with 
at most five representations then (17.8.3) holds for (G, 9’) as far as 9 is 
concerned. 

Proof: (a) follows from 20.2(a), (b), and 19.2, since (17.8.4) holds for G, 
by 21.2, 21.3. We now prove (b). If B has one or three representations, the 
proof of 19.2 (case 1) applies without change. If 9 is a family with two or 
five representations, the argument in the proof of 20.2 applies without 
change. This completes the proof. 

21.5. Assume that z. = Q, E Y(T). According to [4, 9.2(d)], the 
endomorphism algebra of K,“” = K? is canonically isomorphic to the group 
algebra a,[ W]. Hence, we have a canonical direct sum decomposition 
K? = @ EE G (E@ A& where A, are character sheaves of G and E@ A, is 
an isotypical component for the action of W. Recall that in 17.8 we have 
defined mE to be the image of EE I@ under the imbedding (17.8.1) (we now 
have J? = Yo). Thus, mE E &jt;c(s,), where F runs over the families of 
W. With these notations, we can state the following result. 
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PROPOSITION 21.6. Assume that G is clean. For E. E’ E I@ we have 

(A, : RF) = {mE’, mEI 

where { , } is defined as in (17.8.2). 

Proof: We may assume that k is an algebraic closure of the finite field 
Fq. We choose an F,-rational structure on G as in 13.1. We assume that q 
is large enough so that each maximal torus in G defined over F, contains 
regular elements defined over F,. We shall show that the desired formula 
can be reduced to an analogous formula concerning irreducible represen- 
tations of G(F,), which in turn, is a special case of the main theorem 4.23 
in [6]. For each A, (EE I@) we have a canonical choice for the 
isomorphism #aE: F*A, r A, (see (13.8.1)) with the following property: If 
s, E G(F,) is a regular semisimple element corresponding to the conjugacy 
class of w  E W, then x~~,)~~(E(s,) = ( - 1) dim GTr(w, E). It follows that the 
number tAE attached to A, m 13.10(b) is equal to 1. (Indeed it is enough to 
test the eigenvalues of dAE: I’AE.i,w + Vaa,i,w in 13.10(b) for w  = e.) 

Let us write the identity in 14.14 for 19 = 1 and g = s,, as above. In the 
right-hand side of that identity, we have a sum over all A E G,; however, 
the only A which can contribute to the sum are those for which 
xAJsw) #O. For such A, the support of A contains some regular semisim- 
ple elements, hence A must be of form A, (E E W). Moreover, in that for- 
mula, we have v(A) = 1 (see 14.7), since G is adjoint; we also have lAE = 1, 
as noticed above. Hence, in our case, the identity of 14.14 reads 

(21.6.1) Tr(s,, PL) = 1 (A, : RF) Tr(w, E’) (EE fi). 
E’em 

Here 9; is an irreducible principal series representation of G(I;,). Its 
character at the regular semisimple element s, E G(F,) is equal by [3, 7.91 
to the multiplicity of 9; in the virtual G(F,)-representation R& of [3], 
where T(,,,, is the maximal torus of G containing s,. This multiplicity is 
computed by [6, 4.231 (the relationship of 9; with the parametrization in 
[6, 4.231 is explained in [6, 10.21). It follows that 

(21.6.2) Tr(s,, 9;) = c (m., mE} Tr(w, E’). 
E.Ekv 

Comparing now (21.6.1) and (21.6.2) we get the identity 



54 GEORGE LUSZTIG 

for all w  E W. Since the functions w  -+ Tr(w, E’) on W are linearly indepen- 
dent (E)E I@), it follows that (AES : Rz)= {m,., m,}, as desired. 

21.7. Assume that G is as in 21.3 and that F0 = 0, E Y( T). We 
wish to classify the non-cuspidal character sheaves in G,. They are of two 
types: 

(a) the 25 character sheaves A, (EE I&) (see 21.5); 

(b) the components of indg,(A’) where P, is of type B, and A’ is the 
unique cuspidal character sheaf in (L,), (see 19.3(a)). 

Next, assume that G is as in 21.2 and that Y0 = Q, E Y( T). 
The non-cuspidal character sheaves in G, are of four types: 

(c) the 112 character sheaves A, (EE I@) (see 21.5); 

(d) the components of indz,(A’) where P, is of type D, and A’ is the 
unique cuspidal character sheaf in (e,)PO (see 19.3(d)); 

(e) the components of indF,(A’) (i= 1,2) where P’ is of type E, and 
A’ are the two cuspidal character sheaves in (t,), (see the proof of 
20.3(a)); 

(f) the components of indz(A’) (i = 1,2) where P, is of type E, and 
A’ are the two cuspidal character sheaves in (E,), (see the proof of 
20.3(c)). 

In each of the cases (b), (d), (e), (f), the endomorphism algebra End 
indF,(A’) is isomorphic to a twisted group algebra of N(L,)/L, (N(L,)= 
normalizer of L, in G); see [4, 3.5, 3.6, (4.1.1)]. Note that in each case A’ is 
stabilized by the full N(L,)/L,. (This is obvious in cases (b), (d), and has 
been verified during the proof of 21.2 in case (f); in case (e) it follows from 
the arguments in the proof of (20.5.2)) 

The twisting is described by a 2-cocycle of N(L,)/L,. The twisting is in 
fact trivial. To show this it is enough to show that the algebra End 
indg,(A’) has some one-dimensional representation or, equivalently, that 
there exists a character sheaf of G which appears with multiplicity 1 in 
indF,(A’); this is verified in Lemma21.8 below. Assuming that this 
verification has been done, we see that: 

-There are exactly 5 character sheaves of type (b). (The group 
N(L,)/L, is a Coxeter group of type B,, hence it has five irreducible 
representations.) 

-There are exactly 25 character sheaves of type (d). (The group 
N(L,)/L, is a Coxeter group of type F4, hence, it has 25 irreducible 
representations.) 
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-There are exactly 6 + 6 character sheaves of type (e). (The group 
N(L,)/L, is a Coxeter group of type G2.) 

-There are exactly 2 + 2 character sheaves of type (f). (The group 
N(L,)/L, is of order 2.) 

It follows that if G is as in 21.2, then 6, contains exactly 153 = 
112 + 25 + 12 + 4 non-cuspidal character sheaves. If G is as in 21.3, then 
e, contains exactly 30 = 25 + 5 non-cuspidal character sheaves. 

LEMMA 21.8. In each of the Cases (b), (d), (e), (f) in 21.7, there exists a 
character sheaf A of G such that (A : indF,A’) = 1. Here we have i= 1 in 
Cases (b), (d) and i= 1,2 in Cases (e), (f). 

Proof In the case (f), this already has been verified, during the proof of 
21.2. 

In the case (b), let 9 be the family (4,, 2,, 23} (notation of [6, 4.101). 
From 21.6, we see that A+, AZ,, AZ3 are in e,,,. By 21.4, the statement 
(17.8.3) holds for 9. In particular, there is a fourth element A in eY,,F and 

For any E E I@ we have (A E : indz,A’) = 0 since all irreducible components 
of ind$A ’ have support # G. Hence 

(A:indz,A’)=(A+A,,+A,, +A2, :ind’&A’) 

= 2(R? : ind$,A’) 

= 2(re$,(Rz) : A’) 

= 2(R& : A’) P-v 15.W)) 

=l (by (17.8.3) for L,) 

so that A has the required property. 
The case (d) is entirely similar: we replace in the previous argument {42, 

2,, 231 by (112,, 84,, 28,) (notation of [6, 4.131). 
In case (e), let 9 be the. family { 1400,, 1344,, 1008,, 448,, 56,) 

(notation of [6, 4.131). By 21.4, the statement (17.8.3) holds for 9. We 
have 9, = 03. Let g, be an element of order 3 of YS and let 8, 8’ be the 
non-trivial characters of its centralizer ( w2/32). Let r be the two-dimen- 
sional irreducible representation of gF. Let A, (resp. A82, A”) be the 
character sheaf in e 90,S corresponding under (17.8.3) to (g3, fl) E &(9,) 
(resp, (g3, 0*), (1, r)). From 21.6, we see that A,,,z eGPO,* and that 
(A 1o08, : RT) = (A : RF) for all E E 9; the last inner product is determined 
by (17.8.3) for 9. From (17.8.3) we also see that if A’E e,,, satisfies 
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(A’ : Rp) = (2 : RT) for all EE 9, then A’ = A”. It follows that A” = A ,oo8, 
and hence its support is the whole of G. Since all components of indgl(A’) 
have support # G, it follows that (2 : indg,A’) = 0 and hence 

(A, + AOZ : indg,A’) = (A, + A02 + A” : indF,A’). 

From (17.8.3) for 9 it follows that A0 + A02 + A” = R$,,. - R$& + Rz-. 
Hence, 

(A, + AOZ : indF,(A’)) = (Rf&,: - Rf&; + Rzz : indg,A’) 

= (R20 *es 1400: - K&m: + R%jI : A i) 

z 1 (by (17.8.3) for L,). 

Hence, precisely one of A,, A02 appears in ind$,(A’) with multiplicity 1. 
This holds for both i= 1 and 2. Since indz,(A’), indz,(A2) have no com- 
mon components, it follows that one of Ao, A02 appears with multiplicity 1 
in indF,(A’) and the other appears with multiplicity 1 in indF,(A’). The 
lemma is proved. 

21.9. Assume that G is as in 21.2 or 21.3 and & = Q, E Y(T). If 
9 c I@ is a family with a single representation E, we see from 21.6 that 
&4?,,, and from 21.4(b), we see that GYo.F = {AE}. If 9 c I$’ is a 
family consisting of three representations {E, E’, E”}, we see from 21.6 that 
Am &, A.. me,., and from 21.4(b) that GZo.P= {AE, AC, A..., Al}, 
where .? is a fourth character sheaf. Just as in the proof of 21.8 we can 
compute (A” : indF,(A’)) where P,, A’ are as in 21.7(b) or (d); we find that 
it is non-zero, hence A” is a component of indg,(A ’ ). We shall denote by & 
the unique family in I@ which consists of strictly more than live represen- 
tations. If G is as in 21.3, the previous argument shows that Ur + F0 G,, 
consists of 14 character sheaves of type 21.7(a) and of 2 character sheaves 
of type 21.7(b). It follows that 

(21.9.1) Go,, consists of 11 character sheaves of type 21.7(a) (the 
AE such that EE &), of 3 character sheaves Aj, (1 < i < 3) of type 21.7(b), 
and of an unknown number of cuspidal character sheaves. 

Assume now that G is as in 21.2. If 9 c L@ is a family consisting of two 
representatives (E, E’J, then we see from 21.6 that A,, Ar E GYo,F ; from 
the proof of 21.2 we see that GYo,F contains two character sheaves of type 
21.7 (f), and from 21.4 (b) we see that GP,,;s contains no further character 
sheaves. 

If 9 c m is a family consisting of five representations, we see from 21.6 
that A, EC?,,, for all EE S. Exactly as in the proof of 21.8, we see that 
there is one character sheaf in G Y,,F which has multiplicity 1 in ind$,(A’) 
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and another character sheaf in G TaF which has multiplicity 1 in indz,(A*). 
(Here P,, A’ are as in 21.7(e).) This accounts for seven out of the eight 
character sheaves in 6 Z,,F (see 21.4(b)). Let A be the eight character sheaf 
in GPOSS. By 21.4(b). A appears with coefficient l/2 in RT where E is the 
special representation in 9. All A’ E G,, other than A are of type other 
than 21.7(d), hence if we write PI, L7, d’ instead of P,, L,, A’ in 21.7(d), 
we have 

(A : indgj(A”‘)) = f(Rp : indgi(A”‘)) 

= f(res F,Rp : A’) 

=f(Rz$i’). 

The last inner product may be computed using (17.8.3) for L7 and turns 
out to be non-zero. It follows that A is of type 21.7(d). 

We see now that US + *,, GYaF consists of 95 character sheaves of type 
21.7(c), of 20 character sheaves of type 21.7(d), of 8 character sheaves of 
type 21.7(e), and of 4 character sheaves of type 21.7(f). It follows that 

(21.9.2) Go,, consists of 17 character sheaves of type 21.7(e) (the 
A, such that EE &), of 5 character sheaves Aa (1~ i < 5) of type 21.7(d), 
of 4 character sheaves AL (1~ i<4) of type 21.7(e), and of an unknown 
number of cuspidal character sheaves. 

21.10. We shall need a variant of Lemma 14.3. Assume that G is 
semisimple and let (C, b) be a cuspidal pair for G (as in (7.1.2)). Let A be a 
perverse sheaf on G which is a direct summand of the complex R induced 
by an irreducible cuspidal perverse sheaf of a Levi subgroup of a proper 
parabolic subgroup. We shall prove the following result. 

(21.10.1) If Z is a regular conjugacy class of G and char k is not a bad 
prime for G, then the local system %‘A IC does not contain 8 as a direct 
summand. 

This is proved as follows. We may assume that A = K’. Using 7.11 (a), 
and (14.2.1), (14.2.2), we see that we are reduced to the case where C is a 
unipotent class. From the results of [4], it is known that (in good charac- 
teristic), the regular unipotent class of G cannot carry a cuspidal pair 
unless G is isogenous to a product of groups SL,(k). Hence we may further 
assume that G is as in 18.5. In this case, by 18.5, G is clean and any 
admissible complex on G is a character sheaf. Hence Lemma 14.3 is 
applicable and the result follows. 

We now state the following result. 
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LEMMA 21.11. Assume that G is semisimple, simply connected, and that 
char k is not a bad prime for G. Let A, be an irreducible cuspidal perverse 
sheaf on G on which So acts trivia& and such that supp A0 = E;, where Z is 
a regular conjugacy class of G. Then A, is a character sheaf of G. More 
precisely, if w is a Coxeter element of minimal length of W and if YO = 
Q, E Y(T), then (A, : x(K?)) = 1. 

Proof Recall from 2.4 that K$ = (rc,)!Q[. According to Steinberg 
[18], we can choose geC such that gE BwB. We have a commutative 
diagram 

where /? is the canonical map, a(x)= (xgx-‘, xBx-‘), cr’(x)=xg.u~‘. 
Clearly, a’ is an isomorphism. According to [ 16, 8.21 (which is just a refor- 
mulation of Steinberg’s results in [IS]), the map CI is also an isomorphism. 
It follows that K?IC= (~‘)!fl!Q(. We now factorise fi as follows 

G/T%“, ~G/(dc . Z;(g)) -% G/Z,(g). 

According to 3.12, the group Z”,(g) is unipotent; its dimension is r = 
rank G. Since all fibres of PI are isomorphic to Z”,(g), we have (/I1 )!Q, = 
QI [ -2r]. (We disregard the Tate twist.) On the other hand, p2 is a prin- 
cipal covering with (finite) group Z,(g)/(2YG Z”,(g)), hence, P!Q,[2r] = 
(PJ!(PIhQIWI = W!Q, = d‘ rrec sum of all G-equivariant local systems t 
on E corresponding to irreducible representations of Z,( g)/ZO,( g) which 
are trivial on .YG. All these local systems are one-dimensional and appear 
with multiplicity 1, since Z,( g)/ZO,( g) is abelian. In particular we see that, 
if d is the local system on C such that A,, 1 ,Y = d[dim C], then d appears 
with multiplicity 1 in the local system X’*‘(K?) / L? and d does not appear 
in the local system %‘(K:) 12 for i # 2r. Hence, 

(21.11.1) c( - l)i (multiplicity of & in S’(K?)IZ) 

is equal to 1. 
On the other hand, the expression (21.11.1) is clearly equal to 
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(sum over all A E 6,) where 

m, = I( - l)i (multiplicity of &’ in S’(A) 12). 

It follows that 

(21.11.2) x(A : x(K?))m, = 1. 
A 

From (21.10.1), we see that mA =0 whenever A is not cuspidal. It is also 
clear that mA = 0 if A is cuspidal with support # 1, (Since .X is a regular 
class, we have Cc supp A 3 c = supp A, for A cuspidal.) If A is cuspidal 
with support E;, then from the definition of m, we see that 
m A = (- l)dimZ= 1 if A ICz:b[dim C] and mA = 0, otherwise. It follows 
then from (21.11.2) that there is a unique cuspidal AE G, such that 
A 1 Cxd[dim C] (hence A = A,), and that (A, : x(K?)) = 1. The lemma is 
proved. 

PROPOSITION 21.12. Let G be us in 21.2 and let TO =Q, EY(T). Then 
(17.8.3) holds for (G, TO) and (17.8.5) holds for G. 

Proof By 21.4(b), we know that (17.8.3) holds for (G, &) as far as 9 
is concerned for any family % # R0 where 9$ is the unique family in I&’ 
such that Y, = 6,. 

In [6, p. 2271 we have described 28 virtual representations Xi,, ,..., X,,d of 
W of the form clY for some y E W such that Z(y) = a(y) (mod 2). By 16.6, the 
corresponding 28 elements RF;, ,..., R2:pl are combinations with integral > 0 
coefficients of character sheaves in G,,,,,. Let us consider a Coxeter 
element w  of minimal length in W. From (14.10.3) it follows that 

(21.12.1) x(K?)= 1 Tr(w, E)Rp. 
EE Iv 

As noted in [6, p. 3101, any E E Y0 is a Q-linear combination of the 28 
virtual representations X1,1,..., X,,d and of CEEF,Tr(w, E)E. It follows that 
in order to establish (17.8.3) for PO, it is enough to establish the pattern of 
decomposition of R2,,..., Rz4 and of CEEFOTr(w, E) Rp. Some of the 
elements Xi,j are of the form &I) where J: a( W,) + W(W) is defined as in 
17.13 with Z$ S and where /I is a virtual representation of W, of form clY 
(relative to W,) (see [6, pp. 173, 2281). From (17.13.5) it follows that the 
corresponding RT, are of form jf(Rp’), hence, all irreducible components 
of RTj are also components of if(Rp’). Using this, we can tell what type of 
components RzJ can have. In particular, we see that 
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(21.12.2) R$ (1 d id 7) are combinations of A, (EE &) only; the 
elements Rz2 (1 <f<5), R$, Rz4 are combinations of A E (E E &) and of 
Ai (1 <j< 5) (see (21.9.2)); the ‘element R$ is a combination of A, 
(EC%) and of Ai (1 <j<4) (see (21.9.2)); the element R$ is a com- 
bination of A, (EE&), of Ai (1 <j<5), and of A: (1 <j<4). 

Using 14.13 and (21.12.1) we see that 

(x(K?) : X-K?)) = 1 Tr(w, E) Tr(w, E’) = 30 
EXE bv 

since the order of the centralizer of w  in W is 30. This can be expressed in 
an equivalent form: 

(21.12.3) c (A : x(K?))* = 30. 
AEGyo 

Since (A : RF) is already known for any E E I@ and any A $ ~.Ipo,yo, we can 
also compute (by (21.12.1)) (A : x(K?)) for such A. We find that it is f 1 
for exactly 20 character sheaves A E GTO - G,,,, and it is zero for the 
remaining character sheaves in C?, -G,.,. Now using (21.12.3) we 
deduce that 

(21.12.4) c (A : x(K?))‘= 10, 
A E GZY~F~ 

From 21.11, we see that the four complexes (say K,o, Kii, K,,, K,,) in 
21.2(e) and the two complexes (say K,, K,) in 21.2(f) are in dZ,,, and they 
have inner product 1 with x(K?); by 21.9, they are necessarily in GreO,SO. 
Hence from (21.12.4) we deduce 

(21.125) x(A : x(K2))‘=4, 

sum over all A E 6-Lpo,yo, A ZK,, K,, Klo, K,, , K,,, K,,. If A = A, where 
EES$, then (A :x(K?)) is computable from (21.12.1) and 21.6; we find 
that this equals 1 if E = 70,, the unique 7Gdimensional representation in 
&, and is zero for all other E in &. It follows that 

(21.12.6) x(A : x(Kp))* = 3, 

sum over all A E C? 20,~oo, A ZfG, 4, K,,, Kll, K12, K,,; A not of form A,. 
Using 14.13 and (21.12.1) we can compute (x(K?) : Rgz)=2. The only 
character sheaves which can appear both in x(K?) and Rz;“, are A, 
(E = 70,) and AL (1 d i < 5). We have seen that ATop appears with mul- 
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tiplicity 1 in x(K?) and, by 21.6, it also appears with multiplicity 1 in RzP,. 
Hence, 

(21.12.7) 1 (A; : x(K~))(A; : R$) = 1. 
lGi45 

It follows that (Ai : x(K?)) #O for some i6 [l, 5-j. Similarly, from 

(21.12.8) (x(K$‘o) : R$$ = - 2 

it follows that (Ai : ~(K$J)) #O for some Jo [l, 43. From the definition of 
A{ we see that the Verdier dual of AL is AL for some j’ #i, i’ E [ 1,4]. On 
the other hand it is easy to see that the components of x(K?) are permuted 
by Verdier duality (since & is self-dual). It follows that there are at least 
two indicesj, PE [l, 41 such that (A! : x(K?))#O, (AL : x(K?))#O. 

Now using (21.12.6) we see that there is a unique index i in [l, 51 (say 
i = 3) such that (AL : x(K?)) # 0, and exactly two indices j, i’ in [ 1,4] (say 
1 and 2) such that (A: : x(K$?)) #O, (Al : x(K$)) ~0; moreover, these 
three inner products are + 1. Using (21.12.7) and (21.12.8) it follows that 

(AZ : x(K$)) = 1, (Aa : x(K?)) = (4; : x(K?)) = -1. 

We also see from (21.12.6) that there are no cuspidal character sheaves 
other than K6, K,, Klo, K1,, K,,, K13 which appear in x(K?). From 16.6 
and (21.12.1) we see that 

It follows that 

(21.12.9) c Tr(w,E)R~=AAoy+A~-Aa-A,2+K6+K, 
Ee4ro 

+ Km + K,, + Kn + Kn. 

Let us now consider the euclidean space H with orthonormal basis given 
by the 39 objects A, (EE&), A$ (l<i<5), Ai(l<i<4), and Ki 
(1 < i< 13). (The last 13 objects correspond to the 13 irreducible cuspidal 
perverse sheaves on G described in 21.2(ab(g); 6 of them are already 
known to be character sheaves by (21.12.9).) We can regard Rz,,..., Rz4 as 
28 vectors in H. They have integral and 2 0 coordinates; some of the coor- 
dinates are known a priori to be zero, by (21.12.2). The mutual inner 
products of these vectors are known by 14.13. The inner products of these 
vectors with the vector given by the right-hand side of (21.12.9) are also 
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known by 14.13. The coefficients of A, (EE &) in these 28 vectors are 
explicitly known by 21.6. 

We also know that both A,3, Aj appear with coefficient > 0 in at least 
one of our 28 vectors. These properties determine uniquely the pattern of 
coefficients of our 28 vectors; in particular, they force each K, (7 d i d 13) 
to appear with coefficient >O in at least one of the 28 vectors. (Hence, 
(17.8.5) holds for G.) The pattern is the one described in the table in [6, 
pp. 304, 3051 which should be interpreted as follows. The rows X ,,,,..., X,,, 
in that table correspond to our vectors; the first 17 columns correspond to 
the A, (EE &), the next 5 columns correspond to the AL the next 4 
columns correspond to the AL, and the last 13 columns correspond to the 
Ki. The columns of that table are put into l-l correspondence with the 
elements of J@(S,) in [6, pp. 369, 370]; this also defines a l-l correspon- 
dence G P0,F0 ++ A( G5). This completes the proof. 

PROPOSITION 21.13. Let G be as in 21.3 and let YO = 0, E Y(T). Then 
(17.8.3) holds for (G, YO) and (17.8.5) holds for G. 

Proof The proof is entirely similar to that of 21.12. We must check 
(17.8.3) for (G, 2*) only as far as F0 is concerned, where P0 is the unique 
family in I@’ with ge, = 6, (see 21.4(b)). 

In [6, p. 2271 we have described 19 virtual representations Y,,, ,..., Y,,, of 
W of the form CI,, for some y E W such that l(y) E a(y) (mod 2). By 16.6, the 
corresponding 19 elements R$ ,..., Rq5 are combinations with integral > 0 
coefficients of character sheaves in G,,,. Let us consider a Coxeter 
element w  of minimal length in W. As in 21.12, we see that x(K?) = 
CEt aTr(w, E)RF is a combination of 12 character sheaves, with coef- 
ficients 1, and that 

(21.13.1) c Tr(w,E)RF=AAbz-AA+K1+KZ+Kj+K4 
Et.%% 

where 6, is the exterior square of the reflection representation of W, AA is 
as in (21.9.1) K1, K2 are the two complexes in 21.3(e), and K,, K4 are the 
two complexes in 21.3(d). 

One checks that any E E F0 is a Q-linear combination of the 19 virtual 
representations Y1,l,..., Y,,, and of CEEROTr(w, E)E. It follows that in 
order to establish (17.8.3) for F0 it is enough to establish the pattern of 
decomposition of Rz,,..., R25 and of CEE F0 Tr(w, E)RF. 

We now consider the euclidean space H with orthonormal basis given by 
the 21 objects A, (EE%), Ai (l<i<3), and Ki (l<i<7). (The last 7 
objects correspond to the seven irreducible cuspidal perverse sheaves on G 
described in 21.3(a)-(e); the first four of them are already known to be 
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character sheaves; see (21.13.1).) We can regard Rz,,..., Rz;", as 19 vectors 
in H. These vectors have the following properties: ’ 

-They have integral 20 coordinates. 
-R$ (1 < i < 5) are combinations of A, (EE FJ only. 

-R90 R$'",, Rz2, R$ Y3.2' , are combinations of A E (E E &) and AL 
(1 <i<3). 

-The mutual inner products of these 19 vectors are known by 14.13. 

-The inner products of these 19 vectors with the vector given by the 
right-hand side of (21.13.1) are known by 14.13. 

-The coefficients of A, (E E S$) in these 19 vectors are explicitly 
known by 21.6. 

These properties determine uniquely the pattern of coefficients of our 19 
vectors; in particular, they force each K, (5 < i < 7) to appear with coef- 
ficient > 0 in at least one of the 19 vectors. (Hence, (17.8.5) holds for G.) 
The pattern is the one described in the table in [6, p. 3061 which should be 
interpreted as follows. The rows Y,,, ,..., Y,,S in that table correspond to our 
19 vectors; the first 11 columns correspond to the A, (E E &), the next 3 
columns correspond to the Ai and the last 7 columns correspond to the Ki. 
The columns of that table are put into l-l correspondence with the 
elements of A(6,) in [6, pp. 371, 3721; this also defines a l-l correspon- 
dence &,,, c, A( G4). This completes the proof. 
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Character Sheaves, V 

GEORGE LUSZTIG * 

Department of Mathematics, 
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

This paper is part of a series [S, 13,17,24] devoted to the study of a 
class G of irreducible perverse sheaves (called character sheaves) on a con- 
nected reductive algebraic group G over an algebraically closed field k. 
(The numbering of sections, subsections, and references will continue that 
of the earlier parts.) 

Most results in this paper hold under a very mild restriction on the 
characteristic of k, see (23.0.1). For simplicity, in this introduction, we 
assume that the characteristic of k is good for G; this implies in particular 
that (23.0.1) holds. One of our main results is Theorem 23.1 which gives a 
classification of the character sheaves of G on which the group of com- 
ponents of the centre acts faithfully; moreover, it gives a multiplicity for- 
mula rather analogous to the main theorem (4.23) in [6]; it also states that 
G is clean (in the sense of (13.9.2)), it satisfies the parity condition (15.13) 
and that the class of character sheaves on G coincides with the class of 
admissible complexes defined in [4]. In the case of groups of type A and 
exceptional groups, this has been essentially done in part IV [24]; the case 
of classical groups is dealt with in this paper (Sections 22 and 23). One of 
the applications of our results is the computation of the local intersection 
cohomology sheaves %‘“IC(C, b) of the closure C of any unipotent class C 
in G with coefficients in any G-equivariant irreducible local system d on C. 

For G=GL,(k), this was done in [22]; for the other simple G, it has 
been done in [27,28,20] for those (C, B) which are assumed to be in the 
image of Springer’s correspondence [7]. 

In this paper, we complete this computation by removing the last 
assumption on (C, 8). (See Theorem 24.8.) The computation uses in an 
essential way the theory of character sheaves. 

In Section 25, it is shown that in the case where G is defined over F,, the 
characteristic functions 1 A,BA (see (252.1)) of the character sheaves A 
which are themselves defined over Fq, form an orthonormal basis of the 
space of class functions on G(F,). It may be conjectured that this is the 
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same (up to multiplication by roots of 1) as the basis of “almost-charac- 
ters” of G(F,); see [6, 13.61. 

Section 22 contains classical groups in characteristic 2. Section 23 shows 
the classification of character sheaves and the multiplicity formula. Local 
intersection cohomology with twisted coefficients of the closure of a 
unipotent class are contained in Section 24 and class functions on a reduc- 
tive group over a finite field are given in Section 25. 

22. CLASSICAL GROUPS IN CHARACTERISTIC 2 

22.1. In this section we assume that k has characteristic 2 and we 
shall verify properties (17.8.3t(17.8.5) for G, simple of type B, C, or D 
over k. Let us recall the content of these properties. Property (17.8.3) gives 
a parametrization of G and some multiplicity formulas. Property (17.8.4) 
for G states that G is clean and any character sheaf A on G satisfies the 
parity condition sA = tA, se (15.13.1). Property (17.8.5) for G states that 
any irreducible cuspidal perverse sheaf on G is a character sheaf, see (7.1.1). 

LEMMA 22.2. Assume that G is simple of type B, or C, (n > 2). Then 

(a) Zf n = m2 + m (m E N), then Irr’G consists of a single complex; it is 
supported by the closure of a unipotent class. Zf n is not of the form m2 + m 
then Irr’G is empty. 

(b) G satisfies (17.8.4) and iA = 1 for all A E (I?. 

Proof: We may assume that (in the case n > 2) the lemma is already 
proved for G replaced by a simple group of type B,. or C,, (2 d n’ < n) over 
k; we may also assume that G is adjoint. Statement (a) follows from [4]. 
We now prove (b). Let L be the Levi subgroup of a proper parabolic sub- 
group of G. Then L/la”, is a product of PGL,(k)‘s and possibly a simple 
group of type B,, or C,, (2 dn’<n). Using the induction hypothesis and 
18.5, 17.11, we see that (17.8.4) holds for L/T”,, hence it also holds for L, 
by 17.10. It is then enough to check that any cuspidal character sheaf A of 
G is clean and satisfies E~ = EA = 1. The equality EA = 1 follows from (a). 
The cleanness of A follows from (a) and from 7.9. To prove the parity con- 
dition for A, we use 18.3. If A E G9, then from (17.2.4) we see that 2 must 
satisfy W, = WY = W. The number N in 18.3 is now even, by (a). Using 
18.3 and the rationality of the representations of the Hecke algebra of W, 
we see that &A = iA. The lemma is proved. 

LEMMA 22.3. Assume that G is simple of type D, (n 2 4). Then: 

(a) Zf n=4m2(mE IV), then Irr’G consists of a single complex; it is 
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supported by the closure of a unipotent class. Zf n is not of the form 4m2 then 
Irr’G is empty. 

(b) G satisfies (17.8.4) and 6” = 1 for all A E 6. 

Proof: It is essentially the same as that of 2.22 and will be omitted. 

22.4. In this subsection, we assume that ( W, S) is a Weyl group of 
type B, or C, and n = d2 + d. We shall describe the irreducible represen- 
tations of W in terms of symbols, as in [6,4.5]. Let F. c @ be the family 
consisting of all representations in I@ whose symbol contains exactly the 
entries 0, l,..., 2d (d + 1 of them in the first row and the remaining d in the 
second row of the symbol). As in [6,4.5], we attach to go an F,-vector 
space V of dimension 2d with a symplectic form ( , ): V x V + F2. By 
definition, I/ is the set of subsets of even cardinality of (0, l,..., 2d); the 
group structure on V is given by M+ M’ = (Mu M’) - (Mn i&f’) 
M, M’ E V. The symplectic form is (M, M’) = IM A M’I mod 2. We identify 
F. with a subset of V as follows: to the irreducible representation E in PO 
whose symbol has second row Mc (0, 1,2,..., 2d}, we attach the element 
~~~Vdefinedbyu,={i~M~ieven}u{l~i~2d-l~iodd,i~M}.Let 
V be the image of the imbedding PO c V. For y E v, we denote by E, the 
corresponding object in So. Let ei be the 2-element subset {ii 1, i} of 
(0, 1,2 ,..., 2d), 1 < i < 2d. Then e i ,.,., e2d is a basis of V. Let q. : V+ F2 be 
the linear form defined by vo(ei) = 1 for 1 d i < 2d. 

We shall need the following fact. 

(22.4.1) The character of the virtual representation CYYE y( - l)Vo(y)EY of 
W vanishes on all elements of W which have no eigenvalue 1 in the reflection 
representation of W. 

To prove this result we shall use some results in [6] on the represen- 
tation theory of the finite group Sp2JFq) (q is a large power of 2). It is 
known that in our case (n = dz +d), the group Sp2,(F,) has a unique 
unipotent cuspidal representation p. From [6,9.5] and its proof we see 
that to each q E Hom( I’, Fz) there corresponds a unipotent representation 
pV of Sp2,,(F4) such that: 

(a) the character of p,, on a regular semisimple element of type w  in 
Sp,,(F,) is equal to Cyc ,Y( - l)V(Y)Tr(w, EY) 

(b) If q’, r~” E Hom( V, F2) satisfy for some i the identities 
q’(y) + q”(y) = (y, ei) for all y E I’ and q’(ei) = $‘(ei) = 0, then pV, + p,,.. is a 
summand of a representation induced from the Levi subgroup of a proper 
parabolic subgroup (over F,). Moreover, from [6, (8.5.6)] it follows that p 
must be equal to p,, for some q E Hom( V, F2). Since p is cuspidal, we see 
from (b) that v must be equal to qo, so that p = prlo. If w  has some eigen- 
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value 1 in the reflection representation of W, then the regular semisimple 
elements of type w  in Sp,,(F,) are contained in an isotropic torus, hence 
the character of ptlo vanishes at them, since pqO is cuspidal. This, together 
with (a) above yields (22.4.1). 

22.5. In this subsection, we assume that ( W, S) is a Weyl group of 
type D,, and n = & > 4. Let w’ be the semidirect product of W and Z/22, 
with Z/2Z acting on W nontrivially, preserving S. We shall describe the 
irreducible representations of W in terms of symbols as in [6,4.6]. Let 
.9$ c fi be the family consisting of all representations in I$’ whose symbol 
contains exactly the entries 0, I,..., 2d- 1 (d of them in one row, and the 
remaining d in the other row of the symbol). Let 9; be the set of 
irreducible representations of IV’ whose restrictions to W are in 9$. Let V 
be the F,-vector space of all subsets of even cardinality of (0, l,..., 2d- 1 }; 
the group structure and the symplectic form on V are defined just as in 
22.4; in the present case, however, the symplectic form has a one-dimen- 
sional radical Rad V, it is spanned by (0, l,..., 2d- 1 }. As in [6, 4.61, we 
identify F0 with a subset P+ of V+ = V/Rad V, as in [6,4.18] we identify 
9; with a subset r of V. For y E 8’ (resp. y’ E v) we write E,, (resp. El,) 
for the corresponding object of & (resp. 96). One defines a basis 
e,, e2,..., eZd- i of V as in 22.4; we shall denote in the same way the images 
of e, under V-, V/Rad V. Let &G Hom( V, F2) be the linear form defined 
by &(ei) = 1 for all i. If d is even, then qb is zero on Rad V and hence 
defines a linear form q,, E Hom( V+, F,). (Note that Rad V is spanned by 
e, + e3 + es + . . . + ezd- 1 .) 

We shall need the following two facts. 

(22.5.1) If d is even, the character of the virtual representation 
EYE a+( - 1 )qO(y)Ey of W vanishes on all elements of W which have some 
eigenvalue 1 in the reflection representation of W. 

(22.5.2) If d is odd, the character of the virtual representation 
CYFE p( - l)Voc-“‘)E,. of IV’ vanishes on all elements of W’ which have some 
eigenvalue 1 in the reflection representation of W, extended to w’. 

These two statements are proved using the representation theory of split 
(resp. twisted) even orthogonal groups over F, (q = large power of 2) in the 
same way as (22.4.1) was proved using the representation theory of 
Spzn(Fy). We omit further details. 

PROPOSITION 22.6. Assume that G is simple of type B, or C, (n 2 2). 
Then (17.8.3t(17.8.5) hold for G. 

Proof We shall only consider the case C,; the case B, is identical. We 
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may assume that n > 3 (see 19.3) and that the proposition is true when n is 
replaced by n’, 2 < n’ <n. From 22.2(b) we see that (17.84) holds for G. 
The map G + Gad is bijective and the character sheaves do not feel the dif- 
ference between G and Gad. Hence we may assume that G is adjoint. Let L 
be a Levi subgroup of a proper parabolic subgroup of G. Then L/%“O, is a 
product of PGL,,(k)‘s and possibly a simple group of type C,,, 2 <n’ <n. 
Using the induction hypothesis and 18.5, 17.11, we see that (17.83) holds 
for L/S”“, hence it also holds for L, by 17.10. Let 64 E Y( T) be such that 
dp # 0,. Then there exists w  E W and I $ S such that Y’ = w*P satisfies 
w&m = W&v,,. From 17.12, we see that (17.83) for G,, is a consequence of 
the analogous statement for L,, which is already known. Using 17.15, we 
see that (17.83) holds for G,. 

We now begin the proof of (17.8.3) for GY in the case where 9 = or. 
This decomposes into statements for each GT,F where 9 is any family in 
@‘. Let f be a family in @such that there exists I $ S and a family 4 in 
@I such that 9 is “smoothly induced” by Fr(see 17.13). Using 17.13 and 
the fact that (17.8.3) is already known for LI, we see that (17.8.3) holds for 
&-3. Using 17.14, we see also that (17.8.3) holds for any family 9 in I@ 
such that the family 9 @sign is smoothly induced from a family of a 
proper parabolic subgroup of W. By 22.2(a), we may therefore assume in 
the rest of the proof that n = d* + d. We shall take 5 = FO, (we shall use 
the notations of 22.4). The statement (17.8.3) for G,,,,,, (which we are try- 
ing to prove) can be reformulated as follows, see [6,4.5]. 

(22.6.1) There exists a bijection Gz,zOef Hom( V, F2) (A,trq), such 
that (A,: R$ = 2-d( - l)q(y) for all YE V and all q E Hom( V, F2). 

The proof of (22.6.1) will follow closely the proof of the main theorem in 
[6] for classical groups, given in [6, 9.1]-[6,9.5]. 

As in [6,9.1], with the basis e r,..., e2d of V (see 2.4) one can associate a 
collection Y(V) of lagrangian subspaces of V; the union of subspaces in 
Y(V) is precisely l? According to [6, (9.5.2)] for any CE S(V) and any 
linear form 5: C --, F,, there exists x E W such that CYEc( - l)“y’E,, = a,. 
Here a, is as in (16.2.7). Applying now 16.6(a), we see that 
P,,e=d”‘CyECw) ccy)Rg is a linear combination of character sheaves in 
G T,F,, with integral, >/ 0 coefficients, for any C E Y( V), 5 E Hom( C, F2). If 
(C’, 5’) is another pair like (C, Q, we have 

W-6.2) (PC,<: PC,C~ = number of linear forms q: V+ F2 such that 
q 1 C=& v ( c’=y. 

This follows immediately from 14.13. 
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Now let D = {II’, $‘} be a two element subset of Hom( V, F2) such that 
q’ + q” is equal to the inner product with the standard basis element e, of V 
and q’(e,) = q”(e,) = 0. Using [6, (4.5.4)], we see that there exists a subset 
Zc S, (I( = (SI - 1 and a family % in &, such that the truncated induction 
J: &?( W,) + 9?( W) (see 17.13) takes each representation in %, to the sum of 
two distinct representations Ey + E,,+ e, in %O. Here y E v, y + e, E F, 
(y, ei) = 0. Moreover, J defines a bijection between %1 and the set 
{YE PI (Y, ei)=O> module the equivalence relation y N y + ei. Let E.b be 
the representation in %1 corresponding to the class j of y. The statement 
(17.8.3) for L,, 9 = a,, % is already known; it implies that for each 
[~Hom( V, F2), c(e,) =O, there exists ACT 2, such that (AC: Z?z) = 
2-w I’( _ 1)“Y f or all y E v, (y, ei) = 0. Here, ( : ) is with respect to’ L,. 
We now take 5 L q’ and we consider the object ifA,, E X0(G) (see 15.3). It is 
a linear combination with integral, 20 coefficients of character sheaves of 
G; we denote by pD the result of omiting from this sum the character 
sheaves which are not in G,,,,. 

Then for any y E r, we have 

(pD: R$ = (if&, Rg) 

= (Ai. : RZ;E,) 

By definition of E>, we have 

by definition of G,,,, 

by 15.7(b). 

resSE, = 
E(,+@ if (y, e,)=O 

CD if (Y, ei) #O, 

where @ is a sum of irreducible representations of W, in families #%. 
Hence 

(A,, : R:s;E,) = 
(A,,: R$ 
0 

if (y, ei)=O 
if (y, eJ#O 

1 
2-(d~I)(-l)l’(Y) if (y, e,)=O 

= 
0 if (y, ei)#O’ 

Thus, 

(PO: %)= 

2-k-1)( _ l)tl’(Y) if (y, e,)=O 
o if (y, ei)#O’ 

It follows that for any CE F(V) and any 5: E Hom(C, F,), we have 

(pD: pc.c)= 1 (-1)S(Y)f~‘(Y)2-(d-l), 

y E c 
(Y.4 = 0 
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hence 

(pD : P~,~) = number of q E D such that q 1 C = 5. (22.6.3) 

Next, we note that any A E G P,SO appears with >O coefficient in some pc,t 
as above. Indeed, given A, we can find y E r such that (A: R<) # 0. Now 
let CE S(V) be such that y E C. Then, clearly, 

R;=2-‘“I(-l)“““p,< 
5 

(22.6.4) 

sum over all 5 E Hom( C, F,). Hence, for some 5 we have (A: pcve) # 0, as 
desired. Applying now [6,9.2] to the elements pc <, p. of X0(G) (which 
satisfy (22.6.2), (22.6.3)), we deduce that there exists a bijection q et A,, 
between Hom( V, F2) and G,,, such that 

for all C E Y( I’) and all < E Hom(C, F2) and 

p. = A,, + A,. 

for all D = {q’, q”} as above. Using now (22.6.4), we see that for any y E r, 
and any q E Hom( V, F,), we have 

(A,,: R;) = 2-d c (- l)rcY)(A,: P~,~) 

,L 
= 2-d( - l)dy), 

where C is any subspace in Y(v) containing y. This completes the proof of 
(17.8.3) for c?~,~,,. To complete the proof, it is enough to show that if q,, is 
as in 22.4 then A,, is cusipal. (This, together with 22.2(a) will show that 
(17.8.5) holds for G.) Using 18.2, as in the proof of 19.3(a), we see that we 
are reduced to the statement (22.4.1). This completes the proof. 

F’ROWSITION 22.7. Assume that G is simple of type D, (n 2 4). Then 
(17.8.3~(17.8.5) holds for G. 

Proof: The proof is very similar to that of 22.6; we shall only sketch it. 
We can assume that G is adjoint. We again use induction on n. From 
22.3(b), we see that (17.8.4) holds for G. To verify (17.8.3), we are reduced 
to the case G,,,, n = d2, where 6p = Q, and & is as in 22.5. As in 22.6, we 
see that (with the notations in 22.5) there exists a bijection q c+ A,, between 
Hom( V+. F2) and GYSF,, such that (A,,: Rz) = 2--(d-1)( - 1)q(y) for all 
YE r and all q E Hom( I’+, F2). This establishes (17.8.3) for G,,,. To 



110 GEORGELIJSZTIG 

establish (17X5), it is then enough (by 22.3(a)) to show that, in case where 
d is even, A,, is cuspidal; this follows from (22.5.1). This completes the 
proof. 

23. CLASSIFICATION OF CHARACTER SHEAVES 
AND THE MULTIPLICITY FORMULA 

23.0. We recall that G is a connected reductive algebraic group 
over k, an algebraically closed field of characteristic p 2 0. Let 9 E Y( T) 
(see 2.2), and let x: E&/a”, --P Q: be a character. For each family 9”’ c pY, 
let AV(‘?J~~)” be the subset of A%‘(%~,) consisting of all pairs (x, a) such that 
the Q,-component (see (17.6.1)) of x is mapped by (11.8.1) to x. For each 
E E S’, let rnEE J(L!&,) be as in 17.8. For any z E ZJY.“,, let if be as in 
17.17 and let crz be the image of z under the map Z&/S”, + Hom(B,, Q:) 
dual to (11.8.1); we denote also by oz the restriction of cz to Sz, and also 
the corresponding character C!$, = Q,gF + QF, trivial on gY. 

We shall need the following notation. We have a partition G = II, Gx 
where Gx consists of all character sheaves of G on which Z&/E$. acts (see 
11.5) according to x (a character Z&/Z?% + Q,?). This induces a partition 
G, = II, GX, for each A? E Y’(T). In the case where the parity condition is 
satisfied, it also induces a partition G,,, = II G&,, for each 2 E Y( YJ and 
each family 5 c pg. Similarly, the set Irr’G (see (19.3.1)) has a natural 
partition Irr’G = I.I,(Irr”G)X, where x runs over the characters of Z&/%“~. 

In the following theorem, we shall make the following assumptions on p. 

If p = 5, then G has no factors of type Es. 

If p = 3, then G has no factors of type E7, E, , F4, Gz . (23.0.1) 

If p = 2, then G has no factors of type E6, E,, Es, F4, GZ. 

(factor = def almost simple, closed, normal subgroup). 

THEOREM 23.1. Assume that p satisfies (23.0.1). Then the following holds 
for G. 

(a) G is clean and any character sheaf A on G satisfies E~ = ia. 

(b) Any irreducible cuspidal perverse sheaf A on G is a character 
shea$ 

(c) Consider 2’ E Y(T) and let x: 2&/S”, + Q: be a faithful charac- 
ter. Then there exists a bijection 
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where 9’ runs over all families in p9, such that 

(A: R~)=tA{tii,, mE} 

for all AE~, and ail EE@“, and such that .zEZ?‘~/L-Z’~, AE~,, 
rnA = (x, a) E Jq3gJtipA = (x, o@ a,). 

Property (a) is just (17X4), property (b) is just (17.8.5). Property (c) is a 
variant of (17.8.3). It can be formulated for arbitrary 2 (not necessarily 
faithful) in the same way, but we shall prove it only for faithful x; we shall 
refer to it as “property (17.8.3), for G, 2”. When this property is satisfied 
for all Y we shall say that “(17.8.3& holds for G.” It is clear that if G 
satisfies (17.8.3), for ali x, then G satisfies (17.8.3). 

The proof of the theorem will be given in 23.21. Most of this section will 
be concerned with the case where G is of type B, C, or D and p # 2. The 
strategy of proof in these cases is rather similar to that in the previous sec- 
tion. Using an inductive hypothesis one first shows, using 7.9 and the 
classification of Irr’G in [4] that G is clean. We then show that if G is not 
a spin-group then it satisfies the parity condition; the proof of (17.8.3) and 
after it that of (17.8.5) are then carried out as in the previous section, There 
are additional difficulties for spin-groups since for them the parity 
condition will not be known until a late stage in the proof. In all sections 
concerned with classical groups (23.2-23.7, 23.12-23.20) it will be assumed 
that pf2. 

23.2. We now describe the sets (Irr’G)I in the case where G is 
semisimple of type B, C, or D and x is a faithful character of Z&. The 
results in this section can be extracted from [4]. 

(a) G = PSp,,(k) (n > 1). If n is odd then Irr’G is empty. We now 
assume that n is even. Then to each unordered pair (N,, N,) of triangular 
numbers 20 such that n=N, + Nz one can associate one complex 
A N,,N2~ Irr’G, if Ni ZN,, and two complexes JN,,N2, ZN,,N2 E Irr’G, if 
Ni = NZ, so that all complexes in Irr’G are obtained exactly once. The sup- 
port of AN,,N2 is the conjugacy class of su, where s is a semisimple element 
in G with Z’(s) doubly covered by Sp,,,(k) x Sp&k) and u is a certain 
&potent element in Z?(s). Moreover, Ah,,,, has the same support as 
&f*,N, . We have s = e if and only if one of N1, N2 is zero. 

(b) G = Sp,,(k), x # 1 (n 2 1). If n is even, then (Irr’GP is empty. 
Assume now that n is odd. There is a l-l correspondence N,, Nz + AN,,N2 
between the set of ordered pairs Ni, N2 of triangular numbers such that 
n = N, + N, and the set (Irr”G)X. The support of ANI,N2 is the closure of the 
conjugacy class of su, where s is a semisimple element in G with Z(s) 
isomorphic to SpZN,(k) x Sp,,(k) and u is a certain unipotent element in 
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Z(s). If z is the non-trivial element of aO,, then t:AN,,N2 = A,,,, . Since n is 
odd, we have N, # Nz and supp t:AN,,N2 # supp AN,,N2. We have s = e if 
and only if N, = 0 and s = z if and only if Nz = 0. 

(c) G= PSO,(k) (m 2 3). We assume that m is either odd or 
divisible by 8; otherwise, Irr’G is empty. To each unordered pair (N,, NJ 
of squares, which are not both odd, such that m = N, + N2, one can 
associate: 

(i) one complex AN,,Nz E Irr’G, if Ni or N, is zero, 

(ii) two complexes AN,,N2, Ah,,,,* E Irr’G, if N, > 0, N2 > 0, 

(iii) four complexes AN,,NZ, AL,,,,,, A;I,,N2, Az,,N,, if N, = N,, 

so that all complexes in Irr’G are obtained exactly once, and supp A,,,,, is 
the closure of the conjugacy class of su where s is a semisimple element in 
G with Z’(s) isomorphic to, or doubly covered by SO,,(k) x SO,(k) and u 
is a certain unipotent element in Z”(s); moreover, AN,,,,, A;I,,N2, K$,,NZ (if 
defined) have the same support as AN,,NZ. We have s = e if and only if Ni or 
N2 is zero. 

(d) G= SO,,(k), x# 1 (n 22). If n f 2 (mod 4), then (Irr”G)X is 
empty. Assume now that n E 2 (mod 4). To each ordered pair (N,, N,) of 
even squares such that 2n = N, + Nz one can associate: 

(i) one complex AN,,N2 E (Irr”G)X, if Ni or Nz is zero, 

(ii) two complexes ANl,N2, Ah,,N2 E (Irr”G)X, if N, > 0, N, > 0, 

so that all complexes in (Irr”G)X are obtained exactly once, and supp AN,,NZ 
is the closure of the conjugacy class of su where s is a semisimple element in 
G with Z”(s) isomorphic to SO,,(k) x SO,(k) and u is a certain unipotent 
element in Z’(s); moreover Ah,,, (if defined) has the same support as 
A N,,N2. If z is the nontrivial element of .5Yi, then tfAN,,NZ = AN2,N, and 
tZ*Kv,,, = A kgv, 7 if N, > 0, N2 > 0. Since n $ 0 (mod 4), we have Ni # N, 
and supp CA N,,N2 Z supp AN,,NZ9 supp CA lN,,N2 Z supp &,N,. We have 
s=e if and only d Ni=O and s=z if and only if N,=O. 

(e) G = Spin,(k) (m > 3), 1 faithful, hence m f 0 (mod 4). To each 
ordered pair (N,, NJ of triangular numbers, with N, even, such that 
m = N, + NZ, one can associate two complexes AN,,,,*, Ah,,,,, E (Irr”G)X, so 
that all complexes in (Irr’G)I are obtained exactly once. If N, > 0 and 
Nz > 1 (resp. N2 = 1) we have supp ANIIN2 = supp A&NZ = closure of the 
conjugacy class of su where s is a semisimple element in G such that Z(s) is 
doubly covered by Spin,,(k) x Spin,(k) (resp. Z(s) E Spin,,(k)) and u is a 
certain unipotent element in Z(s). For N, = 0, we have supp A,, = closure 
of a unipotent class of G and supp A&, (and supp A,,,,, supp A&O for m 
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even) are obtained from supp A,, by left translation by nontrivial 
elements in &. The action of ?& on (Irr”G)X by t: is free. 

(f) G =f Spin,(k) (half-spin group), x # 1, m= 0 (mod 4) (m > 12). 
To each unordered pair (N, , N2) of even triangular numbers such that 
m=N,+N,, once can associate 

(i) two complexes AN,,N2, A;Y,,,,*o (Irr”G)x if Ni # Nz, 

(ii) four complexes AN,,NI, A;V,,N1, A;;,,,,, As,,N,~ (Irr”G)X if 

so that all complexes in (Irr”G)X are obtained exactly once. If N, > 0 and 
N2 > 0, we have supp AN,,N2 = supp AL,,, ( =supp A;G,,N, = supp A’&Nz, if 
defined) =closure of the conjugacy class of su where s is a semisimple 
element in G such that p(s) is isogenous to Spin,,,,(k) x Spin,,(k), and u is 
a certain unipotent element in Z’(s). For N1 = 0, we have supp A0,N2 = 
closure of a unipotent class of G and supp AN2,0 is obtained from supp AOsN2 
by left translation by the nontrivial element z E .Y&. The action of & on 
(Irr”G)X by t,* is free. 

The results in this subsection will be used in 23.3-23.7 to prove the clean- 
ness of G and, in some cases, the parity condition under an inductive 
assumption. 

LEMMA 23.3. Let G = PSpzn(k) (n 2 1) and assume that (17X4), (17.8.5) 
hold for all Sp,,.(k), n’ <n. Then G is clean and for any A E G we have 
&A = iA = 1. 

Proof. Let L be a Levi subgroup of a proper parabolic subgroup of G. 
Then L/Z?: is a product of PGLJk)‘s and possibly a copy of PSp,,,(k), 
n’< n. Using our assumption and 18.5, 17.11, 17.16 we see that (17.84) 
holds for L/30, hence also for L, by 17.10. It is then enough to check that 
any cuspidal character sheaf A of G is clean and satisfies sA = E^A = 1. The 
equality dA = 1 follows from 23.2(a): if Irr’G is nonempty, then n is even. 
Assume now that the support of A is the closure of a unipotent class of G. 
By 23.2(a) there cannot be more than one A with this property. Hence A is 
clean, by 7.9. If A is not of this type, then its support is the closure of the 
conjugacy class of an element whose semisimple part has centralizer doubly 
covered by a product of two symplectic groups for which our inductive 
assumption applies. Using 7,11(d), it again follows that A is clean. Thus A 
is clean in all cases. We now check the parity conditions for A, using 18.3. 
Let 2 be such that A E es. From (17.12.4), we see that WY is restricted in 
the following way. We have 

(i) W’=W,oftype D,xC,, (r+r’=n,r>2,r’>l)or D,,or 

(ii) W$ = W, = W. 



114 GEORGE LIJSZTIG 

It follows that the number N in 18.3 is equal to n. Using 23.2(a), it follows 
that N is always even. The assumption (18.3.1) in 18.3 is satisfied by the 
rationality of representations of the Hecke algebras of Wz in (i), (ii). 
Hence, from 18.3 we can deduce that sA = I, and our statement is proved. 

LEMMA 23.4. Let G= Sp,,(k) (n > l), and let x: 9@o + 8: be the non- 
trivial character. Assume that (17.8.4), (17.8.5) hold for all Sp,,,(k), n’ <n. 
Then G is clean and for any A E &, we have E~ = EA = -1. 

ProoJ Let L be a Levi subgroup of a proper parabolic subgroup of G. 
Then L is a product of GL,&k)‘s and possibly a copy of Sp,,,(k), n’ < n. As 
in 23.3, we see that (17.8.4) holds for L. From 23.3, it follows that any 
cuspidal character sheaf of G with trivial E&-action is clean. It is then 
enough to check that any cuspidal character sheaf A E & is clean and 
satisfieg &A =Ea = -1. The equality E ,̂ = -1 follows from 23.2(b): if 
(Irr”G)X is nonempty, then n is odd. if the support of A is the closure of a 
unipotent class of G, then A is uniquely determined (23.2(b)) and hence is 
clean by 7.9. The case where the support of A is a central element times the 
closure of a unipotent class is reduced to the previous case, using t,*. If A is 
not of this type, then we may apply to it 7.1 l(d) and our inductive 
hypothesis (as in 23.3) and we see again that A is clean. Thus A is clean in 
all cases. We now check the parity condition for A, using 18.3. Let 9 be 
such that A E ($1. From (17.12.4), we see that W$ is restricted in the 
following way. We have 

(i) W, of type D,xC,. (r+r’=n, ra2, r’al), or D, and Q, of 
order 2 acting nontrivially on the D,-component, or 

(ii) W, of type C,- t, Q, of order 2. 

It follows that the number N in 18.3 is n - 1. Using 22.3(b) it follows that 
N is always even. The assumption (18.3.1) in 18.3 is satisfied, by the 
rationality of representations of the Hecke algebras of IV” in (i), (ii) 
above. Hence, from 18.3, we can deduce that sA = iA, and our statement is 
proved. 

LEMMA 23.5. Let G = PSO,(k) (m > 3) and assume that (17.8.4), 
(17.8.5) hold for all SO,,,.(k), m’ < m. Then G is clean and for any A E 6 we 
have E~ = EA = 1. 

The proof is very similar to that of 23.3 (it uses 23.2(c) instead of 
23.2(a)) and will be omitted. We note only that if A E G, is cuspidal, then, 
by (17.12.4), W$ = W, must be one of the following. 

(i) Ifm=2n+l, then W, is of type B,xB: (r+r’=n, r>l, r’>l) 
or of type B,. 
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(ii) If m = 2n, then W, is of type D, x D,, (r + r’ = n, r > 2, r’ > 2) or 
w,= w. 

LEMMA 23.6. Let G = SOJk) (n 2 2) and let x: 9’o + Q: be the non- 
trivial character. Assume that (17.8.4), (17.8.5) hold for all SO,,.(k), n’ < n. 
Then G is clean and for any A E cx, we have eA = d, = 1. 

The proof is very similar to that of 23.3 or 23.4. We shall only indicate 
the proof of the parity condition for a cuspidal A E &. We shall use again 
18.3. Note that if A E G$ is cuspidal then, by (17.12.4), w$ must be of the 
following form. 

(i) W, is of type D, x D,, (r+r’=n, r>2, r’a2), 52, of order 2 
acting nontrivially on each factor D,, D,, or 

(ii) W, is of type D,-, (if n >, 3), Sz, of order 2 acting nontrivially 
on W,. 

It follows that the number N in 18.3 is n - 2. Using 23.2(d), we see that N 
is always even. The assumption (18.3.1) in 18.3 is satisfied by the rationality 
of representations of the Hecke algebras of WY in (i), (ii) above. Hence, 
from 18.3, we can deduce that E,, = I,, as desired. 

LEMMA 23.7. Let G=Spin,(k) (m>3), or G=$ Spin,(k) (ma 12, 
m = 0 (mod 4)). Assume that (17.8.4), (17.8.5) holdfor all Spin,.(k), m’ <m. 
Then G is clean. 

The proof is entirely similar to that of 23.4; it will be omitted. 
Note that we are not able to prove a parity condition for G, as we did in 

the other cases (23.3-23.6); the difficulty is that we cannot apply 18.3 since 
the groups W, which appear may contain factors A,, with nontrivial action 
of QLZLP, and there is no simple rationality statement for the representations 
of the corresponding Hecke algebras. 

23.8. We now consider a general G, an 9 E 9’( T) and a character 
x: L&/%0; + Q:. 

(23.8.1) Assume that G satisfies (17.8.3), and G’ satisfies (17.8.3),,. (Here 
G’ is another group like G, and x’: &,/9’O,. + @ is a character.) Then 
G x G’ satisfies (17.8.3)xx xP where x x x’: Z&X G/!Z’“, x Gz + &’ is the product 
of x7 XI. 

(This is a refinement of 17.11; the proof is left to the reader.) 

(23.8.2) Let G= G/90, so that L& = L&/Z?‘+& and let f be the 
corresponding character of LYG defined by x. If G satisfies (17.8.3),, then G 
satisfies (17.8.3),. 
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(This is proved just as in 17.10.) 
Note that for any A E G$,,, any E E I&Y2 and any character 4 of WP/ W, 

we have 

(A : R&,, )=4(x)-l(A : RF). 

Indeed, from (16.2.9), 11.9, and 17.18(b) we see that 

(23.8.3) 

=4(x)-’ 1 c,-I,~(A : R;)=~(x)-‘(A : R;). 
YCXWL?- 

It is easy to check that for any ti E J?($,)~ (9 family in pY) and E, 4 as 
above, we have (Kz, rnEB4) = g(x)-‘(m, mE). 

(23.8.4) It follows that, assuming x: S!YJ?,Y”, + Q, is faithful, we have 
(A: Rg)=O (A&&, EE p2) unless the restriction of E to W, is 
irreducible (such E are said to be nonsingular). 

In this case, we see also that the condition “(A : Rg) = E^,(ti,, mnE) for all 
A&, EE WY” . m (17.8.3), is equivalent to the condition “(A : @) = 
iA IQ,/ (tiA, mE) for all AE G$ and all nonsingular EE WY”, where 
-2 
R, = I& b(x)R&, and 4 runs over all characters of WY/W, = IR,. 

LEMMA 23.9. Let IC G’ + G be a surjective homomorphism with finite 
kernel r, where G, G’ are connected semisimple groups over k. Let x: 
So + 0: be a character and let x’: C& + Q, be the composition of 1 with the 
map Z& --t J!& induced by rc. 

(a) If the parity condition E* = E^A is satisfied for all A E &, then it is 
also satisfied for all A’ E &Ix’. 

(b) Assume that Irr”(G)X c &. Then Irr”(G’)X’ c GIX’. 

(c) Assume that any cuspidal A E Gx is clean. Then any cuspidal 
A’ E Glx’ is clean. 

(d) Assume that (17.8.3),. holds for G’ and that ;,*A’# A’ for any 
A’ E Glx’ and any z E r, z # e. Assume also that r is cyclic of order m. 

Then (17X3), holds for G. 

Proof The statements (a), (b), ( ) c are proved by the arguments in 
17.16. (Note that if A’ E Irr”(G’)X’ then K* A’ is a direct sum of complexes in 
Irr”(G)X.) We now prove (d). Let T be a maximal torus of G and let 
T = z-‘(T). Let YE Y( T) and let 2’ = rr*$P. For any A’ E &‘, the direct 
image a, A’ is a direct sum of irreducible perverse sheaves on G, each one 
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with multiplicity one (since r is cyclic). These irreducible perverse sheaves 
are in fact in &, (see 17.16). Conversely, if A E &, then the inverse image 
n*A is a direct sum of character sheaves in &‘, each one with multiplicity 
one. For A’ E &’ and A E & we denote by fA,Ar the multiplicity of A in 
n*A’ or, equivalently, the multiplicity of A’ in n,A. Then fAr,A is always 0 
or 1. There is a natural action of r on & by z: A’ -+ tfA’ (ZE: r), see 
17.17, and a natural action of f= Hom(f, 0:) on & by a: A + A@&. 
(Here, a E p and & is the local system on G associated to the principal r- 
bundle G’ + G and to a.) We have a l-l correspondence between the set of 
r-orbits on &X’ and the set of f-orbits on &: the orbit of A’ E &I’ 
corresponds to the orbit of A E GX precisely when fA A. = 1. When two such 
orbits correspond, the number of objects in one orbit times the number of 
objects in the other orbit is always equal to m = IZJ. In our case, r acts 
freely on Glx’, by assumption. It follows that x* defines a bijection between 
&‘, modulo the action of r, and Gx, and also: 

(23.9.1) a bijection between G’& modulo the action of r, and ($5,. 

Since G’, 2’ satisfies (17X.3),,, r must act freely on LI,, JY(%&)~’ by 
z: (x, a) + (x, a@o,) (see 23.8); here, ?$, are defined in terms of &., and 
9’ runs over all families in I$‘&. If F’ is such a family, then 9 
corresponds to a family 9 in tiz, = my, well defined up to the action of 
D zT. (Recall that WY.=52,,. W,..) We have $&,=52,.,.9* where 
IR fp,,F is the stabilizer of 9 in Q,, and %F is defined as in 1715, in terms of 
B c tigP = pY. We have a commutative diagram 

(23.9.2) 

where the horizontal maps are given by (11.8.1); the right vertical map is 
composition with x, so it carries x to x’. 

(23.9.3) From the definitions, it follows that there is an induced 
imbedding 8,./Q, 4 Hom(&, &)/Hom(&, Q:) = Hom(T, @). 

We must construct a bijection 

es *--) JJ A(yp)X, (23.9.4) 
9’ 

where ‘?&, are defined in terms of W$ and 9’ runs over all families in I@“. 
We may assume that there exists X~E 52, which is mapped to x by (11.8.1); 
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otherwise, both sets in (23.9.4) are empty and there is nothing to prove. 
Instead of defining (23.9.4) directly, we shall first define a bijection 

(23.9.5) 

and then define (23.9.4) as composition of (1l,, A(%FS)x’)/r~ (&,$)/r 
(obtained from (17.8.3),.) with (23.9.1) and with (23.9.5). Let F be a family 
in ci.;p.= l&‘z which is x,-stable (i.e., stable under conjugation by x0), let 
P-‘, 8’ be the corresponding families in FV”,, W’, respectively, and let 
s-2 ’ ,QYF be the stabilizers of F in Q,., Q,, respectively. Consider 
thz e$ment (x,, 1) E ,ai/(gF,)X’; here 1 denotes the unit representation of 

Zd%) = QY.9 9* Z (x0). We know that the r-orbit of (x,, 1) consists of 
(rl = m elements. This means that the restrictions of e; (z E r, see 23.8) to 
52 Pe’,fl are distinct; however, the restrictions of (T, to Q,,:, are all trivial. It 
follows that Q,,,F/52,,, has at least m distinct characters. Hence the 
index of Q,,, in Q,.,, is at least m. Using (23.9.3), we see that in the 
imbedding QPr,F/O,,F c Q,,/Q, we have m G lQ9~.~/Q~,A d 
)52,,/52,1 6 m hence this imbedding is an equality. It follows that the sZ,,- 
orbit of F is the same as the Q2,-orbit of 9. Hence we have a natural 
bijection between the set of families 9’ in @“, such that A!($$,)“’ # @ 
and the set of families F’ in F$“‘, such that AV(S+,)~ # @. Hence to define 
(23.9.5) it is enough to construct for each 9, F’, 9’ as above, a bijection 

Jiv(9F,)“‘/r- JqYp)“. (23.9.6) 

Let xi •9~; consider the lement (x,x,, l)~&($~)~‘; here 1 denotes the 
unit representations of Z9F,(xOxl). We know that the r-orbit of (x,x,, 1) 
consists of Irl = m elements. This means that the restrictions of (r= (z E r) 
to Z,,,(x,x,) are distinct; on the other hand, the restriction of or to 
ZgF,(x,,x,) are trivial. It follows that Z,.(x,x,)/Z~~,(x~x~) has at least m 
elements; it is contained in gFJgFS =O,,,,lR,,, which has exactly m 
elements. Hence the imbedding Z,.(x,x,)/Z,,,(x,x,) c ?$@S”, is an 
equality. It follows that we have a canonical bijection between the set of 
S&conjugacy classes of elements in gF, of form x0x, (xi E G$), and the set 
of g&conjugacy classes of elements in gF, of form x0x, (xi EgF). 
Moreover, for each such x1, the group Z,,(x,x,)/Z,,,(x,x,) is cyclic of 
order m, and by assumption, r acts freely on the set of irreducible 
representations of Z,,.(x,x,), via 0 oz. It follows that restriction of 
representations defines a bijection between the set of r-orbits on the set of 
irreducible representations of Z,,.(x,x,) on the one hand, and the set of 
irreducible representations of Z,,.(x,x,) on the other hand. This gives rise 
to the bijection (23.9.6) and hence to the bijection (23.9.5). 



SHEAVES, V 119 

Now let AC@ and let EE p9. Let CA= (x0x1, ~)E.A(C&.)~ be the 
element corresponding to A under (23.95) and let mE be as in 17.8. Let 
A’ E c?.$‘, be such that rr,A’ = A and let E;,..., E:, be the irreducible 
representations of IV& whose restrictions to W, are E. Let fi,. = 
(x,x,, a’) E A($,)“’ be the element corresponding to A’ under (17.8.3),, 
and let m4 be as in 17.8. Note that la, = iA. We have 

(A : Rg) = (n, A’ : RF) = (A’ : n*R;) 

= fl (A’ : R?‘) = 2 6&t,,, m,;} 
i= I 

= 2, E^A4 x0x1, 0, %;>. 

Using the definitions and the fact that g is the restriction of g’, we see that 
the last expression is equal to EIA{(xoxl, c), mE}. The verification of the 
fact that the bijection (23.9.5) is compatible with the action of k&/SO, (see 
23.8) is left to the reader. This completes our proof. 

LEMMA 23.10. Assume that G is a connected semisimple group over k and 
let x: 2& + Q,? be a faithful character. Assume that (17.8.3), holds for G. 
Then t,*A#Afor any AE& andany zeZ??o, z#e. 

Proof Using (17.8.3), we see that it is enough to prove the following 
statement. “Let YeE(T), let x,ESZ~ be such that x0 is mapped to x by 
(11.8.1), let 9 E I@g be a family stable under conjugation by x0, let 
X,E%, and let CJ be an irreducible representation of Z,,,,(x,x,). Then 
CJ 0 cr, is not isomorphic to CJ for any z E SGr z # e (see 23.8).” It is enough 
to show that ~Jx~xi) # 1 for all z # e, or equivalently that c,(xo) # 1 for 
all z E SYG, z #e. By the definition of x0, gr, we have rr,(xo) = x(z) and we 
have x(z) # 1 for all z E SG, z # e since x is faithful. 

LEMMA 23.11. Assume that G # {e} is a semisimple connected group over 
k, and let x: Zo + Q: be a faithful character. Let G1, G2,..., G, be the set of 
almost simple, closed normal subgroups # (e} of G, and let xi: 2&, * @ be 
the restriction of x to So, (1~ i < r). Assume that (17.8.3),, holds for Gi, for 
all i. Then (17.8.3), hoI& for G. 

Proof We may assume that r 2 2 and that the result is true for r - 1. 
Let G; be the subgroup of G generated by G2,..., G,, let G’= G1 x G; and 
let n: G’ --, G be defined by K( g,, g;) = g, * g;. From our assumption, it 
follows that, if & is the restriction of x to SG; (a subgroup of zG), then 
(17.8.3),; holds for G;. From (23.8.1) it follows that (17.8.3),, holds for G’ 
where x’: %T;;, --, 0: is the composition of x with K: S& + %G. (We have 
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z~, = ~q x z&; and ~‘(a, 6) = xi(a) x;(b), for Q E E&,, b E To;.) Let r be 
the kernel of ‘IL. Then r= ((a, b)ES?& xZ&; ( a= b-‘} is isomorphic to 
aO,, n Z&; c Z& hence it is cyclic since xi: Z&, -+ QF is faithful. Let 
A’E&~‘, and let z=(a,a-‘)~r, z#e (uES?&nZ&;). We want to show 
that t:A’ #A’. We have A’= A; El A; where A; E &I, A; E C?$, 
tfA’= t,*A; iZ &-IA;. To show that A’# t,*A’, it is enough to show that 
A’, # tXA{, and this follows from 23.10 since xi is a faithful character of 
ZG,. (Note that E&, is a subgroup of Z&.) It remains to apply 23.9. The 
lemma is proved. 

23.12. We shall now fix G and x: Z& -+ (z: as in (a), (b), (c), (d), 
(e), or (f) below and we shall make an inductive assumption as indicated. 

(a) G = P+,,(k) (n 3 2) x = 1. Assume that (17.8.4) (17.85) hold 
for all Q,,(k), 1 <n’< n, and that (17.8.3) holds for all P&,,(k), 
1 d n’ < n. 

(b) G = Sp,,(k) (n > 2), x # 1. Assume that (17.8.4) (17.8.5) hold for 
all Sp,,,(k), 1 d n’ <n, and that (17.8.3),, holds for all @z,(k), 1 d n’ -C n, 
where x’ is the nontrivial character of the centre, (see 23.8). 

(c) G= PSO,(k) (m > 4), x = 1. Assume that (17.8.4) (17.85) hold 
for all SO,,,.(k), 3 <m’ cm, and that (17.8.3) holds for all PSO,(k), 
3dm’Cm. 

(d) G = SO,,(k) (n 2 3), x # 1. Assume that (17.8.4) (17.85) hold for 
all SO,,(k), 2 d n’ <n, and that (17.8.3),! holds for all SO,,(k), 2 d n’ < n, 
where x’ is the nontrivial character of the centre (see 23.8). 

(ei) G= Spin,(k) (m2 5, m odd), x# 1.. Assume that (17.8.4), 
(17.8.5) hold for all Spin,(k), 3 ,<m’ <m and that (17.8.3),. holds for all 
Spin,.(k) (3 < m’ < m, m’ odd) where x’ is the nontrivial character of the 
centre. 

(e2) G= Spin,(k) (m > 10, m = 2 (mod 4)), x faithful. Assume that 
(17.8.4) (17.8.5) hold for all Spin,(k), 3 <m’ <m and that (17.8.3),, holds 
for all Spin,.(k) (6 <m’< m, m’= 2 (mod 4)) where x’ is any faithful 
character of the centre. 

(f) G=+ Spin,(k) (ma 12, m-0 (mod 4)), x# 1. Assume that 
(17.8.4), (17.8.5) hold for all Spin,(k), 3 <m’ cm, that (17.8.3),, holds for 
all 4 Spin,(k) (8 <m’ <II?, m’=O (mod 4)) where x’ is the nontrivial 
character of the centre and that (17.8.3),,, holds for all SO,,(k) (6 d m’ < m, 
m’ = 2 (mod 4)) where x” is the nontrivial character of the centre. 

LEMMA 23.13. Let G, x be us in 23.12. Then: 

(a) If L is a Levi subgroup of a proper parabolic subgroup of G, and 
x1 : Z,JS”, + 07 is a faithful character, then (17.8.3),, holds for L. 
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(b) Let YE Y(T) be such that for some w  E W, and some I $ S, 
Y’ = w*Y satisfies W$. = W”,,,. Then (17.83) holds for G, 9’. 

Proof (a) Using (23.8.2) we may replace L by L= L/%0, and x1 by the 
corresponding character of SE. We shall apply 23.11 to L. This is 
applicable, in view of the inductive assumptions on G (see 23.12) and the 
following statement: 

(23.13.1) Any almost simple group of type A satisfies (17.8.3), for any 
character x of the centre. 

(This statement can be extracted from the proof of 18.5.) 

(b) We may assume that w  = e or w  = s, a simple reflection. The case 
w  = s reduces to the case w  = e by the method of 14.15. Assume now that 
w  = e, so that 9’ = 9’. Then the method of 17.12 shows that (b) for x, G is 
a consequence of (a) for x1, L,. Here, x, x, are related by x = x1 o 4, where 
4: Z& + 9~,/9”~, is the natural (surjective) homomorphism; 4 must in fact 
be an isomorphism, otherwise, Gx, is empty. To be able to apply the 
method of 17.12, we need to know that G is clean. But this has been 
verified in 23.3-23.7. This completes the proof. 

23.14. Let G, x be as in 23.12(a), (b), (c), (d), (e,), (e,), (f). To 
prove (17.8.3), for G, 9 (9 E Y( T)) we may assume by 23.13(b) that 9 is 
restricted in the following way: 

(a) 9 is as in 23.3(i), (ii). 

(b) 9 is as in 23.4(i), (ii). 

(c) 2 is as in 23.5(i), (ii). 

(d) 9’ is as in 23.6(i), (ii). 

h) 0) W9 is of type B,xB,xA,, (2r+r’+l=t(m-l), r>l, 
r’ 2 1) with Qz of order 2 switching the two BP-factors, and (if r’ > 2) 
acting nontrivially on the A,,-factors, or 

(ii) WY is of type A,. (r’ + 1 = f(m - l)), with a, of order 2 acting 
nontrivially (if r’a 2) on W, or 

(iii) WY is of type B, x B, (2r = 4(m - l), r > l), with Q9 of order 
2 switching the two B,.-factors. 

(e2)(i) W, is of type D,xD,xA,, (2r+r’+l=fm, r>,2, r/al), 
with 0, cyclic of order 4 with the generator corresponding to x (see 
(11.8.1)) switching the two D,-factors, and (if r’ > 2) acting nontrivially on 
the A,.-factor (the square of the generator acts nontrivially on each D,- 
factor), or 

(ii) WY is of type A,. (r’ + 3 = im), with Q9 cyclic of order 4 with 
generator corresponding to x (see (11.8.1)) acting nontrivially on W,. 
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(f)(i) W,isoftypeD,xD,xA,.(2r+r’+l=&n,rk2,r’>l),with 
52, of order 2 switching the two D,-factors and (if r’ 3 2) acting non- 
trivially on the A,,-factor, or 

(ii) W, is of type A,, (r’ + 1 = +m), with Q, of order 2 acting non- 
trivially on W, , or 

(iii) W, is of type D, x D, (2r = tm), with Q, of order 2 switching 
the two D,-factors. 

In the cases (a), (b), (c), (d), the parity condition sA = E^A is satisfied (see 
23.3-23.6) hence for each family 9 c I?“, the subset GGLF of G,., is well 
defined, (see (17.13.2), 23.0). 

In the cases (e,), (e,), (f), the parity condition is not yet known. We shall 
define Gxs’ = {A E & ( sA = (- l)IankG} and G$+ = &+ n 65,. If A l exY’, 
then the parity condition sA = gA is satisfied. Indeed, if A is cuspidal, then 
,sA = (- 1 )-kc (by (15.4.7), 15.5, (15.11.2)) and E, =(-l)rankG, by 
assumption; if A is noncuspidal then the equality sA = E^A follows from the 
inductive assumptions on G in 23.12 and from the conservation of Ed, ia by 
induction (15.12). We could also define 6x,- = {A E & 1 &A = 

t-11 rank(G’+’ >, G$- = &s- n G$; the parity condition for A E & is not 
yet known at this stage in the proof. We shall also attach a sign + or - to 
any nonsingular EE I&“. (Recall that E is said to be nonsingular, if its 
restriction to W, is irreducible, see 23.8.) Let c be the two-sided cell of W” 
such that EmL, z for some ZEC. From (16.2.9) we see that there exists 
yExWYnc (where XEQ, corresponds to x under (11.8.1)) such that 
CI~ # 0. One checks that I(y) -a(y) (mod 2) is independent of the choice of 
y; it depends only on of c and x. (This is a result of the same type as 
17.20.) We say that E (or the corresponding two-sided cell c, or the 
corresponding family in I@“) is of + type (resp. - type) if i(y) -a(y) + 
rank(G) is even (resp. odd). If ye c is as above (y~x W, c(,. #O) then from 
17.18 we see that 

(23.14.1) R$ RF, are Z-linear combinations of character sheaves 
A E &i+ (resp. A E C&F) if c is of + type (resp. of - type). 

Smce the parity condition aA =E’, is known for A E &$+, we see that the 
proof of the disjointness theorem 16.6 can be carried out and yields the 
conclusions (a) and (b) of 16.6 provided that we assume that w  in 16.6(a) is 
in a 2-sided cell of + type of WY and in x W,, A is in G$+, and E, E’ are 
nonsingular of + type. From (23.14.1), we see also that if EE &“’ is non- 
singular of - type and A E G$+, then (A : Rz) = 0. For each family Y of 
+ type in I?9 (corresponding to the two-sided cell c), we define G$,F to 
be the set of all A E G’li;;’ such that (A : Rg) # 0 for some E E 9. Then the 
sets G$, form a partition of G$+ (cf. (17.13.2)). (Note that, at this stage, 
we cannot define an analogous partition of &-.) 
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(23.14.2) We shall say that a family 9 c FkP of + type (or in cases (a), 
(b), (c), (d), an arbitrary family 9 c I@“) satisfies ( 17.8.3),,F if there exists 
a bijection G$,F t, A(?ZY)X (A c-* MA) such that (A : Rz) = tA{fiA, mE} 
for all A E Glp and all E E I@’ and which is compatible with the actions of 
2TG (see 23.8). 

23.15. Let G, x, %’ be as in 23.14(a), (b), (c), (d), (e,), (ez), or (f). 
Let 9 c I@” be a family; in cases (e,), (e,), (f) we assume that 9 is of + 
type. Assume that there exists Z $ S such that either 5 or F @ E (E as in 
(12.9.7)) is smoothly induced from a family of w$,, (see 17.13). Using 
23.13(a) and the method of proof of (17.13.7) we see that (17X3),,, holds. 
More generally, assume that there exists Z $ S and w  E W such that 
w*Y = Y and conjugation by w  carries 9 t I@P to a family F1 c I$‘& 
such that 4 or 4 @a is smoothly induced from a family of W$,.,. Then 
the method of 17.15 reduces us to the previous case and shows again that 
(17.8.3)X,, holds. For given 3, there is at most one 9 c I&‘&, for which 
Zc S and w  E W as above cannot be found. (Such 9 is said to be a 
cuspidal family.) 

23.16. Using [6, 8.11, we have the following description of 
cuspidal families. Let W, = ni W& be the decomposition of WT into a 
product of irreducible Weyl groups. The condition that a cuspidal family 
exists in w$ is the following: 

(i) if W& is of type B, or C,, then r = d2 + d for some d> 1, 

(ii) if W’f, is of type D,, then r = d2 for some d> 2, 

(iii) if W, is of type A,, then r + 1 = f(d2 + d) for some d> 2. 

If these conditions are satisfied then the cuspidal family consists of the 
irreducible representations of IV” whose restrictions to WY contain an 
irreducible representation E = Oi E’, (E’ E: @“) where 

(i) E’ belongs to the family of Wi, described in 22.4, if W& is of 
type B or C, 

(ii) E’ belongs to the family of W& described in 22.5, if W& is of 
type 0 

(iii) E’ has symbol [ 1, 3, 5 ,..., 2d - 1 ] (see [6,4.4] ) if W& is of type 
41/2)(~ + d) - I. 

In the cases (e,), (e,), (f) the cuspidal family 9 in @2 (if it exists) 
is automatically of + type. We shall prove this, for example, in the 
case 23.14(e,)(i), when W, is of type B, x B, x A,. r = & + d>,2, 
r’ = t(d2 + d) - 12 2, and Q2 is of order 2 acting nontrivially on B, x B, 
and on A,.. Let y E IV’ - W be in the two-sided cell corresponding to 9. 
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We have gy) -a(u) =aE’ + A,, (mod 2), where E’ is the irreducible 
representation of the A,,-component of W, with symbol [ 1, 3, 5,..., 2d- 1 ] 
(cf. [6, (7.6.3)]). Since E’ * E’O sign, we have AE’ = -uE’ + r’(r’ + 1)/2 
(see [6, (5.11.5)]). Hence r(y)-a(y)z(r’(r’+ 1)/2) (mod2). Let x be the 
generator of QF. Then l(y)=r(y) +l(x), rank G=2r +r’+ 1, and it 
remains to show that I(X) - r’+ 1 f (r’(r’+ 1)/2) (mod 2); this is left to the 
reader. 

23.17. Let G, x, 2 be as in 23.14(a), (b), (c), or (d) and let 9 be a 
cuspidal family in &“‘. We want to prove that (17.8.3),,, holds. First, we 
consider the case 23.14(b). Thus G= S&(k) (n 2 l), x: Z& -+ Q: is non- 
trivial; we assume that Y is as in 23.4(i), that is, W, is of type D, x C,. 
r=d2a4, r’=d’2+d>2, r+r’=n, and 0, is of order 2 acting non- 
trivially on the D,-factor. Let Vi (resp. V,) be the F2-vector space of all 
subsets of even cardinality of (0, 1, 2 ,..., 2d- 1) (resp. of (0, 1, 2 ,..., 2d’>), 
and let V= V1 0 I’,. Any representation E in P is of form E, 0 E, where 
El is an irreducible representation of theb,-factor extended by 0, and E, 
is an irreducible representation of the B,,-factor. 

As in 22.5, we make E, correspond to a point u, E V, and as in 22.4, we 
make E2 correspond to a point v2 E V,. We attach to E the point 
(vl, v;) E I’. This defines an injective map F + V whose image v is just 
9, x P’, where V1 c I’, , p2 c V2 are defined as in 22.5, 22.4. We write Ey 
for the representation in 9 corresponding to ye f? The symplectic forms 
on V,, Y2 in 22.5, 22.4 give rise by direct sum to a symplectic form on Y 
with l-dimensional radical Rad V. Let g,,: Rad V-, F2 be the unique linear 
form #O. 

In our case, the statement (17.8.3),,,, which we are trying to prove, can 
be reformulated as follows. Let X= { rl E Hom( V, F2) : rl ) Rad I’= t,}. 

(23.17.1) There exists a bijection eg,,t,Xx (0, l} (A,,o+-+ (q, 0), 
A,,, ++ (q, I)) such that (A,,i: R$)= -2-(d+d’)(- l)tt(y) for all YE p, all 
q E X and for i E { 0, 1 }, and such that 

t:A,,o = A,,,, [:A,,., = A,,,o, 

where z is the nontrivial element in Z&. 

Let el, e2r-? e2d+Zd--L be the basis of V such that e,, e2 ,..., ez&l is the 
canonical basis of V, defined in 2.5 and ezd, e2d+ i,..., e2d+ 2d-, iS the 
canonical basis of V2 detined in 2.4. Let F(V) be the collection of maximal 
isotropic subspaces of V associated to the basis e, , e2,..., e2d+ 2d’ _i as in 
[6,9.1]. Using [6, (9.5.2)] we see that for any (YET(V) and any linear 
form r: C + F2 such that 5 ) Rad V = to, there exists w  E W’- W, such 
that CJsEC( - 1)5’y’Ey = -a,,,, see (16.2.7). (The minus sign in front of a, 



SHEAVES, V 125 

comes from the fact that l(w) = T(w) + 1 (mod 2).) Applying 16.6(a), we see 
that 

(23.17.2) ~c,~_=~~‘Cycc(- 1) 
ter sheaves in G$,sF 

c(Y)+ ‘Rg? is a linear combination of charac- 
with integral, > 0 coefficients. 

If (C’, 5’) is another pair like (C, 5) we have, using 14.13: 

(23.17.3) (pc,< : P~,~,) = twice the number of rl EX such that 7 1 C= 5, 
q ) c’ = 6’. 

We note that for any y E p and any C E Y( V) containing y, we have (by 
(23.17.2)) 

2d+d’--(R+R~+u)=~ (-1)5(Y)+1pc,g 
5 

(23.17.4) 

sum over all 5 E Hom(C, F2) extending lo. (Here u is the generator of 
Rad V.) In particular, the right-hand side of (23.17.4) is independent of C; 
it depends only on y. For y = 0, we obtain that 

h,=~pc,5= -2d+d-‘(R$-Rz) (CE 9-( I’)) (23.17.5) 
5 

(sum over all g E Hom(C, F2) extending &,) is independent of C. We denote 
it by h. We now borrow a part of the argument in [6, 9.21. Let C, be the 
subspace of V spanned by Rad Y and by e,, e3, e,,...; let C2 be the sub- 
space of I/ spanned by Rad V and by e2, e4,.... Then Ci, Cz E Y( V). Let 
q E X and let <i : Ci + I;;, t2: C2 + F2 be the restrictions of q. From 
(23.17.2) we see that (P~,,~, : pc& = 2. Using now (23.17.2), we see that 
either 

(a) there are exactly two objects in Gg, which appear in both 
P~,,<~, pc2,cz (they must appear with coefficient l’in both P~,,~,, P,-~.~J or 

(/I) there is exactly one object (say A) in Gf,* which appears in both 
p,-,,<,, pc2,ez (it must appear with coefficient 1 in one of them and with coef- 
ficient 2 in the other). 

Assume that (/I) holds; we shall reach a contradiction as follows. If 
&: C; + F2 extends &, and is different from t2 then (pcI,c2 : pcz,<;) = 0 by 
(23.17.3) hence A doesn’t appear in P~~,~;, (see (23.17.2)), hence A appears 
in h, (see (23.17.5)) with the same coefficient as in pc2,ez. Similarly A 
appears in hc, with the same coefficient as in P~,,~,. Since we have assumed 
that (p) holds it follows that h,, # hcl, a contradiction. 

Thus (a) holds; we denote by A,,,, A,, the two objects in Gs,F defined 
by (a). The previous argument shows that h = C,, E x( A,,o + A,,) is mul- 
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tiplicity free. Moreover, any A E C?$,F must appear in it. Indeed, we have 
(A : Rg) # 0 for some y E v. Moreover, by (23.8.4) we have 

(A : R$+J = -(A : Rg), (23.17.6) 

hence (A: R~,-R~+o)#O. Using (23.17.4), we see that (A:P~.~)#O for 
some CEF( t) and some 4. By (23.17.2), we then have (A : P&>O and 
using (23.17.5) we have (A : h) > 0, as claimed. Thus, we have h = C A 
(sum over all A E GX, ;9). 

Now, let D = { $, $‘} be a two element subset of X such that 11’ + q” is 
equal to the inner product with the standard basis element ej of V and 
$(e,) = q“(ei) = 0. As in the proof of 22.6, the collection of such subsets (for 
fixed i) parametrizes (in a l-2 fashion) certain character sheaves of the Levi 
subgroup Li of a parabolic subgroup of G. Applying induction to those 
character sheaves, and following this by truncation ( =projection onto the 
subspace of X0(G) spanned by G$,,) we obtain, as in the proof of 22.6, 
some elements pD, pD E X,(G) which are linear combinations with integral, 
20 coefficients of character sheaves in G$ F and have the properties 
(23.17.7)-(23.17.9) below. 

(pD : pc.<) = (do : pc,<) = number of q E D such that r] ) C = 5 
(for CE F( V), < E Hom(C, F?) extending to) (23.17.7) 

r,*pD = CD, t:fio = pD, where z is the generator of &, (23.17.8) 

; (Po+do)=2 d+d’-2( -Rg+ R;- R;,+ R;,+L) (23.17.9) 

(here D runs over all subsets of X as above, corresponding to a fixed e,). 
We shall now explain (23.17.8) and (23.17.9) which did not appear in 

22.6. The two character sheaves of Li parametrized by D are related to each 
other by tz, for zi an element in ZZL, - %t,. Since induction and truncation 
are compatible with the operations t*, we obtain (23.17.8). The left-hand 
side of (23.17.9) is obtained by induction and truncation from an element 
which plays for Li the same role as h (above) plays for G. That element can 
be expressed in terms of R; as in (23.17.5) and hence the corresponding 
induction and truncation can be computed from 15.7(a); we then obtain 
the right-hand side of (23.17.9). Using (23.17.4) for y = 0 and ei we see that 
the right-hand side of (23.17.9) equals Cc pc,e where C is a fixed subspace 
in F(V) containing e, and 4 runs over all elements in Hom(C, F2) which 
extend [,, and vanish on ei. The last sum is a partial sum of (23.17.5) hence 
it is multiplicity free since h is so. Thus, the left-hand side of (23.17.9) is 
multiplicity free. It follows that for each D in the sum, po+po is mul- 
tiplicity free. In particular, pD and pD are disjoint in the sense that no 
character sheaf can appear in both of them. Combining this with (23.17.8) 
we see that if A is a character sheaf appearing in pD or PO, then tfA #A. 
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Using (23.17.7) we see just as in [6, p. 2721 that if D = {q’, f’} is as 
above, then both pD and pD are of the form A,,,i + A,,,,j for suitable i # j in 
(0, l}. Since pD, fiD are disjoint, we may arrange notations so that 

PD = A,:, + Af,o> pD = A,,,1 + A,,,,,. (23.17.10) 

Now A ,,‘.o, A,,,, are characterized by the fact that they are the only charac- 
ter sheaves which appear in both P~,,~,, pc2,r2, where {i = q’ 1 Ci, 
t2=$ ( CZ; moreover, by (17.17.3), both P~,,~,, pc2,+ are t,*-invariant. It 
follows that the 2-element set {A,.,,, A,,,,} is t,*-invariant. As we have seen, 
Aqf,, and A,,,, are not fixed by t). It follows that 

t:A,,,, = A,,,, , t:A,,,, = A,,,o. (23.17.11) 

These identities hold for any q’ which is contained in a D as above, hence 
for all q’ E X, except possibly for one. Using again (17.17.3) we deduce that 
the identity 

M7.0 : R$ = (A,,, : Ri$) (23.17.12) 

holds for all y E P and for all q E X, except possibly for a single q. Assume 
now that there exists qO, y, which violate (23.17.12). Then q,-, is uniquely 
determined, and from (23.17.4), (23.17.6) we see that there exists C, 5 such 
that (Atlo, : P~,~) Z V,,I : pc,<). But pc,< is multiplicity free, since h is, (see 
(23.17.5)). Hence one of the numbers (A40.0 : P=,~), (A,,, : P~,~) must be 0, 
and the other must be 1. For any VEX, r) #qO we have (A,,, : P~,~)= 
(A,,, : pc,<). It follows that (&Ex(Av,o+ A,,,) : p& is odd. On the other 
hand, this equals (h : pc,c) = even, by (23.17.3). This contradiction shows 
that (23.17.12) holds for all q E X and for all y E f? 

We can therefore define a function [q, y] on Xx p with values in F, by 

(40 : RZJ = (A,,, : Rg) = -( _ l)Cwl2-(d+O~ 

(The fact that (A : RE) = +2-(d+“‘), for A E G&,4F, follows from (23.17.4) 
and (23.17.6).) Here are three properties of the function [q, y]. 

(23.17.13) For any CEY( V) and any VEX, the function C-+ F2, 
( y --f [r, ~1) is F,-linear. 

(This follows from (23.17.4) and (23.17.6).) 

(23.17.14) For any D= {q’, q”} cX as above (with respect to ei) and 
any y E r, we have 

(-l)C”‘J+(-1) Clr”,Yl = (_ l)rl’(Y) + (_ l)V”(Y). 
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(This follows from (23.17.10), (23.17.7), (23.17.4), and (23.17.6).) 

1 (-lpYl= c (-l)?(Y), (23.17.15) 

(This is proved as follows: 

- c C-1) Cwl.2-(d+~-l)= 
4.0 + A,,,) : R;, = (h : R$ 

VEX 

= -2d+d--1(Rg-Rg:R$ 

1 

-2d+“-1 if y=O 
= 2d+&1 if y=u 

0 if y#O, v 

=2--(d+d’--1) c (-~)vcJ.).) 
VEX 

We now apply [6, 3.31 and deduce that [q, y] = q(y) for all q E X and 
all y E l? Thus (23.17.1) is verified, except for the statement on the action 
of t,*, which is known (see (23.17.11)) for all q except possibly for a single 
7 = I]~, defined by vo(ei) = 1 for all i. (This q0 is in X if and only if d is odd.) 
To check this remaining case (for d odd), we first note that Aqo.o and A,,, 
are cuspidal. (Using 18.2, as in the proof of 19.3(a), this statement is 
reduced to the statements (22.4.1), (22.5.2); the multiplicities of AVlooO A,,i 
in Rg are already known.) Using 23.2(b) it now follows that tf does not 
leave Aao.o or A,o,1 invariant. Hence it must interchange them. Thus 
(23.17.1) is verlied. Hence (17.8.3),., is also verified in our case; we have at 
the same time obtained a lower bound for the number of cuspidal character 
sheaves in G$ P : this number is 22 if d is odd. In the case where L.Z’ is as 
in 23.4(ii), i.e.,’ W, is of type C,_ i (n = d* + d+ l), and Q, is of order 2 
we see in an entirely similar way that ( 17.8.3),,F holds and that there are at 
least 2 cuspidal character sheaves in G&,F. 

The same method applies in the cases 2.14(a), (b), (c), (d). We thus 
obtain that (17.8.3),,% holds in each of these cases. (In the cases (a), (c) the 
proof is simpler than in the other cases; it is along the same lines as the 
proof in 22.6, 22.7.) We also obtain in each of these cases a lower bound 
for the number of cuspidal character sheaves in G$.,. 

23.18. Now let G, x, 5? be as in 23.14 (e,), (ez), or (f) and let 5 be 
a cuspidal family in ez. (A s we have seen in 23.16, 9 is automatically of 
+ type.) We want to prove that (17.8.3),,F holds. First, we consider the 
case 23.14(e,). Thus G = Spin,, mz2(mod4),m>lO,andX:.Y~+~,?is 
faithful. We assume that Y is as in 23.14(e,)(i), in particular, W, is of type 
D,xD,xA,.,(2r+r’+l=fm),r=d2~4,r’=~(d”+d’)-1~2anda,is 



SHEAVES, V 129 

cyclic of order 4, with a fixed generator x corresponding under (11.8.1) 
to x. 

Let Y be the F,-vector space of all subsets of even cardinality of 
(0, 1, 2,..., 2d- 1). V has a natural symplectic form, a natural basis 

e, Y.--Y e2d- 1 and a natural subset p, as in 22.5. Let S(Y) be the 
corresponding family of maximal isotropic subspaces of V, defined as in 
[6,9.1]. We now attach to each nonsingular (see 23.8) representation 
E E F a point in rx F2 as follows. We can write W, = W’ x W’ x W2, 
where W’ (resp. W2) is a Weyl group of type D, (resp. A,.). The restriction 
of E to W, can be written as E’ H E’ I2 E2 where E’ (resp. E2) is an 
irreducible representation of W’ (resp. W2). 

Here E’ is in the family F0 (with notations of 22.5) and E2 is indepen- 
dent of E (it has symbol [ 1, 3, 5 ,..., 2d - 11, see [6, 4.41). The action of the 
generator x E Q, on E is given by 

here /lo: E2 -+ E2 is the involution defined as in 17.2(b) and ~1: E’ + E’ 
satisfies a2 = +l. If a2 = 1, then (E’, a) is a representation of W,, the 
semidirect product of W’ with the cyclic group of order 2 acting on W, by 
a nontrivial graph automorphism; it then corresponds as in 22.5 to a point 
y E r and we associate ( y, 0) E vx F2 to E. If a2 = -1, then (El, &%x) is 
a representation of wt, which again corresponds as in 22.5 to a point y E v 
and we associate ( y, 1) E P x F2 to E. (Here, J-1 is a fixed square root of 
- 1 in o,.) This gives a bijection E,,i++ (y, i) between the set of non- 
singular representations in F and the set rx F2. Let &,: Rad Y + F2 be 
the unique linear form #O. In our case, the statement (17.8.3),,, which we 
want to prove can be reformulated as follows. Let X= 
{q E Hom( V, F,): q ( Rad V= &,}. 

(23.18.1) There exists a bijection G$,9 w  Xx (0, 1,2, 3) (,4,,jt, (Q j)), 
such that 

(A4,j : RE,;) = -2-Cd+ “( - l)“‘Y’(Jz)’ 

for all YES, allvEX, all ic{O,l} andall jc{O,1,2,3) andsuch that 
for any VEX, t* 
{Aqj I ic (0, 1,2,3}j. 

(zE?&) act simply transitively on the set 

The proof is similar to the proof of (23.17.1) (but slightly more 
complicated). Let CE F( V) and let 5: C + F2 be a linear form 
extending &, . Then there exists WEXW, such that 

C,.C(-~)~(~)(E~,O-~E~,~)= -a,. 
Applying 16.6(a) or rather its version discussed in 23.14, we see that 
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(23.18.2) pc.e =def x,,EC( - 1)51”)+1(R&- fi Rg,,,) is a linear com- 
bination of character sheaves in G$,, with integral, 20 coefficients. 

If (C’, <‘) is another pair like (C, 5 ), we have, using 14.13: 

(23.18.3) (pc,ec: Pc.,e.) =four times the number of q E X such that 
q ( C=& q 1 ,I=<‘. 

Next we note that for any y E r and any CE Y(V) containing y, we 
have 

(23.18.4) 2d-‘(R& - R;,+o,, - J--r R;,,, + J-1 R;,,,,) = 
ce: ( - 1)5(-V) + ‘p c,s, sum over all r E Hom(C, F?) extending to. Here v is the 
generator of Rad V. It follows that 

h,=C PC.; (23.18.5) 

(sum over all 5 E Hom(C, F2) extending to) is independent of C. We denote 
it h. Define C, , C, E F( V) as in 23.17. Let q E X and let <, : C, + F2, 
t2: Cz + Fz be the restrictions of q. We have (P~,,~~ : pc2,ez) =4, by 
(23.18.2). The argument in 23.17 shows that there are two possibilities: 

(DI) there are exactly four objects say A,,j, Jo (0, 1, 2, 3) in C& 9 
which appear in both P~,,~,, pc2,1;2 (they must appear with coefficient 1 in 
both) or 

(fi) there is exactly one object say A, in G$,, which appears in both 
P~,,~,, pc2,tz (it must appear with coefficient 2 in both). 

(A priori there are also other possibilities but they can be excluded as in 
23.17.) Thus, some q E X satisfy (a) and other q satisfy (p); this gives a par- 
tition X= X, u X,. We have 

h = 1 (4.0 + A,,, + Aq,z + A,,,) + 1 2A, (23.18.6) 
tJEXz VEX/i 

1 

and all A E G$,, appear in this sum. 
Now let D = {II’, $‘} be a two element subset of X such that v’ + q” is 

equal to the inner product with ei and q’(e,) = $‘(e,) = 0. As in 23.17, to D 
we can associate, using induction and truncation, four objects pi, pi, pi, 
pi which are linear combinations with 20 integral coefficients of character 
sheaves in Gs,~, which have properties analogous to (23.17.7)-(23.179). 
Thus, 

(23.18.7) (pi: PC,<) =number of q E D such that q 1 C= 5 for any 
CE F( V) and 5 E Hom(C, Fz) extending to and any j = 1,2, 3,4. 
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(23.18.8) r,* (2~ &) permute transitively the four objects p$,, 
j= 1, 2, 3,4. 

c p’,=c PC,<> 
D 5 

1 Cj<4 

(23.18.9) 

where D runs over all subsets of X as above, corresponding to a fixed ei, 
CE F( V) contains ei, and 5 runs over all elements in Hom(C, I;z) 
extending &, and vanishing on ei. 

Since the right-hand side of (23.18.9) is a partial sum of (23.18.5) or 
(23.18.6), it follows any A E C?X,,F must appear in it with coeftkient 0, 1 or 
2. Hence any such A appears in & + pi + &, + pi with coefficient 0,l or 2. 
Let VE X8; from the definition of A,, and the invariance of ~c,,~,, pc2,cz 
under t,* it follows that tfA = A for all z E Z&. Thus, if A = A,, (q E X,) 
appears in p& for some i then from (23.18.8) it follows that A appears in 
each of pb, pf,, pb, pi, hence it appears with coefficient 24 in pb + pi + 

P;+PL a contradiction. Thus each pb involves only character sheaves of 
form A,,j (q E X,). As in 23.17, we then see that we can arrange notation so 
that 

p$=A,cj+A tl”,i (j = 1,2,3,4) 

and that $, $’ E X,. Moreover, we see that 

(23.18.10) 

(23.18.11) t$ (zEJ?&) permute transitively the four objects {Aq,,j ( j= 
132, 374). 

This holds for any q E X except possibly for a single q defined (when d is 
odd) by qo(ei) = e, for all 1. (All q (q # qO) are contained in some D as 
above.) In particular, we see that X, is empty (if d is even) and it has at 
most one element: q0 (if d is odd). From (23.18.11) we see that for any 
ye v, any i, and any VEX, q#q,,, 

(A,j : Rg,,) is independent of j (j = 0, 1,2, 3). (23.18.12) 

Moreover, this inner product is of the form &2-(d+ ‘j(G)‘, as follows 
from (23.18.4) and (23.8.3). We can write in the form 
-2-(d+ ‘)( - l)[‘JJ1(fl)i. This defines a pairing [q, y] with values in F2. 
It is defined for all i E X, q #Q, and for all y E i? We also define [ 
(when d is odd) and y E v by 

-2-(d+‘)(_l)C~~.~l(~)i 

(A,,0+A,,1+A,,2+Aqa3 : Rg,, if qooX, 

2(4l : R&) if qOoXP. 
(23. 
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Then [q, ,v] satisfies properties like (23.17.13)-(23.17.15). Using again 
[6, 3.31, we see that [q, y] = r,+(v) for all r] E X and all y E f? 

We now show that when d is odd, q. must be of type cc Assume that 
v],EX~. By (23.18.13) we have (A,, : Rg,) = -2P(d+2)( - l)C”o,J’l(&-l)i 
for all y E P and for i= 0, 1. From this, we can show that AV, is cuspidal; 
using 18.2, this is reduced to the statement (22.5.2) and the statement 
below. 

(23.18.14) Let E* be the irreducible representation of the Weyl group W’ 

of type A ( I/2)(d’2 + d’) - 1 corresponding to the symbol [ 1, 3, 5,..., 2rl’ - l] (see 
[6, 4.43). Then the character of E2 vanishes on all elements of W2 which 
have some eigenvalue - 1 on the reflection representation of W*. (See [23, 
proof of 9.41.) 

Thus A,, is cuspidal. By the results in 23.2(e), the orbit of any 
complex in (Irr”G)X under t,* (z E Z&) consists of four different objects. On 
the other hand, as we have seen earlier in the proof, A,, is invariant under 
all tf. This is a contradiction. It follows that q. E X, hence 
X=X,. Hence A,,,j (i= 0, 1, 2, 3) are defined. We also see that 
h=C q-sx,o<j<3 Aq,j. 

We now show that (23.18.12), which is known to hold for 9 # qo, holds 
also for r] = qo. Assume that this is not so. Using (23.18.4) and (23.8.3) we 
see that there exists C, 5 such that (A,,,, : pc,J # (A,,,j, : P~,~) for some 
j, p E (0, 1, 2, 3). These multiplicities must be 0 or 1. (Indeed, h is mul- 
tiplicity free, hence pc,c is also, since it is a partial sum of h, see (23.18.5).) 
Then, among the multiplicities (AqoJ : P=.~) (j=O, 1,2, 3), at least one is 1 
and all are 0 or 1. Hence Co G j G 3 (A,,j : p& f 0 (mod 4). Since (23.18.12) 
holds for q#qo, we have CoGiS (A,,, : pcJ = 0 (mod 4) for ‘I# qO. It 
follows that C, E x.0 sj < 3 (A,,j: pcJ f 0 (mod 4). On the other hand the 
last sum equals (h : pc,[) which is divisible by 4, by (23.18.3). This con- 
tradiction shows that (23.18.12) holds for all rl EX. We can therefore 
deduce from (23.18.13) that 

(A,, j : Rg,) = -2-cd+ l)( - 1 )qo(y)(fi)i , 

for all YE r, in (0, l}, Jo (0, 1,2, 3). (Note that, as we have seen earlier, 
we have Cvroy ~1 = v~(Y).) 

Using this identity, together with (22.5.2) and (23.18.14), we see as above 
that Asoj is cuspidal for all Jo (0, 1, 2, 3). By the results in 23.2(e), the 
orbit of any complex in Irr”(G)X under t,* (z E z&) must consist of four dif- 
ferent complexes; on the other hand, the set {Agbj 1 j=O, 1, 2, 3) is 
invariant under all tr. It follows that t,* (zEz!&) permute transitively the 
objects in this set. This completes the proof of (23.18.1). Hence (17.8.3),, 
is also verified in our case; we have at the same time obtained a lower 
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bound for the number of cuspidal character sheaves in 6X,,%: this number 
is 24, if d is odd. 

In a similar (but somewhat simpler) way we see that (17.8.3),, holds 
also when 2 is as in 23.14(e,)(ii) and also in the cases 23.14(e,), (f). We 
also obtain in each of these cases a lower bound for the number of cuspidal 
character sheaves in G$,,. 

23.19. Let G, 2 be as in 23.12(a)-(f). In this subsection we shall 
show that the set of cuspidal character sheaves in & (which is contained in 
Irr”(G)x, by 3.12)) coincides with Irr”(G)X. We denote by a the number of 
cuspidal character sheaves in &, by a’ the number of elements in Irr’(G)$ 
in the cases (e,), (ez), (f), we denote by a+ the number of cuspidal charac- 
ter sheaves in G *s+. We have clearly a < a’, and it is enough to show that 
a = a’. We shall use the fact that 23.17, 23.18 provide a lower bound for a. 
We consider each case separately. 

(a) G=PSp&) (n>, l), x= 1. By 23.2(a), we may assume that n is 
even. 

Let 5”’ be the set of all unordered pairs (N,, NJ of triangular numbers 
such that n = N, + N2 in which each pair with N, = N, is repeated twice. 

Let d be the set of all ordered pairs (M,, M2) such that M, is an even 
square, Mz is twice a triangular number and n = M1 + M,, in which the 
pair with M, = 0 is repeated twice. 

By 23.2(a), we have a’ = 1%“‘) and by the method of 23.17, we see that 
a 2 1 bJ. We have a bijection SY 2 5’ defined by 

(a*,b*+b)+(~(a+b)(a+b+1),f(a-@(a-b--l)). (23.19.1) 

It follows that a > a’, hence a = a’. 

(b) G = Q,,(k) (n 2 l), x # 1. By 23.2(b), we may assume that n is 
odd. 

Let %“’ be the set of all unordered pairs (N, , N2) of triangular numbers 
such that n = N, + N2. 

Let % be the set of all ordered paris (M,, M,) such that M, is an odd 
square, M2 is twice a triangular number and n = M1 + M2. 

By 23.2(b), we have a’ = 2 (%“‘I and by 23.17 we see that a >, 2 1%“1. We 
have a bijection ZZ’ 2 3’ defined by (23.19.1). It follows that a 2 a’, hence 
a = a’. 

(cl) G=SOzn+l (k) (n >/ l), x =I. Let Z?” be the set of unordered 
pairs (N, , N,) of squares such that 2n + 1 = Ni + N2, in which each pair 
(N,, N,) with N, > 0, N2 > 0 is repeated twice. 

Let %” be the set of ordered pairs (M,, M2) such that Mi, M, are twice 
triangular numbers and n = Ml + M2. 

601/61/2-3 
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By 23.2(c), we have Al’= Jb’l and by the method of 23.17 we have 
[cl1 > 1%“). We have a bijection ZZ’r E’ defined by 

(a* + a, b* + b) -+ ((a + b + l)*, (u-b)*). 

It follows that ~12 c1’, hence CI = ~1’. 

(c2) G= PSO,,(k) (n 32), x= 1. By 23.2(c), we may assume that 
n 3 0 (mod 4). Let b’ be the set of unordered pairs (N,, N,) of even 
squares such that 2n = N, + N, in which each pair (N,, N2) with Nr > 0, 
N, > 0, N, # N2 is repeated twice and each pair (N,, N,) with N, = N, is 
repeated four times. 

Let .T be the set of ordered pairs (M,, M,) of even squares with 
n = M, + M2 in which each pair with M, = 0 or M2 = 0 is repeated twice. 

By 23.2(c), we have IX’= )ZT’I and by the method of 23.17 we have 
(al 3 (Z’[. We have a bijection CT r .5?“’ defined by 

(a*, b*) + ((a + b)*, (u-b)*). (23.19.2) 

It follows that CIZCI’, hence tl=oz’. 

(d) G = SO,,(k) (n > 2), x # 1. By 23.2(d), we may assume that n E 2 
(mod 4). Let 9”’ be the set of unordered pairs (N,, N2) of even squares 
such that 2n = N, + N,, in which each pair (N,, N2) with N, > 0, N, > 0 is 
repeated twice. 

Let ZZ’ be the set of ordered pairs (M,, M,) of odd squares such that 
n=M,+M,. 

By 23.2(d), we have a’= 2 [ET.“‘1 and by the method of 23.17 we have 
a 3 2 IZ’I. We have a bijection 2” 5 2”’ defined by (23.19.2). It follows that 
a>~‘, hence c( =a’. 

(e,) G=Spin2,+,(k) (n>2), x# 1. 
Let 2”’ be the set of unordered pairs (N, , N2) of triangular numbers such 

that 2n + 1 = Nr + N,. 
Let d be the set of ordered pairs (M,, M2) of triangular numbers such 

that n=4M,+M2. 
By 23.2(e), we have 01’=2 lZ”‘l and by the method of 23.18 we have 

c1+ 2 2 IT”(. We have a bijection d r S’ defined by 

(+(a* + a), $(b* + 6)) -+ (+(2a + b + 1)(2u + b + 2), i(2u - b)(2u - b + 1)). 

It follows that a + > a’. Since CI’ 2 ~12 a+, we must have 01= CI + = a’. 

(e2) G = Spin,, + 2 (k) (n > 2), x faithful. Let Y.’ be the set of unor- 
dered pairs (N,, N2) of even triangular numbers such that 4n + 2 = 
N,+N,. 

Let ?Z be the set of ordered pairs (M,, M2) such that M, is an odd 
square, M2 is a triangular number and 2n + 1 = 2Mr + M2. 
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By 23.2(e), we have a’= 4 I%“‘1 and by 23.18 we have a+ 24 (3’1. We 
have a bijection 3 3 3’ defined by 

(a2,&b2+b))+(;(2a+b)(2a+b+1),f(2a-b)(2a-b-1)). (23.19.3) 

It follows that a + > a’. Since a’ > a > a +, we must have a = a + = a’. 

(f) G = f Spin,,(k) (n 2 3), x # 1. Let 3”’ be the set of unordered pairs 
(iv,, N2) of even triangular numbers such that 4n = N1 + N2 and such that 
a pair (N, , N2) with N1 = N2 is repeated twice. 

Let %” be the set of ordered pairs (M,, M,) such that M1 is an even 
square, M2 is a triangular number and 2n = 2M, + M,, and such that a 
pair (M,, M2) with M1 = 0 is repeated twice. 

By 23.2(f), we have a’= 2 lb’1 and by the method of 23.18 we have 
a+ > 2 lbl. We have a bijection 2 r d’ defined by (23.19.3). 

It follows that a + > a’. Since a’ 3 a > a +, we must have a = a + = a’. 

23.20. Let G, x be as in 23.12(e,), (e,), (f). We now prove that for 
any A E &, the parity condition E~ = E^A is satisfied. If A is not cuspidal, this 
follows from the inductive assumptions on G in 23.12. If A is cuspidal, then 
we have necessarily A E &+ (by the equality a = a+ proved in 23.19); for 
such A, the parity condition has already been noted in 23.14. 

It follows that for any 9 E Y( T) and any family 9 c pY, we can con- 
sider the statement ( 17.8.3)x,F just as in (23.14.2). (The restriction made in 
(23.14.2) that 9 is of + type can now be dropped.) We now show that 
WW,,, holds. As noted in 23.14, we may assume that 9 is as in 
23.14(e,), (e2), (f). If 9 is of - type, then 9 is not a cuspidal family (see 
23.16) so that the method of 23.15 applies and shows that (17.8.3),,, holds. 
If B is of + type we can assume, using 23.15, that B is cuspidal; in that 
case (17.8.3),,, holds by 23.18. 

23.21. Proof of Theorem 23.1. When G= (e], the theorem is 
obvious. We now assume that dim G 2 1 and that the theorem is already 
proved when G is replaced by a group of dimension <dim G. 

Using 17.10 and (23.8.2) we see that we may assume that G is semisim- 
ple. Let Gi , G2 ,..., G, be the set of almost simple, closed normal subgroups 
#(e} of G. First, assume that r>,2. Let ~=GixG,x ... xG, and let 
A: G + G be the finite covering defined by (g,, g2,..., g,) + g, g, *. . g,. By 
the induction hypothesis, (17.8.4) and (17.85) hold for each Gi hence also 
for G (see 17.11), and hence also for G, (see (17.16.3), (17.16.4)). Using the 
induction hypothesis for each Gi and 23.11, we see that (17.8.3), holds for 
G, for any faithful character 1: Z& -P QF. 

It remains to consider the case where G is almost simple. 
When G is of type A, the theorem holds by 18.5 and (23.13.1). 
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When G is of type B, C, or D and p = 2, the theorem holds by 22.6, 22.7. 
Assume now that G is of type B, C, or D and p #2. To prove the 

theorem we may assume in addition in 23.1(a) that A E & and in 23.1(b) 
that A l 1rr*(G)~, with x faithful. (The case where x is not faithful, is 
reduced to the case where x is faithful, by 23.9(a), (b), (c), by replacing G 
by the quotient of G by the kernel of x.) Under this additional assumption, 
the theorem holds for G, by 23.3-23.7, 23.17-23.20, using the inductive 
hypothesis. 

When G is of type E,, the theorem holds by 21.2, 21.4(a), 21.12. 
When G is of type F4, the theorem holds by 21.3, 21.4(a), 21.13. 
When G is of type GZ, then theorem holds by 20.6. 
When G is adjoint of type E, (resp. E,), the theorem holds by 20.3(a) 

(resp. 20.3(c)). 
Assume now that G is simply connected of type E6 (resp. ET). Then parts 

(a) and (b) of the theorem as well as the statement (17.8.3) hold for G by 
* 20.3(b) (resp. 20.5). Let x: S?o + Ql be a nontrivial character. Using the 

inductive hypothesis and the method of 23.15, we see that (17.8.3),,F 
(defined just as in (23.14.2)) holds for G, 2, for any 2 E Y(T) and any 
family F c I@” except possibly when 9 is a cuspidal family. (The notion 
of cuspidal family is defined as in 23.15.) The statement (17.8.3),,, can be 
deduced from (17.8.3) for G, provided that the following statement is 
known. 

(23.21.1) For any A E GG,~ (defined in 23.0) with B cuspidal, and any 
ze&, z#e we have t:A#A. 

If G is of type E,, then 2 in (23.21.1) is uniquely determined (up to W- 
action); it satisfies: W, of type E,, 0, of order 2 acting nontrivially on 
W,. Moreover, B is uniquely determined. In this case, (23,12.1) has been 
already proved (see (20.5.5)). 

If G is of type E,, then Y in (23.21.1) is again uniquely determined (up 
to W-action); it satisfies: W, of type D,, 0, of order 3 acting nontrivially 
on W,. Moreover, B is uniquely determined. From the description of 
Irr*(G) in the proof of 20.3(b) we see that if A E 65 is cuspidal and z E .J&, 
z #e then A and t:A have different supports, hence A # t:A. If A E 85 is 
noncuspidal then it is a summand of a complex induced from a parabolic 
subgroup of type A2 x A,. As in the proof of (20.55) we see again that A 
and t,*A have different supports, hence A # t,*A. Thus (17.8.3), for G is 
verified. This completes the proof of the theorem. 
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24. LOCAL INTERSECTION COHOMOL~GY 
WITH TWISTED COEFFICIENTS OF THE 

CLOSURE OF A UNIPOTENT CLASS 

24.0. The purpose of this section is to compute the local intersec- 
tion cohomology of the closure of a unipotent class C of G with coefficient 
in an irreducible G-equivariant local system on C (in good characteristic), 
thus extending the results of Shoji [28] and Beynon-Spaltenstein [20]. To 
do so we shall borrow an idea of Shoji [28], which is to make use of the 
orthogonality relations for Green functions. We shall use here the 
orthogonality relations for the generalized Green functions (in Sections 9 
and 10) and this will lead to stronger results. Throughout this section we 
assume that G satisfies the restrictions (23.0.1). 

24.1. Let Z be the set of all pairs (C, b) where C is a unipotent 
class in G and Q is an irreducible Q,-local system (given up to 
isomorphism) on C which is G-equivariant for the conjugation action of G. 
For each i 6 Z, we denote Kci, = ZC( C, b) [dim C] regarded as a perverse 
sheaf on the unipotent variety G,, of G, which is zero outside C. 

The set Z has a natural preorder: given i = (C, b), i’ = (C’, 8’) in Z we say 
thati’~iifC’cC.Wesaythati-i’ifC=C’.Wesaythati’<iifC’~ C. 

We define J to be the set of triples (L, Cr , &) up to G-conjugacy where 
L is a Levi subgroup of a parabolic subgroup of G, C, is a unipotent class 
of L, and &I is an irreducible L-equivariant local system on C, such that 
(a”, x C1, 1 q &r) is a cuspidal pair for L in the sense of [4, 2.41. (Here 
1 El 4 is the inverse image of &‘r under pr, : 3’: x C, + C, .) Given Jo J, we 
consider the perverse sheaf Kj on G defined in terms of 
(L, ??‘t x C,, 1 q 8,) in the same way as K was defined in (81.2) in terms 
of (L, #?I, 8). 

According to [4,6.5] the restriction of Kj to G,, is a direct sum of com- 
plexes of the form Kci, [dim SO,], where i = (C, 8) E I; the various ig Z 
which appear form a subset Zj of Z and the subsets Zj (j E J) form a partition 
of I. Thus, we have a canonical surjective map T: I-, J defined by 
r(i)=j*iEZj. 

Let i = (C, b) E Z and let Z = r(i). Let A i be an irreducible perverse sheaf 
on G which is a direct summand of Kj and satisfies 

Ai I Gun= Ku, [dim %o”,]. (24.1.1) 

Then (24.1.1) characterizes Ai up to isomorphism and we have 

S”(Ai) ( C= 
{ 

t 
if a=~, 
if a#~,, 

(24.1.2) 

where a, = -dim C - dim%“:. 
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(24.1.3) Let i+ i* (resp. j + j*) be the involution on I (resp. J) defined 
by (C,b)+(C,b”) (resp. (L,C,,&r)+(L,C,,d;)) where d”, 8; 
denote the local systems dual to 6, &r. We have r(i*)= 7(i)* for all iEZ. 

24.2. From now until the end of 24.6, we assume that k is an 
algebraic closure of the finite field F, and that G has a fixed F, rational 
structure compatible with the group structure, with Frobenius map 
FI G + G. Then F acts naturally on I and J by (C, &‘) -+ (F- ‘C, F*E), 
(L, C,, 8,) + (F-‘L, F-‘C,, F*&,)); this action is compatible with 7: I-, J. 
Hence 7 induces a map IF -+ JF between the fixed point sets of F. Let Jo JF. 
We shall represent (as we may) j by a triple (L, C, 8,) with L an F-stable 
Levi subgroup of an F-stable parabolic subgroup P of G, with FC, = C, 
and with F*c,?~ M &?I. We shall choose an isomorphism 4j: F*cTl r &?I which 
induces a map of finite order on the stalk of &‘I at any F,-rational point of 
Cr. This induces an isomorphism E*( 1 q &r) r 1 q Fr over S!‘““, C, and (as 
in (8.3.1)) an isomorphism 4: F*K,r Kj, where Kj is as in 24.1. 

We now consider i E IF such that 7(i) = j. Then we have F*Ai z A i and 
our next objective is to define a particular isomorphism dA,: F*A, r Ai. 

Let VA, = Hom(A,, Kj) be as in 10.1. It is an irreducible left 4-module 
(see 10.3) where 4= End(K,). Let 6w (WE W,= N(L)/L) be the canonical 
basis of &J considered in the proof of 10.9; it satisfies the identities 8,8,. = 
8,,,,,, and ~(0,) = tIF-~(wI where z: 4. + 4. is as in 10.4. From the definition of 
simple reflections in Y$ (see [4, 9.2(a)]) and from the fact that FP= P, we 
see that F-‘: q- Y’$ maps the set of simple reflections into itself, hence it 
is a Coxeter group automorphism of order, say, c, hence it defines a 
semidirect product (E/cZ) . q. For any isomorphism 4A,: F*A,7 Ai the 
corresponding map oai: V,, -+ VA, (see 10.4) is z-semilinear and bijective. 
Hence it is equal to a scalar i E 0: times the map defining the action of the 
standard generator of Z/cZ in the preferred extension (17.2) of V,, to a 
z/cZ. T-module. Replacing 4A, by a scalar multiple, we may achieve that 
c = 1. This defines our choice of an isomorphism #a,: F*A, 2i Ai. From the 
definition of preferred extension, it follows that with this choice of dA, we 
have 

Tr(&~A,j VA,) E Z and Tr( (B,o,,) ~ I, VA,) E Z for all w  E %$. (24.2.1) 

Having defined da,, we now define an isomorphism $: F*brb over C 
(where i= (C, 8)) by the requirement that: 

(24.2.2) Under (24.1.2), q(go+r)‘2$ corresponds to the map defined 
by 4A,: F*Xq(Ai) +Xao(Aj). (Here a,= -dim C-dim 2: and r= 
dim SUPP Ai). 
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We now define, for $I as in (242.2) a function Yi: Gc,, -+ Q, by 

if gECF 
if g $ CF. 

(24.2.3) 

We shall need the following property of I,!K E*&’ r d (in (24.2.2)). 

(24.2.4) For any g E C’, the map Jt: & -+ L?* is of finite order. 

For the proof, we shall introduce the varieties 

Zg,j= {XPE G/P 1 x-‘gXE Cl Up}, 

Zg,j= (xP E G/P 1 x-‘gx E Z;, Up}, 

so that Z,,j is open dense in Z,,j. We also define the local system % on Z,,j 
by the property that the inverse image of 9 under Z,j= 
{xEGI~-‘~~EC~U~}~Z~,~ ( x + xP), equals the inverse image of &I 
under Zg,j + C1 (x + C,-component of x-‘gx E C, UP). From the descrip- 
tion of Kj given in 2.2, we see that 3E”;(Kj) = H”(Z,j, D) where D is a cer- 
tain complex defined in terms of ZC( C1, & 1); using 23.1 for L, we see that 
K(C,, &,) is &I extended by 0 on C, - C1 and it follows that D=S[r] 
extended by 0 on Z,,j- Z,j (r as in (24.2.2)). It follows that H”(Z,j, D) = 
H;(Zg,j, T[r]) hence 

H”x( Kj) = H; + ‘( Z,j, 9). (24.2.5) 

The chosen isomorphism Fcgl ~8~ induces an isomorphism & P% 2 % 
such that for any z E Z,j with F’z = z, the map I,!?‘: %= 3 %z has finite order. 
From [4, 1.2(b)] we see that dim Z,,j < +(a0 + r). It follows that & acts on 
Hp+‘(Z,,+ %) as qcuo+rw2 times a map of finite order. Hence $ acts on 
A?p(Kj) as q(w+‘)/2 times a map of finite order. In the isomorphism (10.4.1) 
the map # on S:(Kj) corresponds to the map 4R, @ bR, on JPF(A~)@ VA,. 
It follows that tiAi acts on #:(A,) as q (oo+r)‘2 times a map of finite order, 
and (24.2.4) follows. 

An analogous proof gives the following statement. 

(24.2.6) Let I,V: Pb”r 8” be defined in terms of (L, Ci, Sl;), 4;: 
Pb’; 3 S;, ( = contragredient of 4j: F*& 3 8,) above) and (C, 8”) in the 
same way as JI was defined in terms of (L, C1 , &‘i), F*gl 2 &I and (C, 8). 
Then I/J’ is the contragredient of +. 

We shall also need the following statement. 

(24.2.7) The functions Yj (i E IF) (see 24.2.3) form a basis for the vector 
space Y of GF-invariant functions GF,, + Q,. 
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Let gEGE;,, let C be its G-conjugacy class and let r= Z( g)/Z’( g). The 
GF-orbits in CF are in l-l correspondence with the set r modulo the 
equivalence relation y - y ; ‘yF(y 1 ) (V y , E r). The G-equivariant irreducible 
local systems 6’ on C such that F*l z d are in l-l correspondence with the 
irreducible representations E of r for which there exists an isomorphism 
~1~: E -+ E with aEoy =F(y)* c(~ for all y E r. Moreover, the matrix 
(Tr(a,o y, E)), indexed by (y, E) (where y are representatives for the - 
classes on r and E are as above) is square and nonsingular. This implies 
that the functions Yi, where i E IF are of form (C, 8) with d variable, form 
a basis of the vector space of GF-invariant functions CF + Ql; the statement 
(24.2.7) follows. 

We now define for any i = (C , 8) E IF a function Xi E Y by 

X,(g)=~(-l)“f”aTr(~,,,~~Ai)q~(ao+r)’2, (24.2.8) 
a 

where ao, r are as in (24.2.2). 
From (24.2.7) we see that we can write uniquely 

xi = c Pi,,i Y,. , (Pi,,, E 0,). 
i’ E IF 

From (24.1.1), (24.1.2), (24.2.2), and (24.2.3) we have 

(24.2.9) 

Pc,i= 0 if i’ 4 i or if i’ - i, i’ # i. (24.2.10) 

PjJ= 1. (24.2.11) 

Let $,,: F*Ai.rA,. be defined as q(w+r’h-lo#;,oF*(h) where 
&,: F*DAi%DAi is the contragredient of dA,: F*AjrAi, h: Ai.rDAi is 
an isomorphism and P(h): F*Ai. rFrDAi is defined by h. Then $A,, is not 
necessarily equal to bA,. . We define zi;., yi E V by 

zj( g) = I(- l)a+ao Tr(JA,,, *;A;.) q-tuo+r)/2 (24.2.12) 
0 

if gECF 
if g$ C’; 

where $ is as in (24.2.2). 
We can again write 

where 

Br,, = 0 if i’ 4 i or if i’ - i, i’ # i 

(24.2.13) 

(24.2.14) 

(24.2.15) 
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and 
Pi,i = 1 by (24.2.6) and (24.1.2). (24.2.16) 

24.3. Consider the nonsingular bilinear form 

GK -n= c JTg)-ug) 
goG:n 

on ?Gr. 
Let 

A,$ = ( Yi, Bc). (24.3.1) 

Then 
A,$ = 0 unless i - i’. (24.3.2) 

Since ( Yi) is a basis of V (24.2.7) and similarly ( Fi) is a basis of “Y-, we 
see that 

(24.3.3) the matrix (Ai,i.)(i,i.)E Rx R is nonsingular for any equivalence 
class R (for N ) in I. 

Now let i, i’ E ZF be such that z(i) = r(i’) = j= (L, C1, gI). 
For each ~E%$=N(L)/L, let L” =zLz-’ where z-IF(z) is a represen- 

tative for w- ’ in N(L) and let 

qi. = ITI -’ 1 Tr((~,a,,)-‘, vAi) 
wcw, 

x Wew~A,.y b,.) m q lGFl -dimGq-(ao+ab)p 
7 

LW 
(24.3.4) 

where a, = -dim C - dim ?E’:, ah = -dim C-dim 2: and 8,, IJ,+, aA, 
are as in 24.2. Using (24.2.1) we see that 

w(,i = wi i is a rational number (24.3.5) 

If i, i’ are such that z(i) # r(i’) we set wi,? = 0. 
We can now write the orthogonality relations (10.9.1) in the form 

(Xi, ii$) = wi,i (i, i’ E IF). (24.3.6) 

We note that the assumptions of (10.9.1) are satisfied, by Theorem 23.1. 
We can now state the following result which extends results of Shoji 

[28] and Beynon-Spaltenstein [20]. 

THEOREM 24.4. Recall that G is subject to the restriction (23.0.1). 

(a) Pi.,i = Pi.,, and Iz,.,i = Ai,? for all i’, i. 
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(b) (Pr,i, Ai’,i) is the unique solution of the system of equations 

1 pi;,il pi&izAi;,i; = oil,i* Vi,, i,EIF 
i;,i;E IF 

PQ = 1 ViEZF 

P;,,i = 0 if i’ 4 iorifi’-i,i’#i 

Ar,i = 0 if i’ + i. 

(c) Pf,i and Ar,i are rational numbers for all i’, i 

(d) P,p,i and AiG.i are zero if z(i’) # t(i). 

(24.4.1) 

Remark. We say that ie I is uniform if z(i) = (T, {e}, e,) where T is a 
maximal torus of G. In [28,20] it is proved (assuming good characteristic) 
that Pif,i for i’, i uniform are determined by equations like (24.4.1) and that 
P2,i = 0 if i is uniform and i’ is not uniform. Note that in our theorem i’, i 
are not necessarily uniform and that the characteristic is only subject to 
(23.0.1), in particular, for classical groups we allow p = 2. Moreover, in 
[28,20] the ili,,j are assumed to be known in advance, while in our 
approach they are determined automatically by (24.4.1). 

ProoJ From (24.3.6), (24.2.14), (24.2.9), (24.3.1) we have 

for all ir, i, EZF. (24.4.2) 

Consider for any integer 6 the following two statements. 

(Ad) If i’ = (C’, 8’) E I”, dim C’ < 6 and ie I”, then P,,%i = PC., is a 
rational number and it is zero unless t(i) = s(i’). 

(BB) If i’= (C’, 8’) E Z”, dim C’d 6 and ielF, then AiS,, = ;l,,< is a 
rational number and it is zero unless z(i) = s(i’). 

It is clear that (Ad), (B,) are true for 6 < 0. We now show that 

If 6 80 and (A,-,), (Bd) are true, then (A,) is true. (24.4.3 ) 

Let i’ = (C’, B’) E I”, dim C’ = 6, i E ZF. We may assume that i’ < i. We 
write Eq. (24.4.2) for i, = a - i’, i2 = i. We may restrict the sum to those 
i’, , i; for which i’, - ii, see (24.3.2). We get 

(24.4.4) 

We also write Eq. (24.4.2) for il = i, i, = a - i’. 

(24.4.5) 
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Using (Ah- 1), (B6- ,), and (24.3.5), we see that the right-hand sides of 
(24.4.4) and (24.4.5) are the same. Hence the left-hand sides are also the 
same. Using (Bg) we see that 

1 (P,;,, - H,J A,& = 0. 
ii . f’ 

This holds for all a N i’. 
Now, using (24.3.3) we see that P,;,i = B+ for all i; N i’. 
Using (A,- ,), (BgP1), and (24.3.5) we see that the right-hand side of 

(24.4.5) is a rational number. Hence &-iPQi;,, is a rational number. 
Using (24.3.3) and (BS) it follows that Pi;,i IS a rational number for all 
ii - i’. 

Assume now that t(i) #z(i’), and that a in (24.4.5) satisfies z(a)=z(i’). 
From (A,-,), (Bd-,), and the equality o~,~=O, we see that the right- 

hand side of (24.4.5) is zero. According to (BB), the matrix (24.3.3) consists 
of diagonal blocks according to the libres of r. Hence each of these 
diagonal blocks is invertible. It follows that P+= 0 for all ii-i’, 
z(i;) = z(i’) and in particular that Pr,i = 0. Thus (24.4.3) is proved. We now 
show that 

ZfS>O and (AdM1), (B,-,) are true, then (B,) is true. (24.4.6) 

Let i’ = (C’, &“) E Z”, dim C’ = 6. i E IF, i’ - i. 
We write Eq. (24.4.2) with i, = i’, i2 = i. We may restrict the sum to the 

ii, ii such that ii - i; ; see (24.3.2). We get 

li,,i = of,i - 1 P+ B,&&. 
i’ < i’ I 
i; < i 

(24.4.7) 

Using (Ad- r), (B,- I ), and (24.3.5) we see that the right-hand side of 
(24.4.7) is a rational number and is symmetric in i, i’. 

When T(i’)#z(i), we see from (A,_,), (Bs-r), and the vanishing of Wi,.i 
that the right-hand side of (24.4.7) is zero. Thus (24.4.6) is proved. 

From (24.4.3) and (24.4.6) we see by induction on 6 that (Ad), (B,) are 
true for all 6. Thus (a), (c), (d) are proved. 

The previous proof show also that (b) holds. This completes the proof. 

24.5. We now fix i = (C, 8) E ZF and we consider the restriction of 
&‘“(AJ to a unipotent class C’, C’ c C. This a local system on C’ which 
can be decomposed as @,.(E;.. 8 S’), where 8’ runs over all irreducible G- 
equivariant local systems on C’ and Es. are finite-dimensional orvector 
spaces. Let 8’ be such that F*b’ x 8’ and let l/lb, : F*b’ 3 8’ be defined as 
in (24.2.2). Then there is a unique isomorphism rr8, : E;. r Es, such that 
#Ai: PA, 1 C’ r Ai 1 C’ restricted to Es. 8 I’ is eb, 8 tie,. For each 1 E @* 
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let E>? be the A-generalized eigenspace of a#, on E;,. We then have for any 
g’ E CF the equality 

X(-l)“‘” Tr(#A,, #f,Ai) q-cao+r)‘z = Tr(t(ig,, S;,) dim(E>!) ’ A, 
(1 

& 

F’B’x8 

where aO, r are defined in terms of i as in (24.2.2). Hence 

Pi,,i = 1 ( - 1)” + “‘Jlq - coo + ‘)/* dim E‘$, 
a.l 

(24.51) 

where i’ = (C’, 8’) E IF. By a general result on eigenvalues of Frobenius, 
applied to dA,q- (oo+r)‘2: Z’*ZC(C, &‘) -+ ZC(c, 67) the numbers 1q-(no+r”2 
must be algebraic integers. Hence Pr,i is an algebraic integer. It is also a 
rational number (24.4(c)). Hence 

P,,,i is an integer. (24.5.2) 

PROPOSITION 24.6. Assume that the characteristic of k is goodfor G. Let 
C be a unipotent class in G and let 8 be an irreducible G-equivariant local 
system on C. Let q5: F*Q 2 d be an isomorphism which induces the identity 
map on the stalk of 8 at some point of CF. Then for any gE c’, 
4: %;ZC(C, B)3 is a-pure in the following sense: its eigenvalues are 
algebraic numbers all of whose complex conjugates have absolute value qa12. 

Proof. In the case where i = (C, 8) is uniform (see the remark after 
Theorem 24.4), this is equivalent to a result of Springer [32]. Our proof, 
which is based on Deligne’s theory, is very close to the proof [21] of the 
analogous statement for Schubert varieties. We shall replace G by its Lie 
algebra g, C by the corresponding nilpotent orbit c, g by an element x E c”; 
we shall regard d as a local system on c. As in [32], we use the following 
result of Spaltenstein [30]: there exists a l-parameter subgroup A: k* + G 
and a linear subspace Cc g such that 

Ad(ll(t))x= t-=x with c>O 

Ad J(t) stabilizes C and its weights on 2 are of form t(t) = tb, b > 0. 

dim 2 = dim Z,(x). 

We may also assume that A, .E, and the weights in E are defined over Fg. 
Then S = x + C is a transversal slice in g to the G-orbit of x; hence S n C 

is a transversal slice in c to the G-orbit of x. It is then enough to show that 
4: Xf:ZC(S n i!, S)D is a-pure for all a. For any x’ E (S n Z)‘; x’ # x, the G- 
orbit of x’ has strictly bigger dimension than the G-orbit of x and 
#;.ZC(S n i?, 8) = %?$ZC(C, a), hence we may assume by induction that 
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4: &‘$ZC(S n i?, &‘)a is u-pure for all a. We may also assume that x +! c. 
Consider the action p of k* on S defined by p(t)(y) = tc Ad(l(t)y). If we 
regard S as a k-vector space (with origin at x) then the action p is linear 
with weights t + tb+c, b+ c>O. Moreover SnL, S nc are p-stable and 
8 1 S A c is equivariant for this action of k*. Then the desired conclusion 
follows from the following statement. 

(24.6.1) Let Y, be a smooth irreducible locally closed F,-subvariety of k” 
invariant under the k*-action 

(z ‘)...) z,) + (jlU’z, )...) 120”Zn), where a, > O,..., a,, > 0, 

and let Y = 9,. Assume that 0 4 Y,. Let 8, be a local system on Y1 
equivariant under this k*-action, defined over cq and pure of weight 0. 

Assume that for all y’ E YF - 0, 4, : S;.ZC( Y, S)\3 is a-pure. 
Then I$~ : S;ZC( Y, &)a is a-pure. 

When 8 = &, this is just [21,4.5(b)], where it is deduced from the hard 
Lefschetz theorem of Deligne. The same proof applies when 8 # Ql. 

24.7. In this section, k is an arbitrary algebraically closed field. 
Let i=(C,&‘)EZ, i’=(C’,&)EZ, and let j=z(i)=(L,C,,gI), 

a, = -dim C - dim 3!‘:, T = N( L)/L, ?FL = lattice of l-parameter sub- 
groups of 9; (regarded as a *module). 

We shall define Bi,i, E Q(q) (q an indeterminate), as follows. 
If T(i’) # z(i), we set Qi,< = 0. 
If t(i’) = z(i), we set 

a,,? = 19+J -’ 1 Tr(8;‘, I’,+) Tr(8,, V,,.)(q - l)b det(q -w, 3%)’ 
w  E w, 

xpl q l(y) (I/l)(dimC+dimC’-dimG-b++dimtT$ 
3 

Yew 

where b = rank G and V,,, VAi., 8, are as in 24.2. 
It is clear that 52i,i. = a,.,,. We can now state the following result which 

extends results of Shoji [28] and Beynon-Spaltenstein [20]. 

THE!OREM 24.8. Assume that k is any algebraically closed field whose 
characteristic is good for G. 

(a) For any i=(C,b)EZ we have #“Ai= if a&dimsuppAi 
(mod 2) and &‘“ZC( C, 8) = 0 if a is odd. 
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(b) The system of equations 

C ni;.i,n,;,izni;,i2=S2il,i2’ Vb, hEI. 

ii < iI 

ii Q i2 

A +; = 0 if ii + i; 

LTjj = 1 (24.8.1) 

n,,,; = 0 if i’ - i, i’ # i 

with unknowns ZZr,; (i’ d i), A<.; (i’ - i) E Q(q) has a unique solution. We have 

zz,.,;=c (8’: YP+?4; ( C’)q” 

= ; (8’: 2P”ZC( c, &) 1 C)q” (24.8.2) 
m 

where i’ = (C’, a’), i = (C, 8). 

(c) We have 

zz;~,; = 0 and n~,i=oift(i’)#t(i). 

(d) I7r.;, Ai’,;, Qr,i are polynomials in q. 

Proof. By general principles, we may assume that k is the algebraic 
closure of the finite field F,. We consider an Fq-rational structure on G 
with Frobenius map F such that F acts trivially on Z and such that there 
exists a maximal torus of G which is F,-split. We shall also consider for 
each s = 1, 2,..., the F<rational structure on G with Frobenius map FS. It is 
clear that CO;,;, defined in (24.3.4) with respect to F is just the value of Q,,,. 
at 9’. Hence the system of equations (24.4.1) (with respect to FS) is just the 
system of equations obtained from (24.8.1) by specializing q = q’. The 
inductive method used to solve (24.4.1) can be also applied to (24.8.1) and 
it leads to a set of solutions ZZ,,,;, Ai,,i which are rational functions of q 
without pole at q = qS (s = 1,2,...). Moreover, we automatically have 
IZ,;(q’) = Pi,,; (with respect to FS) and Ac,;(qS) = ;li,,i (with respect to F’). By 
(24.5.2), Z7i,i(qS) is an integer for s= 1, 2 ,..., hence Z7<,; must be a 
polynomial in q. By 24.4(c), Af,; (with respect to FS) is a rational number 
and from the definition (24.3.1) it is an algebraic integer; hence it is an 
integer. It follows that ,4?,; is a polynomial in q. From (24.8.1) it now 
follows that Q,.,, are polynomials in q, hence (d). 

We now prove (24.8.2). The second equality in (24.8.2) follows from 
(24.1.1) hence it is enough to show that 

Pr,(q”) = c (8’: Sf2m+‘rO‘4; 1 C’) qms, 
??I21 
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where i = (C, &), i’ = (C’, 8’). (We write PT,i(q”) for Pc,i with respect to F.) 
Let j= t(i) = (L, C1, &i), dAi: FCA,r Ai be as in 24.2. From (24.1.1) we see 
that <i(Ai) = Xi-mZC(C, B) for any gE C and any a, where 
a, = -dim C-dim %Di. From 24.6 it follows that there exists an 
isomorphism 0: F*ZC(C, b) r ZC(C, b) such that @: X;-mZC(C, ,$);3 is 
(a - a&pure (see 24.6) for all g E CF and all a. 

Now by (24.1.1), bAi defines also an isomorphism F*ZC(C, B)r 
ZC(C, 8). By irreducibility of ZC(C, b), there must exist a E QI such that 
p;;;: Jty”oZC(C, S)D f or all g E C” and all a. Using (24.2.2) and 

** , we see that a@: czZC(C, a);3 is (a, + r)-pure (g E C”, 
r = dim supp Ai). Since #iZC(C, B) # 0 for g E CF and @ is O-pure on it, 
we deduce that a is an algebraic number all of whose complex conjugates 
have absolute value q (ao+r)/2. It follows that 

4A,: %,OA,3 is (a + r)-pure for all g E CF and all a. (24.8.3) 

Let us write the equality (24.5.1) for F instead of F, 

pi*,i(@) = C ( - l) 
0 + WllSq- (s/2)(W + r) dim ,$ (24.8.4) 

4. 

By (24.8.3) u in the sum is uniquely determined by A; hence there are no 
cancellations in the right-hand side of (24.8.4). On the other hand, as we 
have seen, P,,,t(q”) is a polynomial in q”. Since a,, + r is even, it follows that 
each II appearmg in (24.8.4) must be an integral power of q and in fact, by 
(24.8.3), must be of form qca+‘)j2 with a + r even. Thus, we have 

and %i(Ai) = 0 if a & r (mod 2). This completes the proof of (a) and (b). 
Now (c) follows immediately from 24.4(d). The theorem is proved. 

Remark 24.9. Solving the system of equation (24.8.1) is the same as 
decomposing the symmetric matrix (Sz,,.) into a product of matrices 
‘Z7. A. Zi’ where 17, A are block-matrices (with blocks defined by the 
equivalence classes for - on I) and we want that: ZZ has an identity matrix 
in each diagonal block and 0 in each block below diagonal, A has 0 in each 
off-diagonal block. 

24.10. From 24.8 we see that the polynomials ZZ,.,i and Ai,,i can be 
explicitly computed (by induction as in (24.4.5), (24.4.7)) as soon as the 
polynomials Q2,:, are known. The polynomials 8f,i are completely deter- 
mined as soon as the generalized Springer correspondence has been 
explicitly determined. The generalized Springer correspondence has been 
described explicitly in [7, 26, 27, 19, 29, 4, 25, 311 except for two small 
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gaps. One gap occurs for type E, in characteristic 2 which has in any case 
been excluded by (23.0.1). The other gap occurs for G almost simple simply 
connected of type E, in characteristic # 3 and j = (L, Cr , 8,) where L/TO, is 
of type A2 x A,, C1 is the regular unipotent class of L and 8, is one of the 
two nontrivial L-equivariant local systems of rank 1 on C1. 

We wish to till the gap in this case, assuming that the characteristic is 
# 2, 3. (The case of characteristic 2 is excluded by (23.0.1).) 

For our j, the set rP ‘(j) consists of six elements of form (C, 8) where d 
is uniquely determined by C. We shall therefore designate these six 
elements by the corresponding notation for C. They are (with the notation 
of [31]): E6, E6(al), AsAl, A,, 2A,AI, 2A, (in decreasing order of dim C). 
The group 9$= N(L)/L is a Weyl group of type GZ. The generalized 
Springer correspondence attaches to each element of z-‘(j) an irreducible 
representation of q. According to Spaltenstein [3 11, to E, corresponds 
the unit representation of Y$, to 2A, corresponds the sign representation of 
q and to E,(a,), 2A,A, correspond the other 2 one-dimensional represen- 
tations of ?Y$ (the precise correspondence is given in [ 3 11). Then A, A r and 
AS must correspond to the 2 two-dimensional irreducible representations 
p, p’ of Y+$ (where p is the reflection representation) but the methods of 
[3 1 ] are insufficient to decide which of A, A,, A5 corresponds to p and 
which one corresponds to p’. We can show that 

A, corresponds to p and A, A 1 corresponds to p’. (24.10.1) 

The method to prove this is as follows. Assume that the opposite is true: A, 
corresponds to p’ and A5 A, corresponds to p. We can then use the 
algorithm (24.4.5), (24.4.7) to compute explicitly the polynomials LL;‘,iT ni’,i, 
i’, iEr-‘(j). F or i’ = i= element denoted E,, we find that Ar,i is a 
polynomial in q whose value at q = q does not agree with the value If,i 
given by (24.3.1): the value of Ir,i is the number of I;b-rational points of C 
(i = (C, a)), for G defined over F,, while ACsi(q) is strictly bigger than this 
number. This contradiction shows that (24.10.1) holds. We see in this way 
that, in our case, the polynomials ZZ?,, are described by the entries in the 
following table in which the rows (resp. columns) are indexed by the 
elements JET-l(j) (resp. by i/ET-‘(j)) 

E6 &(a,) AsA, A5 2A,A, 2A2 

ES 
Eda,) 

AsA, 

A5 
2Az-41 

2Az 

1 0 

1 

0 

4 

1 

4’ 

4 

1 
1 

@ 

0 

q5 

q3 
1 

q6 

q8 

q5 + 4’ 

q’+q’ 
1 

1 
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One can show that the gaps in the explicit determination of the 
generalized Springer correspondence in the remaining cases (Es, p = 2) and 
(E6, p = 2) can be removed in the same way provided that 24.4 holds in 
those cases. 

COROLLARY 24.11. Assume that the characteristic of k is good for G. 
Then for any character sheaf A of G, we have #“A = 0 if a & dim supp A 
(mod 2). 

Proof: Let K be as in (8.1.2); since A may be taken to be a direct sum- 
mand of K, it is enough to show that for any g E supp K, A?;K= 0 if 
a & dim supp K (mod 2). Using (8.8.5) (in which 6 is even), for g= su 
(Jordan decomposition) we are reduced to the analogous statement with G 
replaced by Z:(s) and g replaced by u. Thus, we may assume that g is 
unipotent. Then supp K contains some unipotent element hence the data 
(8.1.1) defining K must be L, ,E, b, where 2 = C, . %““, and C, is a unipotent 
class of L. Moreover, the restriction of K to the unipotent variety of 
G depends only on the restriction of d to Cr. Hence we may assume 
that d is the inverse image under Cr. 3: + C, of a G-equivariant local 
system on Cr. In this case, K is a direct sum of character sheaves Ai (iE I) 
as in 24.1 (with the same support as K) and the equality S’“K= 0 for 
a & dim supp K (mod 2) follows from 24.8(a). 

COROLLARY 24.12. Assume that the characteristic of k is goodfor G. Let 
KEY and let WE W,. Then s$‘~R~=O ifa is odd. 

ProoJ: We have Kz = ei PHiEz[ - i] hence it is enough to show that 
XuPi( Pti\Y) = 0 if a is odd. Now “H’Kw is a direct sum of character 
sheaves A such that dim supp A= i (mod 2) (by the parity condition 
sA = iA ; see 23.1) hence we are reduced to the statement that Xupi(A) = 0 
if a is odd and dim supp A E i (mod 2). But this is just 24.11. 

25. CLASS FUNCTIONS ON A REDUCTIVE GROUP OVER A Fmr-rn FIELD 

25.1. In this section, we assume that k = Fqb, that G is defined over 
F, and that F: G + G is the corresponding Frobenius map. We shall 
assume throughout this chapter that G satisfies the restriction (23.0.1). Let 
&F,) be the subset of 6 consisting of those character sheaves A for which 
there exists an isomorphism E*A z$ A. We shall select for each A E C?(F,) an 
isomorphism dA: FCA r A with the following property: for any YE YcL,z) - 
(where supp A = YCL,=), see 3.11) such that Py = y, the eigenvalues of 
4; : #F~A + SL~A (d = dim supp A) are of the form qn(dimG-dd)/2 times a 
root of 1. (The existence of such tiA follows from 14.2(a).) 
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THEOREM 25.2. The characteristic functions xA,+” : GF + 0, defined by 

xa,,,d g) = c ( - 1)” W4Ay x;A h geGF, (25.2.1) 

form a basis for the space of all class functions GF -+ Ql. 

25.3. For the proof, we shall need a lemma. Before stating it, we 
recall some earlier notation. We denote by G,, the set of unipotent 
elements in G. Assume that we are given a Levi subgroup L of some 
parabolic subgroup of G, a unipotent class C of L and an L-equivariant 
irreducible local system B on C such that (a”, x C, 1 q 9) is a cuspidal 
pair for L in the sense of [4,2.4]. Assume that FL = L and that we are 
given an isomorphism d1 : F*% s 9. Then the generalized Green function 
e . Gf, + &, is well defined, see (83.1). L.G,C,F,h . 

LEMMA 25.4. The functions QL,c.c,9,B, (for various L, C, 9, d1 as in 
25.3) span the space V of GF-invariant functions Gf;;, -+ Q,. 

Proof: Let C’ be a unipotent class in G such that FC’ = C’ and let b’ be 
an irreducible G-equivariant local system on C’ such that F*d’% 8’. We 
choose an isomorphism Ic/: F*b’ 3 b’ and we define two functions fc,ss, 
h c’,If on GL by 

&,A g) = 
C( - 1)” Tr(tj, S?;ZC(C’, a’)) if gECtF 
0 if g # PF’ 

It is clear that these functions are in “Y-, that fc,%, (for various C’, 6’, as 
above) span V and that h,S,,S = +Jcf.%, + a linear combination of functions 
f with C” $j c’. By induction on dim C’ we 
lizi; combination of functions of form hc %,. 

see that each fc,%, is a 
Hence the functions hc,,, 

also span V. Let i = (C’, S’) E Z (see 24.1) for C’, B’ as above, and let A i be 
as in (24.1.1). Then there exists 4: F*A,r Ai. From (24.1.1) we see that the 
restriction of xA,,) to Gc” is equal up to a scalar factor to h,S.,S. Hence the 
functions xa,,+ ( Gf, (ie ZF) span Y. From (10.4.5) and (10.6.1) we see that 
each such function xa,,, 1 GE, is a linear combination of generalized Green 
functions. Hence the generalized Green functions span V, as required. 

25.5. Proof of Theorem 25.2. From the orthogonality relations 
(10.81) we see that the functions (25.2.1) are linearly independent. (The 
assumptions of 10.8 are verified by 23.1.) It remains to check that the 
functions (25.2.1) span the space of all class functions on CF. First, we 
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assume that G has simply connected derived group. We fix a semisimple 
element so E CF. Its centralizer Z&V,) is connected. Let L, be the Levi sub- 
group of a parabolic subgroup of Z,(s,) such that FL, = L,. Let Cr be a 
unipotent class of L, such that FC1 = Ci and let &I be an L,-equivariant 
irreducible local system on C1 with a given isomorphism #1 : E*& 3 &r . 

Let L = Z&P&). This is the Levi subgroup of a parabolic subgroup of G 
and FL = L. Let C be the unique conjugacy class of L containing soC1 and 
let C = 9’:. C’; then Fe = C, FC = Z: Let & be an L-equivariant irreducible 
local system on C such that the inverse image of &?I under C1 + C (U + sou) 
is isomorphic to 8,. Then & is unique up to isomorphism and there 
is a unique isomorphism Jr : F*c$ 7 8, such that Tr(J,, (&‘,),,,) = 
Tr(h, (4L,), for any u1 E Cf: 

Let 8: S”,‘+ &’ be a character. Then there exists a tame local system 9P 
of rank 1 on 9; and an isomorphism IJ?‘: F*93’$ Se such that 
Tr(tie, 9:) = O(z) for all z E .9’FF. 

Let rc: Tt x C + z be the map given by multiplication in L. We set de = 
“*(‘Se N gl). This is a local system on ,E which inherits from 1+9~ •I 6, an 
isomorphism $“: P6’r 6”. 

Let P be the perverse sheaf on G defined in terms of (L, Z, ife) in the 
same way as K was defined in (8.1.2) in terms of (L, Z, 8); let 
$1 F”P r ti be the isomorphism defined in terms of 6” in the same way 
as 4 was defined in (8.1.3) in terms of do. Let r1 = {z E 9; 1 zso is L-con- 
jugate to so}; it is a subgroup of 9 “,. We assume that 8 1 rr= 1 and we 
compute the characteristic function x~p,~: GF + 8, (using 8.5) at any 
element su E GF where s is semisimple and u E SF&) is unipotent. 

We then take the sum over all characters 8: %““,” + Q* such that 
81rr-1 andwelind 

c xK?&4 
e 

Let us define for 
is invariant under 
requirement that 

if s is not GF-conjugate to so 

any function f: {u E Z,(S,)~ 1 u unipotent} + 0, which 
Z,(s)F-conjugacy a class function f: GF -+ Q, by the 

-(f(u) if s = so 
if s is not GF-conjugate to so 

(s semisimple in GF, u E Z,(S)~ unipotent). Then 

P‘TFl -l c XKo,$ =JI 
e 

(25.51) 
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where 

f(o)= e ~,,ZG(SO),C,,B,,~,(o). (25.5.2) 

The left-hand side of (255.1) is clearly contained in the Q,-vector space M 
spanned by all functions (25.2.1), hence so is x By 25.4 applied to Z,(Q), 
the functions f in (25.5.2) span the space of all Z,(s,)F-invariant functions 
on unipotent elements in Z,(S~)~. Hence the corresponding functions f 
span the space of all GF-invariant functions on GF which are supported on 
elements with semisimple part conjugate to sO. It follows that all such 
functions are in M. Since s,, was arbitrary, we see that M is the space of all 
class functions on CF. 

We now drop the assumption that G has simply connected derived sub- 
group. We can find a connected reductive group G’ over F,, with simply 
connected derived subgroup, and a surjective homomorphism a: G’ + G 
defined over Fq whose kernel is a central torus T1 c G’. 

Then a defines a surjective homomorphism GIF-+ CF. Hence for any 
class function f: GF + Q, there exists a class function f ‘: G’F -+ Q, which is 
constant on the cosets of Tr in G’F, and is such that 

f(g)= ,,& f'(d) for ail gE CF. (25.5.3) 

ag’)=g 

By the earlier part of the proof, the function f' is a linear combination 
f'=C A, c~,x~,,)~, where the functions x~,,~~, : GIF + Q, (A’ E G’(F,)), are 
defined as in (25.2.1) for G’ instead of G. Using (25.5.3) we have 

f(s) =I C.4' 1 XA',).Jd). 
A’ g' E GrF a(g'j=g 

It remains to show that for each A’ E d’(F,,), the function on GF 

g-, 1 XA’,&‘( g’) (25.5.4) 
g’ E GsF 
dg’)=g 

is a linear combination of functions of form (25.2.1). Given A’ as above, 
there exists a tame local system 9, of rank 1 on T, and an isomorphism 
II/: Fry, r Y1 with the properties (a), (b), (c) below. Let 8: Tr -+ &: be the 
character defined by O(t) = Tr(ll/, (6c;),). Then 

ta) xA’,& (rg’) = O(t) XA,,BA,( g’) for all g’ E GIF and all t E Tr. 

(b) P’i z Ql if and only if 0 = 1. 
(c) If 9i c Q,, then there exists a unique A E G(F,) such that 

A’=a*A. 
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First, assume that Zi a? Ql. Then 8 + 1 and using (a), we see that the 
function (25.5.4) is identically zero. Assume next that LYE w  Q, and let A be 
as in (c). Then the function (25.5.4) is a multiple of xA,)“: GF+ 0,. This 
completes the proof. 

THEDREM 25.6. Let AE@F~), dA: F*Ar A be as in 25.1. Let 4; : 
FCDA r DA be the contragredient isomorphism, and let I& = qdi”G-d4,“, 
(d = dim supp A = dim supp DA). Then 

(a) Xa,(l( g) is a cyclotomic integer for any g E G’. 

(b) xDA.+;(g) = xAJg) (gE GF), where the bar denotes the 
automorphism of the maximal cyclotomic subfield of QI which maps each 
root of 1 to its inverse. 

Proof: It is known on general grounds that X&g) is an algebraic 
integer, hence in (a) it is enough to show that X+,“(g) belongs to some 
cyclotomic field. 

Let K, 4 be defined in terms of (L, 2, B, QO) as in (8.1.3) such that &, 
induces maps of finite order on the stalks of I at rational points of C; let 
R, 4’ be defined similarly in terms of (L, ,E, d ” ,4,-J’ ). Using (10.4.5), we see 
that (a), (b) would follow from the following statement: 

(25.6.1) For any g E G”, xK,+( g) belongs to a cyclotomic field and 
xfc,dg) = XK,(( g)- 

(In (10.4.5), we may assume that 8, are chosen so that 0,,,0# induces 
maps of finite order on the stalks of &’ at rational points of Z. In (10.4.4), 
for g E Y&, the map e,,,ob on .%‘LK corresponds to the map #,@ (e,o,) 
on &‘:(A)@ V,. Hence O,,,gA: V;, + VA is q-CdimG-ddU2 times a map of 
finite order.) 

Now let (L, C, 9, dl) be as in (8.3.1) and assume that & induces a map 
of finite order on the stalks of 9 at rational points of C. Using 8.5, we see 
that (25.6.1) is a consequence of the following statement: 

(25.6.2) For any g E G&, QL,c,Fp.s,( g) belongs to a cyclotomic field and 
Q ~.c,~~,~;(g)=Q~,c,sc,c,(g). 

Using now ( 10.4.2), we can express Q L,,-S,),( g) in terms of the functions 
Xi (ie IF) in (24.2.8) and we see that (25.6.2) is a consequence of the 
following statement: 

(25.6.3) For any g E Gf” and any iE Z”, Xj( g) belongs to a cyclotomic 
field, Ri( g) belongs to a cyclotomic field and Ti( g) = X,(g). 

(Here, fi is as in (24.2.12).) Now, using (24.2.9) and (24.2.14) we see 
that (25.6.3) is a consequence of the following two statements: 
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(25.6.4) For any g E Cc,,‘,, and any i E Z”, Yi( g) belongs to a cyclotomic 
field and yi( g) = Yi( g). 

(25.6.5) For any i’, i E Z’; Pg,j = P,.,, is a rational number. 

Statement (25.6.4) is obvious from definitions (24.2.3), (24.2.13) of 
Y,, Fi. 

Statement (25.6.5) is contained in 24.4(a) and (c). This completes the 
proof of the theorem. 

COROLLARY 25.7. Let A, A’ E 6(Fq), 4,,, : F*A r A, bAs : F*A’ r A’ be as 
in 25.1. We have 

lGFl - ' c x/i,d 8) x/r.qt,A 8) = 
0 if A#A’ 

gsGF 
1 if A=A’. 

(This should be understood as follows: we assume given a set of 
representatives of the isomorphism classes of character sheaves A such that 
F*A z A and for each A in this set we assume given #A as in 25.1. Then 
A, A’ in the corollary are assumed to be in this set. Hence we have A z A’ if 
and only if A = A’ and then dA = tiAs.) 

Proof: This follows immediately from 10.8 and 25.6. 
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