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This paper is an attempt to construct a geometric theory of characters of a
reductive algebraic group G defined over an algebraically closed field. We
are seeking a theory which is as close as possible to the theory of irreducible
(complex) characters of the corresponding groups G(F,) over a finite field F,
and yet it should have a meaning over algebraically closed fields.

The basic objects in the theory are certain irreducible (/-adic) perverse
sheaves (in the sense of [1]) on G; they are the analogues of the irreducible
(l-adic) representations of G(F,) and are called the character sheaves of G.
The definition of character sheaves is suggested by the following result |3,
Corollary 7.7]: any irreducible representation of G(F,) appears in at least
one of the virtual representations R%(w), defined by Deligne and Lusztig in
[3, 1.9].

The virtual representations R®(w) have a geometric analogue K, (here w
is an element in the Weyl group and & is a “tame” local system of rank 1
on the maximal torus of G). We shall define here K only in the case where
& is the constant local system ¥, =Q,.

Let Y, be the variety of all pairs (g, B), where g is and element of G and
B is a Borel subgroup of G such that B, gBg ™' are in relative position w; let
m,: Y, — G be the morphism defined by 7,(g, B) = g. We define K2 to be
the direct image with compact support (r,,),Q,. Then, K* is an object in the
derived category of constructible /-adic sheaves on G. (The definition of K7
is given in 2.4.) The character sheaves of G are, by definition, those
irreducible perverse sheaves which are constituents of a perverse cohomology
sheaf PH/(K¥) for some i, w, .

We note the similarity of KZ° and R'(w): the virtual representation R '(w)
is defined as the alternating sum of the G(F,)-modules H:(X,,, Q,), where X,
is the variety of all Borel subgroups which are in relative position w with
their transform under the Frobenius map. (Thus, Y, is the analogue of X,,.)

Our objective in this paper and the ones following it is to classify the
character sheaves of G and to compute their cohomology sheaves.
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The paper is organized as follows: Section 1 collects some of the basic
results on perverse sheaves due to Beilinson—Bernstein—Deligne—Gabber [1].
Section 2 contains the definition of character sheaves. Apart from the
definition in terms of K we also give an equivalent definition in terms of
some compactification 7, of x,: Y, — G. This compactification (which is
analogous to the compactification [3, 9.10] of X)) is essential to apply the
deep results of [1,2]. In Sections 3 and 4 we study the restriction and
induction for character sheaves. (These are analogues of the familiar
operations on representations of G(F,).) As a consequence of Theorem 4.4,
the character sheaves of G are a special case of the “admissible complexes of
G” defined in [4]; we hope to show elsewhere that these two classes of
complexes on G coincide. Section 5 contains some technical preliminaries to
Section 6. The most difficult result of this paper is Theorem 6.9(a) which
asserts that the restriction functor carries a character sheaf to a direct sum of
character sheaves.

1. PERVERSE SHEAVES

1.1. The theory of perverse sheaves on algebraic varieties is due to
Beilinson, Bernstein, Deligne, and Gabber. The basic reference is [1].

We shall review here some of the theory.

1.2. Let k be an algebraically closed field. Unless otherwise specified, all
algebraic varieties will be over k.

We denote by ZX =25X,Q,) the bounded derived category of Q
(constructible) sheaves on X [1, 2.2.18]; here / is a fixed prime number such
that /=' € k and Q, is an algebraic closure of the field of l-adic numbers.

Objects of ZX are referred to as “complexes.” For a complex K € ZX,
we denote by #'K the ith cohomology sheaf of K (a Q,-sheaf on X); we
denote by DK € X the Verdier dual of K.

1.3. Let 2X<° be the full subcategory of ZX whose objects are those K
in 2X such that, for any integer i, #K has support of dimension < —i. (In
particular, we have #'K =0 for i > 0.)

Let 2X>° be the full subcategory of ZX whose objects are those K in
@X such that DK € 2X<° Let #X be the full subcategory of ZX whose
objects are those K in X such that K € 2X<° M 2X7°; the objects of A#X
are called perverse sheaves on X.

#X is an abelian category [1, 2.14, 1.3.6] in which all objects have finite
length |1, 4.3.1].
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1.4, The inclusion of ZX<° in 2X has a right adjoint ”z_, and the
inclusion of ZX>° in ZX has a left adjoint ”7,,, [1,2.2.11, 1.3.3(i)]: we
have natural morphisms ”z (K - K -7, K (K € ZX) and

Hom(d, P7_,B) = Hom(4, B) forall A€2X<", BeEZX
and
Hom(°r,,A’, B')=Hom(4',B")  forall A’ € DX, B' € X",

The functors “1,,%7.y, "1 0"750, (ZX—>ZX), are canonically
isomorphic [1, 1.3.5]. Hence, for any K € ZX, the complex P1,,°7 (K is a
perverse sheaf; it is denoted H°K.

The functor PH®: 2 X - _#X is a cohomological functor |1, 1.3.6}, i.e., for
any distinguished triangle (K,K’,K”) in £2X (notation of (1, 1.1.1]), the
corresponding sequence "H°K — PH°K’ - PH°K" is exact.

We define "H': ZX - #X by PH'K ="H°(K[i]), where [i] denotes
“decalage,” or shift. Then, it follows that for any distinguished triangle
(K,K',K") in 2 X we have a long exact sequence of perverse sheaves

~PH'K >?H'K' > P"H'K" > PH* 'K - ..

Moreover, for any K € Z X, we have PH'K =0 for all but a finite number of
integers I.

1.5. The irreducible objects of .#X can be described as follows |1, 4.3.1].

Let V' be a locally closed, smooth, irreducible subvariety of X, of
dimension d and let & be an irreducible Q,-local system on V. Then ¥|d] is
an ireducible perverse sheaf on V and there is a unique irreducible perverse

sheaf gﬁ on the closure ¥, whose restriction to V is #|d]; we have
£[d] =IC(V, £)[d], where IC(V,¥) is the intersection cohomology
complex of Deligne-Goresky—MacPherson of V with coefficients in <. The

extension of #’[d] to X (by O outside V) is an irreducible perverse sheaf on
X, and all irreducible perverse sheaves on X are obtained in this way.

1.6. Let X be a smooth irreducible variety of dimension d, and let
D,, D,,...,D, be smooth divisors with normal crossings in X. Let & be a
one-dimensional, Q,local system on the open subset X — (D, ---UD),),
such that the corresponding representation of the fundamental group factors
through a finite quotient of order invertible in k. The intersection complex
IC(X, &) can be represented in ZX as a single constructible Q,-sheaf & (in
degree 0). Let I, be the set of i € [1, r] such that the local monodromy of &
around D; is nontrivial. Then & restricted to the open subset X — Uxel D;is
a local system of rank 1 and < restricted to the closed subset U,E,OD is
zero. (These statements can be reduced to the special case where dim X = 1.)
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1.7. Let f: X—+Y be a morphism between the algebraic varieties X, Y.
Let f*: Y — 2X be the inverse image functor and let f;: ZX - ZY be the
direct image with compact support. They admit adjoint functors
[x: DX DY, DY > DX, for any A € DX, BE DY, we have:

(1.7.1) Hom(f*B,A)= Hom(B, fyA).

(1.7.2) Hom(f,4, B) = Hom(4, f'B).

(1.7.3) If fis proper, then f, = f,.

(1.74) If f is smooth with connected fibres of dimension d, then
S'=f*[2d)(d), where (d) denotes Tate twist; in this case, we set /' = f*[d].

(1.7.5) Let

f

‘

—
I3

N ——

be a cartesian diagram with f, f’ smooth with connected fibres of dimension
d. Then h,f=f'h|: DY > DZ.

1.8. Assume that f: X— Y is smooth, with connected fibres of dimen-

sion d. 5
Here are some properties of f (see (1.7.4)):

(1.8.1) If K€ ZY, then we have

KeEDY<'w fKEDXS,
KE9Y* ' o fKE DX,
KE A#Y < fKE AKX,
*HY(fK) = J("H'K).
(182) If Ke2r<’, K e€ZY>’, then Homg(K K')=
Hom@x(.ﬁ(s jK’)
(1.8.3) F:.#Y > #X is fully faithful.

(1.84) If KE€.#Y and K’ € #X is a subquotient of /K € #X, then
K’ is isomorphic to fK, for some K, € #7Y.

(The proofs are in [1, 4.2.5, 4.2.6].)

1.9. Let m: H X Y — Y be an action of a connected algebraic group H on
the variety Y. Let 7: H X Y — Y be the second projection. Both m and 7 are
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smooth morphisms with fibres isomorphic to H. Hence, if K € #Y, then
mK, 7K (see (1.7.4)) are perverse sheaves on H X Y. We say that K is H-
equivariant if WK, 7K are isomorphic as perverse sheaves on H X Y. (This is
equivalent to the definition in [4, Sect. 0].)

(1.9.1) If A€ .#Y is H-equivariant and B € #Y is a subquotient of
A, then B is again H-equivariant.

(Apply (1.84)to X=HXY,f=n K=A4, K' =mB. We see that there
exists CE.#Y such that #iB=7C. Restricting this equality to
{e} X Y© H X Y we get B=C. Hence riB =1B.)

(1.9.2) Let f:X— Y be an H-equivariant morphism, with respect to
actions of H on X and Y. If K € #X is H-equivariant, then *H'f,K is H-
equivariant for all i. If K' € #Y is H-equivariant, then "H'f*K' is H-
equivariant for all i. (The verification is left to the reader.)

(1.9.3) Assume that f: X > Y is as in (1.9.2), and that H acts freely on
X and trivially on Y. Assume furthermore, that for each y € Y, there is an
open neighborhood UcY, (U3 y), and an H-equivariant isomorphism
STHU)Y='HXU (H acts on HXU by h:(h’,u)— (hh',u)) such that
pryoi=f:f"'U—U. Then the following conditions for K €.#X are
equivalent.

(a) K is H-equivariant,
(b) K is isomorphic to f(K,), for some K, € #Y.

The implication (b) = (a) is trivial, (see (1.9.2). Assume now that K is
H-equivariant. Let d =dim H. According to [1,4.2.6], (b) is equivalent to
the statement that the canonical map K — fi (PH™“f K) is an isomorphism.
For this, we may assume that X=H X Y, f = pr,, and H acts on X by left
translation on the first factor. Let m,m: H X H X Y— H X Y be defined by
m(h, h', y)=(hh', y), n(h, h', y)=(h',y) and let i HX Y- HX Y X Y be
defined by i(h, y)=(h,e, y). By our assumption, m*K ~ n*K, hence
i*m*K ~ i*n*K or equivalently, K ~ f*j*K, where j: Y » H X Y is defined
by j(y)=(e, y). Let K,=j*K[—d| € 2Y. Then K =fK,. It remains to
show that K, €.#Y. This follows from (1.8.1), since we know that
K. €. #X.

1.10. Let X be an algebraic variety, let X’ be an open subset of X and let
X" be the complement of X’ in X. Let j/: X' < X, j": X" < X be the
natural inclusions. For any K € @ X, there is a canonical distinguished
triangle in ZX: (j{ j'*K, K, j' j”*K). Hence, if /: X > ¥ is a morphism, then
we have a canonical distinguished triangle (f,j{ j/*K, fiK, f,ji' j"*K) in 2Y.

1.11. Let n>1 be an integer invertible in k. Let u, = {x € k* | x" = 1}.
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Consider the principal fibration p,: k* - k* (x— x") with group x,. The
finite group 4, acts naturally on the direct image local system (p,)y Q;; we
denote by &, , the summand of (p,),Q, on which g, acts according to the
character y:u,— Q,. Then &, , is a Q local system of rank 1 on k*. The
following result is well known:

(I.1L.1) If m> 1 is an integer not divisible by n and if v is injective,
then Hi(k*, &®7) =0 for all i.

1.12. A complex K € 2 X is said to be split if X is isomorphic in ZX to
a direct sum P, PH'K|—i].

If K is split, then K[| is split for any j. If K’ € X is a direct summand
of K € ¥ X with K split, then K’ is split.

A complex K € ZX is said to be semisimple if it is split and each ?H'K is
a semisimple object of .#X. If K is semisimple and K' € ZX is a direct
summand of K, then K’ is semisimple.

2. DEFINITION OF CHARACTER SHEAVES.

2.1. Let G be a connected reductive algebraic group over k. We fix a
Borel subgroup B — G with unipotent radical U and a maximal torus T < B.

Let R < Hom(T, k*) be the set of roots and R < Hom(k*, T) the set of
coroots; the canonical bijection R & R is denoted a « a”.

Let R* be the set of positive roots determined by B and le¢e R~ =R —R ™.

Let W= NyT)/T be the Weyl group. An element w € W may be regarded
as an automorphism w: T T: w(t)=wtw™' (t€T). Here w € Ny4(T) is a
representative for w in N(T). Let S be the set of simple reflections in W
(defined by R*) and let /: W— N be the corresponding length function.

2.2. Let #(T) be the set of isomorphism classes of Q,-local systems of
rank 1 on T which are of the form A1*(&, ), (see 1.12), for some character
A € Hom(T, k*), some integer n> 1 invertible in k, and some imbedding
w: 4, < QF ; tensor product makes .¥(T) an abelian group.

We may (and shall) assume that y is the restriction to u, of a fixed
injective homomorphism : {group of roots of 1 in k*} < Q3, which is
independent of A and n.

The choice of 7 gives rise to a group isomorphisms A ® (1/n) —» A*&, ,

(2.2.1) Hom(T,k*)® (Q'/Z)x ¥ (T), where Q' ={m/n€Q|
meZ,neZ,n> 1 invertible in k}.

The Weyl group W operates on #(T) by w:¥ - (w=')*<&, where
(w~!)* denotes inverse image under w~':7T-T; it also operates on
Hom(T, k*) by w(d)(t) =A(w~'(¢)), t € T, A € Hom(T, k*). These actions
are compatible with (2.2.1).
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For & € #(T), we set
Wo=lweW|w H*L=¢).

(2.2.2) The following conditions on w € W and & = A*(&, ,) € ¥ (T)
are equivalent:

(a) The local system ¥ is T-equivariant for the action of Ton T
given by ty:t > w\(t) 1ty

(b) There exists a character A,€ Hom(T,k*) such that
w(d)=A174

(c) we Wwl,.

2.3. For ¥ € #(T) we define
Ro={a€R|r,e W, ={a€R|{a",A)=0 (mod n)}

where r, is the reflection in W corresponding to ¢, and (, ) is the natural
pairing Hom(k*, T) Xx Hom(T, k*) » Z. We define

W .= subgroup of W generated by the r,, a €ER .

Then R, is a root system with Weyl group W .. Theset R, =R, ,NR" isa
set of positive roots for R.; let S, be the corresponding set of simple
reflections for W . (The set S is not in general contained in the set S.)

2.4. Let .# be the variety of all Borel subgroups of G. For each w € W,
we consider the subvariety O(w) of #X.# defined by
Ow)={(B',B")E # X #|3gEG: gB'g"'=B, gB"g"'=wBw™'}. We
define a morphism

m,:Y,=»G
as follows:
Y,={(g.B)EGX.Z|(B',gBg")EOW)}, =8B )=g¢g

Let pr,: BwB — T be the map defined by pr(uwm')=1 (w,u' €U, teT)
Let Y, = {(g, hU)€ G X (G/U) | h—'gh € BwB}. The map Y, — T given by
(g hU) —>prh~'gh) is T-equivariant with respect to the action
to: (g, hU)Y— (g hty '(U)) (of T on Y,) and t,: t— (W t,w) ttg' (of T on
7).

Hence, if ¥ € 5(T) and w € W, then the inverse image ¥ of & under
Y, — T is T-equivariant. The map Y,»Y, (g hU)- (g, hBh~ 1)) is a prin-
cipal fibration with group 7, (the action of T on Y has been described
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above). It follows that there is a unique Q,-local system of rank 1, & on Y,,

whose inverse image under Y, - Y, is &. It is easy to see that the

isomorphism class of & is independent of the choice of representative w.
We shall set for we W,:

K¢ =(n,)< € 26G.

2.5. More generally, let w= (w,, w,,..., w,} be a sequence in W and let
W=Ww, W, W,.

We define a morphism
Ty: Yoo G

as follows:

Y,={(g,By;B,, BEGX BXEX - XD
(B,_1»B)EOw,) 1<i<r),B,=gB,g™ "'},
nw(g, BmBl""’ Br)= 14

Let ¥,=(g hyU,hB,...h,B): hi\h,€ Bw,B (1<i<r), h 'ghy € B}.
Define a map Y,— T by (g,h Uh U,..,h, U)—»w 'nyn, -+ n,z, where
n,€ Ny(T) are defined by h; ' h,€Un,U and tE€T is deﬁned by
h;'gh,€tU. This map is Tequlvarlant with respect to the action
to (g, hoU, hB,....h,B) = (g, hoty ‘U, b, B,...h,B) (of T on Y and
ty:t— (W 'tyw) ttg ! (of T on T). Hence, if ¥ € %(T) and w € Wi, then
the inverse image & of & under ¥, - T is Tequlvarlant The map ¥, > Y,
given by (g, kU, h,B,.. ,k,B)—»(g, hoBhy', h,Bh[',..,h,Bh ") is a prin-
cipal fibration with group T. It follows that there is a unique Q,—local system
of rank 1, & on Y, whose inverse image under ¥, — Y, is <. We shall set

= (1), ¥ € DG.

(This is defined only when w,w, --- w, € W)

(2.5.1) When w reduces to a single element w, the variety ¥, may be
identified with the variety Y, in 2.4: (g, B,,B,) €Y, corresponds to
(g B, €7Y,. This is compatible with the maps =, 7, and with the local
systems & (if w € W,). Hence K¥ = K¥.

(2.5.2) In general, Y is smooth and connected.

An equivalent statement is {(g, X, X 5 X, )EGX G X -+ X G|
x7\x,€Bw,B (1<igr), x“gxoeB} is smooth and connected. By the
substitution b= x; 'gxy, x; '\ x;= y, (1 €igr), we are reduced to showing
that {(b, xqs V1 s ,y,)EB XGX-XG|y,€Bw,B (1<i<r)} is smooth
and connected, and this is clear.
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2.6. For any sequence s = (s,, 5,,...,5,) in S {e} (e = neutral element
of W) we define a proper morphism

as follows:
Y,={(g By, B, B )erﬁ’xﬂxwx,ﬁf’\
(B,_,,BYEO(s;) 1<i<r), B,=gByg™ "}
(g By, B,y B,)=g

Here, O(s;) denotes the Zariski closure of O(s,) in F X . It is O(s;) U O(e)
if 5,€ S, and it is O(e) if s, =e.

Let J,={j€ (l,r]||s; € S}. For such subset J<J,, we consider the r
element sequence s, in SU {e} whose ith term is s, if i€ J and e if i € J.
Then Y, (see 2.6) may be identified with the locally closed subvariety of Y,
defined by the conditions B, ,=8B; if i€J, (B;_,,B;)€EO(s;) if
i€ [L,r|—J. The sets Y, (J<J,) form a partition of Y,. We have s, =s
and the corresponding piece Y, = Y is open dense in Y. For each j € J;, we
write s; instead of s;,.

LEmMA 2.7. Y, is smooth, connected. The closures of Y,, (for various
J € J,) are smooth divisors on Y, with normal crossings.
Proof. An equivalent statement is: the variety

{(g,xo,x,,---,x JEGXGX - XG|xi!\x;€Bs;B
(1<igr),x; "gx, €B}
is smooth and connected and its subvarieties
{(g Xgs X 10y X, ) EGX G X -+ X G| x;_\,x; € Bs;B
(I<i<ri# jo)xj,l,x;, € B, x; 'gx, € B}

(Jo € J,), are smooth divisors with normal crossings. By the substitution
b=x"gxy, x7'x;=y;, (1<i<r), we are reduced to the following
statement: the variety

1(bs X5 Y13 P2res VDEBXGX - X G|y, €Bs;B (1<igr)}
is smooth and connected and its subvarieties

{(bvxoaylsyZ’--',yr)EBxGX XGly’EBs'B
(A<igri#jy), y;, € B}
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(Js € J,) are smooth divisors with normal crossings. This is, in turn, a conse-
quence of the following obvious statement: if s,€S, then
Bs;B = (Bs;B) U B is smooth and connected and B is a smooth divisor on
it. '

2.8. Assume now that s is such that s,s,---s,& W/,. By 1.6 and 2.7,
there is a well-defined (constructible) Qrsheaf on & on Y, such that
P =1C(Y,,Z) in DY,; (here we regard < as a Qlocal system on Y, as in
2.5, and we identify Y, with an open dense subset of Y,, as in 2.6).

We shall set
K¢ =@x), ¥ € 2G.

(Here & is regarded as an object in 27, concentrated in degree 0.)
We can now state the following result.

PrROPOSITION 2.9. Let ¥ € ¥(T) and let A be an irreducible perverse
sheaf on G. The following conditions on A are equivalent:

(a) A is a constituent of "H'(KY) for some w € W', and some i € Z.

(b) A is a constituent of FH'(KZ) for some sequence
w = (W, Wy,.., W,) in W such that w w, --- w, € Wi, and for some i € 7.

(c) A is a constituent of "H'(KY) for some sequence s = (s,, S5 ,.., )
in §'\U |e} such that s,s, --- s, € W', and for some i€ L.

(d) A is a constituent of "H'(KY) for some sequence s = (S, 5. ;)
in SU {e} such that s s, --- s, € W and for some i€ 7.

The proof will be given in 2.11-2.16.

2.10. DEFINITION.  For ¥ € .%(T), we denote by G, the set of
isomorphism classes of irreducible perverse sheaves 4 on G which satisfy the
equivalent conditions 2.9(a)~(d) with respect to &.

A character sheaf on G is an irreducible perverse sheaf on G, which is in
G, for some ¥ € ¥(T). The set of isomorphism classes of character
sheaves on G is denoted by G.

Note that the character sheaves of the torus T are the perverse sheaves
£d] (¥ € #(T)), where d=dim T.

2.11. We now begin the proof of 2.9. The implication (a)= (b) follows
from (2.5.1). The implication (c)=>(b) is trivial. We now prove the
implication (b)= (c). Let w= (w,,..., w,) be a sequence in W, and let, for
some i (1 <i<r), w,, w/ be elements of W such that w, = w;w/ and I(w;) =
Iw))+1Iwy). Let W=(W o, W;_y, W, W, W; 15, w,). The map
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(8 Bg,Byos Bi_ 1, Bis By 15 Bryy) — (8 By, Byss Bi_1s By 15 B yy)
defines an isomorphism Y~ Y,. It is compatible with the maps r;, =, and
with the local systems & defined on Y,, Y, in terms of & as in 2.5
(assuming w,w, --- w, € W.,). Hence

K7{=K¢.

Applying this repeatedly, we see that K is equal to K ¥ for some sequence s
in SU {e}. This proves the implication (b)=> (c).

For the proof of the equivalence (c)<> (d) we shall need the following
result.

LEmMA 2.12. Let s=(s,,.,5,) be a sequence in S {e} such that
5:85, 8, EW . Let I,={j€ |1,r]|s;€S,8,8_, 5+ 8_,5,EW,L

J

(a) & is a Q local system of rank 1 on the open subset ) er, Yy o Y

(see 2.6) and is zero on its complement.

(b) If J<1,, the restriction of £ to Y, is isomorphic to the local
system # on Y, (def ned in 2.5 for s, instead of s); note that, for Jc i, the
product of the elements in the sequence s, belongs to W', hence & is def ned
onY

8°

Y s

Proof. We first prove (a). Let j € [1, r] be such that s; € S. Then Y Jisa
smooth divisor in the smooth variety Y, U Y, (see 2.7). By a computatlon
which takes place essentially in SL,, we see that the local monodromy of the
local system % (on Y) along the divisor Y, is the same as the monodromy
of the local system &2 on k* at 0, where m = (B, A), B, is the root

corresponding to the reflection s,s,_, -+ 5;--- 5,5, and & =A*&, ,, as in
2.2. Hence, this local monodromy is trivial if and only if
ﬁj,,l) 0 (mod n}, 1e if 5,8, ---5;---5, 5, €W,. Hence (a) follows
from 1.6.

To prove (b), we may assume that J consists of a single element j & 1.
Then s; has the same entries as s except for the jth entry which is e for s; and
s; for s.

Let G— G be a surjective homomorphism of algebraic groups whose
kernel is a central torus in G and such that G is a reductive group with
simply connected derived group. The varieties Y,, Y, for G are locally trivial
fibrations over the corresponding varieties for G with connected smooth
fibres (isomorphic to a torus). Hence if (b) is true for G, then it is also true
for G. Thus, we may assume that G has simply connected derived group.

Let w;, §;, w, be representatives in Ng(T) for s,8,:--8,_,, S;,
S;y1++ S,_ S, respectively, and let w=w s;w,. We shall assume (as we
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may) that §;, is a product of three unipotent elements in (Bs;B)\ B.
Consider the smooth variety
Z={b,xy, ¥ s Y )EBXGX---XG|y,€Bs;B
(I1<igri#j), y,€ (Bs;B) U B}
and the smooth divisor DcZ defined by the equation y,€B. Let
[T Z—D-k*, f': D - k* be the maps given by
SBy Xgs iy yp) = l(wz Switnng -eon, ),
S (b> Xos Vs yr)zl(W{ wl_ Ryny - nrf)’

where n; € N;(T) are defined by y; € Un;U and 7 € T is defined by b € tU.
As in the proof of 2.7, we are reduced to proving the following statement

(2.12.1) If (ﬂ;,l) =0 (mod n), then there exists a local system on Z
whose restriction to Z — D is f*&, , and whose restriction to D is f'*&, ,

We can write (8, ,4)=nn,, where n, is an integer. Since G has simply
connected derived group, there exists A’ € Hom(7,k*) such that
([5’1,/1 }-nl Then (ﬂj,(/l) "Ay=0. Replacing 4 by (') "1 does not
change f*&, ,, f'*&, ,. Hence, we may assume in (2.12.1) that (,b’J ,Ay=0.
In this case, there 1s a unique homomorphism of algebraic groups
y: (Bs;B) U B = k* such that

W) =A(wy'tw,)  forall (€T

Since §; is a product of unipotent elements in (Bs;B)UB, we must have
ENES 1 We define a morphism 7 Z — k* by

f(baxo’ Viseees yr)=})(sj Wl (n1n2"' j—l)yj(nj+1"'nrt)w2_l)’

where n, € N(T) are defined by y; € Un,;U (i# j), and 1 € T is defined by
berl.

We show that f = f|Z ~ D, f' = f| D. If y, € Bs;B, we write y; € Un,U,
n € N(T) and we have

S (b Xgs Yisen 32) = YW yng ) nng g e ) wi')
=AWy 's; Wi tnyny - ny)
=SBy Xgs Yrseess Vi)
If y;€ B, we write y; € n;U, n,€ T, and we have
Jb, x05 1oy ) = Y007 Mgy ooy ) Ry e ) Wy )
= A(wy Wi 'nyn, - n,1)
= (B, Xgs Vyseers Vi)
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It follows that the local system f *&,, on Z has the property required in
(2.12.1). The lemma is proved.

2.13._ Let s, & be as in 2.9(d). Consider the sequence of closed subsets
ZD < Y, defined by

z0=U v, (€D
JcJy
>

(see 2.6). We have Z*V c ZD. If g ZPV < ¥,y 20— ZW Vo
are the inclusion maps, we have (by 1.10) a natural distinguished triangle in
G:

(@) (W OV Z (7 ) 9" (9 ) * 2, (7). 917 V(9 V) *2).
It gives rise to a long exact sequence in .#G (for each i):

(213.1) - S PHT (@)@ )P > @ PHIKY)
s

= PH((7),91°(9 ) *2) - PHI((7), 08 V(0 V) *2)

- @ ijH(K:;')_)
Jadg
I =i

Here we have used the isomorphism

(ﬁs)!W!m(Wm)*:Z] — @ K;j
Jeig
Il =i

which follows from Lemma 2.12. Note that

P\ g g ko — | H (K for i<O0,
(213.2) "H(()$:"(@7) ) = | for >[I,

2.14. We now prove the equivalence of (c) and (d) in 2.9. Let 4 be as in
2.9. For a sequence s = (§,,..., §,) in §'U {e}, we denote by m(s) the number
of i€ [1,r] such that 5,ES. If m(s)=0, then Y,=¥, and K¥=K¥ (if
defined) hence 4 is a constituent of ?H'(K¥), if and only if it is a constituent
of PH'(K¥). It is enough to prove the following statement.

(2.14.1) Assume that s satisfies m(s)=m > 1, 5,5, --- 5, € W/, and
that for any sequence s’ in §'U {e}, with product in W', and with m(s’) < m,
and any integer j, 4 is not a constituent of ?H/(K¥). Then, for any j, 4 is a
constituent of PH/(K¥) if and only if it is a constituent of ?H'(K ).
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Using our hypothesis and (2.13.1) for i > 0, we see that for any i > 0, and
any j, we have:

A is a constituent of H’((7,),¢{"(¢"")*<) if and only if A is a
constituent of PH/((%,),¢{+ V(¢ + V) *£).

Applying this repeatedly for i =|I|, |I;|— 1,..., 1 and using (2.13.2), we see
that for any j, 4 is not a constituent of ?H/((7,),¢{"(¢')*<).

This, together with (2.13.1) for i =0, implies that 4 is a constituent of
PHY(K¥), if and only if 4 is a constituent of H/((n,),¢{(¢")*<) which,
by (2.13.2) is the same as ’H/(K¥). Thus, (2.14.1) and hence the
equivalence (c) <> (d) in 2.9, are verified.

2.15. Let s=(s,,$;,..,5,) be a sequence in S\ {e} such that
§,8,+-+ 5, € Wi,. Assume that, for some h (2<h<r), we have
S,_1 =5, € S. We have a partition Y,=Y,U Y’ where Y| (resp. Y") is the
subvariety of Y, defined by (B,_,, B,) € O(s,) (resp. by B,_,=B,). Then
Y, is open in Y, and Y7 is closed in Y,, so that, if we denote 7, (resp. 7)) the
restriction of 7, to Y| (resp. Y)) we have a natural distinguished triangle
(1.10) in ZG:

(W), 2, K2, (), 2).

Here, we denote the restriction of & from Y, to Y} or Y7 again by <. It
follows that we have a natural long exact sequence in .#G:

2.15.1) - > PH((2]),2) - PH'(KZ) - PH ("), &)
S PH (@), P)

Let s’ be the sequence (s;, 555 Sy_ 15 Sy 10 5,) and let s” be the sequence
(SysSy5s8p_25Spy19s8,). Then (g, By, Byyy B,)— (g By, Byours B),_,,
B,,B,, .., B,) makes Y, into a locally trivial £*-bundle over Y, and
(g, By, Bys.... B,)- (g, By, B, ..., B,_,, B, »..., B,) makes Y7 into a locally
trivial affine line bundle over Y ...

The local system 7 on Y is just the inverse image of the local system &
on Y,., (obtained by the construction in 2.5 applied to s”, whose product is in
W..). The local system & on Y is the inverse image of the local system &
on Y, if h €1, (by the argument in the proof of (a) in 2.12); if A € I, the
direct image with compact support of & under Y/ Y, is zero, (using
1.11.1). It follows that

(), & = K{[-2](-1),

and, if & &€ I,, we have (n;)!S? =0. If 4 € I,, we have a natural distinguished
triangle (1.10) in 2G:

()&, K [-2)(-1), K).
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Hence, we have long exact sequences in #G:
(2152) - = PH((n), 2) - H'(K])~ "H' (K )(-1)
— PH' (@), 2) - -
(215.3) - - PHI((2),2)~ PH T (KE)(=1) » PH(K )

- PH (), ) o
if € I, and isomorphisms
(2.154) PH(KY)~PH"YKZ)-1), if hel,

2.16. We now prove the implication (c)=> (a) in 2.9.

Assume that A4 is a constituent of PH'(KY) for some sequence
s =(5,,5,,..,5,) in SU {e} such that 5,5, --- 5, € W/, and some i. We may
assume that r is minimum possible (for 4), which implies that all s; are in S.
We want to prove that 4 is a constituent of PH/(KZ) for some w € W',. and
some j.

If I(s,s, - s,)=r, then K¥'=KZ, where w=s5,s, --- 5, (see 2.11, (2.5.1))
and the desired conclusion follows. Hence we may assume that
I(s;s, -+ 5,) < r. We shall show that this contradicts the minimality of r. We
can find & (2 < h<r) such that s,---5,_,s, is a reduced expression and
Sp_(Sy -+ S, is not a reeduced expression. We can find s,..., §,_;,5; in §
such that s,---s/_;8;=5,:-5,_,5,=y and s;,=s5,_,. Let 6=
(51583000 Sp_1sShos Sh_15851)y T=1(S15 S350 Sp_y> ¥)- From 2.11, we see that
KZ=K?, K¥=KZ. Hence KY=KZ. Hence we may assume that
S,_, =S5, so that the discussion in 2.15 is applicable.

If h&I,, then (2.15.4) shows that 4 is a constituent of H'~%(K%); the
sequence s” in S has length » — 2. This contradicts the minimality of r.

Assume now that 4 € I,. By the minimality of r, 4 is not a constituent of
PHI(KZ) (see 2.15) for any i. From (2.15.3) it then follows that 4 is not a
constituent of ?H’((n!),) for any j. This, together with (2.15.2) shows that
A is a constituent of PH'~*(K%,). This again contradicts the minimality of r.

Thus, the implication (¢)=> (a) in 2.9 is proved. This completes the proof
of 2.9.

ProposiTiON 2.17. Let s=(s,,5,,....5,) be a sequence in S'U {e} such
that s,s, -5, € Wi,, ¥ € ¥ (T). Let m be the number of indices i € [1,r]
such that s, € S, and let m’' =m + dim G.

(@) K € 2G is semisimple (see 1.12).
(b) PHU(KY)is isomorphic to PH*™ ~I(K¥) (in .#G) for any j.

607/56/3-2
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Proof. (a) is a special case of the “decomposition theorem” |1, 6.2.5],
and (b) is a special case of the “relative hard Lefschetz theorem” [1, 6.2.10]
applied to the projective morphism 7, Y — G and to the perverse sheaf
L(m'|on ¥,

ProposITION 2.18. (a) If KEG, then K is G-equivarant for the
conjugation action of G on G.

(b) More precisely, if KE G, L =A%, , (see 2.2), and 7}, is the
connected centre of G, then K is G X Z}_ equivariant for the action
(80:2): 8 2"80 885 ' of GX Zg on G.

Proof. Define an action of G X Z%:

(i) On T by (g,,2):t—> 2"t

(i) On Y by (g,2): (g hU)~ (2", 887 ', 8 hU) (see 2.4).

(iii) On Y, by (£0,2): (8 B')~ (2"8,88; ' &B’).

If & is as in (b), then & is T-equivariant for the action of T on itself
given by #,: ¢ — £gt. Hence, it is .Z -equivariant since 7% is a subgroup of T
and G acts trivially on 7. With the notation in 2.4, ¥, > T is G X #2-
equivariant hence the local system & on Y, is G X .2 %-equivariant. Since
Y,— Y, is GX Z%equivariant, the local system ¥ on Y, is GX Zg-
equivariant. Now using (1.9.2). it follows that PH!(KY) is G X Z?-

equivariant for all i hence, by (1.9.1) any subquotient of H'(K) (in .#G)
is G X Z-equivariant). Thus (b) is proved; (a) is a special case of (b).

2.19. Consider a sequence s=(s,,5,,.,5,) in SU{e} such that
$18- 5, €Wy Let s’ =(s,,5;,...,5,,5,); we have s§,5,---5,5, € Wi,
where &' = s;".% We have a natural isomorphism Y,— Y (over G) defined
by (g By, Bjseees )—»(g,B,,BZ, ~B,, 8B, g" ) One can verify that this
isomorphism carries & on Y,to &' on Y, (£ is defined in terms of & in
the same way as & in deﬁned in terms of #). 1t follows that K =K.
Applying this property r times, we obtain the following result.

(2.19.1) Let s=(s,,8;5..,5,), 8 =(s],85,.... 8.,) be two sequences in
S {e} such that ss,:-s,€ W, sis)---s/. € W,. Let ss’ be the
sequence (S, S5, S, 85, 85,...,8..) and let s’s be the sequence
(815 8hsewes Shis 815 S5s §,). Then K<, = K<

3. RESTRICTION

3.1. We now fix a parabolic P of G such that P> B and we denote by
U, its unipotent radical and by L the Levi subgroup of P containing 7. We
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denote by 7, the canonical homomorphism of P onto L. Let B* =BNL; it
is a Borel subgroup of L. We shall denote by R*, W*, S*, W%, S%, W},
B*, 0*(w) the objects defined by replacing G by L in the definition of R,
w,S,W,,S,, Wi, #, 0O(w). (We regard T also as a maximal torus of L.)
Let

W, ={y € W| y has minimal length among elements in W*y}.

The correspondence y - W*y is a 1-1 correspondence W, ~xW*\W. The set
W*\W is also in 1-1 correspondence with the set of P-orbits on .#: to the
coset W*y (y € W), corresponds the P-orbit of yBy~'; we denote this P-
orbit by v(y).

3.2. If v is a P-orbit on .# and w € W, we define a new P-orbit vw by:
vw = v(yw), where v = v(y).
We may assume here that y € W, If s € §, there are three possibilities
for vs:
(a) ys€ W, and ys > y; then v — vs — vs,
(b) ys€ W, and ys < y; then vs <7 — v,
() ys& Wy then ysy~' € S* and vs=v.

3.3. Let s=(s,s,,,5,) be a sequence in S such that 5,5, ---5, € Wi,
(¥ €.7(T)). Let Y’ be the closed subvariety of Y defined by

Y ={(g By, B,...B)EY,| g€E P},

let ' be the restriction of 2 (see 2.8) from Y, to ¥’ and let #': Y —» L be
the map defined by 7'(g, B,, B, ..., B,} = np(g).

Any sequence v = (v,, v,,..., v,) of P-orbits on .# defines a locally closed
subvariety ¥’ of Y':

Y'=1{(g By B,»»B)EY,|gEP,B,EV,(0KiKT)}.

It is clear that ¥’ is empty unless v satisfies
(33.1) v;=v,_,orv,_;s;foralli 1<ig<r, and vy=v,.

Let <! be the restriction of #’ to ¥/ and let 7/ be the restriction of 7’ to Y’,.
We associate with v (satisfying (3.3.1)) the sequence § = (§, §,..., §,) in
S'U {e} defined by

(3.32) §=1"
e

if v,=v,_s;
if v,#v,_s;.
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We then have v, =v;_,§; (1 <igr), hence v,§,5, --- §, =v,.
(3.3.3) Let y;€ W, be defined by v, =v(y;) (0<i<r). We define
—1 .
- Yic18idVi—v if v,y =0v;_,
334) t,=y, Siy;'= o e
( ) i yx—l lyl e’ lf U,-_ls,-?&v,;l
(1<igr). Then t=(¢,,¢,,..,¢,) is a sequence in S* U {e}.

34. The formula (g, By, B,,., B,) - (m(g), 7n(By N P),
np(B; N P),..., mp(B, M P)) defines a morphism p: Y’ > Y*, where

Y¥={(,B¥ B¥.. B )EL X B*X - X B*|
(B, B}f)€O*(t)), B} =IBFI™').

This morphism is a locally trivial fibration. Its fibre over any point
(I, B§, Bf,..., B¥) € Y} is isomorphic to the affine space of dimension

(34.1) d(v)=dimU,+#{i € [1,r]|v;5;,<0;—v;}.

Indeed, the set of all B, € v, such that 7,(B, ™ P) = By is an affine space
of dimension /(y,). If (B,, B,,..., B;_,) are already determined, the set of ali
B, € v; such that (B,_,, B;) € O(s;) and n,(B, " P)= B} is an affine line if
v;5; CU;—v; and is a point, otherwise. Finally, if By, B,,..., B, are already
determined, the set of all g€ n, '(/) such that B, = gB,g "' is an affine
space of dimension dim U, — I(y,), (since y,= y,). Hence our fibre is an
affine  space of dimension I(y,)+#{i€ [l,r])|v;5, <0, —v;} +
(dim U, — I(y,)) = d(v). We now state

LEMMA 3.5. Let notations be as in 3.3; we assume that v satisfies
(33.1). LetI,c [1,r]beasin2.12 and let J=J,={ic [1,r]|§;=e}:

(@) IfJ&EI,, then 7(£!) =0.

(b) If Jcli,, then nY&L)=KZ[-2d(v)|(—d(v))  where
L=y V¥ and KZ € DL is defined as in 2.8, with respect to L.

Proof. Let m, be the canonical projection Y} » L. We have (7)), = (%)), o\
(p is as in 3.4). Hence it is enough to prove:

(@) IfJ&I,, then ¥, =0.

(b") If JcI,, then p(¥))=L[-2d(v)](—d(v)), where &, is the
constructible sheaf on Y} defined in the same way as & in 2.8, but replacing
s, Z,Gbyt, A, L.

(For & to be defined, we must know that ¢,¢,---¢,€ W/} or that

J’o_ltltz 4, Y,€ W,. We have Yo'ltity oty = (yo_ltlyl)(yl_ LY2) e
(y, L t,y,) =58, -+ §, (since y, = y,), and this is in W, since J—1,.)
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Since p is a locally trivial fibration with fibres = k¥ (see 3.4) we see that
(b’) is a consequence of

(b") Li=p*&A). I,

First, assume that J& I, and let j be an index in J—I. If
(g, By, B sus ,)E Y, we have B, ,=B; (since j€J) and
(B,_,,B,) € O(s,) for all i € [1,r] — {j}. Since j & I, from 2.12(a) it follows
that the stalk of & (or &) at (g,B Bl, . B,) is 0 hence &, =0, proving
(@)

Next, we assume that JcI,. Let Hy,={i€|l,r]||t;#e}. Then
JN Hy=@. For any subset H < H, we have the locally closed subvariety of
Yy,

Y = {(L BY, B¥... B¥) E Y¥ | (Bf.,, BF) € O*(t)
if i¢ H, Bf , =B} if i€ H}.

These form a partition of Y. Define Y/, =p~ 'Y} , for all Hc H,. The
subvarieties ¥, , form a partition of Y7, into locally closed pieces.

Let I, be the set of all jE€([l,r] such that ¢#e and
L,y by b1, € WE . Then I,=1,N H,. Applying 2.12(a) to Z,t,
and L, we see that & is a local system of rank 1 on the open subset
Unen Y of Y¥ and is zero on its complement.

It follows that p*,/ﬂ is a local system of rank 1 on the open subset
Uner, Yiuof Y and is zero on its complement in Y7,

With the notations in 2.6, we have Y, , =Y, N Y'. For a set HcH,,
the conditions H </, and HUJ I, are equlvalent By 2. 12(a) .%” (and
hence #!) is a local system of rank 1 on the open subset (J,_, Y 1Yoy of Y !
and is zero on its complement in Y’. To prove (b”) it is then enough to show
that the local systems on (.., Y 1, Y\ defined by Z and p*(£') are
isomorphic. Since Y| , is open dense in the smooth variety Uy, Y, 4 it is
even enough to show that the local systems on Y . defined by & and

p*(&") are isomorphic.

The local system defined by & on Y/, is the restriction of the local
system & from Y, oY, (& is constructed explicitly in 2.5).

The local system defined p*(s,’ ) on ng is the inverse image under
p:Y, Y, ’; of the local system &, which is explicitly constructed as in 2.5
(for t, &7, L instead of s, &, G). From these explicit constructions, we get
immediately an explicit isomorphism between our two local system. Thus,
(b") follows, completing the proof of the lemma.

3.6. We consider the sequence of closed subsets of ¥’ defined by

— v/
Zi— U Yv’
c(v)<i
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where v runs over all sequences v = (v, v, ,..., v,) of P-orbits on .# satisfying
(3.3.1) and ¢(v) < i, where

c(v)=dimv,+dimo, 4+ --- + dimuo,.

If §, is the inclusion Z; < ¥’, and y, is the inclusion Z; —Z;_, c ¥,
then we have a natural distinguished triangle (1.10) in Z'L:

@O L, mBIBFL", m i) B L)
It gives rise to a long exact sequence in .#L (for each i)

(3-6~1) "'“’ij_l(ﬁ!’(ﬂi-l)z:B;k—l-(zl)J‘* @ ij((ﬁv)!Q:r)
c(v)=1i

- PHI(T (B BFL") - "H (T (B ) B L)

2 @ PHTNR),Z):
c(v‘)l=i
Here we have used the isomorphism 7;(y,), VX%’ = @, cqvy—i (F) L 1) Note
that

ﬁ,’.ﬁz’ for large i,

3.6.2) (B BFrL =
( ) n! (ﬂt).ﬂl y O for l<0-

We now prove the following result.

Lemma 3.7. (a) For each integer i, the maps & in (3.6.1) are zero.
(b) For each integer i, the complex 7,(8,),B}<’' € DL is semisimple
(1.12); it is isomorphic in ZL to the direct sum @ , .(,,<; (BNWL )

(c) The complex 7?{5,7 "€ DL is semisimple; it is isomorphic in YL to

the direct sum @, (Z)ZL).

Proof. From (3.6.2) we see that (c) is a special case of (b), (for large 7).
Assuming that (a) and the first assertion of (b) are proved, we prove the
second assertion of (b) as follows. Since both complexes in question are
semisimple (see 3.5 and 2.17), it is enough to show that they have the same
PHY for all j. Using (a) we see that (3.6.1) decomposes into short exact
sequences of semisimple objects in .#(L). Hence

PH (T (BWBFL")

~ PHIT B, WBF L) ® ( ©) "H"((ﬁc)!f?'v)) .

v
c(v)=i
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This proves the desired equality for H’ by induction on i. (The case i < 0 is
trivial by (3.6.2).)

It remains to prove (a) and the first assertion of (b). By general principles
[1, Sect. 6] it is enough to prove them in the case where the ground field % is
the algebraic closure of a finite field. In this case, we can realize (3.6.1),
(3.6.2) in the category of mixed perverse sheaves over G, (a split F -form of
G with B, T, P defined over F,) for sufficiently large F, <k, depending on
. The isomorphisms in Lemma 3.5 can also be realized in that category
(possibly with an even larger F,). Now K" in that lemma is a pure complex
of weight 0 (by Deligne’s theorem [2, 6.2.6] applied to the proper map
T, Y,- G and to & which is pure of weight 0, as we can see either directly,
or from Gabber’s purity theorem |1, 5.3.4]); after applying to it
[—2d(v)](—d(v)), it remains pure of weight 0, see 1, 6.1.4]. Hence, by 3.5,
(n)(&}) are pure complexes of weight 0; it follows that

(3.7.1) @ PH/((n}),}) in (3.6.1) are pure complexes of weight j.

We now show by induction on i that *H(z](8,),f¥<") is a pure complex
of weight j for any i. This is obvious for i < 0, by (3.6.2). If we assume that
this is true for { — 1, the statement for i follows from (3.6.1), using (3.7.1),
the statement for i — 1 and the following fact: if K, » K, - K is an exact
sequence of mixed perverse sheaves with K, K, pure of weight j, then K, is
also pure of weight j.

Now using [1, 5.4.4] it follows that 7](8,), %%’ is pure of weight O.
Using the “decomposition theorem” [1, 5.4.5, 5.3.8] it follows that
m(B,), BF¥Z " is semisimple.

The vanishing of § in (3.6.1) follows from the fact that § is a morphism
between two pure perverse sheaves of different weights. This completes the
proof of the lemma.

3.8. We define a functor res: G > ZL by res A = (n,),i*A(a), where
i: P G is the inclusion and ¢ =dim U,. It is clear that, with the notation
in 3.3, we have

(3.8.1) res K = 77" (a) € ZL.

Hence 3.7(c) and 3.5 imply

(3.8.2) resK¥ € 2L is semisimple; more precisely it is a direct sum
of finitely many complexes of the form A’[i], where A’ €L and i is an
integer.

We can now state

PropPOSITION 3.9. If AEG, then resA€ DL is semisimple; more
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precisely, it is a direct sum of finitely many complexes of form A'[i], where
A' €L and i is an integer.

Proof. We can find a sequence s = (s,, §3,...,5,) in § and & € ¥(T)
such that s,s,---5,€ W, and such that 4 is a constituent of ?H/(KY).
From 2.17(a), it follows that A[—j] is a direct summand of K. Since res
transforms direct sums into direct sums, it follows that res(4)[—/] is a direct
summand of res(KY) which is semisimple by (3.8.2). By 1.12, res A[—/]
must be also semisimple. Now P?H!(resA) is a direct summand of
PH*/(res K¥) which, by (3.8.2) has all its irreducible subquotients in L;
hence all 1rredu01ble subquotients of ?H'(res A) are in L. The proposition
follows.

DEFINITION 3.10. A character sheaf 4 € G is said to be cuspidal if for
any parabolic subgroup P & G containing B (with Levi subgroup L = T), we
have resd[—1]€ZL<® (with res defined with respect to P), or,
equivalently, dim supp . #“(res4) < —i for all i. The cuspidal character
sheaves form a subset G of G.

3.11. For any g € G, we denote by g, the semisimple part of g and we
define H,(g) to be the centralizer in G of the connected centre of Zg(g,).
Then H;(g) is the smallest Levi subgroup of a parabolic subgroup
containing Z%(g,). We say that g {or its conjugacy class) is isolated if

H,(g)=G. (When G is semisimple, it has only finitely many isolated
classes.)

Following [4, 3.1], we now define a partition of G into finitely many
locally closed smooth irreducible subvarieties stable by conjugation. The
pieces in the partition are parametrized by pairs (L, Z) up to G-conjugacy,
where L is a subgroup of G, which is the Levi subgroup of some parabolic
subgroup of G, and X is a subset of L, which is the inverse image under
L-L/2? (2} =connected centre of L) of an isolated conjugacy class of
L/7?. For such (L, X), we define

Lu={8€X|He(g)=Li={ge€X|Zs(g)L}

reg

and Y(L,I) = UxeG x(Zreg) x_l'
The Y, ;, form the required partition of G.

PrOPOSITION 3.12. Let A € G, be cuspidal, where ¥ =A*&, , is as in
2.2. Consider the action of G X Z{, on G defined in 2.18(b). Then there is a
unique G X Z Y orbit £, G and a unique irreducible, G X 2 {~equivariant
Qplocal system & on Z, such that A =IC(Z,,&)|d], where d=dim Z,.
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Moreover, the image of X, in G/ .2 is an isolated conjugacy class (see 3.11)
of G/Z¢. If gE X, and H is the centralizer of g in G, then H°/Z% is a
unipotent group.

Proof. Let V be a locally closed smooth irreducible subvariety of G
which is dense in the support of 4 and is such that 4 | V" is isomorphic to
&[d], where & is an irreducible Q local system on ¥V and d = dim V. We
shall assume (as we may be 2.18(b)) that V is G X Z#2-stable and that & is
G X #%-equivariant.

Since V is irreducible, there is a unique piece Y, y, in the finite partition
of G described in 3.11 such that VMY, ; is open dense in Y, ;,. Since
Y5 is G X Z¢-stable, we may assume (by replacing V by ¥ NY,, ;) that
V<Y, - We may also assume that L > T and is the Levi subgroup of a
parabolic subgroup P of G containing B. Let U,, 7, be defined as in 3.1 and
let i be the inclusion P < G. Let g € )", ., M V < L. The orbit of g under the
conjugation action of U, is closed (it is an orbit of a unipotent group acting
on an affine variety) and is contained in gU, (since 7,(g)=n,(ugu~") for
u€ U,). The isotropy group of g in U, is contained in
UpNZg(g) < UpMZY(gs); hence it is trivial since g€ X ,. Hence the
dimension of the Up-orbit of G is equal to dim U, ; this orbit being closed in
gU,p, it must be equal to gU,. In particular, we have gU, c V (since V is
stable by conjugation). The restriction of & to gU, is a Up-equivariant local
system (for the conjugation action of U,) on the U,-orbit gU,, with trivial
isotropy group. It follows that & is a constant nonzero local system on gU,,
hence H?*(gU,,&)+0, (¢ =dim U,). This means that the stalk of the
cohomology sheaf -#2*~%((n,),i*4) at g is nonzero. Thus, we have shown
that

(3.12.1) Zieg NV Csup #2¢74((m,,), i*A).

Let G,={gENGL)|gZg™"' =2} = {GENGL)| g2z 8" =Zrcy!
{§ENG(L)| gZg "M Z#@)}. The group G, acts on G X (Z ;N V) by
g::(g0)~>(ggr' g0g7"). The map G X (ZNV)-V defined by
(g,0)— gog ™' is surjective (since ¥ < Y, ;,) and its fibres are precisely the
orbits of the G -action just described. It follows that

dim(Z,,, N V) +dim G=dim V' +dim G, =dim V + dim L
=d+dim G — 2a;

hence dim(Z,,NV)=d—2a. From (3.12.1) it now follows that
dim supp #**~%((r,),i*4) > d — 2a. Since A is assumed to be cuspidal, it
follows that L = P = G. In this case, Y, ;, =X is a single G X % g-orbit on
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G, and therefore ¥ must also be a single G X .#-orbit; the image of V' =X
in G/%¢ is isolated. The last assertion follows from [4, 2.8], since (Z, &) is a
cuspidal pair for G in the sense of [4, 2.4].(The condition [4, 2.4(a)] follows
from G X Z¢-equivariance; the condition [4, 2.4(b)] follows from the fact
that 4 is cuspidal.)

4. INDUCTION
4.1. Let P, L, Up, 7, be as in 3.1. Consider the diagram
Le2—V, 25 V,-25G,

where
Vi={(g.h)EGX G|h~'gh€ P},
V,=1{(8&h)EGX(G/P)|h~'gh€ P},
(g h)=ny(h""¢gh), 7'(gh)=(ghP), n"(ghP)=¢g

Then 7, n’ are smooth morphisms with connected fibres.

We associate with any perverse sheaf K € #L (which is L-equivariant for
the conjugation action of L on L) a complex ind K € ZG, as follows. The
perverse sheaf AK€ .#V, is P-equivariant for the action
p:(g, k)~ (g, hp~ ") of P on V, and the action p: /- n,(p) Iz,(p)~' of P on
L. Since n’ is a locally trivial principal P-bundle, there is (1.9.3) a well-
defined perverse sheaf K, €.#V, such that 7K =7'K,. We define
ind K = (=), K,. We shall sometimes write ind$ K instead of ind K.

In the case where L = P= G, we have indJ K = K, as we see immediately
from the definition of G-equivariance of K. From (1.9.2) it follows easily
that

(4.1.1) PH'(ind§K) is a G-equivariant perverse sheaf on G (for the
conjugation action), for all i.

We shall now state a transitivity property of induction. Let Q be a
parabolic subgroup of L containing B* = BN L, let M be the Levi subgroup
of Q co_ptaining T, and let m,: Q@ — M be the canonicgl projection.

Let Q = QU,; it is parabolic subgroup of G, Bc Q c P.

ProPOSITION 4.2. Let K € #(M) be M-equivariant (for the conjugation
action). Assume that ind, K is in #L. Then indj(indg K) = ind§ K.



CHARACTER SHEAVES 217

Proof. Consider the commutative diagram

M
o faN
d
hy hy
Xy — X, — X,
{ Pk
Y, L Y, —2- Y,
P{i} jvgl lgz
L ™V, 5V,
G
where
Xo={x, NELXL|y 'xyEQ},
X, ={(y.z,0)EPXGXG|v' 'zv' € 0},
X,={(z,v)EGXG|v' 'zv' € )},
Yo={(x, yQ)ELXL/Q|y 'xy €,
Y, ={(»,2.,0)EPXGXG|v'~'zv' € @} mod. action of {:
q: (¥, 2,0") > (yg ', z,0'g7Y),
Y,={(zv'0)EGXG/@|v' 'z € §},
Vi, Vysmon', " are as in 4.1,

ey, z,v')= (yvlnlzv’yﬁlv Q)
el(y7 Z, D/) = (Z, vié)s

hl(y’ Zy U,) = (yv,—lzvly, y)’
hy(y, z, v')=(z,v'),

do(x, y) = Ty~ lxy)’
dy(y,z,0")= nP(vI_lzv,)

dy(z,0") = mp(v’ ~l2")
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Solx, y) = (x, yQ),
fily,z,0') = Qorbit of (y,z,v"),
fz(za vl) = (zs U,Q)’

golx, yQ)=x
gy z,0)= (2,0 "),
gz(z, UIQ) = (z’ U’P)'

The two lowest squares (e,, g,, &, 7) and (e,, &,, £,, #') are cartesian and
the maps e;, f;, @, 7’ are smooth with connected fibres. It follows that

(4.2.1) (81)é,=7(go)»
(4.2.2) (g6, =7(&)
(4.2.3) f}:/Yiﬁ/X,- is fully faithful (=0, 1, 2).

Since K is M-equivariant, d,K € .#X, is in the image of f,: #Y,—» #X,.
We shall write (f;)”'d,K for the object in .#Y, which maps under f; to
EOK. Again, since K is M-equivariant, JZKEUIXZ is in the image of
for #Y, > #X,; we write (f,)~'d,K for the object in .#Y, which maps
under £ to d, K.

Let K’ = (g,)(fy) "'d,K € ZV,. 1t is enough to prove the following three
statements:

@) K €V,
(b) A(goh(fo) 'K =7'K’,
© mK =n(g)(f) 'd,K.

Property (c) is obvious from the definition of K’. We now prove (b).
From d, =d,h, =d,h,, we see that

h,d,K=h d,Ke.#X,.
This can also be written as
AR\ &K =h fy(f)'d,K € #X,.
Now, using f,h, =e, f;, foh, = e, f;, we have
fié(f)'dK=Ffié(f) 'd,KE AX,,
Using (4.2.3), we can suppress f, :
&) 'K =¢é(f,)'d,KE AY,.
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We now apply (g,), to both sides of this equality and use (4.2.1), (4.2.2);
we get

ﬁl(gZ)!(f‘Z)_IJZK = ﬁ(go)z(ﬁ))_ljoK,

hence (b) is proved.

By assumption, (g,),f,d,K € .#L, hence the left-hand side of (b) is in
A#V,. By (b), we have T'K' € #V, and from (1.8.1) it follows that
K' € .#V,. This completes the proof.

4.3. Let X be a subset of L which is the inverse image under L —» L2} of
an isolated conjugacy class of L/ Z? and let & be a (_),-local system on X
which is equivariant for the action of LX.Z2? on X defined by
(I, z):0—z"zI7'; n > 1 is a fixed integer invertible in k. Then IC(Z, &)[d],
(d =dim Z) is an L-equivariant perverse sheaf on L. The following result is
proved in (4,4.5]:

(4.3.1) ind$(IC(Z, &)|d]) is a perverse sheaf on G; it is a direct sum
of irreducible perverse sheaves with support Y, ;,, (see 3.11).
Now, using 3.12, we deduce:
(4.3.2) If A, €L is cuspidal, then indS4, € #G and is semisimple.

We can now state

THEOREM 4.4. (a) For any AE G, there exists L< P as in 3.1 and
A, €L such that A is a direct summand of ind54,.

(b) IfLcPisasin3.l, and A, EL, then ind%4, € #G.
() IfLcPisasin3.l,and A€ G, then resA € GL<°.
(d) IfLcPisasin31,A€Gand A, €L, then

Hom,, (res 4, 4,) =~ Hom (4, ind 4,).

When G is a maximal torus, the theorem is obvious. Assume now that G is
not a torus and that the theorem is already proved for G replaced by L for
any L < P as in 3.1, with P+ G. We shall prove the theorem for G itself, in
4.5-4.6, using this inductive assumption.

4.5. We first show that

(4.5.1) 4.4(b) holds for G.

Indeed it is enough to check 4.4(b) in the case where P+ G. Then (a)
applies to L, hence there exists M= Q in L as in 4.2 and 4, € M such
that 4, is a direct summand of indj(4,) (which is in .#L by (4.3.2)). By
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4.2, we have ind$(ind5(4,)) = ind§(4,) (0 = QU,). Again using (4.3.2), we
have ind§(4,) € #G. Hence indj(indg4,) € AG. Since 4, is a direct
summand of indg(4,) and indf takes direct sums to direct sums, it follows
that ind$(4,) is a direct summand (in ZG) of an object in .#G. This clearly
forces ind5(4,) to be in #G, as required.

4.6. Consider the commutative diagram
S

V, — G
f2J \ I
4
D GxP - G
7N N
B i
D! Y L np P
where
V,={(gxP)|x"'gx € P},
D={(x)|eGXL} modulo the P-action
p: ()~ (xp~ L m(p)xmp(p) '),
D'={(x,)eGX L}
.f‘l(g;xP): ga

F(8 XP) = (x, p(x ~'gx)),
[ : obvious map,
Y D=1,
p(x, p)= (xpx ', xP),
#(x, p) = (x, mp(P));

{(x, p)=xpx~",
Cl(x’ p) =D,
8'(x, p)= p,

9()(, p)= ”P(p)'

Let A, € L. Then 4, is P-equivariant for a P-action on D’ which makes £
a locally trivial principal P-bundle. By (1.9.3), we have 4, =p4],
(4] €. #D). We have

(4.6.1) indd, = ()24}
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(Indeed, it is enough to show that 54! =84 ,. But gf,A| =¢fA! = 74, =
04,.)

Let 4 €G. Define Resd = (f,).f*4[a](@) € ZD, (a=dimU,). We
show that

(4.6.2) J(resA)=f(Res A4).

Indeed, we have
(res 4)[—dim G|(—a) = y*(n,),i*4 = ¢,0" *i*4 = $,{' *4,

ﬁ(ReS A)[—dim Gl(—a) =B*(f;),f ¥4 = ¢,p*f ¥4 = ¢,(*4

(we have used S*(f3),=¢@p*, y*(np),=¢,6'* which follow from (1.7.5)).
But {, {': G X P— G are compositions of G X P~ G X G with the maps

GXG—G given, respectively, by (g,,8)-8 88 (& 8)~ &-
Hence, the G-equivariance of 4 implies (¥4 = (' *4, so that ¢,{'*4 = ¢,{*4
and (4.6.2) follows.

Next, we show that, for any integer i, we have

(4.6.3) Hom,,(ResAd,A!|i|)=Hom,;(4,ind 4,|i])
Indeed, the left-hand side is

Hom((/2)./ {4 lal(a). 41i])
= Hom(/#4[al(@), /34ili)  (by (1.7.2))
= Hom(f{4[a](e). f§4][2a +i|(@))  (by (1.74))
= Hom(/ ¥4, fA}[a + i]).
The right-hand side in (4.6.3) is

Hom(4, (/,)./341[i]) = Hom(A, (/,)« /4i[i])  (by (1.7.3))
= Hom(f 4, f, 4i]) (by (1.7.1))
=Hom(f ¥4, f¥4|[a +i]) (by (1.7.4));
and (4.6.3) follows.

If i <0, we have Hom, (4, ind 4,[i]) =0, since 4, ind4, € #G, (see
(4.5.1)). From (4.6.3), it now follows that

(4.6.4) Hom,,(ResA,A4;[i])=0fori<0O.

According to 3.9, there exists a sequence C,,C,,...,C, in L and a
sequence of integers n,, n,,..., n, such that

t
resd =@ Cjn;] in ZL.
Jj=1
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Attach C; € 2D to C; in the same way as 4| was attached to 4,. We have

B(°H' Res A)="H'(f Res 4) (see (1.8.1))
="Hi(yres A) (see (4.6.2))
=1 (7(® o))
= @ 7C; (see (1.8.1))
= ® fc;.
1<i<t

nj=—t

Since £ is fully faithful (1.8.3), we have
(4.6.5) "H'Resd =@ cim--i Cj-

I

Now we show that
(4.6.6) °H'ResA =0 for all i > 0.

Assume that this is not so; let { be the largest integer such that
PH'ResA#0; then i>0 and there exists a nonzero morphism
Res A - PH' Res A[—i]. Now using (4.6.5), we see that there exists a
nonzero morphism Res 4 — C;[—i] for some j€ [1,¢]. Since —i <O, this
contradicts (4.6.4) with 4] replaced by C;. Thus, (4.6.6) is proved. We can
also formulate it as stating that

(4.6.7) Resd € ZD<°.

Applying (1.8.1) to §, we deduce that f(Res 4) € 2D’ <°. Using (4.6.2), we
have then d(resd)€ 2D’<’. Applying (1.8.1) to 7, we deduce that
res A € ZL<°. Hence

(4.6.8) 4.4(c) holds for G.
We have
Hom(4, ind 4,) = Hom(Res 4, A1) (by (4.6.3) with i = 0)
= Hom(f Res 4,44])  (by (1.8.2) and (4.6.7))
= Hom(7res 4, y4,) (by (4.6.2))
= Hom(res 4,4,) (by (1.8.2) and (4.6.8)).

(4.6.9) Hence 4.4(d) holds for G.
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Finally, we show that 4.4(a) holds for any 4 € G. If 4 is cuspidal, there is
nothing to prove. Thus, we may assume that there exists L < P # G as in 3.1
such that res4{—1] & ZL<° or equivalently, such that H'res 4 # 0 for
some i>0. By (4.6.8) we have "Hres4 =0 for i>0. It follows that
"H’res A # 0 and that there exists a nonzero morphism res 4 — H° res 4
(in ZL). Since "Hres 4 is a direct sum of objects in L (see 3.9), it follows
that there exists A, € L and a nonzero morphism res 4 —» 4, (in ZL). Using
(4.6.9), it follows that there exists a nonzero morphism 4 —ind$4,, in G
(or .#G). This must be injective, since 4 is irreducible. By our inductive
assumption, 4, is a direct summand in ind(4,) for some M < Q as in 4.2
and some 4, € M°. By transitivity of 1nduct10n (4.2), ind$A4, is a direct
summand in deAZ, where J = QU,. Hence 4 is isomorphic to a subobject
of ind§(4,). By (4.3.2) ind§(4,) is a semisimple object of #G, hence 4 is a
direct summand of it. Thus, 4.4(a) holds for G. This completes the proof of
Theorem 4.4.

47. Let LcP, Uy, W* W%, .7* be as in 3.1, (¥ € #(T)). Let
s =($y,$,...,5,) be a sequence in ¥ {e}. We can consider s also as a
sequence in S U {e}. Let §: ¥, ,~ L, ./L, 0%, )= K, be defined in terms of
s, &, L in the same way as 7, Y -G, Z, K" is deﬁned in 2.8 in terms of s,
%, G. We shall prove the followmg result.

ProrosiTION 4.8. (a) For any i, we have indSCH'K?,) =
PHIT46~dL K where d; = dim G, d;, = dim L.
(b) For any A,ELAJ,, ind$(4,) is semisimple in #G, and its
irreducible components are in G ,,..

Proof.  We first show that (a) implies (b). If 4, € L., we may assume
that 4, is a direct summand of "H’(K 1), (2.17(a)). From (a), it follows that
mdP(Al) is a direct summand of "H’“"r 4 (K¥) which is semisimple by
2.17(a); (b) follows.

We now prove (a). Consider the commutative diagram

?S,L ‘ﬂ VIXZ?S.L _n_' )7

[

L«T v, — V, — G

whose bottom row is defined in 4.1; { is defined by

C(8, Bo, B, ..... B,) = (&, X, P),

607/56/3-3
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where x, € G is any element such that B, = x,Bx, . The map 7' is defined
as follows: for (g,h)EV, and (I, Bf,Bf,...B}¥)EY,, such that
no(h~'gh) =1, we set
#'((8 h), (I, B, Bf...., B))
= (g hBFU,h~ ', hB}U,h~',..., hRB¥U,h~").
Both squares in the diagram are cartesian and the maps =, n’, pr,, &’ are

smooth with connected fibres.
Using (1.7.5) we see that

(4.8.1) 7= (Prl)zﬁl’ 76, = (pr,), Pr,-
Let K’ € @V, be defined by K’ ={,%. By the decomposition theorem (1,
6.2.5), K' is semisimple. B B
From the definitions on &, & we can check easily that pri%; =4'*Z. It
follows that (pr)), pr¥Z, = (pr,), #'*%; using (4.8.1) we obtain
n*%8,%, =n'*(, 7, hence n*KZ, =n'*K'. We have #=n[3d;—3d,],
# =n'[Ydg + 1d, . It follows that nKj‘L— T'K'|dg —d, |
Applying (1.8.1) to 7 and 7', we have
FPH'KY,)="H'(7KS,)="H'(T'K'|d;— d))
#(PHK'[d; —d,|)= 7' ("H'* % 9LK"),
By the definition of induction, we have
ind§(PH'K?,) = ny/(PH'* 95 91K").
We have
(48.2) @ indf(PH'KY,)[—i] = @ (PH* 9~k ?)[—i], in ZG.

Indeed, the left-hand side is
® nf CH 4K [—i] = xf (@ (4K )]
i i
=n/(K'|d; —d,])  since K'is semisimple
=, ds —dy ]
= K:{ [dG - dL]s
which is equal to the right-hand side of (4.8.2), since K, is semisimple

(2.17(a)). In (4.8.2), we have ind("H'K7,) € #G for all i; indeed,
"H’(K ) is a direct sum of objects of form 4, € L and for each such 4,
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we have ind5(4,) € 4G (see 4.4(b)). Taking ”_Hi for both sides of (4.8.2),
we therefore find indj(PH'K?,)="H'*%“K{ and the proposition is
proved.

5. SEQUENCES IN THE WEYL GROUP

5.1. We fix ¥ €.7(T). Besides the notations in 2.3, we shall use the
following notation. Let 2,={w& W/, |w(R.)=R7.}. Then W, is the
semidirect product of 2., and W, with W normal.

Let [: W], — N be the function defined by [(w)=#{a € R|w(@)E R }.
Then [ extends the length function of the Coxeter group (W, S ).

5.2. Lets=(s,,S,,-5,) be a sequence of elements in S {e} such that
§,8, -5, € W... When s;+e, we shall write a; for the simple root in R
corresponding to s;. Define

(5.2.1) L;={i€|lLr]|s;#e s, 5;,,55,, - 5,EW,bL

We have the following

LEmma 53. |I|>(s,s,---s,), with equality if Us,s,+-5,)=
Is )+ - +1(s,).

Proof. Let X={a€R.|(s;s,--s,)@)ER™}, X' ={a€ERL|TE
[1,7], s;#e a=s,5,_, 8. (a)} It is clear that X< X'. We have
|X)=1I(s,s, --- 5,) hence I(s,s,-s,)<|X'|. Let ¢:I,— R, be defined by
¢(l) =88, si+l(ai); then X' = ¢(Is)mR:/’ Hence |X’| < |¢(Is)| < ‘Isl s0
that 1(s,s, -+ s,)<|I,, as required. Assume now that I(s,s,---s,)=
I(s,)+--- +I(s,). Then the roots s,s,_,---5;,,(q;) (1<igr,s;#e) are
distinct and positive. Hence, for i€ I, the roots s,s,_, - s;,,(a;) are
distinct elements of X, so that |7 | <|X|. It follows that |I | = | X|.

LEMMA 54. Let Jc I we define s, to be the sequence (s}, s5,..., 5.) with
si=sifori€&J,si=efori€J Wehavel =1,—J.

Proof. Let h€l,—J. We have 5,5, -+ S, S,_,5,E W,. Hence if
a,>a,> - > a, are the indices in JN [k + 1, r], we have

ss -..§

ror—1 a,’

» ..Sh...sap-ons

= (srsr—l sap sr—lsr)(srsrAl Sy Sr-lsr)

X (srsr—l sa,,"' Sr-lsr)e W.’/

r
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A A A A

5,8, 'Sap,l sa,,"'sh"'sap”'sal,_l”'sr—lsr
:(srsr—l "'Sap_,"'sr—lsr)(srsr~l “'Sap"'sh"'Sap“'sr—lsr)
X (srsr—l Sap_| sr-lsr) € W,’/
5,8,y sa‘ saz... sap... S ...sap... Saz"' sa| sr—lsre W_{

(Here, ~ stands for an omitted symbol.)
This shows that A € I The same computation (in the opposite direction)
shows that if ' € I, then hel,—J

5.5. We write the elements of I, in ascending order: i, <i, < --- <I,.
Define

0,=5,8_y""" Sia e 8,18,
o, _srsr—l"'§ia'”Si,,_l'“fin“'sr—lsr’
0, =585, 8§ 8§ S8y 5,
§‘a—l §1a “Sr-15ps
W=5 8§ -8 0§ s,

PROPOSITION 5.6. (a) 0,,0,,..,0,€ S, (see 2.3) and w € 2, (see
5.1).

(b) s,8,--8,=wo,0,: 0,.
(c) More generally, if J is a subset of I, then

[l si=o0 [] o

1<igr 1<j<a
i¢J i

(in both products, the factors are written in ascending order of indices).
d)y If Us,s,---s.)=1I(s)+---+s,), then 0,0,--- 0, is a reduced
expression in W .

Proof. We set h=i,€l,. Let s’ be the sequence (S,,S,_ .
Spyes Sp_y1s5,). We show that I, has a single element. We have s,s, ;-
Sioeee sr—lsre WY‘ But 8,8, 1 Sppr Sr—ler Wy’ SpSp_1 0 Spyy
S,_,5,& W..,.., since h is the largest index in /,. Hence the middle term in
s’ has an index in I, but all the terms following it have an index outside 7,
We now show that the term in s’ immediately preceding the middle term has

an index outside I,.. If this is not so, we would have s,5,_, -
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Shi1ShSps1SnSper e S,_15, € W, Multiplying on the left and right by
$,8, Sy 8,5, we find that s, _ -8, +5_S, €W, a
contradiction. Similarly, we see that all terms in s’, preceding the middle
term have an index outside /.. Thus, I, has a single element. By 5.3, we
have i(o,)=s,s, , s, 8,_,5,)< 1. Since 6, has odd length in W, it
must be e hence [{0,) = 1. We have 0, € W, hence 0, € S .

We now prove (a) and (b) by induction on a. Assume first that a = 0. By
5.3, we have i(s,s, ---5,) =0, hence s,s,---5,€ 2, and (a), (b) are clear.
Assume now that a >> 1 and that (a), (b) are proved for a — 1. Consider the
sequence s;, where J = {i,}, (see 5.4). By 5.4, we have I, =I,— {i,}. The
induction hypothesis applies to s,. It follows that ¢,_,,.,0,€ S, and
w € N2.,. We have checked already that o, € S .. Hence (a) for s follows.
The induction hypothesis shows that s, - s‘,- 8, =W0,0,-0,_,. It
follows that 5,5, -+ 5, = (§,8, -+ §;_++ )8, -+ 8;, -*+ 8,) =W0,0, -+~ 0,_,0,
hence (b) for s follows. The more general statement (c) follows from (b)
using 5.4. Statement (d) follows from 5.3.

5.7. Let s=(8,5,,...5,), 8/ = (57, §3,..., 5.} be two sequences in SU {e}
such that s,5,---5, & WY, sis;--- s, € Wy Let w, 0;,0; - 0; be the
elements attached to s in 5.5, let w’, j)r Ojpos O be the elements deﬁned in
the same way for s’ instead of s, and let " s Op,s Opyeees Oy, be the elements
defined in the same way for the sequence

88 = (515 Sysreer 8,0 S5 Shsens S,).

Then, we have

a"=a+a’, 0" =oww’, o, =w "o, ®,., a,,azw"‘o,.uw’,

Uha+1 =0j, 5

(This follows easily from the definitions.)

58. We let S*< S, W*c W, R¥* <R, be as in 3.1. The statements
(5.8.1), (5.8.2) below are well known.

(5.8.1) Any coset W*yc W contains a unique element of minimal
length y,; it is characterized by the property y; '(R* "R*)cR™.

(5.8.2) Any coset zW < W contains a unique element of minimal
length z,; it is characterized by the property zy(Ry) < R*.

(5.8.3) Let w€ W, s € S be such that w has minimal length in wW .
Then either (a) sw has minimal length in swW ,or (b) w™'sw € W .

Indeed, assume that (a) does not hold, so that there exist a € R}, such that
sw(a) < 0. By our assumption we have w(a) > 0. Hence w(a) must be the
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simple root a, corresponding to s. Thus, w '(a;)=aE€R,, hence
w™'sw € W, hence (b) holds. This proves (5.8.3).

(5.84) Let w,w' €W be such that W wW ,=W*w'W . Assume
that

(a) w has minimal length in wW , and also in W*w,
(b) w' has minimal length in w'W , and also in W*w',
Then w=w'.

Indeed, our assumption implies that there exist s,, §,,..., 5, € S*, such that
$18, -+ §,w E w'W,. Assume that there exists i € (2, t], such that s;--- s,w
has minimal length in s; --- s,wW and s,_,s; -+ 5,w does not have minimal
length in s, ,s;+--5,W,. Then by (58.3), we have s;_,s;:--s,w=
§;8;4,°-+s,wo  for some oEW,. Hence s, -5, ,8- - -5w=
S, - S,wo EWW,0=w'W,. Iterating this, we are reduced to the case
where for all i€ |1,¢], s,--- s,w has minimal length in s;.--s,wW . In
particular, s,s, -+- s,w has minimal length in s,s, --- s, wW = w'W . Since
w’ has also minimal length in w'W_,, we have s,s, --- s,w=w’, by (5.8.2).
Thus, W*w= W*w’. Since w, w’ both have minimal length in
W*w = W*w’, we have w=w’', by (5.8.1). This proves (5.8.4). We can now
state:

PROPOSITION 5.9. Any double coset W*yW , contains a unique element
Yo of minimal length. It is characterized by the property:
Vo' R*NRY)cR*  and yo(RL)<R*.

Proof. The existence of an element y, of minimal length in W*yW, is
obvious. It is clear that y, must have minimal length in y, W and also in
W*y, the proposition follows from (5.8.4), (5.8.1), (5.8.2).

6. HECKE ALGEBRAS
6.1. We fix ¥ € S(T). Let & =Z[u'*,u""?], where u is an indeter-
minate.

Let H!, be the Hecke algebra (over ) corresponding to W, it is a free
.« -module with basis T, (w € W.). The multiplication is characterized by

r,T,=T,, it w, w € W satisfy [(w) + I{(w') = [(ww')
(T,+ )T, —u)=0 if e€8,.
(Recall that [ is defined in 5.1.)
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Let H!, be te free /-module with basis e, indexed by the sequences
$=(5.,5,,..,5,)in SU {e} (r > 1), such that 5,5, --- 5. € W',.

Let I'; be the abelian group with generators (4] (corresponding to the
various isomorphism classes of objects 4 in .#G) and relations
[A]+[4']=[4 @ A4’] for any two objects 4, 4’ € #G.

Define an &/ -linear map y:H,>T;®,% by pe)=2 e (—1Y
[PH/(K)) @ w'™.

Define an .+/-linear map & H,->H, by de)=T,(1+T,)
(1+T,) - (14T, )u" **4mO2 where w, 0,0, 0, are the elements
of W, associated to s=(s,,s,,..,5,) in 5.6, and m=#{i € |1,r||s; #e}.
With these definitions, we can state

PrROPOSITION 6.2. (a) There is a unique < -linear map €. H' -
' ®; ./ such that the diagram

H, —*—— H,
\}\\ (A
r(} ®f =4

is commutative.

(b) We have ¢(h, h,)=¢(h,h,) forall h,, h, € H',.

(c) Let ":Hi.—H! be the ring involution defined by T,— T,
(WE W) and u'> =u"*. Let ~:T';® ;. be the group involution defined
by [A] ® w'* = [A] ® u/?. Then e(h) = ¢(h) for all h € H',..

First, note that J is surjective. Indeed, given w € 2., and a sequence

01,0750, 10 S,, we consider reduced expressions w=1¢, -1,
0 =TiTp Uy oo Tl (1<j<a)in S, and let s be the sequence

(E1s Loy Bys Tyt Tygsens Thp e Tips Tags Tagaeees
Targrees Tazeens Tats Tazreess Targoes Ta2s Tan)

in §. It is easy to see that &(s)=T,(1 +7,)--- (1 + T, ); these elements
clearly generate H', as an % -module, so that J is surjective.

It follows that € is unique (if it exists). Assume that (a) is already proved.
To prove (c), it is enough in view of surjectivity of d to show that
e(de,) = &(de,) for all basis elements e, of H',. We have de, =y~ "+4m& 5o
since 1+7, =u"'(1+7,), T,=T,. Hence, we must check that
u~™e(de) = e(de,), (m =m + dim G) or, equivalently, that
u""'yle) = y—(;J. This is equivalent to the statement 2.17(b). Thus, (c)
follows from (a).
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It remains to prove (a) and (b). The statement (a) is a consequence of the
following statement:

(6.2.1) Let (e, ,e,,....e,), (es;» €5s €5) be two sequences of basis
elements of Hy, and let (n,,n,,..,n,), (n},n],...,n.) be two sequences of
integers. Assume that

t t
ny/2 ni/2
Zle,‘,@u' — Y e, @ut
i= i=1

is in the kernel of ¢: H,- H.,. Then for any integer j, the perverse sheaves
=1 PH"™(KE) and @I, "H'~"i(K ) are isomorphic in AG.
. ] .
By general principles [1, Sect. 6], the statement (6.2.1) for general k is a
consequence of the statement (6.2.1) for k an algebraic closure of a finite
field. The same applies to (b). Thus, it is enough to prove (6.2.1) and (b) in
the special case where k is an algebraic closure of a finite field.

6.3. We now prove (6.2.1) under the assumption that k£ is an algebraic
closure of a finite field. Since the two perverse sheaves in (6.2.1) are
semisimple (2.17{a}), they are isomorphic if and only if they define the same
element of the Grothendieck group #'G of the abelian category .#G. Hence,
if p: ' > %G is the natural homomorphism, it is enough to prove that there
exists an &/ -linear map ¢': #, > . F(G) ®, .o such that

6.3.1) ¢5=(p® 1)y

We may regard K<, K<, K< as well as the complexes and morphisms
appearing in 2.13-2.16 (for fixed &) as being in the derived category of
mixed complexes over G, (a split F -form of G) with B, T defined over F,,
for a sufficiently large F, < k. Then the "H’ of these complexes will hav‘e
natural weight filtrations (see [1, 5.3.5]) whose subquotients (denoted °H})
are pure perverse sheaves of weight j. For any mixed complex K on G,, we
define
W)=Y (—1){PHIK)} @ W' € #(G)®, .
iJ
Here {?H(K)} denotes the image of °H (K) in the Grothendieck group #G.
We define an .«/-linear map ¢": H,» #(G) ® ;% by

(6.3.2) &'(T,) =y, (KZ)ul~1om+Ton—dimGy2,

Let s = (s;,..., 5,)} be a sequence in S U {e} such that s,s, --- 5, € W/, and
let w, 6,,0,,...,0, be the elements of W/, associated to s in 5.5. We shall
prove by induction on m = #{i € [1,r]|s, # e} that

(6.3.3) x (K )=umm et mOe(T T, T, - T,).

wto foy”
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We can assume that all s; are in S by dropping the ones which are e. Then
m=r.

When m = 0, we have K¥ = KZ, a =0, and (6.3.3) follows from (6.3.2).

Assume now that m > 1 and that (6.3.3) is already known for sequences m
replaced by m’ < m.

Assume first that I(s,s, --- 5,) =r so that K¥ =K, where w=1s,5,-- 5,

(see 2.11, (2.5.1)). By 5.6, we have {w)=0, lo)=--=o,)=1,
lwo,0;,---0,)=a,hence T, T, T, T, =T,50,.0,= Ts;5-05,= Ty 80
that

(m—a+dimG)/2 — o, Uw)=Tw) +di /201

u m—a+dim e (TwTalTaz Taa)—“( w w)+dim G) e (T”)
= 1K)
= 1K)

as required.

Assume next that I(s;s,---s,) < r. Then we can find h (2< h<r) such
that s, --- s, ,s, is a reduced expression and s,_,S, -+ 5, is not a reduced
expression. We can find s;,..,s,_,,5, in § such that s, ---5,_;5, =
Sy 8,_;5,and sp=s5,_,.

Let 6 =1(s,,S25»8y_1sShos S;_1,5;). As shown in 2.16, we have
K =KZ; hence x,K?)=y, KZ?). The definition 5.5 of w, 0,,..,0,
attached to s can be also applied to o instead of s, and it leads to the same
sequence w, d,,..., d,. Hence to prove (6.3.3) for s it is enough to prove it for
6. Thus, we are reduced to the case where s satisfies 5, |, =s,. In this case.
we shall use the notations in 2.15.

If h&l, then from (2.15.4) we have xu(K") =u. xu(Kiﬁ) By the
induction hypothesis, we have xu(K‘/,,) =ylrotmatdmORen, T, - T, )
hence x,(K{)=u""e* 4" 92T, T, - T,).

If h €I, then from (2.15.2) we have

Xu(Ksy) =Xu((n;)!£2) + uXu(I<’sS!’j
and from (2.15.3) we have

ut (K9 = 1@ L) + 1K ).

(Indeed, since weight filtrations are strictly compatible with morphisms [1,
5.3.5] the exact sequences (2.15.2), (2.15.3) remain exact when each 7H' is
replaced by ?H! for fixed j.) It follows that

XKD) = wr (K) + (1 — D) (KT
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The induction hypothesis is applicable to K, K{:

Py

Xu(Kff) — u((r—l)—(a—l)+dim G)/ZSI(TwTol .. T

op_1top 7" Ta,,)’

X (K%)= ulr-D-@Drdm&2g1(T T, - T Ta;, e T)-

Op—1

Moreover, we have 6, _, =0, so thatu7, +u—1)1=T, T, . Hence

n—-1" On’

Xu(K?) - u(r_a+dim6)/281(Tw Tol o Taa)v

as required. Thus, (6.3.3) is proved.
We now prove that with the notation in (6.3.3), we have

(6.34) x(K)=um" et ImORe(T (14 T, )1+ T, ) (1+T,)).

We shall use the notation in 2.13. From (2.13.1) (or rather, from the
corresponding exact sequences obtained by considering the subquotients of
fixed weight of the weight filtrations), we get

PR (CAT I CAOR
=0(@N PV + Y nfKY

Jely
|Jl=i
for any i.
Summing these equalities over all i, 0 i< |/, and taking into account
(2.13.2), we find

1K =3 1 KD
Jcig
We now use (6.3.3) for each s, is the last sum, and 5.6(c); (6.3.4) follows.
The mixed complex K¢ is pure of weight 0 (see the proof of 3.7) hence

- PHIK?) if j=i

PHIK?)= ‘ ’
&S 0 if j#i

It follows that y,(K¥) = (p ® 1) y(e,). On the other hand, the right-hand side

of (6.3.4) is equal to ¢’(de,). Hence (6.3.4) implies (6.3.1). This completes

the proof of 6.2(a).

6.4, We shall now prove 6.2(b) assuming again (without loss of
generality) that k is an algebraic closure of a finite field. We again place
ourselves in the setup of 6.3. It is enough to prove the following statement:

(6.4.1) Let s=(s,,555 5,0 8 = (s}, 5},..., 5..) be two sequences in S
as in 5.7 and let (w,0,,0,,..,0,), (w',0},05,..,0,) be the sequence in W',
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attached to them in 5.5 Then &'(T,T, - T, )T, T, - T, )=
El((Tw’Ta; v Ta;,)(Tw Tal e Taa))'

Let ss’, s's be defined as in (2.19.1). Using 5.7 and (6.3.3) we see that the
equality (6.4.1) is equivalent to the equality

Xu(Ki{') = Xu(Kfs N
But this follows from (2.19.1).

This completes the proof of Proposition 6.2.

6.5. Let us define for any K € G,
xK)=> (-D{*H'K} € #G.

The proofs in 6.3 and 6.4 (specialized for u = 1) give the following result:

Let ¢]: Z[W',] » #(G) be the homomorphism defined by £{(w) = x(K ),
Then ¢ is constant on conjugacy classes in W', With the notations in
(6.3.3), we have

X(K,y))= €i(s,8, -+ 5,) =¢€1(wG,04 -+ 0.)s

2K =¢ei(w(1 +0,)(1 +0) - (1+0,)).

6.6. We now return to the setting in 3.1. Let s=(s,,5,,...,5,) be a
sequence in § such that ss,---5,€ Wi, (¥ € .7(T)). We apply the
functor res: G —» ZL to K,. We wish to describe "H'(res K) in terms of
the function ¢, : Hy,, » I', ®; % (defined as ¢ in 6.2, for L instead of G);
here Hi,, is H', defined with respect to L instead of G. We shall denote by
H, (resp. H,,) the .&/-submodule of H', (resp. H',,) spanned by the
elements 7,,, w € W, (resp. by the elements T, w € W§).

We shall denote by .# the set of elements y, in W which have minimal
length in their W* — W, double coset.

Let w,0,,0,...,0, be the sequence in W, attached to s in 5.5. Thus,
wERN,,0,ES,. Ify,€ 7, then v = y,wy, " isin 2., 0] = y,0,y; ' are
in S, where &’ = (y~")*. If we assume that @’ € W*, then conjugation
by @’ is an automorphism of the Coxeter group (W .., S...) leaving stable
its length function [’ and its parabolic subgroup W ..M W*. Hence it also
leaves stable the set

% = {z € W, | z has minimal ["-length in the coset (W* N W.)z}.

For any he H,, and any z€&.¥, there are wéll-deﬁned elements
x, . (h)eEH, , (z/€5), such that

(661) Tw’“zw’ ) h = Zz’e}'xz,z’(h) Tz’ il’l Hi/’"
(Indeed, H ., is free as a left H,, , module with basis 7,.,z' € ¥.)
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With these notations, we set

(662) () = €orp(Tu Tecw %0 + T + T,)
(1+T,))EN®, .

We can now state:

PROPOSITION 6.7. The following identity holds in I', ® , 57"
(6.7.1) ¥, (—1YPH (res K¥)]uV=""2 = 3, p(y)u™".

where y, runs over all elements of # such that y,wy;' € W*, and
m'=r+dimG.

_ Proof. We shall give the proof in the case where & is the constant sheaf
Q,. In this case we have W=W_,=W,; we denote H=H,=H/,
H=H,,=H,,,¢=¢,,. Wehave alsow=e,a=r,0,=5, (1<i<r)
Using 3.7(c), 3.5, and (3.8.1) we see that the left-hand side of (6.7.1) is equal
to

(6.7.2) 3.3 (=1Y[PHI 0K |y —m/2,

here, v runs over all sequences v = (v,, v,,..., v,) of P-orbits on # satisfying
(3.3.1), d(v) is defined by (3.4.1), t is the sequence in S$* U {e} defined in
(3.3.4), and r is the sequence in S* obtained from t by dropping ail ¢; which
are equal to e. (Thus, t is completely determined by v.) We denote by K, the
complex in ZL defined in 2.8 in terms of 1, ¥ =Q,, L.

Now using 6.2(a), we can rewrite (6.7.2) as

(6.7.3) &, (1+ T, )1 +T,) - (14T, )u"V-4mbpy =7,

where v and t = (7, 7;,..., 7,) are as in (6.7.2).
For any y € W, s € §, we have

T,+T,,, ifys€ Wy, ys> y,
T,(1+T)={ w(T, + T), if ys€ Wy, ys <y,
(1+T,,-)T,, ifys€W*y (sothatysy™' € S*).

Applying this repeatedly, we see that for any y € W, we have

(6.74) T,(1+T,)1+T,) - (1+T,)
=Y, VU +T )+ T,) - 1+T )T,

here, the sum is over all sequences y = (¥, Vs V,) in Wy such that
y=1Yo» W¥y,=W¥*y,_, or Why, s, (1<igr), 6(y) is defined to be
#E [Lr]| ¥ > yi8i y15; € Wy} and t=(1,,75,.., 7,) is the sequence in
S* consisting of those terms in (y,5, Y5 " Y18, 91 'sees Vo_ 15, ¥,.}1) which are
in §%*,
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Now (6.7.1) (in the case ¥ =Q,) follows directly from (6.7.3), (6.7.4),
and the definition (6.6.2) of the function y. The proof in the general case is
similar, but the notation is more complicated; we shall omit it.

COROLLARY 6.8. For any j, we have "H/(res K¥) = ?H™™ ~(res K¥) in
2L, where m' =r 4+ dim G.

Proof. Since ?H'(res K¥) are semisimple objects of .#L for all j, it is
enough to show that ["H’ resK¥] = [PH™ ~/res K] (equality in I',). By
(6.7.1), it is then enough to show that for any y, in the sum (6.7.1), the
expression Y(y,)u “* €T, ®.& is fixed by the involution ~ of I', ® «/
defined in 6.2(c). Since €,., commutes with the involutions ~ (see 6.2(c))
and (1 +7,)--- (1+T,)u " is fixed by the bar involution, we see that it
is enough to prove the following statement:

681) €y (T Ticw %) = 64, (Ty Teepx, (B) for all
h€ H,. , (notation as in 6.6).
Applying the involution “: H,,.,—» H ., to the identity (6.6.1), we get

(682) T, - h=Y.,x. (WT. (z€%

Since (T,)(T,), (z € .¥), form two bases of Hg, as a free left H, -
module, we have

(683) Tz = Z:’s.'f r:.z’T:” T: = Z:’E,'f q:.:’fz’ (Z € '9‘:)5

wherer, .. € H, ,.,q,, €EH, ,.
Introducing in (6.8.2) we get

S x..mT.
2'e¥
Do T,
ey
= Z 3 rcu “lzw .z”x(u’z w (h)T
e
= 2 TerresFese il
z',z",z"e.

From this, we deduce

Zx“(h)= Z Pari=1200r27 Kegrzrgyr—t g wlR) @y,

ze ¥ 2MzMe &
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Multiply both sides with T,,, and apply €. ;

e (Tw, > xz.z(h))

ze¥

—ey, (Tw, Farraren Koo 2ol) qz,,,,,)
z.2"z"e

= 8_(/ zm 2 Tm' rwrﬁlzw/,z// xwlzllwlkl’zlu(h)) by 6.2(b)

Z N ZIIIE‘;/‘ ’

=&, | T, Govi—tz0 w120 Tari =127 ,27 xw,z,,w_,,z,,,(h))
PR Lor: "59

—¢,., (T T b Xarar lz,,,(h))
27z e

=€y (Tw, Z xz,z(l;)>.

ze¥

This proves (6.8.1) and hence the corollary.

We can now state

THEOREM 6.9. (a) IfLcPisasin3.l,and A€ G, thenresA € #L;
moreover, res A is semisimple and its irreducible components are in L.

(b) AE G is cuspidal (see 3.10) if and only if for any L < P as in 3.1
with P # G, we have res A =0.

Proof. Assuming that (a) holds, the proof of (b) is immediate: if 4 € G
is cuspidal, then ?H'(res 4) =0 for all i >0 and by (a), "H'(res 4) = 0 for
all i # 0; hence H'(res A) =0 for all i, so that res 4 = 0.

We now prove that in (a), we have res4 €. #L for A € G. (The other
statement in (a) follows from 3.9.) Let s = (s,.,..., 5,) be a sequence in .S such
that 5,5, ---s, € W, ¥ € 7(T).

Let K = K{[m |, K’ =res K, K,="H'K, K| =res K;, (m’ =r + dim G).
It is enough to prove that K| € #L (since res4 may be assumed to be
direct summand of K|.)

Fix A’ € L and let b; be the multiplicity of 4’ in "H/(K}). Then b, >0
and it is enough to prove that b;=0 whenever j#0. Let b; be the
multiplicity of 4’ in "H’(K ). From 2.17(a), we have ”H’(K )=
PHI(®,; res K;|—i]) = @, "H '(K}), hence b, =}, b, From 6.8, we have
b;=b_; for all j, hence

(6.9.1) 0=3",jb;=2>,jb;; =2, (+))b, ;.

- i*
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From 2.17(b), we have K;=K ;; it follows that b;=5b_,
2.1, ib; ;= 0. Introducing this into (6.9.1), we find 3", ; jb;;= 0.

From 4.4(c) and 2.17(a) we see that b;=0 for all j > 0. Therefore, we
have }; ;<o jb;=0. Since jb,; <O for all terms in the previous sum, we
must have jb;; = 0 for all i, j. It follows that b;; = 0 for j # 0 and the theorem
is proved.

so that
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Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139

Contents. 7. Strongly cuspidal complexes. 8. Generalized Green functions.
9. Orthogonality for generalized Green functions. 10. Orthogonality for certain
characteristic functions.

This paper is a continuation of [ 5]; we preserve its notations. The num-
bering of chapters, sections and references will continue that of [5]. In [5]
we have defined, for any connected reductive algebraic group G over an
algebraically closed field &, a class G of irreducible perverse sheaves on G,
called the character sheaves. In the case where k is an algebraic closure of
the finite field F, and G is defined over F,, we may consider the subset
G(Fq) of G consisting of the character sheaves which are isomorphic to
their inverse image under the Frobenius map F. Any character sheaf K in
G(F, ,) gives rise to a class function yx on G(F,) well defined up to mul-
tiplication by a nonzero constant, as follows. We choose a definite
isomorphism ¢: F*K =~ K, and we define y.(g) (ge G(F,), to be the alter-
nating sum over i of traces of ¢ on the stalks of the cohomology sheaves
H' K

One expects [6, 13.7] that the class functions yx coincide with the
“almost-characters” of G(F,) (see [6, 13.6]) so that, in particular, they
should form an orthogonal basis of the space of class functions on G(F,).
Here, we shall try to prove the orthogonality relations for the class
functions y.(g). We shall prove them only under an assumption on
cuspidal character sheaves. Thus, here we have only a relative result; it is
one step in an inductive proof which will be completed (in good charac-
teristic) in another paper in this series. An important role in our arguments
is played by certain class functions on the unipotent set of G(F,), called
generalized Green functions, since they are closely related to the Green
functions of [3] and [7].

We shall adhere to the notations in [4, Sect. 0].
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7. STRONGLY CuUSPIDAL COMPLEXES

7.1. Let A be a perverse sheaf on G
(7.1.1) We say that A4 is cuspidal if it satisfies:

(a) There exists an integer n>1, invertible in &, such that A4 is
G x Z%-equivariant for the action of GxZ% on G given by (g, z):
§—2"80880 "

{b) For any parabolic subgroup P & G with Levi subgroup L, we
have res A[ —1]e @L< or, equivalently, dim supp #" (res A) < —i for all
i. (Here res: 2G — 2L is defined wit respect to P, L just as in 3.8; the
assumptions on P, L made in 3.8 are not necessary for that definition.)

The proof and conclusions of Proposition 3.12 remain valid:

(7.1.2) If A4 is a irreducible cuspidal perverse sheaf on G, then there is a
unique G x Z'%-orbit 2= G and a unique irreducible G x #%-equivariant
local system & on X such that A =1C(Z, £)[d], extended to the whole of
G, by 0 on G — X (where d = dim X). Moreover, the image of X in G/Z is
an isolated conjugacy class of G/Z% and, for ge X, the group Z%(g)/Z % is
unipotent.

It is easy to see that

{7.1.3) In the set up of {7.1.2), (2, &) is a cuspidal pair for G, in the
sense of [4,2.4].

The converse is also true:

(7.1.4) If (2, &) is a cuspidal pair for G, in the sense of [4,2.4] and
d=dim X, then IC(Z, &)[d] extended to the whole of G, by 0 on G — X is
an irreducible cuspidal perverse sheaf on G in the sense of (7.1.1).

(The proof is immediate, using [4, 2.2(a)].) We shall need the following
variant of definition (7.1.1):

(7.1.5) A perverse sheaf on G is said to be strongly cuspidal if it satisfies
condition (a) in (7.7.1) and if for any parabolic subgroup P & G with Levi
subgroup L, we have res A =0e 2% (where res is as in (7.1.1)(b)).

It is clear that if 4 is strongly cuspidal, then it is also cuspidal.

On the other hand, if 4 is a character sheaf of G, then A is cuspidal in
the sense of (7.1.1) if and only if it is cuspidal in the sense of 3.10. Using
now 6.9(b), we see that

{7.1.6) A character sheaf is cuspidal if and only if it is strongly cuspidal.
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We now consider the following data on G:

(7.1.7) P is a parabolic subgroup of G with Levi subgroup L and
unipotent radical U,, and K, is an irreducible cuspidal perverse sheaf on L.

Let 7, be the canonical projection P — L. Consider the diagram
L&V, 5V, ™G, (7.1.8)

where V,={(g, h)eGx G| h~'ghe P},

V,={(g, hP)eGx(G/P)| h 'ghe P},  m(g h)=mnp(h""gh),
n'(g h)=(g hP), n"(g h)=h

There is a well-defined perverse sheaf K, e .#V, such that #K,=#K,
(cf. 4.1); we define

K=(n")K,. (7.1.9)

Then K is a semisimple object of #G, (see (4.3.1)). Note that K is obtained
by inducing (see 4.1) K, from P to G; the assumptions on P, L made in 4.1
are not necessary for the definition of induction.

(7.1.10) The irreducible perverse sheaves on G which appear as
irreducible components of K (for various P, L, K, as in (7.1.7)) are called
the “admissible complexes” of G.

This definition is the same (up to shift and extension by 0) as that in
[4,4.1].

(7.1.11) The irreducible perverse sheaves on G which appear as
irreducible components of K in (7.1.9) (for various P, L, K, as in (7.1.7)
and with K, assumed to be strongly cuspidal for L) are called the “strongly
admissible complexes” of G.

(7.1.12) The class € of irreducible perverse sheaves on G which appear
as irreducible components of K in (7.1.9) (for various P, L, K, as in (7.1.7)
and with K, assumed to be a cuspidal character sheaf of L) coincides with
the class of character sheaves of G.

Indeed, the class € considered in (7.1.12) is contained in the class of
character sheaves on G, by 4.8(b). Conversely, let 4 be a character sheaf of
G. If A is cuspidal, then 4 is clearly in € (take P=L =G, K,=A4). If 4 is
not cuspidal, then there exist PoL as in (7.1.7), P £ G, such that
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res A #0, (res defined with respect to P, L, G). By 6.9(a), there exists a
character sheaf 4’ of L and a nonzero morphism res 4 - A" in 2L. We
may assume (by induction) that A’ is in the class € (defined in terms of L,
instead of G). From 4.4(d) it follows that there is a nonzero morphism
A—-ind 4 in 2G (ind is defined with respect to P, L, G). Hence A4 is a
direct summand of ind 4’, (see 4.8(b)). But transitivity of induction shows
that by inducing a complex in ¥ (with respect to L) to G one obtains a
complex which is direct sum of complexes in ¥ (with respect to G). Hence
A 1s in €, as required.

In particular, we see that for an irreducible perverse sheaf A on G we
have the following implications:

(7.1.13) A character sheaf == A strongly admissible complex = A
admissible complex.

(7.1.14) Now let P,L. Ky be as in (7.1.7) and let V,, V,, K, K be
defined in terms of P, L. K, as in (7.1.8), (7.1.9). We also consider another
set of data P, L', K, of the same type as P, L, K, and define V', V3, K}, K'
in terms of P', L', Kj, in the same way as V, V,, K are defined in terms of
P L K,

With these notations, we have the following result.

PROPOSITION 7.2.  Assume that K, K, are strongly cuspidal. Assume also
that for an isomorphism f: L = L' which can be realized by conjugation by an
element of G, we have H'(L, K,® f*Ky)=0 for all i. (This condition is
automatically satisfied if L, L' are not conjugate in G). Then, for any
irreducible components A of K and A' of K' we have

Hi(G,A®A)=0  for all i

Proof. Since K, K’ are semisimple objects of .#G and H! commutes
with direct sums, it is enough to show that H(G, K® K')=0 for all i, or
equivalently that

Hi(X,K)=0 for all i; (7.2.1)

here X = V,x V5= {(g hP, WP') € G x (G/P)x (G/P')| h~'gh € P,
W~'gh'e P}, K=K, X K, where V,, K,, V3, K} are as at the end of 7.1.
Each G-orbit @ on (G/P)x(G/P') we define X,.={(g hP,h'P')e
X|(hP,h'P')e O}. The X, form a finite partition of X into locally closed
subvarieties. Hence (7.2.1) is a consequence of

Hi(X,,K)=0  for all i and all ¢. (7.2.2)
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Consider the morphism ¢,: X, — @ given by (g, hP, h'P')— (hP, K'P’).
The Leray spectral sequence of ¢, shows that to prove (7.2.2) it is enough
to show that Hi(p;'(¢), K)=0 for all i, all © and all (0. By G-
homogeneity of ¢, it is moreover enough to check this for a single £ in each
orbit @. Thus, it is enough to check that for any element ne G such that
L,nL'n™! contain a common maximal torus we have

Hi(X(n), K)=0  for all i, (7.2.3)

where X(n) is the subvariety of X defined by the conditions AP =P,
WP =nP.Let P"=nP'n~ ', L"=nL'n", Up.=nU,n""' and let 7. be the
canonical projection P” — L”. Let f: L" > L' be defined by f(x")=n""'x"n.
Then g — (g, P, nP’) is an isomorphism

PAP 3 X(n). (7.2.4)
Consider the morphism
p:PAP - E={(x,x")e(P"NLYx(PAL") | mp{x)=mp(x")}

defined by g+ (np(g), 7y (g)). (See [4,1.2].) This is a locally trivial
fibration with fibres ~ Upn Up., which is an affine space. The restriction of
K to X(n) becomes under (7.2.4), the complex j(K), where K is the follow-
ing complex on E:

K=K, ® f*(Kp)[j]
with a suitable shift [ j]. Thus (7.2.3) is a consequence of

HI(E, K, ® f*(K,))=0  for all i (1.2.5)

Note that P"n L is a parabolic subgroup of L with Levi subgroup
L~ L" and that P~ L" is a parabolic subgroup of L” with Levi subgroup
LnL"

Assume first that P"~L+# L. The orbits of the unipotent radical of
P" ~ L acting on E by left multiplication on the x coordinate are precisely
the fibres of the map pr,: E— P~ L". Since K, is strongly cuspidal, the H’
of any such orbit with coefficients in K, X f*Kj, are zero. From the Leray
spectral sequence of pr,, it then follows that (7.2.5) holds.

Similarly, if PnL"%# L", then using the fact that f*K{ is strongly
cuspidal we see that (7.2.5) olds.

Thus, we are reduced to the case where P"nL=L and PnL"=L"
Then L=L" and E is the diagonal in Lx L. In this case (7.2.5) follows
immediately from the assmptions in the proposition. This completes the
proof.
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We shall state a variant of Proposition 7.2, Let &/ be the affine variety
which parametrizes the semisimple classes of G and let 6: G —» &/ be the
Steinberg morphism which attaches to each g € G the conjugacy class of the
semisimple part of g. Let us fix ae /. We then have the following result

(7.3.1) We preserve the assumptions of 1.2 except that we replace
“Hi(L, Ko® f*Ky) =0 for all i" by “H(Ln o~ '(a), K, ® f*K) =0 for all
i.” Then for any irreducible components A of K and A" of K we have
Hi(c™Ya), A® A'}=0 for all i.

As in the proof of 7.2 we see that it is enough to prove that
Hi(X¢, K)=0, where X“={(g, hP, "P')e X | 6(g)=a} and X, K are as in
(7.2.1). As in that proof, this can be reduced to the following statement

Hi(E*, Ky ® f*K})=0  for all i, (1.3.2)

where E, K, X f*K{ are as in (7.2.5) and E“ is the subspace of E defined
by E‘={(x,x')e E| a(x)=0c(x')=a}. Just as in the proof of (7.2.5), we
consider the map pry: E4 > (PnL")na '(a),if PN L"#L", we use 6.9(b)
to deduce that (7.3.2) holds. Similarly, we see that (7.3.2) oids if
P'nL#L I we have PnL"=L" and P"~nL=L then L=L" and then
(7.3.2) follows from the assumption in (7.3.1). Thus, (7.3.1) is proved.

1.4

Let 4, A’ be two perverse sheaves on a variety Z. Then
H(Z,A® A')=0 for i>0. (74.1)
Moreover if A, A" are irreducible, then

HZ, A® A')=0<> A’ is not isomorphic to DA. (74.2)

This is proved as follows (cf. [4, 6.7].) From the inequalities
dimsupp #'4< —i and the analogous inequalities for A4’, it follows
that dim supp(#'4 ® #7/A4') < min(—i, —j) < —3(i+/), so that
dim supp #(A® A')< —i/2. 1t follows that HY(Z, # (AR A'))=0 for
a> —i, ie, for i+ a> 0. This is the £,-term of a spectral sequence converg-
ing to H*(Z, A® A’), hence (7.4.1) follows. We now prove (7.4.2). Assume
that 4, A’ are irreducible. For i < —d, we have #(4)=0and fori> —d=
—dim supp A4, we have dim supp #'(4) < —i; an analogous result holds for
A'. Hence dim supp(#(A)Q@ H'A)< —5(i+j) for i# —d, j# —d =
—dim supp A’, and H4(Z, #'(A® A4')) is 0 for i + a >0 except possibly in
the following case: supp A=supp A, —a=i= —d—d' = —2d, in which
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case it is H?4(Z, # ~(A)® # ~“(4’)). Let Z, be an open dense subset of
supp A=supp A’ on which # ~9A4), # ~“A’) are irreducible local
systems &, &'. We have H24(Z, # ~“(A)Q # ~4A4"))=H*Z,,6§®&’) and
this is zero if &’ is not isomorphic to the dual of &, and is 1-dimensional
otherwise. From this, (7.4.2) follows as in the proof of (7.4.1).

We shall need the following variant of Proposition 7.2.

PROPOSITION 7.5. With the notations in (7.1.14) assume that the follow-
ing condition is satisfied. for any isomorphism f:L L' which can be
realized by conjugation by an element of G, f*Kj, is not isomorphic to DK,.
Then, for any irreducible components A of K and A" of K', A" is not
isomorphic to DA.

Proof. The proof will follow closely the proof of 7.2. We shall use the
notations in that proof. Using (7.4.2), we see that it is enough to show that
H°(X, K)=0, (see (7.2.1)). This, in turn, is a consequence of the following
statement:

H%X,, K)=0, for all ¢ (as in (7.2.2)), which follows from the
equality Hi(p; (&), K)=0, for all i> —25 (6 =dim 0), all O, and
all £e0.

Thus, it is enough to prove the following variant of (7.2.3): Hi(X(n), K) =0
for all i> —28, where (P, nP’)€ © and L, nL'n" ' have a common maximal
torus. In the case where P"nL# L or PnL"#L", this is proved as in the
proof of 7.2, using the fact that K, K are cuspidal. In the case where
P'AnL=L PnL"=L" wehave L=L" and we are reduced just as in that
proof to showing that H(L, K,® f*(K3)) =0 for all i >0, (where f:Lx L’
is defined by f(x)=n"'xn). This follows from our assumptions and from
(7.4.1), (7.4.2). (Alternatively, a proof of the proposition could be extracted
from the proof of Theorem 5.5 in [4].)

COROLLARY 7.6. With the notations in (7.1.14), assume that A is an
admissible complex on G which is a component of both K and K'. Then there
exists g€ G such that gLg "= L', K,=ad(g)*K; (ad(g): L - L', ad(g)x =

-1
gxg™").

Proof. Note that DK} is again a cuspidal complex on L'. This follows
from the fact that if (X, &) is a cuspidal pair for L, then (£, &*), (where &*
is the dual of &) is again a cuspidal pair for L. (See [4, 2.5].) Now DK' is
obtained from P’, L', DK}, in the same way as K is obtained from P, L, K;
(see (7.1.9)), since induction commutes with D. Clearly, DA is an
irreducible component of DK'. It remains to apply 7.5 to K and DK’ and to
A'=DA.
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DEerFINITION 7.7. Let A be a cuspidal perverse sheaf on G. We say that 4
is clean if there exists 2 < G (the inverse image under G - G/Z% of a con-
jugacy class in G/Z%) such that supp A=2X and the restriction of 4 to
2 — 2 is zero.

ProposiTION 7.8. Let A, A’ be two clean irreducible cuspidal perverse
sheaves on G such that A’ is not isomorphic to DA. Then H(G, A® A')=0
for all i.

Proof. Let X be defined in terms of 4 as in (7.1.2). Define in the same
way 2" in terms of A’. We may clearly assume that X' =2". Let & (resp. &')
be the local system on X such that 4=&[d] (resp. A'=£'[d]) on X,
where d=dim 2. We must show that H (X, §® &')=0 for all i. The local
system & ® &’ on X is equivariant for the action (g, z): g - 2"go ggy ' of
GxZY on X (for some n> 1, invertible in k); moreover, it is semisimple
and contains no summand ~@, (since &’ is not isomorphic to &*). It is
enough to show that H(X, #)=0 for all irreducible local systems
7 # Q,, which are equivariant for the GxZ% action above. Let
G,cGxZ% be the stabilizer of some base point yeX. Let 5=
(GxZ%)/GY and let f: £ — X be the map ( gy, z)—z"g, ¥g, ' Then fis a
principal G,/G{-covering (G,/G? acts on £ by right multiplication) and
every local system # as above is a direct summand of f,@Q,. It is then
enough to show that H{(X, f,Q,)= H(X, Q,), or equivalently, that G,/G
acts trivially on H(Z, Q).

Consider the map f': (G/Z%)x Z% — £ defined by (g2, z) - class of
(g, z). It is clear that f' is surjective. Moreover, the fibres of f* are the
orbits of the group (Hy/Z?%) acting on (G/Z%)x Z% by right mul-
tiplication, where H is the centralizer of y in G. (Note that G = H%x {e}.)
By (7.1.2), H°/# is a (connected) unipotent group. Hence f” is an affine
space bundle, so that Hi(Z, Q)=H "*((G/Z%)x %% Q,) with
a=dim H°/Z?. Moreover, the action of G,/G on £ and the action of
G\/Z? on (G/Z%)x Z (by right multiplication on the first factor) are
compatible with the map f’. Hence to prove that G,/G9 acts trivially on
Hi(E,Q,) it is enough to show that G,/Z% acts trivially on
HI*24((G/2%) x Z%. Q). But this is clear since the action of G,/Z? is the
restriction of the action of the connected group G/Z% and a connected
group must act trivially on cohomology. The proposition is proved.

PrOPOSITION 7.9. Let A be a strongly cuspidal irreducible perverse sheaf
on G and let X, & be as in (7.1.2). Assume that G is semisimple and that any
Levi subgroup L of a proper parabolic subgroup of G has the following
property. any irreducible cuspidal perverse sheaf on L whose support contains
some unipotent element is strongly cuspidal. Assume that X is a unipotent
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class and that for any cuspidal pair (X', &) in G with 2'c Y —ZX, the
character by which the centre of G acts (in the conjugation action) on any
stalk of & differs from that by which it acts on any stalk of &'. Then A is
clean.

Proof. Assume that A4 is not clean. Let C = X — X be a unipotent class
of minimal possible dimension such that @, #(A)|-#0. Let i, be the
largest i such that #'(A4)|.#0. Let & be a direct summand of the local
system 3#(A)| . The center of G acts on each stalk of #(4) by the same
character by which it acts on each stalk of &. Therefore, from our
assumption it follows that (C, %) cannot be a cuspidal pair in G. By
[4,25], (C, £*) is also not a cuspidal pair in G (£*=dual of %)
According to [4,6.5] there exist P, L, K, as in (7.1.7) with P ¢ G such
that the support of K, contains unipotent elements and such that if K is the
corresponding induced complex on G, then for some direct summand A’ of
K the following property holds: The restriction of 4’ to the unipotent
variety of G is (up to shift) IC(C, #*) extended to the unipotent variety by
zero outside C. By our assumption, K|, is strongly cuspidal. We may apply
Proposition 7.2 to 4, 4’. (In our case, the two Levi subgroups appearing in
7.2 are L and G, hence are not conjugate.) It follows that H (G, A® A')=0
for all i As suppA=2L, we have also supp(A®A’)c X hence
H(G, A® A') = H(E, A® A'). As supp(dA)n £ <, we have
H(Z,AQ A")=H(C,A® A'). As A is zero on C — C (by minimality of C)
we have H'(C, A® A’)= H(C, A® A’). Comparing the last four equalities,
we see that H(C, A® A')=0 for all i. Since A’ | C is equal to #* up to a
shift, it follows that H(C, A® £*)=0 for afl i In particular, we have
H?*+(C, A® #*)=0, where d=dim C. Consider the spectral sequence
Egi=H!C, #(A)® L*)=Hr*4(C, A® £*). Then E&¢=0if g > i, (by
our choice of iy) or if p> 2d. It follows that E3*° = E}o=< --- = E2%6 But
E2% js a subquotient of H2Y+(C, A ® £*), hence it is zero. It follows that
0= E¥io= H(C, #°(A)® £L*). Since & is a direct summand #"°(4)|,
it follows that H*/(C, ¥ ® ¥*)=0. This is clearly a contradiction. The
proposition is proved.

7.10

Let (2, &) be a cuspidal pair for G and let K=IC(Z, &)[d], extended to
the whole of G, by 0 on G— X (d=dim X). Let 2, be the set of semisimple
parts of elements in X (or, equivalently, in its closure X). Let s be an
element of X';. We denote G'= Z°(s) and C = {u€ G’ | u unipotent, sue X'}.
This is a single orbit under the conjugation action of { ge G | gsg~'esZ%}
which contains G’ as a subgroup of finite index. Hence C is a union of
finitely many unipotent conjugacy classes of G'. Let €’ be the local system
on Z%- C defined as the inverse image of & under the map Z2%-C— Z,
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g — sg. We define K'=1C(Z%- C, £')[d,], extended to the whole of G, by

0on G'—Z%-C (d, =dim Z%.- C). Note that % C has all its irreducible

components of the same dimension d; and % - C is open, dense, smooth in

29 - C so that the intersection cohomology complex K’ is well defined.
With these notations, we can state

ProPOSITION 7.11. (a) K’ is a cuspidal perverse sheaf on G'.

(b) If K is strongly cuspidal, then K' is a strongly cuspidal perverse
sheaf on G'.

(¢) C is a single unipotent class of G'.
(d) if and only if K is clean, K' is clean.

Proof. We first prove (b). Let P’ be a proper parabolic subgroup of G’
with unipotent radical U,. We must show that for any ze Z%., ue Cn P,
we have Hi(zuUp, K')=0 for all . We may assume that z=e¢. Hence we
must show that H!(uU, nC, K')=0 for all i. The restriction of K’ to C
coincides (up to a shift) with the inverse image of K under the map C— X,
ur— su, (because the map n: 2 — X, defined by taking semisimple parts is a
locally trivial fibration and X', is smooth). Hence we must show that
Hi(suUp neC, K)=0 for all i, or equivalently, that H(suU, n X, K)=0.
Let P be a parabolic subgroup of G such that P"=PnG’. Define
p:sullpnE —sUp,n X, to be he restriction of n: £ = X,. The group U,
acts by conjugation on both the source and the target of p and the action is
compatible with p; moreover, this action is transitive on sU,nZx,. We
have p~'(s)=sulUp n L, hence we must only show that Hi(p '(s), K)=0
for all i. Consider the Leray spectral sequence for p:

Epi=Hr(sUpn 2, #p K)=HI*9(sul,n X, K).

The last vector space is zero since K is strongly cuspidal. Thus, EZ¢ =0 for
all p,q. Now #9p,K is a Up-equivariant local system on sU,n 2, and
sUpn 2 2 Up/Up ~affine space. Hence Ef4=0 for p#2dim Upy/Up.
This implies that E29= E79 for all p, g; it follows that E£4=0, for all p, g,
so that #9%,K=0 for all ¢. Taking the stalk at s, we see that
Hi(p '(s), K)=0 for all g, and (b) is proved.

The proof of (a) is similar; it will be omitted. It is clear hat the previous
argument, together with (c) also proves (d).

We now prove (c). It is easy to show that our statement for G follows
from that for G/Z%; hence we may assume that G is semisimple. Assume
that C contains at lest two unipotent classes C, # C, of Z%s). As we have
seen in 7.10, there exists g€ Z,(s) such that gC, g~ ' = C,. Moreover, from
(a) we see that there exist irreducible local systems &, on C, and &, on C,
such that (C,, &), (C,, &) are cuspidal pairs for G. Let n: G — G be the
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simply connected covering of G. Let C,, C, be the sets of unipotent
clements in n7'(C,), n7Y(C,); let & =n*&), &=n*&, Gen '(g),
§en~!(s). Then (C,, &), (C,, &) are cuspidal pairs for Z;(5), C, # C, and
we have §C, §7'=C,, 858 ' =25, zeker n. Thus it is enough to prove

LeMMA 7.12. Let G be simply connected, let s € G be an isolated semisim-
ple element. Assume that Cy, C, are two unipotent classes in Z(s), and
g€ G is such that gC, g~ '=C,, gsg~'=1zs, zecentre of G. Assume that
there exist irreducible local systems & on C,, & on C, such that (C,, &),
(C,, &) are cuspidal pairs for Zy(s). Then C,=C,.

By decomposing G into a product of almost simple groups we are
reduced to the case where G is almost simple and simply connected. We
may assume that z # e, for otherwise the result is obvious. In this case, by
results of [4], Z(s) has at most one unipotent class C which can carry a
cuspidal pair (except possibly when G is a spin-group in odd charac-
teristic); hence C, = C,. It remains to consider the case where G is a spin-
group in odd characteristic. Then Z;(s) is of type D, x D,,,. If conjugation
by g preserves both D factors of Z;(s), then it leaves stable each unipotent
class of Z.(s) except possibly for some classes of unipotent elements con-
tained in a proper Levi subgroup; such classes cannot carry cuspidal pairs,
by [4, 2.8], hence C,=C,.

We may therefore assume that conjugation by g switches the two D-fac-
tors of Zs(s). Then Z;(s) = (Spin,, x Spin,, )/(s, €), where ¢ is the generator
of the kernel of Spin,, — SO,,. In this case, any unipotent class of Z;(s)
which can carry cuspidal pairs for Z(s) is of the form C’ x C’, where C’ is
a unipotent class in Spin,,, (strictly speaking, C’ x C" is a unipotent class of
Spin,, x Spin,,; we identify it with its image in Z;(s)). This follows from
the following result [4, §13, 14]: given a character y of the group {1, ¢},
there is at most one unipotent class C;, of Spin,, which can carry a cuspidal
pair (C,, &') for Spin,, such that ¢ acts on each stalk of & as mul-
tiplication by x(e). This completes the proof of the lemma and also the
proof of 7.11.

(Note that in the proof of the lemma we have made use of the results in
[4] on classification of cuspidal pairs carried by unipotent classes only in
the case of classical groups.)

8. GENERALIZED GREEN FUNCTIONS

8.0

In this chapter, k denotes an algebraic closure of a finite field F, with ¢
elements and G (see 2.1) has a fixed F,-rational structure compatible with
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the group structure. We denote by F: G — G the corresponding Frobenius
map.

8.1
We consider the following data in G:

(8.1.1) L is the centralizer of a torus in G, X is a subset of L which is the
inverse image under L — L/29 of an isolated conjugacy class of L/Z9, & is
a local system on L which is isomorphic to a direct sum of irreducible local
systems &; on X such that each (Z, &) is a cuspidal pair for G, (see (7.1.2)).

To (L, 2) we associate the open set X, of 2 and the locally closed
smooth irreducible subvariety Y=Y, 5, =) .6 xZ g x ' of G, as in 3.1L.
Consider the diagram

where
¥={(g xL)eGx(G/L) | x 'gx€ X o},

Y={(gx)eGXxG|x 'gxe X},
2(g, 0)=x""gx, Plgx)=(gxL), n(g xL)=g

The local system a*& on Y is L-equivariant for the action of L on ¥ given
by I ( g,x)r—»( g, xI~') hence it is equal to f*& for a well-defined local
system & on Y. (We take & = R°,(a*&).) The map = is a finite principal
covering map, hence 7,& is a semisimple local system on Y. Consider the
closure Y of Yin G and let

(8.1.2) K=1IC(Y, n,8)[dim Y], extended to the whole of G (by 0 on
G-Y)

(8.1.3) In the case where FL=L, FX=2X, and there exists an
isomorphism ¢q: F¥*& =5 & of local systems over X, we can define an
isomorphism ¢: F*K = K as follows. The varieties ¥, ¥, ¥ have natural F-
structures and ¢, gives rise to an 1somorph1sm F*€~ & of loal systems
over ¥, to an isomorphism F*rn, & ~n,& of local systems over Y and
hence to an isomorphism ¢: F*K _>K (1n MG).

8.2

Another construction of K is given in [4, 4.5]. We shall recall it briefly.
Let P be a parabolic subgroup of G having L as a Levi subgroup. Let
np: P— L be the canonical projection. Consider the diagram

I RN GRS 4
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where
X={(g xP)eGx(G/P)| x 'gxe X -U,},
X={(g,x)eGxG|x 'gxeZ U,},
Y=closure of Yin G (see 8.1),
a(g x)=np(x"'gx), Blg, x)=(g xP), Y(g xP)=g.

(According to [4, 4.3] we have Y =), s xZU,x~ 1) )

There is a canonical perverse sheaf K on X such that ()K= (d)
(IC(Z, &)[dim 27).

The following results are proved in [4, 4.3, 3.1, 4.5].

(8.2.1) The map (g, xL) - (g, xP) gives an isomorphism of ¥ onto the
open dense subset i ~'(Y) of X. The map y is a proper map of X on Y.

(8.2.2) Y is locally closed in G, smooth irreducible of dimension equal to
dim G —dim L +dim 2.

(8.2.3) There is a canonical isomorphism K| ¥ x ¢, K.

The model ¢, K of K has the disadvantage that in the situation of (8.1.3),
there is no direct way to define an isomorphism F*i, K~y K. This is due
to the fact that, although FL =L, we do not necessarily have FP=P. On
the other hand, if we denote P’'=FP, then we may define y': X’ - Y,
Ke#(X') in terms of G,L, P, X, & in the same way as y: X — ¥,
Re #(X) were defined above in terms of G, L, P, X, &. Then (8.2.3) applies
again and gives an isomorphism K=yiK'. Moreover, the map
@y F*¢ =& in (8.1.3) gives rise in a natural way to an isomorphism
F*K'~x K in #X (note that F maps naturally X onto X’); hence it gives
rise to an isomorphism ¢: F*(y;K’') >, K in .# ¥, such that the following
diagram is commutative

FYK| 7). K| ¥
1% P (8.2.4)
FYyiK)—2 ¢, (K)
(The vertical maps are defined by (8.2.3).)

8.3

Let L, 2 be as in (8.1.1); assume that 2= %9 - C, where C is a unipotent
class of L. Assume also that FL =L, FX =X. Let % be a local system on C
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and let ¢,: F*% 5 % be an isomorphism. We assume that there exists a
local system & on X, as in (8.1.1), such that # =& | C, and that there
exists an isomorphism ¢4 F*& 3 & extending the given isomorphism
o F*7 3 F.

We define K, ¢: F¥*K 5 K in terms of & as in 8.1. We define a function

Q. .c.7 . {unipotent elements in G} - Q,
by

QL.G(‘,/;‘.;;.(“):Z (“l)iTr((Pw ﬂf,K)~ (8.3.1)
(The map induced by ¢: F*K > K on the stalk #' K (ue G"), is denoted
again by o; the trace is taken over Q,.)
This definition makes sense in view of the following result:

(8.3.2) The function QrLecrg IS independent of the choice of & and
@y: F*& 5 & extending F and ¢ F*# 3 F to 2.

(In particular, to compute this function we may take &, ¢, to be the
inverse image of %, ¢, under the canonical map 2 — C.) We consider two
local systems &), &, on 2 as in (8.1.1) and isomorphisms ¢¢,: F*6, = &,
Qo F*& 3 & such that over C we have a commutative diagram

F*& | C—12s P26, | C

%IP dzpo:

§1C—=&|C

Let K,, K, be defined in terms of &, &, in the same way as K was
defined in terms of & and let ¢,: F*K, 3 K,, ¢, FFK, 3K, be the
isomorphisms induced by ¢q, ¢p- It is enough to show that
Tr(e¢,, #'K,)=Tr(¢,, #'K,) for any unipotent element u € G*. We may
assume that ue Y =supp K, =supp K,.

Let P, P' be as in 8.2. We shall use the notations in 8.2 except that we
shall write K, (resp. K,) for K defined in terms of & (resp. &) and we shall
write K (resp. K3) for K’ defined in terms of &, (resp. &).

From (8.2.4) we get commutative diagrams

H(K))—2> H(K))

[ |

607/57/3-3
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H(Ky)—2— H(K>)

| J

KW Ry) —2 #i(y,R,)

where the vertical maps are given by (8.2.3). It is therefore enough to con-
struct isomorphisms §', & such that the diagram

H W R —2 #i( K)

| I

HiiKy) —2 #i(y, k)

is commutative. This would follow from the existence of two isomorphisms
e Ky | umi S Kb s & K, Ium—>K2 luni_ which are compatible with the
isomorphisms F*K, 5 K,, F*K,~K, induced by ¢, ¢o,. (Here |
denotes restriction to the subvariety of X or X’ which is inverse image
under i or ¥’ of the set of unipotent elements of ¥.)

But from the definition of K, it is clear that K, | ,,; can be defined purely in
terms of the restriction of & to C (without using any information on & on
2 —C). A similar statement holds for K,, Kj, K,. It follows that
y: & | C3 &' | C induces the required isomorphisms &, ¢'; their compatibility
with @g,, @, follows from the compatibility of y with ¢, @q;-

This completes the proof of (8.3.2). The function (8.3.1) is called a
generalized Green function.

8.4

Given an algebraic variety Z defined over F, (with Frobenius map
F:. G- G), an object 4€ 2X and an isomorphism ¢: F*4 x4, in 2X, we
define the characteristic function y , ,: Z" —Q, by

Yaol2)=) (—1) Tr(o, #, A) (zeZ"). (8.4.1)
(cf. (8.3.1)).

We wish to state a result expressing the characteristic function y ., of
K, ¢ (defined from L, X, &, ¢, as in 8.1) in terms of generalized Green
functions. We shall assume that & is irreducible.

Let s be a semisimple element of G and let 4 be a unipotent element of
G*, commuting with s. (In the rest of this chapter s and u will be fixed.)

Let X, be the set of semisimple parts of elements of Z. Assume that
xeGF is an element such that x 'sxeX,. Then sexLx~' so that the
group L. defined by L,=xLx 'nZ2(s) is a Levi subgroup of some
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parabolic subgroup of Z%(s). Let C, be the set of unipotent elements in
Z%(s) such that sve xe" Let &, be the local system on C, defined as the
inverse image of & under the map C,— X, v x " 'svx. Since this map is
defined over F,, ¢,: F*6 3 ¢ induces an isomorphism ¢ .: F*# X % of
local systems over C,. By 7.11(a) and (c), the set C, is a single unipotent
class of Z%(s) and #,, ¢ F*#,— #, are as in 8.3. We can now state:

THEOREM 8.5. With the notations and assumptions of 8.4, we have

tkols)= 3 (ILINIZYUS)TILT) Q. 2.0 ot)-

xeGF

T lsxeZy

(In the case where L=2=2", is a maximal torus of G, this formula
should be compared with the character formula in [3,4.2].)
The proof of the theorem will make use of the following result.

LemMa 8.6. Let P be a parabolic subgroup of G having L as a Levi sub-
group. There exists an open set WU in Z%(s) containing e and satisfying
properties (a)—(e) below:

(a) g#g "= for all geZ%s).
(b) xe#<x,eU. (x,=semisimple part of x).
(c) FU =9

(d) If ge#, xeG, x 'sgxeXU,, then x 'gxeZU, and
X 'sxeX Up.

() Ifge#, xeG,x 'sgveX, then x 'gxeZ9 and x 'sxeX,.
8.7
In this section we fix P and % as in 8.6. Let
X,={(g.xP)eX|gesl}, (8.7.1)
where X is as in 8.2. Let

M={xeG|x 'sxe&} I'=2Z%s)\.4/L, (8.7.2)
{xeG|x "sxeX Upl, = Zo(s)\,,///P. (8.7.3)

We shall assume that .# is nonempty. It is easy to see that I" is finite and
that the natural map I"— [ is bijective. We shall regard clements of I”
(resp. ) as subsets of G: double cosets with respect to Z%s), L
(resp. Z%s), P). We define

-~ -~

X, o=1(sg, xP)e X, |xe 0}, Oel (8.7.4)
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The orbits of Z°%(s) on {xPeG/P|x 'sxeX,U,} are clearly complete
varieties, hence they are closed. The number of these orbits being finite (in
1-1 correspondence with 1) they are also open. From 8.6(d) it follows that
the sets X, ; (0 e I') cover X,. Thus

(8.7.5) The sets X, 4, (O el), are open and closed in X, ; they form a
finite partition of X,,.

For @ e I" we denote by @ the corresponding element of /. We choose a
base point x, € ¢ for each . We may assume that this choice s such that
F(x4)=Xpgg, for all 0. (Note that F acts naturally on I') Let P, =
xoPxz'nZ2%(s); it is a parabolic subgroup of Z2(s) with Levi subgroup
Lo=x,Lxz'nZ%s), since sex,Lx,'. Let C,={veZ%(s)| v unipotent,
xz lsvx, € L'}; as we have seen in 8.4, C, is a unipotent class in Z%(s). Let
2e=%9,C,. Let 6, be the local system on 2, obtained as the inverse
image of & under the map X, - X, g — x, lsgx,.

(8.76) Let n): Y > Yo, &0, Ko, ¥o: Xy — Y, K, be defined in terms
of Z°s), Ly, X, ¢ in the same wayas m: Y - Y, &, K, y: X - ¥, K were
defined in 8.1, 8.2 in terms of G, L, X, &.

Let

we=Wo'(U)c Xg. (8.7.7)

We now show

(8.7.8) The map (g, zP,)— (sg, zx.P) defines an isomorphism

X’%,UA‘ 3 Xﬂ}/:(f“

Assume that (g, zP,)€X}y ;. Then z“gz_ef»’f"i(fm Up, hence

(zx0) 'sglzxo) exg'sZ8,CoUp X xg 8% | 51CoXe Upc Z9,EUp=
2U,.
(We have 29 =279, since s is isolated in x.Lx;', and
Up,cxcUpx, ') Hence (sg, zx.P)e X, ;- so that the map (8.7.8) is well
defined. Now let (sg, zxP)e X, (z€Z%(s). Then x;'z 'sgzx,€LUp;
hence, by 8.6, we have x,'z 7 'g,x,e #%U,. Thus, we have z 'g.ze€
(21t U o) 0 Z%(s) = (29,10 Z5(s)) Up,. We have

xelx, xelxg

z7lgze(s” lx@fxg‘waPx;l)m Z%s)=((s "% Exz NN Z%s)) Up,.

Thus, z 7 'gze EU,,, where Ee(s™'xoZxz )N Z%(s). Let £=¢.E, be the
Jordan decomposition of £. Then &,e 29, 1N Zg(s)= 23, =27, . We
have £ € Z%(s) hence &, e Z%(s). We have s¢, ¢, =sé e x,2x, . Hence s¢, €
xpZxg ¥t ax L& x5 =x,2x;". Thus, ¢ ¢,eZ9 C. Hence the map
(8.7.8) is onto. It is injective: if zP,, z'P,, (2, 2" € Z%(s)) satisly zx,P=
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Z'x. P, then z7 'z’ e x, Px; ' 0 Z%(s) = P, hence zP, =z'P.. Thus, the map
(8.7.8) is bijective. The proof of the fact that its inverse is a morphism is

standard and will be omitted. _
We now define ¥, =n""(Yns¥)cY,

Y,e={(g,xL)eY,|xel}, Cerl
Y, =)< Y., Cer

From (8.2.1), (8.2.2), we deduce:

(8.7.9) The map (g, xL)— (g xP) gives an isomorphism of ¥, onto the
open subset ¥ ~ (Y ns#) of x,. The map y is a proper map of X, onto
Yrs# and Y~ s% is open, dense in ¥ s%.

From (8.2.1), (8.2.2) applies to Z°(s), L., P., X, (instead of G, L, P, %)
we deduce:

(8.7.10) The map (g, zL. (g, zP.) gives an isomorphism of T”,,,.(f‘ onto
the open dense subset ¥, (Y, n#) of X', . The map ¥, is a proper map
of X', - onto Y, n# and Y, % is open, dense in Y, n%.

We now prove:

(8.7.11) ¥, . is a nonempty, open and closed subset of Y,. The subsets
Y, ¢ (Cel), form a finite partition of Y ,,.

From 8.6(¢) we see that the sets ¥, . (¢ € I') cover ¥,. Note that (8.7.9)
identifies ¥, with an open subset of X,. It also identifies ¥, . with the
intersection of ¥, with X, ~. Since X,  is open and closed in X, (see
(8.7.5)) it follows that ¥, . is open and closed in ¥,. We now show that
Y, « is nonempty. Let v be an element of C,.. The intersection Z9 AUy ~!
is an open dense subset of Z9 (it contains e, since ve % by 8. 6(b) and is
open since # is open in Z%(s)). Clearly, the intersection Z9 n
57N X0 L g Y(, )L" is also an open dense subset of 29 . Hence
Xy U " Nx, Zepx Yo ! is an open dense subset of J’L ; in par-
ticular, it is nonempty. Hence there exists (e9 such that
(s{v, xoL)e Y,, «» proving that Y, .. is nonempty.

(8.7.12) The map Y:X,.— YNs¥ is proper, with image equal to
(Y, nu), and X, ¢ is irreducible. We have y(Y, V=Y, .. Y, .=
WY, )Xy and Y, . is open, dense in s(Yo. ).

The fact that y: X, ; —» Y ns% is proper follows from (8.7.9) and (8.7.5);
the statement about its image follows from (8.7.8) and (8.7.10). The
irreducibility of X, ; follows from (8.7.8) and the fact that Xz and X7, . are
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irreducible. As )7@,‘@ is nonempty and open in X, s, (8.7.11), and X, ; is
irreducible, it follows that ¥, , is dense in Y, 4. It is clear that Yioisa
union of fibres of y: X, s — s(¥, n%). Since this map is proper, the image
of Y, ., must be open and dense in s( ¥}, N %).

We now describe the irreducible components of the locally closed subset
Yns% of G. The map n: Y- Y is proper hence its restriction n: ¥, —
Y s is also proper. Using (8.7.11), it follows that the sets Y, , (images of
¥ w0 under 1) cover Y ns% and are closed in ¥~ s%. 1t is easy to see that
for 0,0, the sets Y, o, Yy o are either disjoint or coincide; more
precisely, they coincide if and only if @, 0’ are in the same orbit of the
group N(L, 2)/L={neG|n~'Ln=L, n~'2n=2}/L which acts on I" by
right multiplication. Since Y, , are irreducible, (see (8.7.12)) it follows that

(8.7.13) The irreducible components of Y s are disjoint. They are in
1-1 correspondence with the orbits of N(L, X)/L on I'. The irreducible com-
ponent corresponding to the orbit of Oe I is Y, ..

We now define for each N(L, 2)/L-orbit Z in I an open subset ¥, of
Ynsd.

V=) (S(Yorn )N Yy o). (8.7.14)

CeZ

Then ¥ is an open dense subset of Y, . (0€Z), as we can see from
(8.7.10), (8.7.12). Note that ¥7 is smooth, since it is an open suset of
(Y, n%) hence it is isomorphic to an open subset of Y, which is known
to be smooth. This shows also that dim ¥, =dim Y, =dim Z%(s) —
dim L, +dim 29, C, (see (8.2.2)). Note that L, is the connected centralizer
in L of an element in 2’| hence dim L, =dim L —dim(Z,/Z?). Moreover,
dim 29 =dim 29 and dim C, =dim £ —dim Z,. Thus,

(8.7.15) dim ¥, =dim Z%(s)— dim L + dim X is independent of Z.
It is easy to check that F(¥3)=7,,. Let

(8.7.16) ¥"=U), ¥% (union over all N(L, X)/L-orbits Z in I').

(8.7.17) ¥ is an open dense smooth equidimensional subset of Y N s% and
FY" =797, the subsets V, are its irreducible components.

8.8

We now prove Theorem 8.5, assuming Lemma 8.6. We may assume that
sue Y; otherwise, su is not in the support of K and the identity in the
theorem is trivial. This implies in particular that .# in (8.7.2) is nonempty.
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From (8.7.8), (8.7.9), (8.7.10), (8.7.11) we see that we have a com-
mutative diagram

Yivy —— 1 (Fo1s™'y)
(el
l l (8.8.1)

e sy

where Y| v = {(g, xL)e ¥| ge¥’},
Yols '"'={(gzL)eY, | ges '¥,} (0eZ) see (8.7.14)),
(g, zLs)=(sg, zx, L),
e(g)=sg,

and the vertical maps are projections to the first component.

All maps in the diagram (8.8.1) are clearly defined over F,. (The
parabolic group P which is in general not defined over F,, does not enter
in (8.8.1).) It follows that we have a canonical isomorphism of local
systems over s~ '¥":

e )12 @ (o) (E) s ') (8.8.2)

el

and this isomorphism is compatible with the liftings of the Frobenius map,
given by ¢. (Here, (n,.),(£,)|s™'# has the following meaning. For each
Oel, (n'@)*g « may be restricted to only one irreducible component s ™',
of s7'47; we regard it as zero on the other irreducible components of
s~ '97) By the definition of K, K,, (8.8.2) can be also regarded as an
1somorphism

XK -9]=@® (Ko |s '), (8.8.3)

el

where 6 =dim Y —dim Y, =dim G —dim Z2(s) (see (8.2.2)). Assume that
we can show that the isomorphism (8.8.3) is the restriction to s~'¥" of an
isomorphism

K| YnsU)[ -1 @ (K, | s~ 'Tra). (8.8.4)

el

(Here, ¢ is regarded as an isomorphism s 'Y % — Yns%, g sg.) The
isomorphism (8.8.4) extending (8.8.3) is unique (if it exists) and is
automatically compatible with the liftings ¢ of the Frobenius maps since
(8.8.3) is. This follows from properties of intersection cohomology com-
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plexes. (We use the following fact: The right-hand side of (8.8.4) is (up to
shift) an intersection cohomology complex on s 'Y n% associated to a
local system on the open dense smooth equidimensional subset s ~'¥".) The
isomorphism (8.8.4) gives rise to an isomorphism of stalks:

Hi K> @ #K, (8.8.5)

el

(for all i) which is automatically compatible with the action of ¢ and ¢,
where @o: F*Fp, 3 K, is the isomorphism induced by ¢. Taking now alter-
nating sums of traces of ¢ in (8.8.5), we find

XKw Su Z XKc W

Cel”

FO=0
(Note that 6 in (8.8.3) is even since it is the dimension of the conjugacy
class of s in G.) This implies the theorem, in view of the definition (8.3.1) of
generalized Green functions and the identity |OF| = |Z%(s)"| - [L*| - |LE|~
It remains to construct the isomorphism (8.8.4). Using (8.2.3) we find
isomorphisms

K| Yns¥sy,(K|X,)

- - (8.8.6)
Ko | Yo U 3 (o) (Ko | Xy o).
From (8.7.5), (8.7.8) we get an isomorphism
e* (W (K1 X)) -013 @ (e (Kol Xiye). (8.8.7)

el

(We regard (Y),(K. | X}, ) as a perverse sheafl on s~ 'Y n%, equal to
zero outside Y, n%.) The shift [ —4&] in (8.8.7) comes from the fact that
under (8.7.8), the restriction of K[ —4] to X, » corresponds to the restric-
tion of K, to X, ¢.
Combining the isomorphisms (8.8.6), (8.8.7) we find an isomorphism as
n (8.8.4); from the definitions it follows that it extends the isomorphism
(8.8.3). This completes the proof of Theorem 8.5 assuming Lemma 8.6.

8.9. Proof of Lemma 8.6

A subset % of Z%(s) is said to be stable if it has the properties (b) and (c)
in 8.8.

(8.9.1) There exists a stable open subset U, = Z%(s) containing e such that
FUt =%, and such that xe U , = Z ;(sx,) = Z ().

We imbed G into G = GL,(k) as a closed subgroup defined over F,. Let
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U, ={geG|Zsg,)cZs(s)), and let %, =s ", Z%(s). It is clear that
%, has the required properties.

Let X, %,,.., 2, be the inverse images under L — L/Z9 of the various
isolated semisimple classes in L/Z9. (We number them in such a way that
the first one of these sets is the set 2, introduced in 8.4.)

Let #={xeG|x 'sxeXZ,} (1<j<m). Let ¢, (1<i<r(j)), be the
orbits of Z°(s)>< L acting on .4, by x—zxl"' (= eZ‘},(s), le L)

Let
s=znn(Y(Y (Y 5) )

Let ¥ ={geZ%s)| g,€ %} Then ¥ is a closed stable subset of Z%(s)
not containing e.

(8.9.2) The set U, =, — &' is a stable open subset of Z%(s) containing e
and we have ge¥,, xeG, x 'sgzeL=x"'sxel,.

Assume that ge%,, xeG, x 'sgxeX,. Then x 'sg.xeX,. By (8.9.1)
we have Zs(x 'sg,x)<= Z,; (x'sx). It follows that x ~'sx is isolated in L,
ie, x 'sxel, for some j. If j# 1, then by the definition of ¥, we have
g.€#, hence ge.¥". Thus, if ge¥, — %', we have j=1, ie, x 'sxel,,
as required.

Let 7 = Z%s) N U e p((s7'xZ x7 ' L)— 29 ), where L is as in 8.4.
Let 7' ={geZ%s)| g,€7}. Then 7' is a closed stable subset of Z%(s)
not containing e.

(89.3) The set Us=U,—J " is a stable open subset of Z%(s) containing e
and we have ge Uy, xe G, x " 'sgxeX=>x""'g xe Z9.

Let ge;, xeG be such that x 'sgxeZX. Then x 'sg,eX,. From
{8.9.3) we know that we must have x 'sxeX,, ie, xe.#,. Assume that
x"gx¢ 2. Then g, ¢ 29 =29  hence g, €7, hence ge I, con-
tradicting g € %,. Thus, we have x 'g,xe %, as required.

(894) If ge¥,, xeG, x 'sgxeZU,, then x7'sxeX U, and
x 'gxeZU,.

We have x 'sg,xe X, U,. Replacing x by xp for some pe P, we can
assume that x 'sg,xeX,. But then x 'sxeX,, x 'g.xe Z9 by (8.9.2),
(8.9.3). Thus (8.9.4) follows.

We may take % = %,; Lemma 8.6 is proved.
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9. ORTHOGONALITY FOR THE GENERALIZED GREEN FUNCTIONS

9.1

In this chapter we preserve the assumptions of 8.0. Let L, X, &, ¢,:
F*¢x6, K, p: FF K3 K be as in 8.1. Let L', X', &', ¢): F*&' &', K,
@'t F*K’' 3 K’ be another set of data of the same kind in G. Let X, be as in
8.4 and let X be defined similarly, in terms of 2"

Let 0 be the set of all ne G* such that nln—'=L', nZn ‘=23

We shall make the following assumption.

(9.1.1) Assume that K,=IC(L, &)[dim X, Ky =1C(Z", &')[dim 2’ ] are
strongly cuspidal complexes for L, L', respectively. (We regard these as
complexes on L, L’ equal to 0 on L—ZX, L’ — 2”.) Assume also that either
L, L’ are not conjugate in G or L, L' are conjugate in G and both K, K},
are clean.

With these assumptions, we can state the following two results, which
will be prove in 9.4-9.6.

THEOREM 9.2. If &, &' are irreducible, then

IGF17" Y xko(8) Xk (8)

geGF

=ILNLTTN Y Y Hewdl©) xegynén). (9.2.0)

nep texft

THEOREM 9.3. If 2 =%Z9C, 2'=%9.C' (C, C' are unipotent classes in
L, L") and if F, ¢, (resp. F', @) is the restriction of &, @, (resp. &', @g) to
C (resp. C’), then

[ Or6c#.0) Qrec sy (1)

ue GF
unipotent

=ILTHL T Y Y tral@ Esginén ™) (93.0)

ne@ teCt
94

First we note that

(9.4.1) Theorem 9.2 holds if L, L' are not conjugate under an element of
G.

Indeed, by the trace formula for Frobenius maps, the left-hand side
of (9.2.1) is equal to Z(—1)' Tr(Fr, H{((G, K® K’))). (The map Fr is
defined as the composition H (G, KQ K') - H(G, F*K® F*K') »*®¢
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H{(G,K® K")). By 7.2 we have H(G, K® K')=0 for all i, hence the left-
hand side of (9.2.1) is zero. The right-hand side is also zero since, under
our assumption, 0 is empty.

We now prove that

(9.4.2) Theorem 9.2 holds under the following assumptions: X =% C,
2=%9.C" (asin9.3), & | ZY. is a constant sheaf, & | Z9 is a nonconstant
sheaf.

We first show that H (G, K® K') =0 for all i, We may assume that L, L’
are conjugate in G (see (9.4.1}). Then K, Kj, are clean, see (9.1.1), and by
7.2 it is enough to show that H(L, K,® f*K;)=0 for any / and any
isomorphism f: L~ L’ given by conjugation by an element in G; the last
equality follows from 7.7 and our assumption on &, &'. From the vanishing
of Hi(G, K® K') we deduce, as in the proof of (9.4.1), that the left-hand
side of (9.2.1) is zero. We now show that the right-hand side of (9.2.1) is
zero. It is enough to show that for any ne@#, the sum
Zeest Ao o) Yo go(nén™") is zero. By the trace formula for Frobenius
maps, this sum is equal to the alternating sum of traces of the Frobenius
map on Hi(Z, £ ®ad(n)*&’). It is enough to show that the last space is
zero for all i This follows from 7.7 and our assumptions on &, &".

Next we show:

(9.4.3) Theorem 9.3 follows from its special case in which Z$ Z9.~
Zi=e}.

Let '=ZYnZ9. nZ;andlet G=G/I. Let L, L', C, C’' be the images of
L, L', C, C'" under the canonical map p:G— G. Note that G, L,L',C,C’
have natural F-structures. Let % (resp. #') be the local system on C
(resp. C) deﬁned by # (resp.#') by the isomorphism CxC
(resp. C' > C') induced by p. Let ¢,: F*# 3 F, ¢: F*#' 3 %' be induced
by ¢, ¢}. Then Z is L-equivariant (since "< Z9) and similarly #' is L’
equivariant. We can define a complex Kon Ginterms of G, L, | X #,...,
the same way as K was defined in 8.1 in terms of G, L, &,.... We deﬁne
similarly K" on G, in terms of G, L, 1 ® #,... We have K= p*K[dim Iy,
K' = p*K'[dim I, _QL.GC o) = (= )dlmrQLGCf alp(u)), and
Qre.cs.ou)=(— l)dlmrQ o7 0 (p1)).

It follows immediately that the truth of (9.3.1) for G implies the truth of
(9.3.1) for G. We have Z9n 29 N Z;={e} and (9.4.3) follows.

We now show:

(9.4.4) Theorem 9.2 holds under the following assumption: there exist
parabolic subgroups P, P' of G, defined over F,, having L, L' as Levi sub-
groups.
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We may assume that L, L’ are not conjugate in G (see (9.4.1)), so that
K, K are clean (see (9.1.1)). We shall use the description (8.2.3) of K: note
that in our case, the map y is defined over F,. We deduce that

ko8 =1PI7" Y peolme(x'gx))  (g€G")

xeGF
x"lgxeZUp

Similarly, we have

1o (8)=IPF170 Y e p(mp(x' " gx')).
x' e GF
x~lgxeZ'Up

It follows that

IGT1 7" Y 1kl 8) Xxp(8)

ge GF
— |GF|—1 |PF|—II P/F|—1
—1 r—1 '
X ZF Xg.wo(np(x gx))Xg',q;()(nP'(x gx")).
geC
x,x eGP

x~lgxeZUp
x'“lgx e ZUp

We partition he last sum into partial sums according to the P — P’ double
coset of x ~'x". The partial sums corresponding to double cosets PnP’ such
that n=!Pn, P’ do not have a common Levi subgroup are zero. This follows
from the identity: >, uh Xs.,(gu)=0 valid for any F-stable parabolic
Q < L and any ge Q" (which follows from the fact that K, is strongly
cuspidal and clean) and from the analogous identity for &'

Consider the partial sum corresponding to a double coset Pn, P’ such
that ny'Pn,, P’ have a common Levi subgroup. We may assume that
ng 'Lny=L’; our partial sum can be rewritten as

IL7=HILTTT Y X Kol ) Xewy(nén!)

nef ¢ezF
ne PrgP’

and (9.4.4) follows.
9.5

We now prove that Theorem 9.2 holds for G under the assumption that
Theorem 9.3 holds for G replaced by Z2(s) where s is any semisimple
element of G*.

We shall evaluate the left-hand side of (9.2.1) using Theorem 8.5. We
have
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IGF1 71 Y 1ko(8) Xk0l 8)
geGF
=|G*"! ZF s, x, x') |LE| [L5) | Z°(s)F) 2 (LA - ILF
seG
it

x~lsxe P

X e 61‘:;

where

S5, x, x')= Z QLt.zﬂ(s).Cy./Z\,(p\,(U)QL‘\.,ZO(A),C;,‘@".W;V(u)-
ueAZO(.v)F
unipotent
(The notations L., C.,.., are as in 8.4; these depend on s. The notations
L., C’,.. are defined similarly in terms of L', Z',...) By our assumption,

we have
Fls, %, XV =12Z0)" LA L
XYY Arelt) ks, (non ).

ne Z%s)¥ rve cf
nln—l=1}
nCn b=

(To be able to apply our assumption, we must first verify that the
appropriate complexes on L, L'. are strongly cuspided. This follows from
the assumption (9.1.1) together with 7.11(b).) Note that

X:F\.qu(v) - X(-‘r’\(p()(x7 ]SUX)*
Lo (mon ™) = e (X Ysnon='x").
Note also that for ne Z°Gs), the condition nL .n~ ' = L’. is equivalent to
the condition nxLx ~'n~'=x'L'x’ "' (since s is isolated in xLx ~') and the

condition nC.n~'=C", is equivalent to the condition nxZx 'n~'=
x'Z'x' ', Hence

|GF| : Z XK,¢(g)XA",<p'(g)

ge(y’}'

=|Gﬁ‘ 1 |LF|—I |LrF| -1

x Y 2% Y

SE€ GP;F ne Z%s)f
X]" E("_ nxLx=ln=l=x'L'x'~!
‘ I’V'Y'E“ll axEx~ - l=xEa !
X lsxte X
1 r—1 — 1.,/
X Y L6 ool X 7 ISUX) L g (X' T smon T 1X).

ves 'xZx—1n Zo%s)F
uni.
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We now make the change of variable (x, x', #)(x, n, n'), ' =x""nx.
The condition nxLx ~'n~'=x'L'x'~' becomes n'Ln' ~! = L’; the condition
x' "lsx' € X, becomes n'x 'n~'snxn' "'e X}, ie, x lsxen "13n'. Since
=12 A X, =, we must in fact have n’ ~'X\n' =X, hence n’ €. Our
sum becomes

|GFI—IILFI—IILIF[~1 Z IZO(S)F,—I Z
seg’; ves  xZx—1n Z0s)F
xXe€ i
ne Z%s)f o
n'ef
x~Isxe X

X X oo X~ '50X) X oy(W'x ™ lsoxn' 1),

We now make the change of variable (s x, v)— (a0, x, V'), 6 =x 'sxe X7,
v'=x"'vxeaZ n Z%0c)". Our sum becomes

L -hLf e Y Y Xewl0V) xe g (Wov'n ")

UEZIF veaZn2Z0%0)F

neb uni
= |LF| —1 |L!["| 1 Z Z X(S’,(po(é) X&’,<p(’](n/£nl~l)s
ned et

as required.

9.6

We shall now prove that Theorem 9.3 holds for G under the assumption
that it holds for groups of dimension strictly smaller than that of G. We
can easily reduce the general case to the case where &, & are irreducible,
which we now assume. By (9.4.3), we may also assume that Z9 2% n
%= {e}. The argument in 9.5 can still be partly carried out using 8.5; it
gives the following identity:

IGFI - Z XK,(p(g) XK'.ga'(g)

geGF

—ILTILTT Y Y Kol Xargynin ™)

nef tezF

L (16770 % taoln gt
se.‘}‘g ue GF
seg(,]_r\;'l’g' uni

— |LF) L ! Z Z Ls 00(5E) xgv,(pb(snﬁnl)). (9.6.1)

ne@ EeCF
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Since 29N Z9.~%;={e}, by assumption, we must have s=e in the
last expression, which is therefore equal to:

1IGF17 Y Qrecs.alt) Qrc.c.50,u)

ue GF

—ILFLILT Y Y Aol tsy (nén ). (9.6.2)
nef feCt

We can write & in the form ¥ X # (if we identify 29 - C with 29 x C);
here ¢ is a local system of rank 1 of 9. Moreover, ¢,: F*& 5 & may be
identified with J, X ¢, where §,: F*¥4 x%. Similarly, we identify &', ¢q
with ¥’ X #', 3] X ¢) where ¢’ is a local system of rank 1 on &Y. and
0 F*9' 39"

Note that in (9.3.1), (£, ¢,) and (&, ¢g) do not enter explicitly; only
their restrictions (&, ¢,), (%', ¢,) to C, C' matter. Hence to prove 9.3 we
are free to choose (¥4, 0,), (9, 5',) as we please.

Assume first that (Z7) "3 {e}. We consider a nontrivial character
0,:(Z9.)" > QF. There is a unique pair (%', d}), where %' is a local system
of rank 1 on Z9. and 0\: F*4’~ %', such that y, ; =0,. Then ¢ is not
isomorphic to @,. We take % to be the local system @ ;on 9 and we select
any isomorphism ¢, : F*¥% x %. With this choice of (%4, §,), (54’, 61), the left-
hand side of (9.6.1) is zero, by (9.4.2}); henc& the expression {9.6.2) is zero.
Thus 9 3 holds for G, (.#, ¢ ) and (#', ¢)). [t also holds in the case where
(29 ={e} and (#9)" # [e}, since L. L' play a symmetric role. We are
therefore reduced to the case where (Z9)" = (Z9)" = {e}.

A torus over F, which has no rational points over F, other than e is
necessarily an F_-split torus and we must have g = 2. (This fact is also used
in [3, Proof of 6.9].) Thus &, 9. are F -split tori. It follows that L (resp.
L’) is a Levi subgroup of a parabolic subgroup P (resp. P') of G, defined
over F,. Therefore, we may use (9.4.4) and we see that the left-hand side of
(9.6.1) is zero. Hence, the expression (9.6.2) is also zero, so that 9.3 again
holds.

It is clear that the arguments in this section and the previous one provide
an mductive proof of both Theorems 9.2 and 9.3.

9.7

We preserve the setup of 9.1. We denote by &~ the local system on X
dual to &: the stalk & is equal to Hom(é&,, Q,). We denote by

o : F*&~ =& the contragredient of ¢,: F*& =~ & (i, the isomorphism
characterized by the property that for any (e X, ¢, :&r 38 is the
isomorphism contragredient to ¢@¢: & 36;. Assume that &, are
irreducible. Let 0(&, &') be the set of all elements »# € 6 such that ad(n)*&’
is isomorphic to &~. We associate to ne (&, &') a number &(n)e QF as
follows. Let {: ad(n)*é" = &~ be an isomorphism (it is unique up to a non-
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zero scalar in @,). Then &(n) is characterized by the property that in the
diagram

’ { -
E Finen-Hy — € 1

Jv»a Va

z .
Eren-1 — &;

we have (- go=2¢(n) ¢, - {, for all £e 2. Clearly, &(n) is independent of the
choice of {. One checks that &(nl)=¢(n) for all /e L* so that ¢ factors
through a function on 6(&, &')/L" denoted again e.

We have the following result:

LEMMA 98. If ne®, then

Y Howol€) Xergy(nén™)

cext

e(n) g¥m=—dmL LA if ne@(é.&)
0 otherwise.

Proof. The fact that this sum is zero when n¢ 8(&, &') follows from 7.7,
exactly as in the proof of (9.4.2). Assume now that ne6(&, &'). Then the
local system & =ad(n)*&'® & is isomorphic to the direct sum Q,® &,
where & is a direct sum of irreducible nonconstant local systems, which are
9 x L-equivariant. From the proof of 7.7 we see that H:(Z, &) =0 for ali
i. It follows that Hi(Z, &)= H(Z, Q,).

The isomorphisms ¢, @, induce an isomorphism ¢: F*& ~ &, which
respects the summand @, and induces on it &(n) times the obvious
isomorphism F*Q,~@Q,. By the trace formula for Frobenius maps, our
sum is equal to the alternating sum of traces of the Frobenius map on the
spaces H'(X, &). Hence it is equal to e(n) ¥ (—1) Tr(F*, H(Z, Q,)).
Consider the map f: £ — X constructed in 7.7 (for L instead of G) in
terms of a base points yeZX. By choosing yeX’, we may assume
that £ and f are defined over F,. From the proof of 7.7 we see that
Tr(F*, H\(Z, Q,)) = Tr(F*, H(S, Q,)). Hence our sum is equal to
g(n) Z(— 1) Tr(F*, H(Z, Q) = &(n) || = e(n) |IL*| |29 120(p)
By (7.1.2), 2%(»)/Z9 is a (connected) unipotent group. It follows that
Z() |12 = () 22| = gom ZE) T = gimb = dimE Thig
completes the proof of the lemma.

Using the lemma, we can now reformulate Theorem 9.2 as follows.
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COROLLARY 9.9. With the assumptions of 9.2, we have

IGT17" Y xkol8) Xk o)

geGF

— ( Z 8(}1 )) qdimlfdim L. (99.1 )

ned(&.&)/LF

In particular, the left-hand side of (99.1) is zero unless there exists ne G*
such that nLn~'=L', nZn"'= X' and ad(n)*&' is isomorphic to &°.

9.10

Now let 2=29C, 2'=2%C", #, 0., F', ¢} be as in 9.3. We assume
that &, #' are irreducible as local systems on C, C’. Let &, ¢, (resp.
é’, py) be the inverse image of &, ¢, (resp. F', ¢} under the canonical
map X — C resp. 2’ — C'. If ne 8, we have clearly

Y txald) Xz (nn"~ ")

teCF

=1ZY17 Y Aopol&) Yo gy(nln ). (9.10.1)

fexf

With the notations in 9.7, this equals g(n) g™t~ 4™ |LF| 12971 if
ad(n)*&' is 1somorphic to £~ and is zero otherwise.

We now assume that L'=L, C'=C, §'=&" @y= @, . We shall prove
that in this case

e(n)=1 forall nef (9.10.2)

(notations of 9.7). N
According to [4, 9.2], the local system 7, (&") on Y (notation of 8.1) has
a canonical direct summand % which is characterized by the properties

(a) % is an irreducible local system and it has multiplicity one in
T, (&)
(b) fgIC(Y, %)#0 for x in a dense subset of the set of unipotent

elements in Y.

Clearly F*% also satisfies (a) and (b). Hence the isomorphism
q)’:F*n*((?’)Z»n*(g') induced by ¢y maps F*¥ isomorphically onto %.
Now let {:ad(n)*€¢' - & =&~ be an isomorphism. Then { induces an
isomorphism Clzn*(g’):n*(g’) (see [4, 3.5] or 10.2), which necessarily
preserves the summand %. From the definitions it follows immediately that
in the diagram of isomorphism

607/57/3-4
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n*(g,)ﬂy)_c._, n*(gl)F(y)

w’l l«f

n*(g)y ‘C—l’ n*(g/)y

we have {; - ¢'=¢e(n)d’- {,, for any ye Y. The same identity must then hold
in the diagram

9]
gl’(y) F(y)

e

gv __5_1__) gv
Since ¢ is irreducible, {; must act on each %, as multiplication by a scalar
in Q}, independent of y. This forces &(n) to be equal 1, as stated in (9.10.2).
We note also that, according to [4, 9.2], for any element ge Ny(L) we
have automatically gCg~' = C’ and ad(g)*& ~¢&’. Using this and (9.10.1),
(9.10.2), we can reformulate Theorem 9.3 as follows:

~CoROLLARY 9.11. We make the assumptions of 9.3; in addition, we
assume that &, F ' are irreducible. Then

|GF|‘1 Z QL,G,C.f,q;l(”) QL’,G,C’.?’.wi(u)

ueGF
uni

ING(L)T/LT) | 27|~ gim€ ~imt/2h
if 'sLC=C%F =F,0 =0,

0 ifthereis no ge G” such that
glg™'=L",gCg '=Cad(g)*F ' ~F" .

(Here, #~ is the local system on C dual to & and ¢, : F*#%~ 3% is
the contragradient of ¢, (cf. 9.7).)

10. ORTHOGONALITY FOR CERTAIN CHARACTERISTIC FUNCTIONS

10.1

In this chapter, we preserve the assumptions of 8.0. (Note, however, that
the definitions in Sections 10.1-10.3 make sense for any algebraically closed
ground field k.)

Let L, 2, & K be as in 8.1. We assume that & is irreducible. Let 4 be an
admissible complex on G which is isomorphic to a direct summand of X,
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(see (8.1.2)). Then ¥ ,=Hom(4, K) is a finite dimensional Q,-vector space.
Let .o/ = End(K) be the endomorphism algebra of K in .#G: it is a finite
dimensional semisimple algebra over Q,. Composition of maps (6, v) - 8- v
(Beof, veV,) makes V , into a left (irreducible) «/-moule.

Note that 4+ V', is a 1-1 correspondence between the set of irreducible
components of K (up to isomorphism) and the set of irreducible left .o/-
modules (up to isomorphism).

10.2

The algebra o/ is at the same time the endomorphism algebra of the
local system n*g on Y (notation of 8.1). We now describe ./ following [4,
3.4]. Let A& be the set of all ne N;(L) such that nZn~' = X and such that
ad(n)*& is isomorphic to &, (ad(n)g=ngn'). Then 4/ oL and we set
W =.4/L; it is a finite group.

If we#, let y.:¥— ¥ be the isomorphism defined by y,.(g xL)=
(g, xn~'L), where n is a representative for w in 4",

Let .7, be the one dimensional @,-vector space of all homomorphisms of
local systems & —y*&, over Y. Since n*y”é”—n &, we have a natural
imbedding ./, G End(n,&) = «/; we identify ./, with its image in /. We
then have

Mz@‘g{u

we

Under the multiplication in the algebra .o/, we have &, o/ .= o/,
moreover the unit element of <7 is contained in 7, where ¢ is the unit
element of #°. If we choose a basis element 0, in <7, for each w, we then
have

0.-8,.=iw w)l,., where A{w, w)e QX (10.2.1)

In particular, each 8, is invertible. We also see that o/, is the group algebra
of #°, twisted by a 2-cocycle.

10.3

We now state two orthogonality relations for .o

Let i1 o — &/ be an automorphism of the algebra . Let V|, V,,., V,
be a set of representatives for the isomorphism classes of irreducible left .«/-
modules V' with the following property: there exists an isomorphism
1. V>V of Q,-vector spaces such that 1,(6v)=1(8)1,{v) for all fe o,
ve V. Let us choose such an isomorphism 1,.: V', —» V, for each i (1 <i<r);
1, are defined uniquely up to a nonzero scalar. We can now state
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WIS ey, V) Tr((8,1) ", V)

we W
1 if i=j
‘{o if i#j (foranyl<i, j<r). (10.3.1)

H

Y Tt(O,4, V) Tr(6,01,) ", V)
i=1

= trace of the linear map 68— 011 '(0) 0,

of .« into itself (for any w, w' e #"). (10.3.2)

Here, all traces are taken over Q,.
The proof of (10.3.1), (10.3.2) is essentially the same as that of the Schur
orthogonality relations in the case of ordinary group algebras.

104

Assume now that K (see (8.1.2)) is isomorphic to F*K. Let ¢: F* K3 K
be an isomorphism.

If 4 is an admissible complex of G which is isomorphic to an irreducible
component of K, then so is F*4. Let V,, V., be the corresponding left
&/-modules (see 10.3). We define a map p: V,— Ve, as follows. Let
ve V,=Hom(4, K) and let F*(v) be the corresponding homomorphism
F*4 - F*K. By defnition, p(v)=¢@oF*(v). F*A—> K. Then p is an
isomorphism of Q,-vector spaces. It is o/-semilinear in the following sense:
p(0v)=1(0) p(v), where 11 o —» o is the automorphism of the algebra &/
defined by 1(0) =@ F*(#)o@ ! (fe o).

If ¢, is an isomorphism F*A4 = A4, then the map Vp, — V, defined by
v v o5t is an isomorphism of .o/-modules and its composition with p
is an &/-semilinear map o,:V,—>V,, o,v)=p(v)op;!, which is an
isomorphism of Q,-vector spaces. (Conversely, if there exists an .o/-
semilinear map V,— ¥V, which is a Qg isomorphism, then F*A4 is
isomorphic to 4.) We have a natural isomorphism

D ARV, )3K,

A

where A4 runs over the set of irreducible components of K (up to
isomorphism). It gives rise, for any geG and any integer i, to an
isomorphism at the level of stalks:

@ (H(ARV )3 HUK). (104.1)

A

This isomorphism can be described as follows: Let ae # ;(A ), ve V. Then
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v defines a homomorphism v,: #(4) - #(K) and a®v corresponds
under (10.4.1) to v,(a).

Now ¢: F*K =~ K defines an isomorphism #%,(K) = #,(K) which will
be denoted again ¢; similarly, ¢ ,: F*4 = A defines ¢ ,: #', (4) > H'(A).

If F(g)=g and ¢ : F*A3 A, it follows from the definitions that the
endomorphism ¢ ,® ¢, of #,(A)® V 4 is compatible, via (10.4.1), with the
endomorphism ¢ of #.(K). On the other hand, if F*4 # A, then ¢ maps
the image of #(A)® V 454 ,(K) onto a summand corresponding to a
different A. It follows that

Tr(p, #(K) =Y Tr(@ 4, H (A)) Tr(o 4, V.y), (10.4.2)

sum over a set of representatives A for the isomorphism classes of
admissible complexes which are isomorphic to irreducible components of X
and which are isomorphic to their inverse image under F; for each such 4,
we assume chosen an isomorphism ¢ ,: F*4~ 4 and we define o ,(v)=
@o F¥(v)o ;' as above. (The traces are are taken over Q,.)

If we now replace ¢: F*K — K by 8,.-¢ (see 10.3) for some we W and
keep ¢, unchanged, then o, is changed to 6,00, (6, acts on V', by the
&/-module structure of V). The identity (10.4.2) remains valid and gives:

Tr(0, 00, #1(K)) =Y Tr(@4, #UA) Tr(8, 00,4, V), (1043)
A

where A4, ¢ 4, 0, are as in the sum (10.4.2).

We now multiply both sides of (10.4.3) by Tr((f,.c6,) ", V) (where
A’ is one of the terms of the summation in (10.4.3)) and we sum over all
we ¥ . Using (10.3.1), we obtain

Tr(e .4, H(A'))
=" Y Tr(B.00, KUK Tr((B,00,) ", V) (104.4)

we #’

for any admissible complex 4’ which is isomorphic to an irreducible com-
ponent of K, such that there exists ¢ ,.: F*A' 3 A'. Taking alternating sum
over [ in (10.4.4), we obtain the following identity for characteristic
functions (see (8.4.1)):

Lao=1W171 Y Tr((0,o04) 7" Vi) Xkou o (10.4.5)

we¥#’

valid for any admissible complex A which is isomorphic to an irreducible
component of K and any isomorphism ¢ ,: F*4 x A. (Recall that ¢ ,(v) =
@oF*(v)eg ')
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10.5

Formula (10.4.5) is applicable to any admissible complex 4 on G such
that F*A4 is isomorphic to A. Indeed, given such 4, we can find L, 2, &, K
as in (8.1.1), (8.1.2) such that A4 is isomorphic to an irreducible component
of K. Then F*K is obtained from F 'L, L~'X, F*& in the same way as X is
obtained from L, Z, & (see (8.1.2)) and F*4 is isomorphic to an irreducible
component of F*K. Since F¥*A~ A, it follows that 4 is isomorphic to an
irreducible component of F*K. Using 7.6, we see that there exists ge G
such that glg '=F'L, gl '=F"'2, ad(g)*(F*¢)~& (ad(g):
2> F7'%, ad(g)x=gxg~!). By Lang’s theorem we can write F(g)=
g 'F(g,) for some g, €G. Let L, =g, Lg;’, X =g, 2g, ", 6§ =ad(g])*s.
Then FL,=L,, FX,=2,, F*6~é6. Since replacing (L,ZX, &) by
(L,, 2, &) does not change K, we see that we can assume that FL=1L,
FX =2 and that there exists an isomorphism ¢,: F*& 5 & of local systems
over 2.

This gives rise to an isomorphism ¢: F* KX K, as in (8.1.3). The formula
(10.4.5) is then applicable to this K and .

10.6

Now let w be an element of #7; choose a representative » for w in A" and
an element ze G such that z7'F(z)=n"". Weset L" =zLz~', X =zXz"",
&" =ad(z~")*& (a local system on 2*), Then FL,=L" and FX*=X". We
define an isomorphism @p: F*§" ~x &" in terms of @,: F*& = & and of the
fixed basis element @, of </, (see 10.2), as follows. The basis element 6,
defines for each {e2 and isomorphism of stalks &> 6,.,-1. Hence, 0,
defines for each ¢’ € 2™ and isomorphism &, - i), = &~ 1peyen—1 = Epa-1e2)-
Composing with the isomorphism ¢q: &p.-1z;) = &,-1,., WE get an
isomorphism &, -1y, > &, 14, 1€, an isomorphism &Y%, — &y this is
induced by a well-defined isomorphism ¢@¥: F*&” 5 &". We define
o P> v, &, K*, ¢ F*K* 5 K” in terms of L*, 2*, &%, @y in the
same was as m: Y > Y, &, K, o: F*K~ K are defined in 8.1 in terms of
L2 & @,

We have Y" =Y and the map (g, xL) — (g, xz~'L") is an isomorphism
j: Y- ¥* commuting with the projections 7, z* onto Y. It is clear that
j*&” is canonically isomorphic to & Hence j induces an isomorphism
n,&>3n3 8" hence an isomorphism j: K= K". One checks from the
definitions that the following diagram is commutative

F*K— 7, g
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It follows that for any ge G and any integer i, we have the equality
Tr(0,.0 0, #K)="Tr(¢", £ K"). (10.6.1)

We now replace K by its Verdier dual DK. (Note that DK is obtained
from L,X, & in the same way as K is obtained from L, X &.) The
isomorphism ¢q: F*¢~ 5 & (see 9.7) gives rise to an isomorphism
¢ . F*DK> DK, We¢ consider an ¢lement w' e #°, and we choose z'e G
such that z/~'F(z')=n'""', where n'e 4" is a representative of w'. We
define L™, 2", (67 )", (DK)", (¢")", as above, in terms of z’. Then we
have an identity analogous to (10.5.1):

Tr(0, -9~ #.DK)=Trt((¢~)*, #(DK)*), (10.6.2)

where 8, denotes the automorphism of DK contragredient to 6,.. From
(10.6.1) and (10.6.2), we deduce that

IGT17" Y tkon- o &) Xokor . o-(8)

geGF

= |GF| ! Z XKW,qﬂ‘( g) X(DKW (o~ )""( g) (10.6.3)

geGF

We now make the assumption that IC(L, &)[dim 2] extended to L, by 0
outside Z, (as well as its Verdier dual) are strongly cuspidal, clean com-
plexes on L. This implies that the analogous statement is true for
IC(Z", £*)[dim "] extended to L", by 0 outside £*, and for its Verdier
dual. Hence we may apply 9.9 to evaluate the right-hand side of (10.6.3);
we find that it is equal to (Y, &(v)) ¢*™* ~¥™%, where v runs over the set
0(&™, (7)) (L")F (see (9.7)) and &(v) is defined as in 9.7.

The map v— 9=z""'vz is a bijection between 8(&", (&~ )*)/(L*)" and
the set of elements ¥e#  such that F(¥)=w'¥w '. Moreover, from the
definitions, we see that ¢(v) can be expressed in terms of ¢ as follows:

0.1 1(8,)0, =(v)0, (W 'F(9)w=1), (10.6.4)

where 1 is the automorphism of the algebra ¢, defined in 10.4.
On the other hand, for arbitrary ¥ e %", we have

07000, =20, rpsye  (ADF) (10.6.5)

(using (10.2.1) and the identity 1(%4,) = &p-1,,).)

From (10.6.4) and (10.6.5), we see that 3, &(v) is equal to the trace of the
linear map 6 — 0_"1'(0)6, of o into itself. (The elements 6,, (Ve #"),
form a basis of .«/.) This trace can be expressed as in (10.3.2).
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Hence (10.6.3) becomes
|GF| ! Z Xx0,-0(&) XDK,a;,oq:-(g)

geGF

=g E—dmL S T g V) Tr((0,0,)"" V,), (106.6)
4

where A runs over a set of representatives for the isomorphism classes of
irreducible perverse sheaves which are components of K and are such that
there exists ¢ ,: F*A = A. (Then o, is defined in terms of ¢ 4, ¢ as in 10.4.)

10.7

Let 4,, A, be two admissible complexes on G and assume that we are
given isomorphisms ¢ ,: F*4, 3 A4,, ¢4, F*4,3 A4,. For j=1,2, there
exist L;, X, & as in (8.1.1) (with & irreducible) such that A; is isomorphic
to a direct summand of the complex K; constructed in terms of L;, X}, &; in
the same way as K is constructed in (8.1.2) in terms of L, X, &. By 10.5, we
may assume that FL,=L;, FX;=2X; and hat there is an isomorphism
@o,;: F*6,3 6, (j=1,2). Let ¢,;: F*K;3 K; be the isomorphism defined by
@o;, (see (8.1.3)). Let Ky;=1C(Z}, &)[dim 2] extended to L, by 0 outside
2. We make the following assumption:

(10.7.1) If L, is conjugate in G to L,, then the complexes K,;, DK ; are
strongly cuspidal and clean on L;, for j=1, 2.

We shall denote (¢, )"t F*(DA,)3 DA, the isomorphism con-
tragredient to ¢ ,,: F*4, 3 4,.
We can now state

THEOREM 10.8. With the assumptions in 10.7, we have

IGF| -1 Z XA],(pAl(g) XAz,(pAz(g)

geGF
={Oc z:fA2 isnotisomorphictDAlv (108.1)
q zfAl=DAZand(PA1=((PA2) .

Here, ¢ =codimg supp 4,.

Proof. Assume first that (L,,%,,#&,) is not conjugate in G to
(L,, X¥,, &). Then, by 7.5, A, is not isomorphic to DA,. To show that the
left-hand side of (10.8.1) is zero, it is enough, by the trace formula for
Frobenius maps to show that H (G, A, ® 4,)=0 for all i. Using 7.2 we see
that it is enough to check that for any isomorphism f: L ~ L’ which can be
realized by conjugation by an element of G, we have
Hi(L, Ky, ® f*K,,)=0. But if f exists at all then, by our assumption
(10.7.1), K, ; and f*K,, are clean; since f*K,, is not isomorphic to DK,
the equality H:(L, K, , ® f*K,,) =0 follows from 7.8.
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We now assume that (L,, 2, &,) is conjugate in G to (L,, 2,, &,). We
cab then assume that L,=L,, 2,=2X,, &=4&,; we shall write
L 2 & K, ¢ instead of L,, 2, &, K, ¢,.

We shall use the identity (10.4.5) for x4, . The analogous identity for
Yro,, €N be written in the following form:

X trpa, = ¥ ! Z Tr(0, 0 pays VDAZ) XDk 6y 0> (10.8.2)

wey

where 04,0 Vpa, = Vpa, is defined in terms of ¢,,: F*DA,~ DA, and
¢~ : F*DK~ DK.
IG17" Y Yaroa(8) X (8)
geGF
=|¥| 2 Z TT((QWUA,)“]’ VA])Tr(Bw’UDAZ’ Vipay)
waw' e %’
X1GF1™" Y tkon-ol8) Xpko -0 (8):
geGF
Using (10.6.6), we see that the last expression is equal to
|Wﬁ| -2 Z Tr((gwa,41)71’ VAI) Tr(BW'JDAl’ VDA;)

ww'e ¥’
A

XTr(BWGA’ V4) Tr(ew'O-A)il’ VA)'q_L

(where A4 runs over the set described in (10.6.6)). Using now (10.3.1) twice,
we see that this equals 0 if 4, £ DA, and it equals ¢ ¢ if 4, = DA, and
¢ 4,= ¢ 1,- This completes the proof of the theorem.

109

We shall state a variant of Theorem 10.8. We keep the notations and
assumptions of 10.7. In addition, we assume that 2, =% ‘L- C;, where C; is
a unipotent class in L; and that (&, ¢, ;) is the inverse image under the
projection X, - C; of (¥, ¢,;), where F is a L-equivariant irreducible
local system on C; and ¢, ;: F*# 3%, (j=1,2).

We then have

THEOREM 10.9.

1GF|71 Z XAMDAl(u) XAz-wAz(u)

ue GF
uni

0 if (Ly, C,, #) is not G-conjugate to (L,, C,, F ;)
= |"’V|7l Z Tr((gwo'A,)fl, VAl)Tr(Bwo'DAZ’ VDA;) |g% 71q—¢-

we ¥

fLi=L,,C,=C;, A=F; ,and ¢, =91, (10.9.1)
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(The notations in the last sum are as follows: we set L=1L,=1L,,
2=21=2,,=6=67, 9o=0¢,: F*6,36,. Then #, K, ¢: F*K XK,
Vi Vo, Ovy» Ovp,, AIC deﬁned in terms of L, 2, &, ¢, as in 8.1, 10.2,
104, and we set L =zLz" !, where z7'F(z) is a representative for w™! in

Ng(L). We set ¢=codimg supp A,)

Proof. Assume first that (L,,C,, %) is not G conjugate to
(L,, Cy, %,). By the trace formula for Frobenius maps it is enough to show
that Hi(G ,;, A, ® A,)=0 for all i, where G,; is the variety of unipotent
elements in G. Using (7.3.1) we see tha it is enough to check that for any
isomorphism f: L, = L, which can be realized by an element of G, we have
HIY(L,)uni> Ko1® f*K,,)=0 for all i. If such f exists at all then, by the
assumption (10.7.1), K, ; and f*K,, are clean. We may clearly assume that
they have the same support (ie, f&=2"). By 78, we have
H{(L,, K, ® f*K,,)=0 for all i, hence H(Z?, C,,6,®f*6)=0 for all
i. This implies that H(C,, # ® f*%) =0 for all 7, and hence H((L,)yn,
Ko, ® f*K,,)=0 for all i, as required.

We now assume that L, =L,=L, 2, =2,=2, §=6, =&, ¢y =52

We shall use the following analogue of (10.6.6):

|GF| Z . X0, (1) ADK6: 0 - (1)
ueG

=q 12 T # e W | w T F(Hw =19} (109.2)

The proof is entirely parallel to that of (10.6.6); 1t uses 9.11 instead of 9.9.
(Note that in the present case there is a canonical choice for the basis 6, of
o, see [4, Sect. 97; it satisfies 6,,0,. =6, and 1(6,,) = 0,-1,,.)

Using (10.9.2), (10.4.5) for x4, ,, and (10.8.2) we see that

GF|71 Z XAHPAl u)XA2wAa(u)

ue GF
uni

=|#|"* z Tr((ewUAl)fl, VA])TI(QW'UDAZ’ VDA;)
ww' e#H
XIGTI ™1 Y Xkoweolt) Xpkos .- ()

ue GF
uni

=|W|_2 Z TI'((HWO'AI) ! VA1 Tr(H ‘G s VDA;)IQF ~1 _
w T LE(0)w = ¥
=71 Y Tr(6,6.4) W V) Tr(0,0 04, Vou,) | ZI " 1g <.

we W
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(We have used the following fact:
Tr(0 pspes-10 pays VDAZ)=Tr(9Fw)9w0DA39;(é), Vpa,)
= Tr(BM'GDAp_’ VD,43)')

This completes the proof of the theorem.
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Contents. 11. Some invariants of character sheaves. 12. The complexes KZ.
13. Principal series representations. 14. A disjointness theorem for cohomology
sheaves and its applications. 15. Induction, restriction, and duality. 16. The two-
sided cell attached to a character sheaf.

This paper is part of a series [5, 13] devoted to the study of a class G of
irreducible perverse sheaves (called character sheaves) on a connected
reductive algebraic group G. (The numbering of chapters, sections, and
references will continue that of [5, 13].)

This paper is a step towards the classification of character sheaves on G.
One of the main results is the following one: under certain assumptions,
there is a natural surjective map with finite fibers from G to the set of all
pairs (Z, ¢) (up to conjugacy by the Weyl group), where £ is a tame local
system on the maximal torus and ¢ is a “two-sided cell’ in the stabilizer W,
of ¥ in the Weyl group. The assumptions made on G are

(a) G is clean (see (13.9.2));
(b) for any %, the pair (G, .£) satisfies the parity condition (15.13).

These assumptions are actually statements about cuspidal character
sheaves and are trivially satisfied when G =GL,. In the general case, the
assumptions will be verified (in good characteristic) in another paper in
this series.

The main results of this paper are rather similar to results in [6]
(especially the disjointness theorem [6, 6.17]). The proofs in the present
case must proceed in a quite different way, although towards the end the
two proofs become almost identical.

The following convention will be used in this paper: From 12.2 to 14.14
the ground field & will be assumed to be F,. Several results in these sections
are valid for arbitrary k; they can be reduced, by general principles, to the
case F,. We shall mark such results by a (x). In the other sections, k is
arbitrary (algebraically closed).
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11. SOME INVARIANTS OF CHARACTER SHEAVES

11.1. In this chapter, k is any algebraically closed field. Let
&L, ¥ e L(T) (see (2.2). We have the following result.

ProposITION 11.2. (a) If &, &’ are in the same W-orbit in & (T) (see
2.2), then the sets G, G, (see 2.10) coincide.

(b) If xe W is such that &' = (x~"')* & then the map w— xwx ' is
an isomorphism W, 5 Wy, (see 22) and for any we W'y we have
S A=1)YPH(KZ)=3,(—1)*H(K? _\) (equality in the Grothendieck
group A°G of #G; see 6.3).

A (¢) If &, & are not in the same W-orbit in F(T), then the sets
G, G are disjoint.
(d) The Verdier duality D:..#G— .#G defines a bijection

G, —G,-. It takes cuspidal character sheaves to cuspidal character
sheaves.

Proof. To prove (a) and (b) we may assume that ¥’ = s§.% where s, is
a simple reflection in W.

If Y=, then (a) is obvious and (b) follows from 6.5. Assume now
that ¥ #%. Let s=(s,5,,..5,) be a sequence in § such that
5,5, 5,€ W, Let s(1) be the sequence (s, So. 51, $2,--, 5,) and let s(2) be
the sequence (Sq, S;» S35 S, So). From the results in 2.15, it follows that
PH(KZ,)="H'"*(KZ)(—1) (using the fact that s,¢ W) and from 2.19 it
follows that PH(KZ,)="H'(KZ,). 1t follows that 7H' *(KZ)(—1)=
PH(KZ,)), so that G,cG,.. (The reverse inclusion is proved in a
similar way.) This argument implies also that Y (—1)"?H(KY?) =
S (—1) PH(KZ,)) in £ (G). Using 6.5, this equality can be rewritten as
Y (=) PHY(KZ)=3 (—1) "H(KY,,) where w=s.5, 5. Thus, (a) and
(b) are proved.

We now prove (d). Let s=(s;, 51,... 5,) be a sequence in S such that
5,5, -8, € W,. The Verdier dual of "H'(K?) can be determined as follows:

D(*H'(KZ))="H (D(KY))
="H '(D(n,), Z)

(see [1, 2.1.167])
(see 2.8)
='H (7)), DZ) (since 7, is proper)
="H (), (£ ")[2d] (where d=dim Y,)
="HY (1) (2 T))
="H* (KL,

(11.2.1)
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The first statement in (d) follows from (11.2.1) and the definition 2.10. If
Ae Gy is a cuspidal character sheaf, then DA is cuspidal in the sense of
(7.1.1). (See the proof of 7.6.) Since DA is a character sheaf, it must also be
cuspidal in the sense of 3.10 (see (7.1.6)), and (d) is proved. We now prove
(c).

If G, and G, are not disjoint then there exist two sequences
S=(5), 52,0 8,), 8 =(s51,5%,..,8.) in S such that s,5, -5, € Wy,
5185 -5, € Wy and an irreducible perverse sheaf 4 on G such that 4 is a
direct summand of both ?H(KZ) and ?H"(KZ") for some i, i'. Then DA is a
direct summand of *H"(KZ"") for some i’ (see (11.2.1)). By (7.4.2), we
have HY(G, DA® 4)#0, hence H(G,”H"(KZ " Y®”H'(KZ"))#0. Since
KZ',KZ are semisimple (1.12, 2.17(a)) it follows that H(G,KZ™'®
KZ'y+#0, for some j.

Using the method in 2.13, 2.14, we see that, by replacing, if necessary, s,
s’ by subsequences, we have H’ (G, KZ ™' ® KZ') #0, for some ;. Using the
method in 2.15, 2.16, we deduce that there exist we Wy, w' e W', such
that H/'(G, KZ'® KZ')#0, for some j". It is therefore enough to prove
the following result.

Lemma 113, If &, %' are not in the same W-orbit then H((G, K¥™'®
KZ)=0 for all we W'y, w' € W'y. and all integers i.
Proof. An equivalent statement is (with the notations of 2.4)
H(Y, x Yy ()R 2)=0
G
for all we W', w' e W', and all i. The variety
Y, XY,
G
={(g, B,B")YeGxABxB| (B, gB'g ') eO(w), B, gB’g e O(w')}

can be partitioned into finitely many locally closed pieces Z, (y € W), the
piece Z, is defined by the condition (B’, B”)€ O(y). It is then enough to
show that

HI(Z, (£ HR Z)=0 (Vi) (11.3.1)

for all ye W. (We denote the restriction of (,étl) P’ to a subvariety of

Y, x¢ Y, again by (£ H K 2')
Let us map Z, (for fixed y e W) to the space

R={(B,B",B",BY)e BxBxBxAB|
(B, B")e O(y), (B", B")e O(y),
(B, B")e O(w), (B", B™)e O(w')}



CHARACTER SHEAVES III 269

by (g, B, B")— (B, B’,gB'g ',gB"g '). The Leray spectral sequence of
the map Z,—» R shows that (11.3.1) is a consequence of the following
statement.

Let , be any fibre of the map Z, — R described above. Then
Hi, (£ Yx2)=0 for all i. (113.2)

Consider the fibre y, at (B, B", B”, B'")=(x,Bx; ', x,Bx;"', x;Bx;\,
x4Bx;'). Let go€ G be such that gox, Bx; 'gy ' =x3Bx; ', gox,Bx; 'g5 ' =
x4Bx;'. We can assume that x,= g,x,, x,= g,X,. A point in i is com-
pletely determined by its g-component. Thus, we may identify

1

Y,=1{ge€G|gxBx;'g7 ' =gox;Bx;'gy ", gx2Bx3'g " = gox, Bx; gt}

={geGlgs'gex Bx;'nx,Bx; '}

Here x,, x, are two fixed elements of G such that x; !x, = ByB (ye N(T)
represents y). The map t,:¢,— T defined by x;'g;'ggox,€7(g) U
makes i/, into an affine space bundle over T and one checks that the local

system (f i) Z' on ¥, is isomorphic to the inverse image under 7, of
the local system % '®(y !)* ¥ on T. Hence to prove {11.3.2) it is
enough to prove that H{(T, ¥ '®(y )* ¥')=0 for all i By
assumption, & and ¥’ are in different W-orbits. It follows that
F=L""Q(y ")* % is a non-constant local system of rank 1 on 7,
which belongs to #(T) (see 2.2). We are reduced to proving the following
statement. For any % e%(T), % non-constant, and any / we have
H{(T, %,)=0. This follows from (1.11.1) and the Kiinneth formula. This
completes the proof of the lemma and hence that of Proposition 11.2.

COROLLARY 11.4. There is well-defined map G — { W-orbits in & (T)}
given by attaching to Ac G the W-orbit of &, where AcG .

11.5. Let K be an H-equivariant perverse sheaf on the variety X,
where H is a connected algebraic group (see 1.9). Let H, be a closed sub-
group of H which acts trivialy on X. Then we have a natural
homomorphism H,;/H?— Aut(K). In the case where K is irreducible, the
group Aut(K) is canonically isomorphic to @}, hence we have a natural
homomorphism y: H,/H? - @}; note that each of the sheaves #'K is
H-equivariant and that the induced action of H,/H¢ on any stalk of #K is
a multiple of the character y.

11.6. We shall apply this in the case where H=Gx T and H, = %
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(= centre of G), imbedded diagonally into G x T. We take X to be one of
the varieties in the diagram (see 2.5, 2.6)

T«Y,>Y, < Y,-5G (11.6.1)

where s is a sequence (s, $5,..., 5,) in S such that w=s,5,""-s,€ W,. The
action of H is defined as follows:

—on T by (go, to): t = w™ (1) 15 %

—on Ys by (gO’ to): (ga hO U’ hlBa'--s hrB)_') (gOggO_l’ gOhOt()_an
gOhlB’-“s gOhrB);

—on Y, and Y, by (g, %): (g Bo, By, B,) — (80880 "> 80Bo 8o "
goB1 85" s 80B, g5 ");

—on G by (g, o) 8 20885 "

Each of the maps in (11.6.1) is H-equivariant and H, = % acts trivially on
each of the varieties in (11.6.1). By (2.2.2), the local system ¥ on T is
H-equivariant. Let yo: H,/H - Q} be the character by which H,/HY acts
on each stalk of £. The local system & on Y, (see (2.5) is H-equivariant
and the induced action of H,/H? on . is via the character y, on each stalk
of #. The local system 2 on Y, (see 2.5) is H-equivariant and the induced
action of H,/H® on 2 is via a character y, on each stalk of 2. Since & is
the inverse image of Z under Y, - Y, it follows that y, =y,.

The constructible sheaf Z on Y, (see 2.8) is H-equivariant, and is
irreducible as a perverse sheaf (after a shift). Hence the induced action of
H,/H? on Z is via a character y, on each stalk of .Z. Since Z | Y,= 2, it
follows that vy, =1y,.

It follows that for each of the H-equivariant constructible sheaves
H'((7,), Z) the induced action of H,/H? is via the character y, on each
stalk. Since (7,), # =K, is semisimple (1.12, 2.17(a)) it follows that for
each of the H-equivariant constructible sheaves #‘(?H/(K,)) the induced
action of H,/HY is via the character y, on each stalk. The same is then true
for #(A) where A is any irreducible direct summand of ?H/(K,) (in
A(G)). It follows that for such A (which is necessarily H-equivariant as a
perverse sheaf) the corresponding homomorphism H,/H? - Q} = Aut(4)
is given by y,.

Let us write ¥ = 4*(é,,), as in 2.2. (We recall that 2: T—k*, n>1 is
invertible in k and y: u, - Q}.) As we W’,, we have w(1)=A- 17 for some
character 1,: T — k*. We show that

yo(2) =¥ (A,(2)) for all ze . (11.6.2)

(Note that A,(¢t)epu, whenever teT is fixed by w, and in particular
i(z)ep, if ze F,. We also have A,(z)=1if ze Z%.)
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Consider the n-fold covering T'—»"T where T'={(t,z)e Txk*|
At)=z"). The action ty:t—w to)tt;" of T on T lifts to an action
to: (4, 2) > (W™ (1) 115", zA((ty)) of T on T'. Since & is the local system
associated to the principal p,covering 7" —-"T and the character
W u, — QF, it follows that y(z) is given by (11.6.2) for any =.

We therefore have the following result:

PROPOSITION 11.7. Let A be a character sheaf of G. Assume that A is a
component of PH'(K,) where s =(s,, $3,..., 8,) Is a sequence in S such that
w=s.58,€ Wy, £=i%6&,,)eL(T). Let y:Z;/Z%—QF be the
character associated to the G-equivariant perverse sheaf A, as in 11.5 with
(K, H H,)=(A, G, Z%). Let A,: T — k* be the character defined by w(/)=
A-AY. Then

for all ze Z.

11.8. We define for any ¥ € #(T) a map
a Wy /Wy, - Hom(Z;/ZY%, QF) (11.8.1)

as follows. Write & = A*(¢,,) as in 2.2 and let 4,: T — k* be the character
defined by w(A)=211". We define a(w): Z;/Z%->QF by a(w)(z)=
Y(4,(2)), ze Z;. (Note that A, (z)ep, for ze Z; and A, (z)=1for ze Z2.)
When we W, then 4, is in the root lattice, hence 4,(z) =1 for ze #; and
a(w)=1. It is easy to check that « is a homomorphism and it is indepen-
dent of the choice of 4, n, .

We now prove that

the homomorphism « is injective. (11.8.2)

Assume that we W', is such that Y(4,.(z))=1 for all ze &, ie., such
that 1,.(z)=1 for all ze Z;. We must prove that we W . This is clear if
% is connected since then, as it is well known, we have W, = W,. In the
general case, we imbed G into G=(Gx T)/%, (where Z; is imbedded
diagonally into GxT) by g— (g, 1)%,. Then G has connected centre
(~7T) and has maximal torus 7 = (T x T)/%,. The Weyl group of G with
respect to T may be naturally identified with that of G with respect to T
the action of w on T is (1, t') Z, — (w(1), t') Z;.

We extend A:T—k* to a character i:T—k* by A((¢, 1) %)=
Me) Aw(r')) "', We have w(d)=1-1" where Z,:T-k* is defined by
1.((t, 1) Z;)=A,.(1). (Note that 1, is well defined, since 4,(z)=1 for all
ze %;, by our assumption.) Since G has connected centre, the equality

607/57/3-5
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w(1)=12-7" implies that w is a product of reflections s, W each of which
satisfies s,(1) = 217 (1 T — k*). Restricting to T, we find 5,(4) = A- A" where
Ai=1;| T. It follows that we W, (see 2.3), as required.

We can now state

ProPOSITION 11.9. Let us fix ¥ € #(T). There is a well-defined map
Gy — Wiy /W, given by A—wW , where we W'y is any element such that
w=5,5,""5, (5,€8), and A is an irreducible component of "HY(KZ),
$=1(81, $350.s 5;), fOr some i.

Proof. Assume that 4 is also a component of °H/(KZ) where
s’ = (s},.., 5,-) is a sequence in S such that w'=ss,- - s. € Wy. We must
prove that wWo,=w'W,. Let y: /%% > QF be as in 11.7. It is an
invariant of 4. From 11.7, it follows that a(wW ,) =17, a(w' W) =17. Since
o is injective (11.8.2), we deduce that wW , =w'W ,, as required.

COROLLARY 11.10. Let us fix e S(T). If Ac Gy is a component of
both "HY(K?) and "H/(KZ) (w,w'eW) then wWo=wW,. Let
V: Z5/Z% - QF, A, n, ¢ be as in 11.7. Then y(z) = (4,(z)) (z€ %), where
W(A) =2 An.

Proof. Let s=(s, $3,.., §,), 8" =(51, §3,.., 5,) be sequences in S such
that 5,5, -5, =w, r=Iw), s155 - s.=w', ¥ =l(w).

As in 2.11, we see that KZ = KZ, hence 4 is a component of ?H/(KZ).
We define I, and s,, (J< 1)), as in 2.6, 2.12, and let J be a maximal subset
of I, with the property that 4 is a component of ?H*(K) for some h. From
the proof of (2.14.1) we see that 4 must also be a component of ?H"(KZ).
We define I, s (J'< ) in terms of &', s’ in the same way as [, s,
(J = I,) were defined in terms of .#, s; we then see that 4 must be a com-
ponent of ”H"'(K“ys},) for some /' and some J' < .. From 11.9 it follows that
the product of the terms in s, and the analogous product for s, are in the
same W ,-coset. On the other hand, from the definition of I (2.12), it is
clear that the product of terms in s, is in the same W ,-coset as the product
of terms in s, which is w. Similarly, the product of terms in s/ is in the
same W ,-coset as w’. This shows that w, w’ are in the same W ,-coset. The
last statement in the corollary follows from 11.7.

12. THE CoMPLEXES KZ

121. Let Le¢%(T) and let we W. We shall complete the
diagram

Y, G (12.1.1)
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of 2.4 into a diagram

Y
q / (12.1.2)
Y

w w
where
Y,={(g, B)eGx%|(B,gBg ") eO(w))},
Y.,={(g, h)eGxG|h 'ghe BwB},
¥,=1{(g.h)eGxG|h 'ghe BwB},
7,.(8 B')=8,

?,- Y, and ¥, ¥, is (g, h)~ (g hBh~") (a principal fibration with
group B), and ¥, = Y,,, Y,, & Y, are the obvious imbeddings. (Here,
O(w) is the closure of O(W) in 4 x # and BwB is the closure of BwB in G.)
Then 7, is a proper map, Y, is open dense in Y“, hence Y,, is open dense
inY,.

Let w be a representative for w in N(T), let 2, be the inverse image of ¥
under the map ¥, — T given by (g, h)—»pr (h~'gh) (see 2.4); then Z, is
B-equivariant for the free B-action on ¥, given by right translation on the
h-factor. Hence there is a canonical local system £, on Y, whose inverse
image under ¥, — Y, is Z,. This is the same as the local system Z on Y,
defined in 2.4. Its isomorphism class is independent of the choice of
representative w. (However, we shall want to consider rational structures
for this local system and for that the choice of w does play a role.)

Let JY=1C(Y,, 2,)e2Y,, JZ=1C(Y,, £,)e2(Y,); then JZ is
canonically the inverse image of JZ under Y, — Y,,. Define

K¢ =(7,),JZe2G, KZ=(n,), %, €2G. (12.1.3)

The isomorphism class of KZ, KZ depends only on w, not on w; when we
are interested only in its isomorphism class, we shall write K, KZ instead
of KZ, KZ. (The notation KZ is compatible with that in 2.4.)

12.2. Assume now that k = F, and that we are given an F-rational
structure on G such that B, T are defined over F, and T is split over F,,.
We assume also that £®4-1>Q,.

The varieties and maps in (12.1.2) are naturally defined over F_; we shall
denote by a subscript zero the corresponding schemes over F,. The local
system % is also defined over F,. More precisely, let us write & = A*(&, )
as in 2.2. (Here A: T— k* is a character, #n2> 1 is an integer dividing ¢ — 1,
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and §: u, > QF.) Then there is a unique F,-rational structure on % such
that the trace of the Frobenius map at the stalk of & at te T(F,) is
Y(A(r)' =D,

We assume that we N(T)(F,). Then 2,, 2, inherit natural F -structures
from #. (These F-structures depend on w, since the map ¥, — T used to
define 2, depends on w.) It follows that J, JZ, KZ, KZ can naturally be
regarded as objects in the derived category of mixed complexes over the
F-scheme (Y¥)o, (Y.)o, Go, Gy, respectively. It follows also that ?H'(K),
PHY(K?) can naturally be regarded as mixed perverse sheaves on G,.

J,, is a pure complex of weight 0 (by Gabber’s theorem
[1,53.4]) (12.2.1)

K% is a pure complex of weight 0 (by Deligne’s theorem
[2, 6.2.6], by (12.2.1), and by the properness of 7). (12.2.2)

123. Write Wi, =Q,-W, as in 5.1 and let . W, - N be the
length function defined in 5.1. Let Z=w- W, be the W ,-coset containing
w and let w, be the unique element in Zn Q.. Under the assumptions in
12.2, we say that a subset Z of N(T)(F ;) 1s a coherent lifting of Z if it has
the following properties:

(a) The natural map N(T)— W defines a bijection Z >~ 7 (we denote
by y the element in Z corresponding to y € Z).

(b) For any ye Z, the element (w,) ™' y can be written as a product
nyn,---n,, where r=1I(w; 'y); each n, is a representative of N( T)(F,) for a
simple reflection of W, of the form u-u - u”, where u, u', u” belong to the
union of the corresponding two root subgroups (over F,).

(The notion of coherent lifting appeared in the work of Kilmoyer on
principal series representations of Chevalley groups over F,; see also [6,
1.237)

We can now state the following result which is analogous to [6, 2.4].

THEOREM 12.4. Assume that we are in the setup 12.2. Assume that
we Wy and that Z is a coherent lifting (12.3) of Z=wW,. Let ye W be an
element such that y < w, for the standard partial order of W, so that f’y c?Y,
and Y,c¥Y,. The restriction #'(J,)| Y, is a local system with finite
monodromy. It is zero unless ye Z and i is even. If these conditions are
satisfied and if y, w are chosen in Z, then it admits a filtration (defined over
F,) by local systems, with all subquotients isomorphic (over F,) to
%, ® Q,(—i/2) and with a number of steps equal to B,..i» Where n, . is the
coeffctent of X72 in XU =T+ IoDp <1 o1 (X), where P, 4 are the
polynomials of [12] for the Coxeter group W o,.
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Proof. We shall deduce the theorem from Theorem 1.24 in [6]. Recall
that ¥ = A%(&,,). Let N, = BwBx k*, P,=N, /B (where B acts on N, by
b: (g,z)—>(gh™ ", A(b)z)), and let N, — P be the canonical map. Con-
sider the principal g,-covering of P, (defined in terms of we Z):

(UUnwUW ) xk*—> P, (u, z) = B-orbit of (uw, z").  (12.4.1)

Let &, be the local system on P, attached to the u,-covering (12.4.1) and
to Wi, — Q. It is in a natural way a local system defined over F,. Let

,t =BwBxk*, P, =N,/B, where B acts on N, by the same formula as on

N,. Then N, is open dense in N, hence P, is open dense in P,,. We have
N,cN,, P,c P, in a natural way. The following result is proved in
[6 124]

The restriction of #(IC(P,, &,))| P, is a local system
(defined over F,) with finite monodromy It is zero
uniess yeZ and i is even. If these conditions are
satisfied then it admits a filtration by local systems
(defined over F,) with all subquotients isomorphic
(over F,) to £®Q,(—i/2) (whete yeZ) and with a
number of steps equal to n,.,,.;. (12.4.2)

We now prove

In the diagram Y, ¥, <P 7 xk* >*N, P,
where «(g, x, z} = (x " 'gx, z"), the inverse image of Z,
(to ¥, xk*) and the inverse image of &, (to ¥, xk*)
are isomorphic (as local systems defined over F). (12.4.3)

First we note that the inverse image of &, under ¥, - Y, is Z, and this is
the local system associated to the following principal u,-covering of ¥

{(8.x,8)eGxGxk* | x 'gxe BwB, Mpr (x 'gx))=¢"} > ¥,

(g, x, &) > (g, x).
(12.4.4)

(From this we see that &, is B-equivariant for the free B-action on ¥,
given by b: (g, h) > (g, hb~"); indeed this B-action on ¥, lifts to a B-action
on the space (12.44), b:(g, x, &)~ (g, xb™ ", EA,(t,)) where A,: T>k* is
the character defined by w(1)=2-17 and ¢, is the T-component of b€ B.)

Next we note that the inverse image of &, under N, — P,, is the local
system associated to the following principal p,-covering of N,:

N.—>N,, (g2)—(g Mpry(g))~'z"). (124.5)
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(Indeed, we have a cartesian diagram

12.4.5
N, —2 L N

| |

(U/UAWUW =) xk* —U240 , p

w

where B(uwtu’, z)=(u, z), u,u'e U, te T.) Hence to prove (12.4.3), it is
enough to show that the u,-coverings (12.4.4) and (12.4.5) have the same
inverse image under ¥, xk* - ¥,, ¥, xk* > N,. This follows from the
cartesian diagram

{(g,%,2,E)eGx G xk*xk*|x 'gxeBwB, A(pr,(x 'gx))=¢"} ~—> N,

5 J luu.s)

{(8,%,2)eGxGxk*|x 'gxe BwB) <3N,

where  y(g x,2,&) = (x7'gx, 2£), 8(g, x, 2, &) = (g, x,2), &(g x,2) =
(x~'gx, z"). Thus, (12.4.3) is proved.
Consider the diagram

— ?_VXk*_—_’ P_v

!

~ Q—J:Q
D

Consider the following three statements:

(a) the statement (12.4.2);

(b) the statement obtained from (12.4.2) by replacing P,, P, by
¥,xk*, Y,xk* and &,, &, by their inverse images to ¥, x k*, ¥, xk*;

¥ Ew )
(c) the statement obtained from (12.4.2) by replacin~g PJ,PW by
Y, xk* Y,xk* and &, &, by the inverse images of %, %, under
Y, « ¥V, xk* Y, « ¥, xk*;
(d) the statement obtained from (12.4.2) by replacing P,, P, by
Y,,Y,and &, &, by Z,, &,.

Then (a) = (b) since ¥, x k* — P, is a locally trivial fibration with smooth
fibres. Moreover, (c)<>(d), since Y, xk* - ¥,, is a locally trivial fibration
with smooth and connected fibres. From (12.4.3), it follows that (b)<>(c).
Thus, (a)=(d). Since the statement (a) is true, it follows that the
statement (d) is true and the theorem is proved.
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COROLLARY 12.5. The following identity holds in the Grothendieck group
of mixed perverse sheaves over G, ( for y<w):

PHY((m,), (#'(J,)1 Y,))
ny PH () (Z))(—i2),  ifyeZ, yeZ, and i=even
‘{0 if y¢ Z ori=odd.

b
We now prove:

PROPOSITION 12.6. With the assumptions of 12.4, the following identity
holds in the Grothendieck group of mixed perverse sheaves over G

Y (~1)PH/RE) =¥ (~1) PHAKY)

+ X XY (=1)n, H(K)(~i2)

y<w j i
veZ even

where y are chosen in Z for all ye Z.
Proof. Consider the distinguished triangle
(t<im1dy Ty, KT [—1])

in the derived category of mixed complexes on (¥,), ( <, denotes ordinary
truncation). Apply to it (7, ),; we get a distinguished triangle

(@) tai e (Rditaily, (R ATL=1]). (12.6.1)

This implies the following identity in the Grothendieck group of mixed per-
verse sheaves on G:

Y A(=DPHI(@,), (#1T,))
i
—Z(—l)“’H’ (T T<idy) =2 (=Y PH((R,) T oio 1 J ).
j
Taking now the sum over all integers i in a large interval, we get

Y (= 1)+ PHI((R,), (#'],)) = Z(—I)JPHJ( D) (1262)

ij
Consider now the partition ¥,={J,, ¥,. Let

U Y.

ysw
v)<a
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Then Z,cZ,=Z,c --- are closed subsets of ¥,. Let ¢,:Z, > Y,,
VaZ,—Z,_, = Y, be the inclusions. We have a distinguished triangle

() Y2HT s (82)1 92K T, (Ba 1)1 821 H7T,)

in the derived category of mixed perverse sheaves over (Y,,),.
Applying to it (%,,), we get a distinguished triangle

(F)s (W) W 2H Ty ()1 (B0): 92H T 5 (F): (Pa i) B2 1 H ).
(12.6.3)

This implies the identity
Y (=1 PHI((R,,), ($a) $2H7T,)
J

— L (=Y PH((@): ($a- 1)1 (Ja-)* H )
=Y (=1 PHA(R,), (ba) W EH )

We have
(g @*H T, =#"],, for a>>0
=0, for a<9;
hence by taking the sum over all integers a in some large interval we get
Y (~1Y PH/((7,,), #'T,)
=% % (=1 PHU(R,) () WEH'T,)
a

Y X (=WYPH((ry), (V1 Y,))

It

ysw j

Z Z(_)jny,w,iij(K)',)(_i/z), lf i=CVCn
=

0, if i=odd,

the last step being given by 12.5. This, together with (12.6.2), gives the
proposition.

PROPOSITION 12.7*. Let ¥ € #(T) and let Z be a W y-coset in W'y,. Let
A be an irreducible perverse sheaf on G. The following two conditions are
equivalent:

(a) A is a constituent of "H'(KY) for some we Z and some i.
(b) A is a constituent of PH(KZ) for some we Z and some i.
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Proof. We use notations and results in the proof of 12.6. It is enough to
verify the following statement.

Let we Z be such that (4:?HY(KY))=0 for any i and
for any yeZ, y<w. Then (4:’H/(KY))=
(4: "H/(RZ)), for any . (12.7.1)

(Here, for any perverse sheaf K on G, (A: K) denotes the multiplicity of
A in a Jordan—-Holder series of K.)

From the long perverse cohomology exact sequence associated to
{12.6.3) and the hypothesis of (12.7.1) we see that

(A:PH((R,)) (B 93T D) = (A PH((R,) (B )y %1 HT)),
for any /, j and any a <I(w); in particular,
(A:PHU (R ,), (¢,) @ X#T,)=0 for a=Ilw)—1 (127.2)

(since it is zero for a <0).
The same long exact sequence and (12.7.2) show that

(A:PH((R)) (Bu) 93T ) = (A THI((R,) (Y ) Y 3T ),
if a=I(w), hence

(A:PHAK))  if i=0

(A:PH'((ﬁw)!%"Jw))={0 if i#0

(12.7.3)

Next, we consider the long perverse cohomology exact sequence associated
to (12.6.1). For i> 0, we see that

(A:PH/((R,), T 1 Jp)) = (A PHI((R,), T < J )
It follows that
(A:PHUR ) T o) = (A: PH/(K ).
The same long exact sequence for =0 gives
PHI((, ) T<od5) = "H((R,), #°J ).
It follows that

(A:PH((R,), #°T ;) = (4: PHK ),

Combining with (12.7.3) we see that (4:?H/(K,))= (A:?H/(K,)). This
completes the proof of the proposition.

607:/57:3-6
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PROPOSITION 128* Let we W',. Then KZe DG is semisimple (see
1.12).

Proof. This follows from (12.2.2) and the decomposition theorem [1,
54.5].

129. Let W', denote the set of isomorphism classes of irreducible
Q,[ W', ]-modules. With each E€ W', one can associate canonically an
Hy ®,, Qv u~]-module E(u) as in [14,1.1,12; 6,33]; the
corresponding modules E(u) ® Q,(u'?) form a complete set of irreducible
representations of H'y ® , Q,(u'?). Under the specialization < — Q,,
u'? - ¢'2, where ¢' is a fixed square root of ¢ in @,, E(u) becomes an
'v(q)=H'y ® , Q@rmodule E(g) and the E(q) form again a complete set
of irreducible representations of H'y(g). It is clear that

Any &/-linear function f:H'y— Q@ u'?) such that
f(hyhy) = f(hyh,) for all hy, hye H', is a Q(u?)-linear
combination of ./-linear functions f; of the form
fe(T,)=Tr(T,, E(u)) (Ee W). (The trace is taken
over Q,[u"2 u='2].) (12.9.1)

For each we W', we set

Co=Y (=1) TP o (™) P TOT e HY,

Wi v.ww

L (129.2)
Co=Y Poty i) u T e H,

(the sums are taken over all yewW,; w, is the unique element in
Q,nwWy and P, are the polynomials defined in [12] for the Coxeter
group W)

We shall need some properties of Tr(T,, E(u)). (Compare [6, 3.3,
(6.9.5)].)

TH(T,, E(u)) el - Z[4"?], (12.9.3)

where { is a root of 1 of order dividing |Q .|, which depends only on E and
on the W -coset of we W,

Te(T,, E(u)) =Ti(T,, E(x)) (1294)

where the bar denotes the involution of the ring Q,[%"2 u~'/?] which is
identity on @, and takes u? to u~"2

Tr(T -1, E(u)) =Tr(T,,, E*(u)) (129.5)

where E* is the representation of W, dual to E.
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Y w "™ THT,, E(u)) Te(T,-1, E'(u))

we WIY

( ¥ uT‘W‘>DEI(u)“'dimE1, if ExE
= we Wy

0, if E#E. (1296)

Here D (u)e Q[u] denotes the “formal dimension” (or generic degree) of
any irreducible W -module E, appearing in the restriction of E to W ,.

Tr(T,, (E®e)(u)) = (— 1)) i Tr(T;f,, E(u)), (129.7)

where & W', — +1 is the restriction to W', of the sign representation
w— (—1)) of W.

PROPOSITION 12.10*.  There is a unique function
GY X W:’f - @[(ul/-’-)’ (A9 E)HCA,E(u)
such that
¥ (= 1) (4: PHY(RE ) u”
= Y yWAmGrine ) Tr(C,, E(n))  (12.10.1)
Ee Wi?’

forallwe W, Ae G . (Identity in Q,[u"? u=""?].) For any A and E there
exists a root { of 1 of order dividing 12 ,| and an integer f =1 such that

(S W, u™) e, J(u)e Q[u'?). In particular, the identity (12.10.1)
can be specialized for u'*=¢*"* (s=1, 2, 3,...).

Proof. The uniqueness of the ¢, z(u) satisfying (12.10.1) is clear. We
now prove the existence. We shall consider the mixed complex KZ as in
12.2. From (12.2.2) and [1, 5.4.4] it follows that #H‘(KY) is pure of weight
i. By the definition of y, (see 6.3) it then follows that the left-hand side of
(12.10.1) is equal to x,(KZ). Using now 12.6 and the additivity of ¥, (which
follows from [1, 5.3.5]) we get the following identity in #(G) ® ; o (see
6.3):

W= T (T ) 1)

yewWy

vEw even

Y R =T+ Tonp () 1(K?)

wp poww

vewWe
ysw

(notations of (12.9.2)).
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By (6.3.2) this is equal to

Y ulRmG o =Tonp 1 (u)e'(T,), (12.102)
ysw
where ¢': Hy, —» A (G)® o satisfies ¢'(h hy)=¢"(h,h,) for all h,, h,e H',.
By (12.9.1) we can write

T)=Y Y cis)THT,, Ew) A  (VyeWy,), (12103)

AeGe EEW_T

where ¢, (1) e Q,(u"?).
Now (12.10.2) becomes

TS uteme e () Tr(C,, B) A

AeGy Ee Wy,

as desired.
By the definition of ¢, z(u), we have:

Y. capW)Tr(T,, E))=m, ,(u)  (VyeWy)

Ee W'y

where 7, ,(u) e Z[u'? u~"?] is zero unless y is in a fixed W ,-coset of W',

(depending on A). (Here we use 11.10.) Applying now (12.9.6), we get

cae(w) Y wVTHT,, Ew) Tr(T, 1, E(u))

veWy

= Y @) (T, E(u)). (12.104)
ryeWy

In the right-hand side of this equality we may assume (by the previous
remark) that y runs through only one W ,-coset of Wy ; using (12.9.3), it
follows that the right-hand side of (12.10.4) is in { - Z[u"?, u~"*] where { is
a root of 1 of order dividing |2.|. By (12.9.6), the factor multiplying
c4z(u) in the left-hand side of (12.10.4) is a divisor in Q[u,u '] of
Dwew, u™™). The proposition follows.

12.11. The function ¢, () is defined with respect to Z. If we
replace ¥ by % !, then ¢, z(u) is defined in the same way with respect to
%' (See 11.2(d) and note that W, = W', _..) We have

cpae(u)=c4 plu). (12.11.1)

Indeed, let d=dim Y,,. We have D(?H'K<)=7H*~ K<™ =?H'KZ"". (The
first equality is proved as in (11.2.1); the second equality is the hard
Lefschetz theorem of [1, 5.4.107].) Now (12.11.1) follows from (12.10.1).
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12.12. Let us write ¢, z(u)={P where { is a root of 1 and
PeQ(u'?) (see 12.10). We show that

Camlu)=(""P. (12.12.1)

To prove this, we use the following observation. The representation E* can
be obtained from E by applying an element y in the Galois group of Q,
over @ which takes each root of 1 to its inverse. Since the construction
E — E(u) is compatible with the action of this Galois group, it follows that
Tr(T,, E*(u)) is obtained from Tr(T,, E(u)) by applying y to each coef-
ficient. The effect of y on ¢, 4(u) can be determined from (12.10.4). Since
7,.4(u) in (12.10.4) has integral coefficients, it is invariant under y. From
(12.104) it then follows that y carries ¢, z(u) to ¢ p«(u), and (12.12.1)
follows.

13. PRINCIPAL SERIES REPRESENTATIONS

13.1. In this chapter we assume that we are given an F -rational
structure on G such that B, T are defined over F, and T is split over F,.
We also assume given ¥ =i*(é,,)e S (T) as in 2.2 and that » divides
g—1. We regard & as a local system defined over F,, as in 12.2. Let
F: G — G denote the Frobenius map.

13.2. Let 2 be the vector space of all functions f: G*/U" - Q,. It is
a G'-module:

(g, /)NgU")=f(g;'gU"), [feP g g, €CG".
If ie N(I*, we define 1, 2 - 2 by
(L HgUNH= Y  flg'Uh

g UFe GHut
8- lg’ € UnlU

Then (t;);enr 1S @ basis for EndgA(#), and each 7, is invertible. Let
0: T" - Q} be the character defined by

G(¢) = y(A()' 91, teTF. (13.2.1)
We define
P={feP|t,f=001)"f,VieT"}.

Then #° is a G -submoduie of 2 and the maps t,: #° — #° (where 7 runs
through a set of representatives in N(T)* for the elements in W’,) form a
basis for EndA(2°).
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The structure of the algebra End ;«(2?) has been described by Kilmoyer
and Howlett [11]. We shall now describe their result.

Let (W) ={w|we W} be a set of representatives

in N(T)* for the elements we W', with the following

properties:

(a) {y|ye Wy} is acoherent lifting (see 12.3) of W,

such that é=e.

(b) {X|xefRy,} is any lfting of Q, (see 5.1) such

that é =e.

(c) IfxeQg, and ye W, then (xy) = xJ. (13.2.2)
Choose an algebra homomorphism (preserving unit) A: End;+(2°) - Q,.
(The existence of 4 is equivalent to the existence of an irreducible
G -module appearing in 2° with multiplicity 1; this follows from the fact
that the restriction of 2% to U’ contains any generic 1-dimensional

representation of U” exactly once.)
We define a Qlinear map {: H',(q) » End;H2°) by

C(Txy) = q‘(1/2)(l(x_v)—I(x)*T(,v))h(Ti)—l Tes PO PO (13.2.3)

(xeQq4, ye W), where x, y, h are as above, H', is the Hecke algebra over
& defined in 6.1, and H',(g) is its specialization (12.9). Then

{ is an algebra isomorphism (see [11]). (13.24)
For future reference, we note also the formula
(g (g )= g R PO B0, (1325)
valid for any representatives x, X' in N(T)f for x, x' € Q.

13.3. For each we W, the complex KZ e @G (we (W), see
(13.2.2)) comes naturally from an object in the derived category of mixed
perverse sheaves on G, (over F,), cf. 12.2. Hence for each ge G* we may
consider the alternating sum (see (8.4.1)):

txz A8) =L (= 1 Te(E, # y(K)), (133.1)

where F denotes the map induced by the Frobenius map. Similarly, we may
consider

1rz A (8) =L (= 1) Te(F, # (KY)). (13.32)

We now prove
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ProrosiTION 13.4.  With the notations in 13.2, 13.3, we have for any
geGh: |
1z A8)=Tr(z, g P°). (13.4.1)

Proof. From the definition of KZ (see (12.1.3)) we see that
1x2 A 8) =Y (=1 Tr(F, Hi(n; '(g), 4,))

= Y Tr(Fstalkof Z, at(g, B)eY,)
B e #F
(2B)E Y,

(by the Lefschetz fixed point formula for the variety n7!(g))
=|Bf|=' Y Tr(Fstalkof £ at(g h)e¥,)

he GF
h-lghe BwB

=|Bf|7" Y Tr(F stalk of & at pr (h~'gh)eT)
h";leszBwB

=B 171 XY Y(AUpry(hTgh)) ) (see 12.2)

he GF
h~lghe BwB

={Bf7" Y O(pr.(h'gh)) (see 13.2.1)
e GF
h‘lgthwB

=Tr(z, g, 2%).

COROLLARY 13.5. The sum
IGT 7! X xxelg) xxz'(8)
geGf
is equal to the trace of the linear transformation of the Hecke algebra H',(q)
(see 12.9) given on the basis elements T. (ze W',) by

T.—» Ty T, T, - qUAUN 1000 =Tom) =T0w'))

(Here w' is another element in W'yo= W'y 1, W is its representative in
(W), and &' = (A 1)* (6,y) is regarded as a local system (over F,) on

T such that the trace of Frobenius on the stalk at te T is (A~ (1)~ /") =
0=1(¢t).) In particular, our sum is zero unless wW ., =w'W .

Proof. The sum in the corollary is equal (by (13.4.1) to
G"~1 L Tr(e, 8 2°) Tr(r, 8,27 )

geGF

=Tr(t,®1,., (P Q@2 )%, (13.5.1)
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where 2" is defined just as 2 replacing § by 6!, and G* acts
diagonally on 2°® 2°". Under the natural duality #°® #°"' > Q, given
by £/ = Tevrecrur (ff NgUT), the automorphism 1, of 2%
corresponds to the contragredient of 7, #°—» #°. Hence (13.5.1) is
equal to the trace of the linear transformation of End;+#°) into itself
given by £ - 7;,-1¢t,,. Using the isomorphism (13.2.4), we see that it is
enough to prove the identity

L UTe) 0y =Ty T, T,,) - gV HI0 =T 1000 (s W),
(13.5.2)

where o € @ satisfies « = 1 whenever wl , =w'W .
Using the definition (13.2.3) and the fact that { is an algebra
homomorphism, we see that (13.5.2) is equivalent to the formula

Mt ) =" (xeQy,)

1

and this follows by applying 4 to (13.2.5) with x'=(x)"".

PROPOSITION 13.6. In the setup of 13.4, we have for any ge G*

ka(g) = Z Py -i,(q) - gV - Hu) = Tw) + Tu))

uewWg

1x2(8),

where P, g denote the polynomials [12] for the Coxeter group W o, X is the
unigue element in Q , "wW o, and the representatives u are taken in (W'y)
(see (13.2.2)).

Proof. There is a natural spectral sequence
Eg’ = #("H*KY ) = A (RY)
in the category of mixed constructible sheaves on G,. Taking stalks at g,

we get a spectral sequence E = #2(PH'KZ)= #2+*(K7). Taking alter-
nating sums of traces of the Frobenius map, we get

1 A8) =Y (—1)*** Te(F, #5"H'RZ)) (136.1)

Similarly, we have

xxe &)=Y (=) To(F, # Y HKY)). (13.6.2)
ab

The desired formula follows now from (13.6.1), (13.6.2), and 12.6.
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CoROLLARY 13.7. In the setup of 13.5, the sum

IGH17" Y xkel8) xry;'(8)

geGF

is equal to the trace of the linear transformation of the Hecke algebra H',(q)
(see 12.9) into itself given on the basis elements T. (z€ W'y) by

T—-—'q'1/2)(I(W)+[(W,))C(w'71T-C,uu
(Here C.., C..-1 are as in (12.9.2}.)

Proof. This follows immediately from 13.5 and 13.6.

138. We recall that £ = 1*(¢, ) is fixed.

In the rest of this chapter, we shall assume not only
that » divides ¢ — 1, but also that every complex 4G,
is isomorphic to F*A4, where F is the Frobenius map
corresponding to the F -structure on G. If n only
divides ¢ — 1, then each "H'(KZ?) (ie Z, we (W) ) is
defined over F, (see 12.2), hence F* defines a per-
mutation of the set G,. Replacing ¢ by a power, if
necessary, we may therefore assume that F* acts
trivially on the set G . (13.8.0)

In the rest of this chapter we shall assume chosen a
specific isomorphism ¢, F¥*A~ A, for any AeG,,
with the following property: for any r>=1! and
any geY!. (suppA=Y,, of dimension d),
¢ A A~ A, ‘4 has all eigenvalues of the form root
of 1 times gldm¢ -2 (13.8.1)

(such ¢, exists, since 4| Y, ;- is a local system with finite monodromy.)
Since H'(KZ) is semisimple, we may write canonically

pHi(Ef) =D ,(4® Vgis) (13.8.2)

(4 runs through G ), where V/ i are finite-dimensional vector spaces over
Q, endowed with endomorphisms W ,: V, .-V, . such that under
(13.8.2) the map ¢, ® ¥, corresponds to the isomorphism F*(?H(KZ)) >
PH(KY) arising from the fact that ?H(KXZ) comes from a mixed perverse
sheaf on G,. Passing to stalks, it follows that

Tr(F, #}, PH(RE) =Y, Tr(pa, #LA) Tr(W 4. V., ,0)
A
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for all ge G, all i, j, and all we W',. Taking alternating sums over i and j,
and using (13.6.1), we find

ez A8V =Y (Hasd@) X (=1 Tr(W . Vi) (13.8.3)

(A4 runs through G ); see (8.4.1).

From (12.2.2) and [1, 5.4.4], it follows that ?H'K is pure of weight i.
From [1, 5.3.4] and by the choice of ¢,, we see that (4, ¢ ,) is pure of
weight dim G. From (13.8.2) we can now deduce that the endomorphism
4 of V,,, is pure of weight i —dim G. In other words:

The eigenvalues of ¢, V,,, -V, are algebraic
numbers all of whose complex conjugates have absolute
value gt~ 9m&72, (13.8.4)

139. We now replace £ by £ ! in 13.8. We have W, = W', ),
and for each w' e W'y, PHY(K<™") is defined over F,, where w'e (W)
(The F,-rational structure on % ~' is taken as in 13.5.) The set G -1 con-
sists of {DA|AeGy,} (see (11.22)) and for AeG,, we define
#pa: F*DA DA to be the contragredient of ¢ : F*A 5 A, times ¢%im¢ -4
(where d is as in (13.8.1)). We define V7, , .- and its endomorphism ¥/, as
in (13.8.2):

PH(KL ) =@ (DA® V), ,);

A

V'p4 is defined in terms of ¢4, just as i, is defined in terms of ¢ ,. We
then have for all ge G*

1k H8) =Y (Upas, (&) L (= 1) T s Vi)

Multiplying this with (13.8.3) and summing over all ge G*, we find
IG"1 =1 X xe ) xre A8)

gEGF
=73, (IGFI‘1 Y X&) Xpag, (&)
A,A geGF
XY A= TeW g, V) Te(W g Vipaopr) (1391
ij

(here 4, A’ run over G ).

We shall say that G is clean if for any Levi subgroup L
of a parabolic subgroup in G, any cuspidal character
sheaf of L is clean (see (7.7). (13.9.2)
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If we assume that G is clean, then the sum |Gf|™!
>eccF L&) Xpargn,(8) in (13.9.1) is equal, by 10.8 and the choice of
b4, ps,to Lif A=A"and to 0 if 4+# A". Hence, for G clean, the right-
hand side of (13.9.1) is equal to

YYD TrW a5 Vi) TEW ot Vi)

A ij

(A runs over G,). The resulting identity clearly remains true if F,is
replaced by an extension F . Thus, we have the identity

G770 Y xrep(@arg ' (@) =2 (=1 py,,  (1393)

geGF h

where

=Y L TrW V) T ha) Voyu) (1394
i+l_;j=h

(4 runs over G). According to 13.7, the left-hand side of (13.9.3) is equal
to I1(g°), where II is a polynomial with integral coefficients depending on
£, w,w, but not on g or 5. On the other hand, from (13.8.4) and the
analogous property Yp: Vi = Vg s it follows that p,  is of the
form 3, (a,,)° where «,, are algebraic numbers all of whose complex con-
jugates have absolute value ¢'"/?'~9mS From the identity

YA=DY (,))=11(q")

(valid for all s > 1) it follows then that, for fixed 4, the set {a,,} is empty if
h is odd and that a,,=q"W?~9mY if h is even. This implies that
V ais® V. is zero for i+ j odd (4 €G,). It also implies that, for i+ j
even, any eigenvalue of ¥ , on V. multiplied by any eigenvalue of Y/, , on
VDA/w glVCS q(l+j)/2 dimG
Since, for 4G, we have Viajw#0 for some j and w'e W

follows that the parity of i such that ¥, #0 for some we W' is an
invariant of 4 and that, for an eigenvalue ¢ of ¥ , on ¥V, the product
&g+ 4im @2 ig also an invariant of 4. Thus, we have the following result,
which is analogous to [6, 2.18].

THeEOREM 13.10. In the setup of 13.8, we assume that G is clean (see
(13.9.2)).

(a) With each AeG ,, one can associate a sign €4 € {+1} with the
following property: if A is a component of "H'(KZ) (we W'y), then

(‘1}i+dimc=8,4.
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(b) With each AcG,, one can associate an element ¢, Q¥
(depending on the choice of lifting (W'y) in (13.2.2), the choice of ¢, in
(13.8.1), and the choice of a square root of q in Q) such that for any i and
any we Wy, all eigenvalues of ¢ .V ;. =V 4., (see (13.8.2)) are equal to
& ,qt—4mE 2 moreover, ¢, is an algebraic number all of whose complex con-
jugates have absolute value 1. The eigenvalues of Wp4: Vg = Vi (se€
3.9) are equal to &;'qV 4™,

13.11. Consider the identity (13.9.3). Its left-hand side is equal to
the trace of the linear map Hy(q’)—> Hy(q’) given by
T, gWAum+ivner  T,C,. Hence it is equal to g2+
Y eewe T1(Ch1, E(g°)) Tr(C,,, E(¢°)) and hence to

guRIn ) S TH(C,,, EXg*) TH(C., E(@),  (13111)

Ee Wy

where E* is the representation of W', dual to E.
The right-hand side of (13.9.3) can be expressed as in (13.9.4), and under
the assumptions of 13.10 can be written as

Z (_1)i+j£;qs(i—dimG)/2 fgsqs(j—dimG)/Z

A
Lj

xdimV ,, . dimV},, . .

=z (Z (_1)1 qs(ifdimG)/Z(A: pH’K'M'Y)
A

X (Z (—1) g*/~dmG2(p 4. pH’Kf"))

J

=Z<¢f"w’/2 )3 CA,E(qX)Tr(Ci.,,E(qs)))

EEWY

x(qs"w"/z y CDA,E,(q’)Tr(C;«,E'(qs)))

E'e Wf

(by (12.10.1), with u'2 = ¢*?). This equals

g 3 (Y ) consle)

EEeW, \deGy

x Tr(C,,, E(¢*)) Tr(C,., E'(q*)). (13.11.2)
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Thus (13.9.3) can be expressed as the equality of (13.11.1) and (13.11.2), for
all w, w'e W',. Since the functions fj i Wy x Wy —Q,,

(w, w)=Tr(C,, E(q%) TH(C,, E'(q°))

(E, E'€ W) are linearly independent, it follows that

{1, if E'=E*

Z CA,E(q ) epaelq’)= 0, otherwise.

AecGy

Since here s is any integer >1, this identity remains true when ¢° is
replaced by the indeterminate u.
Using now {12.11.1) we get the following result:

PROPOSITION 13.12.  Under the assumptions of 13.10, we have, for any
E,EcW,,

1, if E=E*
0, otherwise.

Z Caplu)c,plu)= {

,4€Gy

14. A DISJOINTNESS THEOREM FOR
COHOMOLOGY SHEAVES AND ITS APPLICATIONS

14.1. 1In 3.11, we have defined a canonical partition of G into
finitely many locally closed smooth irreducible subvarieties Y|, ;, stable by
conjugation. We shall prove the following result.

THEOREM 14.2*. Let Y=Y, 5, be a piece in the partition 3.11 of G and
let A' be any admissible complex on G (see (7.1.10})).

(a) The cohomology sheaves #'A’ restricted to Y are local systems
with finite monodromy.

(b) Assume rthat G is clean (see (13.9.2)), that A is a character sheaf
of G whose support is equal to Y, and that A' is a character sheaf of G which
is not isomorphic to A. Let d=dim Y, so that # ~“(A) is the only
cohomology sheaf of A which is non-zero on Y. (It is an irreducible local
system on Y.) Then for any i, the local system #'(A'}| Y has no irreducible
direct summands isomorphic to # ~4(A)| Y.

Proof. We refer to 8.1 for the notations L, 2, X'\,, Y=Y, 5. Let Z be
the variety of all pairs (M, 5) where M is a closed subgroup of G and §is a
semisimple element of M/%9, such that there is an element of G con-
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jugating M to L and 5 to the semisimple part of some element in the image
of Zin L/Z9.

Let p: Y > Z be defined by p(g)= (M, s), where M is the unique con-
jugate of L containing Z°%(g,) and s is the image of g, in M/%?,. Then p is
a locally trivial fibration. Moreover, G acts naturally on Y and Z by con-
jugation (compatibly with p) and the action on Z is transitive. Since
H'(A')| Y is G-equivariant, we see that in order to prove (a) it is enough
to show that the restriction of #(4') to some fibre of p is a local system
with finite monodromy. We shall consider the fibre @ of p at (L, 5), where
su=us is an element of X, (s semisimple, # unipotent) and 5 is the image
of sin L/Z9.

Note that, if Z%(zs) = L (ze Z9), then Z%(zs) = Z%(s). (Both are equal to
Z9(s).) It follows that @ is the set of all g e L which are of the form g = zsv,
where ze 29 is such that Z2(zs) = L, v is unipotent in Z%(s), and zsv is
conjugate to an element in X'\, (s is fixed).

We now define @ to be the set of all g€ L which are of the form g = zsv,
where ze 29, v is unipotent in Z%(s), and zsv is conjugate to an element in
2 (s is fixed).

It is clear that @ is an open dense subset of & and that s~ '@ < Z2(s).

Let I” be the isotropy group of (L, §) for the transitive action of G on Z
by conjugation. Note that Z2(s) is contained in I" as a subgroup of finite
index. The action of 9 x I on & given by (z,7):g— zygy~" is clearly
transitive. Hence & (or s~'®) is a union of finitely many 29 x Z%(s)-orbits.

Now let K’ be a perverse sheaf on G obtained by inducing a cuspidal
admissible complex from a Levi subgroup of a parabolic subgroup, and
such that 4’ is a direct summand of X' (see (7.1.10)). Let &: Z%(s) = sZ2(s)
be multiplication by s. In (8.8.4) we have constructed an isomorphism

(e*K' | ﬂl/)[—é]z(@ »K;) /4 (in 2%), (14.2.1)

where % is an open subset of Z%(s) as in 8.6 and K|, are finitely many per-
verse sheaves on Z%(s) of the same type as K'. More precisely:

K is obtained by inducing an irreducible cuspidal per-
verse sheaf K, from a Levi subgroup (=L, ~ Z%(s)) of
a parabolic subgroup of Z%(s), where L/ is a Levi sub-
group (containing s) of some parabolic subgroup of G
such that supp K'= Y, ;). (14.2.2)

The support of K, is the closure of the piece in the par-
tition 3.11 of Z2(s) corresponding to the pair
(Lan Z%(s), {ve Z%(s) unipotent | sve 27} - Z9, o,  (14.2.3)
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Now A4’ is a direct summand of X', hence (¢*A' | #)[ —0] is a direct
summand of (P, K,) | % (in D%, hence in .A%). Since % is open in Z%s),
and @, K, is a semisimple perverse sheaf, there exists a direct summand of
@, K, whose restriction to % is isomorphic to (¢*A' | #)[ —0]. (We use
the fact that any irreducible perverse sheaf on Z°(s) gives upon restriction
to % either 0 or an irreducible perverse sheaf on %.) Now, any direct sum-
mand of @, K}, is a direct sum of irreducible admissible complexes of
Z°(s). Thus, (e*4’ | #)[ —38] is isomorphic to a direct sum of admissible
complexes on Z°(s), restricted to %. Since any admissible complex 4, on
Z°(s) is equivariant for the action (z, go): g = 2"go 88 ' of Z9 x Z%(s) on
Z%(s) (for some 7> 1) and since s ~'® is a union of finitely many orbits for
this action, it follows that #(4,) | s '® must be a local system with finite
monodromy, hence #'(A,)|s '@n% is a local system with finite
monodromy (for all i). Since (¢*4’ | %)[ — ] is isomorphic to a direct sum
of such A, | %, it follows that #(c*4’) | s~ '® % and #(4")| D su
are local systems with finite monodromy. In particular #(4’) | d N s% is a
local system with finite monodromy.

The set % considered above depends on s; we now denote it %(s). When
s runs over the set of all o € L such that ¢ is mapped to § under L —» L/Z9,
and such that Z%(g) < L, the sets @ n%(s) form an open covering of .
Since #'(A’) is a local system with finite monodromy when restricted to
any of the open sets of this covering, it follows that #‘(4’) | @ is a local
system with finite monodromy. This completes the proof of (a).

We now begin the proof of (b). We may assume that supp A’ contains ¥
as a proper subset; otherwise, there is nothing to prove. Let K be a perverse
sheaf on G obtained by inducing a cuspidal admissible complex of L to G,
such that 4 is a direct summand of K.

Let sue X', be as in the proof of (a) and let &, be the set of all ge L
which are of the form g=_zsv where ze Z9 is such that Z%(zs)<= L and
ve C (C= Z°s)-cnjugacy class of u). Then @, is a connected component of
@ above. If ¢ and % = Z°s) are as above, we may assume that, besides
(14.2.1), there is an isomorphism

(a*Kl%)[-é]z((—B K,,) U (in 9U), (14.2.4)

B

where K are finitely many perverse sheaves on Z°(s) satisfying properties
similar to those satisfied by K, in (14.2.2), (14.2.3). In our case, however,
each K, must necessarily be a cuspidal perverse sheaf, with support equal
to V, where V= %% C.

Using our assumption that G is clean, together with 7.11 and 11.2(d), we
see that each K., (as well as DK],) is a strongly cuspidal, clean,



294 GEORGE LUSZTIG

irreducible perverse sheaf on ZZ(s). Similarly, each K, (as well as DKg)isa
strongly cuspidal, clean, irreducible perverse sheaf on Z%(s).

It is enough to show that the local systems #'(K')|®,ns%,
#'(K) | @, ns% have no common irreducible direct summand, for any i, J.
Using (14.2.1) and (14.2.3), we see that it is enough to show that the local
systems  H'K,|s '@, " U, H’'Kg|s'® "% have no common
irreducible direct summand, for all 4, j, «, 8. Since #'(K},) is 2%, x Z°(s)-
equivariant, it must be a local system on V (which is a single orbit).
Similarly, 5#/(Kj) is a local system on V. Since s~ '®, "% is open dense in
V and V is irreducible, it is enough to show that the local systems
H'K, |V, #'Kz | V have no common irreducible direct summand. Since
supp Kz =V, we see that it is enough to check the statement (14.2.5) and
Lemma 14.3 below:

For any o, B, we have supp K, # supp K. (14.2.5)

LEMMA 14.3*.  Let K be an irreducible cuspidal perverse sheaf (7.1.10) on
G such that DK is strongly cuspidal and clean. Let K’ be a perverse sheaf on
G obtained by inducing to G a strongly cuspidal, clean, irreducible perverse
sheaf of a Levi subgroup of a parabolic subgroup. Let Y ; z)= X be the piece
in the partition 3.11 of G such that supp K= X, and let & be the irreducible
local system #~4K)|ZX, d=dim Z. Assume that supp K' #Z. Then the
local system (#'K') | 2 (see part (a) of Theorem 14.2) does not contain & as
a direct summand.

144. Proof of (14.2.5). Assume that supp K, =supp K;=V. From
(14.23) it follows that L. NZ%(s)=2Z%s), and that sueZ. Thus,
Z%s) < L,; since L= HG(s) (see 3.11), we must have L= L. From our
assumption Y <supp 4’, ie, ¥ 5 < Y(L =,y (see (14.2.2)), it follows by
applying the Steinberg map o (see 7.3) that dim o(Y, ) <dim o Yoz
But it is clear that dimo(¥ ;)=dim 29, dimo(¥,, ;)=dim 2?7,
hence dim Z9 < dim Z9.. This, together with L= L., 1mphes L= L. From
sue X, it follows that ZmE’ # &, hence X =2, since L=L,. Thus, we
have Y, 5, = Y(,_w ry» contradicting our assumption ¥ #supp 4, and
(14.2.5) is proved.

14.5. Proof of Lemma 143. If K’ is itself cuspidal, then it is clean by
assumption, so that (#°K’)| £ =0. Assume now that K’ is not cuspidal.
Then by 7.2, we have H/(G, DK® K')=0 for all j. Since DK is clean, we
must have H/(Z, DK® K')=0 for all j, hence H/(Z, §* ® K’} =0 for all j,
where £* is the local system on X, dual to £. We must prove that the local
system #{(£* ® (K' | 2)) on 2 contains no direct summand isomorphic to

Q..
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Assume that #°(£*® (K' | X)) contains a direct summand isomorphic
to @, and that i, is maximum possible with this property. We shall reach a
contradiction as follows. Our assumption implies H?¥Z, #(£*®
(K'| 2)))#0. Hence E2%#0 in the usual spectral sequence

Epi=HrP(Z, #4E*® (K' | X)) = HP+4(Z, £*® (K' | X)).

In the proof of 7.8, we have seen that Hi(X, #)=0 for any irreducible
Z?% x G-equivariant (see 2.18(b)) local system # on X, which has no direct
summand isomorphic to @,. In particular, we may take # = #'(§*®
(K'| 2)) for i > iy. It follows that E29=0if ¢ > i,. It is clear that E£9=0if
p>2d, since d=dim Z. This implies that E3%%= E3*0= .- = E2%»_Since
E2%0£0, it follows that H*+0(X, £*® (K' | X)) #0, a contradiction.

This completes the proof of Lemma 14.3, and hence that of Theorem
14.2.

14.6. In the rest of this chapter, we assume that we are in the setup
of 13.1 and, moreover, that ¢ i1s large enough so that (13.8.0) is satisfied.
Wefix Y=Y, - and A€ G, with support ¥, as in 14.2. From 14.2(a) it
follows that there exists a principal covering n: ¥ — Y with finite group I”
(acting on Y on the left), with ¥ irreducible such that each of the local
systems #°A4’|Y (for various i and various 4’ G ) is associated to = and
to a representation of I" (denoted [#°4']). For a large enough integer
r>1, both ¥ and 7 are defined over F, (Y is defined over F,, as a con-
sequence of (13.8.0) and, in particular, is defined over F,). Moreover we
can assume that the Frobenius map F: ¥ - ¥ with respect to the
F ~structure is such that F(yy)=7F(y) for all ye I" and all je Y.

There exists an integer ¢, =1 such that for any integer ¢ > ¢, and any
ye I, we have F°j =yj for some je ¥, which depends on y on c. (Indeed,
y 'F. ¥ Y is the Frobenius map for an F -rational structure on Y,
hence for large enough ¢ it must have some fixed point, since Y is
irreducible: the number of its fixed points tends to oo as ¢ tends to o0.) We
set (for ¢ >¢o): y.,=n(J), where e Y is some point such that F*j=yj.
Then for any i and any 4'e G, we have

Tr(¢%, #, (AN =b g, Tr(y, [#(A)])  (Vyel,c=co). (14.6.1)

Here ¢, is as in (13.8.1) and b, is independent of y. If 4'= A, then
b 4re.—qis @ root of 1 times g™~ 902 (d=dim Y), and we have

Tr((¢pa), ;. 4(DA)) (14.6.2)
=bgte_ar g Te(y L [ UA)]) (Vyel, ez )

where ¢, , is as in 13.9.

607/57/3-1
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By 14.2(b), the I~module [#7(4’')] contains no irreducible components
isomorphic to [# ~%(A)], if A’ # A. Hence, from (14.6.1), (14.6.2), and the
orthogonality relations for the characters of I, we deduce

Z Xa ¢ (ycy) Xpa (¢DA) (ycy)

yel”

= -1 dimG —d
—Z( U bureibpare,—aq ™"
i

xIF1=" Y Tr(y, [#'(4)]) Try—", [Jf-dA]))

yefl

{0’ LAEA e (14.6.3)

= q(dim G— d)rc, if A=A

14.7. Under the assumptions of 13.10, the identity (13.8.3) can be
written as follows:

Yredg)= Z Yas4(8) € Z( 1) gt~ =92 4: PH'KY)

=Z Yas8) Ea q"w’/2 Y caelg) TH(C,, E(q) (g€ G").
(14.7.1)

Using 13.6, 13.4, and (13.2.3) we can write
Kxerg) = Tr(q VU~ h(z ) C g, P (geG), (1472)

where w, is the unique element in Q,NwW and h is as in 13.2. Since
Hy(g)= EndG;(W") (see (13.2.4)), we can decompose #° as a H,(q)x
G"-module as 2° = @ r. w,(E(q) ® #%), where 2% = Hom \(E(q), 2% is
an irreducible G*-module. Then (14.7.2) becomes

Xrzdg)= Y NIz Y Ti(g, P Tr(C,, E(g)).  (147.3)

EeWy

From (13.2.5), it follows that ¢ ~"*A(z,, ) is a root of 1 of order dividing
n|Q2 4|. From 11.10 and 12.7 it follows that for Ae G, the W -coset of an
clement we W'y such that (4:?H'KZ)#0 is an invariant of w. It follows
that there exists a function v: G, — {roots of 1 of order dividing n|Q |}
with the following property: if (4:7H'’KZ)#0 (we W), then
v(4)=q "Vh(z, ), where w, is the unique element of minimal length in
wW .
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Comparing (14.7.1) and (14.7.3) we then have

Y Xae8) Eav(A) Y, cailg) Tr(C,,, E(q))
E

AeCGy
=Y Tr(g, %) Tr(C,,, E(g))  (g€G").

Since the functions w — Tr(C’,, E(q)) on W (Ee W',) are linearly indepen-
dent, the previous equality implies

Tr g,go Z Ev(4 CA.E(Q)XA,m(g) (14.7.4)

AeGy

for all ge G” and all Ee W",. This identity holds also if we replace g by a
power ¢° (s=1). It implies

Y &) car(qd) xag(g)E0  (VgeGT) (14.7.5)

AeCGy

where ¢ is the ring of all cyclotomic integers and v,(4) is a root of 1 of
order dividing n|2 .| and depending possibly on s. We fix A € G, with sup-
port ¥ as in 14.6. We take s=rc, ¢ > ¢,, and we select y, . € Y, for ye I, as
in 14.6. Then y,, 4 (y,.) is a root of 1 times ¢**%, where d = codim Y.
Multiply (14.7.5), for g=y, ., by x, a5, V,.) and sum over all yeI. We
get

YooY EvdA) @) Uag, (Vi) pags, (Vr)eq? O

yel A eGy

Using now the identity (14.6.3), we deduce

7] &5vl(A) ca £(q’) g7 € 7 O,
hence

[ &eaelq’) g0 (s=rc, c=c0) (14.7.6)
for all Ae G, and all E€ W',. We now prove

Lemma 14.8. Under the assumptions of 13.10, we have ¢, (u)e
¢ Q[u'?, u""?], where { is a root of 1 of order dividing |Q4| (A€G 4,
EeW',).

Proof. Write ¢4 g(u)e (- Q(u"? with { a root of 1, as in 12.10. Let K be
a finite Galois extension of @ of degree a, containing £, and {, and let
N: K— Q be the norm map. Then N(&,) has complex absolute value 1
since all complex conjugates of £, have absolute value 1 (see 13.10). It
follows that N(¢, )= +1. Hence by applying N to (14.7.6) we get |I'°

((eqslg)) g2
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Let H(X)e Q(X) be defined by H(X)=|I'"({"'c x(X?))* X*. Then
H(q*)e © for s=rc, c=cy/2. Since H(q’) is a rational number and an
algebraic integer, it is an ordinary integer. Thus we have H(g')eZ for
infinitely many integers s > 1. This implies, as it is well known, that H(X) e-
Q[X]. The lemma follows.

We can now prove

THEOREM 14.9*. Under the assumptions of 13.10, we have ¢ 4 ;(n)e (- Q,
where { is a root of 1 of order dividing |Q4| (A€G,, E€ Wy).

Proof. We fix EcW,. By 148 we can write c,g(u)=(,P,,
P,eQ[u'? u="?], {12+ =1 and by (12.12.1), we have ¢, z. ={'P,.
We now consider the identity 13.12 for E' = E*. It gives
Y Pi=1

AEGy

This forces each P, to be a constant (i.e., independent of u"/?. The theorem
follows.

We remark that the proofs of 14.8 and 14.9 bear some similarity to
proofs in the paper [10] of Digne and Michel.

14.10. From now on we shall write ¢, ¢ instead of ¢, g(u). Let us
now specialize the identity (12.10.3) for »'?— 1. Then &'(7T,)= x.(KY)
becomes

T (-D)HE)= T % casTr(nE)A

AeBy Eec Wy

Using the orthogonality relations for W, this can be also written as

Cae=IWel™" Y, Tr(y™ E) ¥ (=1)'(4:"H'(K)),
yeWy i

hence

cqp=(—1)""%(4: RY), (14.10.1)

where we use the following notations:

Ho(G) = subgroup of the Grothendieck group ¢ (G) of
#(G) spanned by the character sheaves of G (14.10.2)

RE=|\Wy|~' ¥ Tr(y ', E) Y (=1)*¥™CPH(KY)
yeEWy i

e A(G)®Q, (14.10.3)
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(for Ee W', or, more generally, for E an element of #(W',)® Q,, where
R(W'y) is the Grothendieck group of virtual representations of W',).

(:) is the symmetric @ bilinear form on X,(G)® @,
with values in Q, such that (4,: 4,) =J 4,4, for any two
character sheaves 4,, 4, on G. (14.10.4)

Substituting (14.10.1) into (12.10.1) we get the following

CoOROLLARY 14.11*.  Under the assumptions of 13.10, we have
Y A(=1) (A:"HKZ)u?
= ) (—1)4mEyWNAmG I g2 RE)Tr(C,,, E(u)) (14.11.1)
Ee Wy,

for all we Wy, AeG . (Identity in Q,[u'?, u=17].)
(Compare with [6, 3.8].)

COROLLARY 14.12*.  Under the assumptions of 13.10, for any AeG,,
there exists E€ W'y, such that (A: RZ) #0.

Proof. There exist we W'y and i such that (4:”H(KZ))#0. From
(14.11.1) it follows that (4: RZ)#0 for some Ee W', as desired.

COROLLARY 14.13*.  Under the assumptions of 13.10, we have for any E,
E'e Wy:
1 if E=FE*
ZiREY=3
(RZ: Re) {0, otherwise.

Proof. 1In view of (14.10.1) and (14.10.4), this is just a reformulation of
13.12. (Compare with [6, 39].)

COROLLARY 14.14.  Under the assumptions of 13.10, the identity (14.7.4)
can be rewritten as

Tr(g, 23)=(=1)""C ) L v(ANA:RE) xaglg)  (g€GP).

AE@_:[

CorOLLARY 14.15. With the assumptions of 13.10, let s be a simple
reflection in W such that s¢ W,. Let ¥’ =s*%. Then for any we W, we
have swse W'y. and

pHiK_? = pHi+l(sws)— I(W)K_g"

SWSs*
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Proof. We write the identity (14.11.1) for (#, w) and for (&', sws). The
right-hand sides of these two identities are related to each other using
11.2(b). Hence we get a relation between the left-hand sides, which is just
the desired equality. (Compare with [6, 6.5(i)].)

15. INDUCTION, RESTRICTION, AND DUALITY

15.1. In this chapter G is assumed to be clean (13.9.2). Consider
the functors ind, res defined in 3.8, 4.1, respectively, with respect to G, P,
where P is a parabolic subgroup of G. We shall denote them ind¢, res§. Let
Q be another parabolic subgroup of G. Let L, M be Levi subgroups for
P, 0, respectively. Let I" be a set of representatives x for the double cosets
Q\G/P such that Q, xPx~! contain a common maximal torus. For xe I,
M~ xPx~!is a parabolic subgroup of M with Levi subgroup M nxLx~!;
similarly, x " 'Qx~ L is a parabolic subgroup of L with Levi subgroup

x "Mxn L.

ProrosITION 15.2. Let A be a character sheaf of G. Then

resgind§A= @ indl ., ., res}f p-14 (15.2.1)
xel’

(equality in ML).

(The formula has the following meaning. By 4.8(b), indg A4 is a direct sum
of character sheaves of G, hence, by 6.9(a), resp§ ind§ 4 is a direct sum of
character sheaves of L. By 6.9(a), res}/,. .p.-14 is a direct sum of character
sheaves on M nxLx~'; we transfer it to x ~'Mx n L using conjugation by
x~!; applying to it ind%-.,, ., we get, by 4.8(b), a direct sum of character
sheaves of L.).

Proof. The operations res$, ind$ are also defined at the level of class
functions on groups over a finite field. Thus if G, P, L are defined over F,,
we may define ind§: {class functions on L(F,)} — {class functions on
G(F,)} as lifting to P(F,) via the natural projection P(F,)— L(F,),
followed by usual induction from P(F,) to G(F,); we may also define res$:
{class functions on G(F,)} - {class functions on L(F,)} as restriction to
P(F,) followed by averaging over the fibres of P(F,)— L(F,). These
operations are related to the corresponding operations on complexes as
follows. If (A4, ¢: F*4 — A) is a character sheaf of G defined over F,, then
res$ A has a natural ¢,: F*(res§A4)xres$4 and

XresgA,m = &g(xmqﬁ )
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If (4', ¢') is a character sheaf of L defined over F,, then ind$ 4" has a
natural ¢}: F*(ind$4) sind$ 4 and XindGarg; =10d3(x 4 o). (These formulas
follow immediately from definitions and from the trace formula for
Frobenius maps.)

We shall now choose an F-rational structure on G such that all groups
appearing in 15.1 are defined over F,, and such that (a) 4 is defined over
F, and (b) all character sheaves of L which are components of the left- or
right-hand side of (15.2.1) are defined over F,.

Let K,, K, be the two sides of (15.2.1); we have natural isomorphisms
d.F*K, 3K, ¢, F*K, 3 K,

The analogue of (15.2.1) for res, ind is well known. It implies that

1k (8)=Xxop(g)  forall ge L(F,)andallr>1. (1522)

Now let A’ be any character sheaf of L which is a component of X, or
K, and let ¢, be an isomorphism F*4 = A. We can write

sz@ (A’® VA',I)? K2=® (A’® VA',Z)’
A A’

where V. ;, V., are Qrvector space with natural endomorphisms ;. ,
¥ 45, respectively, such that

Lxip(8) =2 X (&) Tr('y s Vpo) (15.2.3)
“

(i=1,2, geL(F,)). Using now the orthogonality formula 10.8 for L
(which is applicable since L is clean) we see from (15.2.2) and (15.2.3) that

L7170 Y txt(8) Apaigy- (8) =4 4™ PP Te(ly , V,p) (1524)

geLF‘

for all 4', all 1> 1, and for i=1 or 2. From (15.2.2) it follows that the left-
hand side of (15.2.4) is independent of i. Hence the same is true for the
right-hand side

Tr(‘/’fqg] V) =TeWl s, V)

forall 4" and all > 1.
This remains automatically true for 1 =0 so that dim V., =dim V., for
all A'. It follows that K, ~ K, and the proposition is proved.

15.3. For each subset 7 of the set S of simple reflections of W, we
denote by P, the parabolic subgroup of G generatted by B and by represen-
tatives in N(T) of the simple reflections s,€ 1. Let L, be the unique Levi
subgroup of P, containing T and let W, be the subgroup of W generated
by L
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If Ic J and 4, is a character sheaf of L,, the complex ind%/., (4,) will
be denoted #J(A4,); it is a direct sum of character sheaves of L,; see 4.8(b)).
By linearity, this extends to a homomorphism i: #o(L,) — Ho(L,) (see
(14.10.2)) and to a linear map i/: #o(L,)® @, » #,(L,)®Q,.

If I J and 4, is a character sheaf of L,, the complex res§/_, (4,) will
be denoted r7(4,); it is a direct sum of character sheaves of L,; see 6.9(a).
By linearity, this extends to a homomorphism rJ: H#o(L,) = Ho(L,) and to a
linear map rf: #o(L,) @ Q, — #,(L,) ® Q,. By 4.2, we have the transitivity
formula

i¥i¥=if, for IcJcK (15.3.1)

From 4.4(d) and the semisimplicity of ind(4,), res(4,), it follows that

(ri(45): 4,)=(4;: i{(4,)) (153.2)

for any 4,, 4, as above. The same formula is then automatically true if
Ay, A, are replaced by any elements of #o(L,)® Q,, #5(L,)®Q,, respec-
tively. Here (:) is defined by (14.104) for L,, L, instead of G. From
(15.3.1), (15.3.2), and the non-degeneracy of (:} it follows that

rirk=r¥  for IcJcKk (15.3.3)

We can restate (15.2.1) as

’§’f=z ii“}xr\.lyxr;mxjx_l (I,JCS), (15'3'4)

x

sum over all elements x € W which have minimal length in W ,xW . (Here
Vet KoL xse-1) = Ko L-17,~,) 1s induced by the isomorphism L, ;1%
L.y, ~, defined by conjugation by a representative of x ! in N(T).)

154. We now define a homomorphism

d=dg= Y (=1)"ifrf: 4(G) — #;(G)

IS

(or H#o(G) @ Q- H(G)® Q). (154.1)

This is entirely analogous to the well-known duality operation on the
class functions on a reductive group over a finite field, which is defined
replacing ind and res in (5.4.1) by ind, res (see the proof of 15.2). Here are
some properties of 4
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dgi$=iSd,, (15.4.2)

4 = identity (15.4.3)
(dA,;:dAy)=(A;: 4,) (A, Ad,€ % (G)) (15.4.4)
(dA,: Ay))= (A dAy) (A, Aye K G)), (15.4.5)

which are analogous to the known properties of the duality operation for
class functions (Curtis, Alvis, and Kawanaka). (See [8].) They are formal
consequences of the identities (15.3.1)-(15.3.4), and of the following iden-
tity (see [9, 2.5]):

Y (=) #{xe W|InxJx~'=K, x has minimal length in W, ,xW,}
Je§

=(—-1)* (for I, K< S).

We shall call d the duality operation (on character sheaves). It should
not be confused with the Verdier duality D.
From (15.4.4), it follows that

If AcG, then +ddeG. (15.4.6)

{More precisely, dA or —dA is the class in H#y(G) of a character sheaf.)
If A€ G is cuspidal, then r; 4 =0 for all (I & S); from (15.4.1) it follows
that

dA=(-1)"4  (AeG, cuspidal). (15.4.7)

We now prove

ProposiTION 15.5. For any character sheaf A of G we have dA=
(=1)° A, where 5 =codimg supp A, and A’ is a character sheaf with the
same support as A.

Proof. By 4.4(a), we can find /< S and a cuspidal character sheaf 4, of
L=1L, such that (4:i74,)>0. From (15.4.2) and (15.4.7) it follows that
d(isA,)=(—1)"i5A,. Since i A, is a linear combination with >0 coef-
ficients of character sheaves, we deduce that d4 =(—1)"1 4’, where 4’ is a
character sheaf such that (4’:i$4,)>0 and hence such that supp 4’'=
supp A=Y, 5 (see (4.3.1)); here Z < L is as in 4.3 and its closure is equal
to supp 4,. It remains to show that codim Y, 5, =I| (mod 2). By (8.2.2)
we have

codim ¥, 5,=dim L —dim X = dim(L/Z9) — dim(Z/Z9).
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But /%9 is a single conjugacy class in L/Z9, hence it has even dimension.
Hence codim Y, ,=dim(L/Z?)=|1| (mod 2). The proposition is proved.

15.6. We shall now investigate the behavior of the elements RY
(see (14.10.3)), with respect to induction, restriction, and the duality
operation d. We first introduce some notation. Let 7 be a subset of .S and
let ¥e&#(T). We define W' ;,, KZ’, KZ'e 9L, (we W'y ;) in terms of
L,, % exactly as W, KZ, KZ were defined in terms of G, #. Then
W =W, nW,. For any virtual representation E, of W, ,, we define
RETe A(L)®Q, in terms of L,, & just as RZ was defined in terms of
G, #. Let ind(E,) or ind§(E,) be the virtual representation of W', obtained
by inducing E, from W'y ; to W,. For a virtual representation E of W',
we denote res(E) or res;(E) the restriction of E to Wy, (a virtual represen-
tation of W ;).
For xe W, we denote by *E the virtual representation of Wi,
(*# = (x")* &), obtained from E by composing with the isomorphism
e 3 Wi given by conjugation by x; res(*E) is the restriction of “E to
xw - We can now state:

PROPOSITION 15.7. (a) i}(RE')= Rizy,), for any virtual representation
E of W,
(b) riRE)=.cw |WixWo| ' RiZy,, for any virtual represen-
tation E of W'y,

() (A:r$RZ)=(A: RZ1L), for any virtual representation E of W',
and any Ae(L)),.

(d) S(PH'KZ)=PH +ImG-dmLRZ for any we W'y ; and any integer

Proof. (a) From 4.8(a) and 6.5, it follows that
(X (-1 PRz
=(~1)dim0—dimh<z(-1)"?11"(1(5)):;%(0) (15.7.1)

for any we W', ;. Using the definition (14.10.3) we have

if(Rf;'l) =] W:st’ll -1 Z Tl‘(w_l, El) i <Z (_ 1)i+dile pHi(Kw.sé’,]))

we Wy,

=A™ T Tt B (T (-1 e o) )

we Wy,
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and
Riaen=IWel ' Y Tr(w ', ind(E))) Y (—1)+9mS rH{(K2)
we W i
=Wy | Wyl ™! Y Tr(zw™ 'z E))
»eW'_(/,
'EW_,/
w! “lewy,

XZ (_1)i+dimG sz(Ki/)

=|W;[,J|‘l Z Tr(u”, E,) Z (_1)i+dimG PHi(Ku.‘j’).

ue Wy, i

(We have used the fact that for we W, 3. (—1)?H(KZ?)e #y(G)
depends only on the conjugacy class of w in W’y ; see 6.5.) This proves (a).

(b) From (14.10.3) and 6.5, we see that, for fixed ., the following
four Q@ subspaces of #4(G)® Q, coincide:

—the subspace spanned by all y(KZ) (see 6.5), where s is any sequence
(sy, $35.» 8,) in S such that 5,5, 5,6 W;

—the subspace spanned by all x(KZ) (see 6.5), where s is as above;

—the subspace spanned by all y(KZ), we W', (see 6.5);

—the subspace spanned by all RZ (Ec W,).

From (3.8.2) and 6.9(a) we see that

r((KZ)) =3, (=1)"?H'(res K¥)
and the last sum has been expressed in (6.7.1) (with u=1) as a Z-linear
combination of elements x(K,¥*), where x are various elements of W and t
are various sequences in / whose product is W+, ,. (Here K;¥ is defined
like KZ for L,, *% instead of G, &.)

It follows that rf(R¥) is a Qplinear combination of elements
RZ e A(L,)®Q, for various xe W and various E'e W.,,. Hence in
order to prove (b) it is enough to show that the two sides of (b) have the
same inner product (:) with any R, (ye W, E'e W', ;). We compute

(rP(RE): RZ) = (RES(RET), by (1532)
=(R{: R, by {a)
=(RE: Ry by 11.2(b)

= multiplicity of E’ in restriction of E

to W, by 14.13.
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The inner product (R, Z;.: R;7"} is zero unless *% = »% for some ze W,
(see 11.2(e)), ie., unless xe W, yW,. If the condition x=zyu, ze W,,
ue Wy, is satisfied, then by 11.2(b) we have R’ = R"%! Hence the inner

res*E resVE"

product of the right side of (b) with R;%"' is equal to

(Ry.‘! T, RY.T 1).

resVE’

By 14.13, this is equal to the multiplicity of YE’' in the restriction of ’E to
W, 1, hence to the multiplicity of E' in the restriction of E to W', ,. This
proves (b).

(c) From (b) and its proof we see that

(A:rfRE)= Y (W, W, (ARZL)  (see 11.2(c))
XEWIPV’_?

=(A4: RZ (see 11.2(b)).
resE

Property (d) follows from (a) and (14.11.1). The proposition is proved.

CoroLLARY 15.8. (a) If we W, and no W-conjugate of w is contained
in Wy, then r3(3; (— 1) PH'KZ)=0.
(b) For any we W'y, we have

d<z (—1)"”H"Kf’>=(—1)"w’ Y (—1)PHKZ.

(c) For any virtual representation E of W'y, we have

d(RE) = Rig.,

where ¢ denotes the representation w — (—1)"™) of W',

Proof. (a) From (14.10.3) we get

Z(—l)’PH’Ki’—( 1)4m¢ % Tr(w, E) RE.
EeWy,

We now apply 15.7(b):

re (Z (— 1)“’H"Kf> =(=1)4mS Y Tr(w, E) r{(R¥)

=(—1)4mC Y ¥ |W,xW| ' Tr(w, E) RiZ:;

E x
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=(_1)dimG+dimL;Z z Z ,W/xg’ll_l

E xeW ve W.lx,‘l’.l
x |W,xW'y,| ~' Tr(w, E) Tr(y ', “E)
XY (= 1) PH(K?).

To show that this is zero, it is enough to show that

Y Tr(w, E) Tr(y !, “E) =0

Ee Wy
for any ye W, and any xe W. But this is equivalent to

Y Tr(w, E) Tr(xy 'x™', E}=0,

Ee Wy

which follows from the fact that w, xyx ' are not conjugate in W', (they
are not conjugate even in W).

(b) If wis as in (a), the desired formula follows from (a), the
definition of d, and the well-known congruence /(w) = |§| (mod 2) (see, for
example, [6, p. 193]).

Assume now that xwx '€ W, for some xe W and some I & S. To prove
our formula, we may assume by 11.2(b) that we W,. In this case, using
(15.7.1) and (15.4.2) we are reduced to the case where G is replaced by L,,
for which our formula may be assumed to be already known.

Property {c) clearly follows from (b). The corollary is proved.
COROLLARY 159. If A€G, then +dAeG,.

Proof. Let EcW, be such that (4:RZ)#0 (see 14.12). Then
(dA: dRE)+#0 hence (dA:Rig,)#0 (see 158(c)). It follows that
+dAdeG,,.

CoROLLARY 15.10.

Y (1) (4: dPHIRE)) u
=3 (— 1)4imC+ )y (I2NAMG+ 1)) 4. RLY Tr(C,,, E(u))  (15.10.1)
Ee Wy

for all we Wy, Ae G, (Identity in Q[u'? u™"?]; C,. is as in (129.2).)

Proof. Using (14.11.1) and (15.4.5) we see that the left-hand side of
(15.10.1) is equal to
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Z (_l)dimG u(1/2)(dimG+1(w))(dA: Rg) TI'(C:V, E(u))
E

=Z (_l)dimG u(l/2)(dimG+l(w))(A: Rg®£) TI'(C’W, E(u))
E

(by (15.4.5) and 15.8(c))
=¥ (= 1)8mG yUREmG ) 4: RE) TH(C,,, (E@)(u))
E

and it remains to use the identity

Tr(C,,, (E®¢)(u)) = (— 1) Tr(C,, E(u)),
which follows from (12.9.7). (Compare with [6, 6.9].)

15.11. Let A be a character sheaf of G. Then 4 is a component of
PH'(K¥) for some integer i, some £ € &(T), and some we W’,. We define

gq=(—1)"4me (15.11.1)
(cf. 13.10(a)) and

éA — (__ 1)codimsuppA. (15112)

It is clear that ¢, is an invariant of 4. We now show that ¢, is also an
invariant of A. It is enough to show that

(A:"H'RZ)#0,  (4:?H'RZ)#0=i=i (mod2).  (15.113)

By 11.2(c), we have &' = (x " ')* & for some xe W.

Writing x as a product of simple reflections and using 14.15 repeatedly,
we see that (4:”H'KZ)# 0= (A: "H"KZ) #0 for some i", w" € W', such
that "=/ (mod 2).

Thus, to prove (15.11.3), we may assume that ¥’ =.%. In that case, we
have i=i' (mod 2) by 13.10(a). Thus, (15.11.3) is proved.

15.12. The invariants ¢,, £, are conserved by induction, in the
following sense. Let A, be a character sheaf of L, (see 5.3) and let 4 be any
irreducible component of ind§(4,). Then

£4, =84, E4,=84. (15.12.1)

The formula ¢, =¢, follows from 15.7(d); the formula £, =¢, follows
from (4.3.1) and (8.2.2).



CHARACTER SHEAVES III 309

15.13. We say that (G, ) satisfies the parity condition if
e4=8, (1513.1)

for all Ae G .. If this condition is satisfied, then

(—1)+d4m@ (4. dPH'KZ) is an integer >0 for all
AeG,, allwe W, and all i. (15.13.2)

Indeed, the expression (15.13.2) is
(—1)'+4mY(dq: PH'KZ).

If this is non-zero, then it is equal to
e(dA: "TH'KZ)=¢,(dA: "H'KZ)
=(A":"H'K?) >0,

where 4’ € G, is defined by dd4 =£,A4’ (see 15.5); we have £, =4, again
by 15.5.

16. THE TwoO-SIDED CELL ATTACHED TO A CHARACTER SHEAF

16.1. In this chapter we shall fix ¥ € #(T). We shall define a par-
tition of W', into “two-sided cells” and we shall define (under certain
assumptions) a map of G into the set of two-sided cells of W’,,.

16.2. The group W, is a Coxeter group.

We refer to [6, p. 139] for the definition of the relations E, <, x,
E ~.xx, E, <, xx (E,eW,, xeW,) and to [6,p.160] for the
definition of the relation E, ~ 4 E| (E,, E; € W). We refer to [6, p. 76]
for the definition of the invariants az,, A, fz, of E;€ W, in terms of the
formal dimension polynomial D (u).

We shall extend these definitions to W'y, =Q - W, which in general is
not a Coxeter group.

If Ee W, and xe W', we say that E <, g x (resp. E ~ ,zx, E <, g x) if
there exists an irreducible W ,-submodule E, of the restriction E | W and
an element e W,nQ,xQ2, such that E, <,z % (resp. E, ~,;z %,
E, <r%)

If E,EEeW, we say that E~, E if there exist irreducible



310 GEORGE LUSZTIG

W 4-submodules E,cE|W,, E{cE | W, such that E, ~, g E|. If
E,e W, we define ag=ag, AE=4EI, where E| is any irreducible W, -
submodule of E|W . For any Ee W'y, any he H', and any integer i, we
define Tr(h, E(u); i/2) e Q, by

Tr(h, E(u)) =Y, Tr(h, E(u); i/2) u"”*
(see (12.9.3)). R
For any xe Wy, and any E€ W', we define
Cor=(=1)" Tr(u T, E(u); —ag/2)
=(—-1)YTr(C,, E(u); —ag/2) (16.2.1)
(compare [6, (5.1.21), (5.2.1)]).
Cep=Tr(u™ 2T, B(u); (v = A)[2)
=Tr(C, E(u); (v— Ag)/2) (16.2.2)

(compare [6, (5.1.23), (5.11.1)]); v is the number of reflections in W .
From (12.9.3) it follows that c, ., ¢ ; are integers times roots of 1. From
(12.9.5) it follows that

cx_l.E:Cx,E"" (16.2-3)
From (12.9.7) it follows that
CoE=CxEge (16.2.4)

where &: W'y, —» +1 is as in (12.9.7).
By considering the coefficient of u~“£* %2 in the two sides of (12.9.6)
we obtain

Q, dim E,, if ExE

xgw CrECtE= {(I), oA 1 otherwise, (162.5)

where E; is an irreducible W, -submodule of E| W ,.
Ife,;#0 then E ~  px (16.2.6)

(compare [6, 5.2(ii)]).
We now define, for any xe W,
0, =Y c.zE, A=Y ¢, E (16.2.7)
E

(both sums are taken over all EeW)). These are elements of
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R(W',)® Q,, where Z(W',) is the Grothendieck group of virtual represen-
tations of W,.
From (16.2.4) it follows that

A=, @e (16.2.8)

From (16.2.5) it follows that

Y e gt =24 (f5 dim E))- E, (16.2.9)
xe Wy

where E, is an irreducible W ,-submodule of E| W ,.

16.3. The two-sided cells of the Coxeter group W are defined as
in [12]. A subset of W', is said to be a two-sided cell if it is of form
Q,c,92, for some two-sided cell ¢, of W,. The two-sided cells form a
partition of W',. They are in 1-1 correspondence with the Q ,-orbits on
the set of two-sided cells of W, (22 acts on that set by conjugation). Each
two-sided cell of W', is stable under the map x — x~ (see [6, 5.2(iii)]). If
¢ is a two-sided cell of W'y then wo-c=c-wy is again a two-sided cell of
W', where w, is the longest element of the Coxeter group W,.

If Ee W, and xe W/, then the following two con-
ditions are equivalent: E ~, p x, EQe ~ , p wg X. (16.3.1)

(Compare [6, 5.14(ii)].)
We now prove the following result.

Lemma 164. Let ¢ be a two-sided cell of W'y. The following three
Q ~subspaces of #(W',)® Q, coincide:

(@) the subspace spanned by all E (E€ W'y) such that E ~  z x for
some xec,

(b) the subspace spanned by all o (x€c);
(c) the subspace spanned by all o,  (x€c).

Proof. The subspace (b) is contained in the subspace (a) by (16.2.6).
The subspace (a) is contained in the subspace (b) by (16.2.9) and by the
invariance of ¢ under x —» x '. By (16.2.8) the subspace (c) coincides with
the subspace spanned by all «, ® ¢ (x € wyc), hence (by the first part of the
argument) with the subspace spanned by all EQe¢ (Ee W',), such that
E ~ ;g x for some x € wyc. By (16.3.1) this also coincides with the subspace

(a).

16.5. We refer to [15, Sect. 2] for the definition of the function
a:Wq,— N

607/57/3-8
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It has the following property: if E, € W, xe W, satisfy E; ~, x then
ag =a(x). (See [15,6.4] and [6, 5.27].)

We extend this to a function a: W'y —» N by setting a(x-y)=a(y)
(xeQy,,veW,). Note that we also have a(y-x)=a(y) (xefy,
y€ Wy). Then a is constant on the two-sided cells of W',

If Ee Wy, xe W, satisfy E ~ ,  x then a,= a(x). (16.5.1)

This follows from the corresponding property of W .
We can now state the following result.

THEOREM 16.6. Assume that G is clean and that (G, &) satisfies the
parity condition (15.13).

(a) Let weWl,. The elements RZ, and (—1)""""RZ  of
Ay (G)®Q, (see (14.10.3), (16.2.7)) have the property

(4: RY) is an integer 20

(A: (— 1) =4RZ ) is an integer >0

for any A€G.
(b) Let AeG, and let E,E €Wy, be such that (A: RZ)#0,
(4: RE)#0. Then E R E'.

COROLLARY 16.7. There is a unique (surjective) map Gy — {two-sided
cells of W'y} with the following property: If A€ G, is mapped to the two-
sided cell c, and if (A: RE)#0 (E€ W), then E T; x for some x€c.

16.8. For the proof of Theorem 16.6 we shall need the following
result,

Let V be a Qvector space with a given basis {e;},<;<,, and with a
bilinear form (, ): ¥ x ¥ - @, such that (p;, p,) =4, for all i, j. Given ve V
we shall say that v satisfies (P) if all coordinates of v in the {e,}-basis are
integers >0. Let 7 be a finite set with a preorder relation x < y and let ~
be the associated equivalence relation on I; we write x < y for “x< y and
x 4 y.” Assume given two families of elements r e V, 7, e V (xel) such
that

(a) (ry,r.)=0 whenever x £ x’.

(b) When x runs through a fixed equivalence class for ~, the r, span
the same subspace of ¥ as the 7.

(c) For any x € I, there exists a linear combination r, + 3, ., dy .7y
(d, € Q,), which satisfies (P).
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(d) For any x I, there exists a linear combination 7, + ¥, _ .. d. 7.
(d, € @Q,), which satisfies (P).
The assumptions imply that for any x e I, both r_ and 7, satisfy (P).
This is proved by repeating, essentially word for word, the proof in
[6,6.167].

16.9. Proof of Theorem 16.6 (compare with [6, 6.17]). In 16.8 we shall
take ¥ to be the @ subspace of #5(G)® Q, spanned by all 4eG . These
A define the basis of ¥ which was denoted {e;} in 16.8. The form (, )is (:)
of (14.10.4). We take 7in 16.8 to be the set W', with the preorder relation:
“x<x' il there exists Ee W such that E~,zx, E<,xx." (The
corresponding equivalence classes are just the two-sided cells of W",.) For
xe Wy, we take r.=RZ eV, F e(—1)t <) RL el where w, is
the longest element in W . ’

We must verify that the elements r, 7. e V satisfy conditions (a)-(d) in
16.8. Conditions (a), (b) in 16.8 follow from 16.4 and 14.13.

If 4G, and xe W,, we have

(— 1) N Tr(C,, E(u); —a(x)/2)(A: RY)
Ee Wy

=(— 1)) a(4: JPHAIME ) —ab RLY)) - by (15.10.1). (16.9.1)

The part of the sum (16.9.1) corresponding to those E for which E ~ , ; x is
equal to

(=" ¥ Tr(C,, E(u); —a,/2){4: RY)

E~pgx

= ) (A RE)=(A4:RY)
l;‘NXLR.\*

(cf. (16.5.1) and (16.2.6)). The part of the sum (16.9.1) corresponding to
those E for which E €, ; x is zero. (See the proof of [6, 5.2].) The part of
the sum (16.9.1) corresponding to those E for which E <, x is a Q linear
combination of terms (4: R, ), for x" in two-sided cells strictly lower than
that of x (by 16.4). Hence (16.9.1) can be written as

(A:R,)+Y d. (A:R,)
_ (_ l)l(x)—u(x) (A d(pHdimG+1(x)—u(x)(K_‘/)))
=integer >0 by (15.13.2), (169.2)

(d,.eQ,), where x' runs over elements in two-sided cells strictly lower
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than that of x. Hence the condition (c¢) in 16.8 is verified. Replacing x by
wox in (16.9.2) and using the identity

R»“’wo-\' = dR

Ay X
which follows from (16.2.8) and 15.8(c) we get

(A: (= 1)ftmo0=et0 R )
+ Z d. . ( _ I)I(WOX) — a(wox) + lwox') — a(wpx’)
wo.x', wo.x
X (A (_ 1 )/(wox')fa(wox’) Rﬁwoxv)

— (A pHdimG+[(ng)—a(wox)(K.(l" ))

wo.xX

=integer =>0. (16.9.3)

(Here wyx’ runs over elements in two-sided cells strictly lower than that of
wyX; or equivalently, x' runs over elements in two-sided cells strictly higher
than that of x.) Hence the condition (d) in 16.8 is verified.

From 16.8 it now follows that part (a) of Theorem 16.6 holds. We now
prove (b). With the assumption of (b), we see from 16.4 that there exist
x,x' € Wysuchthat E ~ g x, E' ~ g x', (A: RY) #0, (4: RY)) #0. By (a),
the last two inner products are >0 hence they are >0. It follows that

(RZ: RZ)> 0. (16.9.4)

(By (a), it is a sum of >0 terms, one of which is >0.) Using 16.4, we can
write

RZ= Y ¢oRE, RZ= Y YuRL
E" E"

E" ~ppx E” ~ 1 px’

(g, d-€Q,), and (16.9.4) implies
0# Y de¥e(RE:RE).

~LRX

E™ ~ Lpx’

Using now 14.13, we see that there exists E” € W, such that E” ~ , x and
E" ~ ,p x". It follows that x,x’ are in the same two-sided cell of W, so
that £ ~ , z E'. The theorem is proved.

16.10. CorOLLARY (of the proof). (a) For any xe Wy, the element
R, € Hy(G) is the class of a semisimple perverse sheaf on G which is a direct
summand of (— 1)) =) g(» IimG +10)—al( RLY) (which is itself realizable
as a semisimple perverse sheaf on G, by (15.13.2)).
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(b) For any xe W', the element (—1)""“R_, € H(G) is the
class of a semisimple perverse sheaf on G which is a direct summand of
pHdimG+ I(x)— u(x)(lz,‘[’).
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This paper is part of a series [5, 13, 17] devoted to the study of a class G
of irreducible perverse sheaves (called character sheaves) on a connected
reductive algebraic group G. (The numbering of chapters, sections and
references continues that of [5, 13, 17].) This paper contains a
classification of the character sheaves of G assuming that G is almost sim-
ple of type 4 or an exceptional group (in good characteristic). It is proved
that such G are clean (in the sense of (13.9.2)), that they satisfy the parity
condition (15.13), and that the class of character sheaves coincides with the
class of admissible complexes defined in [4]. We also prove (for the groups
in question) a multiplicity formula rather analogous to the main theorem
(4.23) in [6]. The case of classical groups will be considered in part, V.

17. PARAMETRIZATION OF G » (STATEMENT AND FIRST REDUCTIONS)

17.1. In this chapter, W denotes the Weyl group of a root system
with a fixed set S of simple reflections. An isomorphism of Weyl groups is
always assumed to come from an isomorphism of root systems and to map
simple reflections to simple reflections. This applies in particular to the
group of automorphisms Aut W of W,

17.2. Let 6 € Aut W be an automorphism of order ¢ and let C.'W

be the semidirect product of the cyclic group C. of order ¢ with generator o
and W (with W normal and ows ~! =g(w), we W).

Let E be an irreducible W-module (over Q,) which is extendable to a

C.W-module. Then E can be extended in c¢ different ways to a C.W-
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module. We shall single out one particular extension E and call it the
preferred extension; this is done separately in the various cases.

(a) W irreducible, 6 =1. Take E=E.

(b) W of type 4, (n>2) or Ez and ¢ =2. Define E by the condition
that g: E - E acts as (— 1)“¢- w, where w,, is the longest element in W and
argis as in 16.2.

(c) W of type D, and ¢ = 3. Define E to be the unique extension of E
which is defined over Q [6, 3.2].

(d) W of type D, (n=4) and ¢ = 2. The irreducible representations of
C,W which remain irreducible upon restriction to W have been
parametrized in {6, 4.18] by certain symbols with two rows (an upper row
and a lower row) and an even number of entries; the two representations of
C,W which extend a given irreducible representation of W correspond to
symbols which differ one from another only by interchanging the two rows.
We say that E is preferred if the corresponding symbol has the following
property: the smallest entry which appears in only one row appears in the
lower row. For example, the preferred extension of the unit representation
of W is the unit representation of C,W; its symbol is (§).

(¢) Assume that W=W, xW, x --- x W_with W, irreducible Weyl
groups and that ¢ permutes cyclically the factors W;: a(w, wy,.., w,} =
(.(w,), ¢1(W()ss 8, 1(w,_)) Where ¢, - W, > W5, 8, W, > W, 6, ¢
W, - W, and ¢,: W, > W, are isomorphisms of Weyl groups (see
17.1). Then E can be written as an external tensor product E=
E, X E, X+ X E, where E, are irreducible W;-modules (1 <i<r). Since
E is extendable to C, W, there exist isomorphisms of Q,-vector spaces:

hy E,>FEy, hy:E, > F;..,h,_tE, _|>E h:E —E

such that

hiw,e;)=¢w;) hle;) (Vw,eW, e, eE)

for 1 <i<r. (These isomorphisms are unique up to non-zero scalars.) We
normalize them in such a way that A,_,..hh k. E, > E, defines a
preferred extension (see (a)-(d) above) of the W, -module E, to a C,W,-
module where the generator of C,, actson W, as ¢, _,..¢,¢0,4,: W, > W,.
(Note that E, is extendable to C,, W, since E is extendable to C,W.) We
then define E to be the extension of E to a C,W module for which ¢: E— E
is given by

ole, Xe, X Re,)=he,)Xhe)X-Wh_(e_,) (e; € E)).
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This is independent of the choices of 4;, by the normalization condition
for h, _,...hh.h,.

(f) In the general case, we can write uniquely W=
WixW2x - xW'and E=E'® E*X --- X E' where W’ are o-stable
Weyl subgroups , E' are irreducible W'-modules and W' and E’ satisfy the
conditions of (e) for all i. The preferred extension £ is given by the map o:
E - E which is the external tensor product of the maps ¢':E' — E' defined
as in (e).

(g) When W is of type D, or D; and ¢=2 then the method of (d)
still gives a preferred extension of E to C,W. On the other hand, in the
case D,, the method of (¢) gives a preferred extension and in the case
D; = A, the method of (b) gives a preferred extension of E to C,W. It is
easy to check that these definitions of the preferred extension coincide.

173. Now let & be a finite abelian group with a given
homomorphism Q — Aut W. This gives rise to the semidirect product QW,
with W normal and ows !=o(w) for 6e€Q, weW. The irreducible
representations of QW can be described as follows. Start with an
irreducible representation E of W. Let €, be the set of all 6 € Q such that
E can be extended to a C,W-module. where C, is the cyclic subgroup of
Aut W generated by the image of ¢ in Aut W. For g e €, there is a well
defined map o: E — E which gives rise to the preferred extension (17.2) of £
to the group C.W just considered. The maps o: E— E for the various
o€ Q, define an extension of E to a representation E of the semidirect
product £ ;W. Now let 6 be an one-dimensional representation Q, — Q};
we regard it as a representation of Q; W, trivial on W, and we consider the
induced representation E, =ind3% (6 X E) of QW. It follows from
Mackey’s theorem that E, is irreducible and that the existence of an
isomorphism E,~E, (where E, E’ are irreducible representations of W)
implies that E, E' are in the same Q-orbit and that 6 =6’ as characters of
Q,=Q..

174. The set W of irreducible representations of W (up to
isomorphism) is partitioned into families (see [6, 4.2]). By a result of Bar-
basch and Vogan [6, 525], E, E'e W are in th/e\same family if and only if
E~ R E' (see 16.2). More generally, the set QW of irreducible represen-
tations of QW (see 17.3) can be partitioned into families as follows. We say
that two irreducible representations of QW are in the same family if their
restrictions to W each contain some irreducible component which is in the
same family (of W).

Thus we have a 1-1 correspondence between the set of families of QW
and the set of families of W modulo the obvious action of : if & is a
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family of W and # is the corresponding family of QW, then %’ consists of
the representations E,, where E runs over the representations in % and 6
runs over the characters of Q. (see 17.3). Moreover, the set of families of
QW is in 1-1 correspondence with the set of two-sided cells QW defined as
in 16.3 (for QW instead of 2, W ). It is characterized by the property: if
Ee %’ and Ezxe QW (E;x defined as in 16.2) then #' corresponds to
the two-sided cell containing x.

17.5. In [6, 44-4.13] we have attached to each family % of W
(assumed irreducible) a finite group % ., isomorphic to a symmetric group
S, (n<5) or to a product of cyclic groups of order 2. Moreover, we have
defined an imbedding # < .#(% ), where for any finite group ¥, the set
M(%) is defined as follows. .# (%) consists of all pairs (x, 7) where x is an
element of 4 and 7 is an irreducible representation over Q, (up to
isomorphism} of Z,(x) modulo the equivalence relation
(x, T)~(gxg~", %) for any g e %, where 1% is the irreducible representation
of Z,(gxg~)=gZ,(x)g " defined by composing t with conjugation by
gl
This can be extended to the case where W is no longer assumed to be
irreducible. Write W=W, xW, x --- x W, with W, irreducible. A family
F of W is of the form # X # K --- X &, where &, are families of W .
We define ¥ to be 95 x% 5, x - x¥% 5 . Then we have a natural bijec-
tion M(G5)= MG 5)x MG z)x - xXMFz,) (see [6, (43.1)]) and
the product of the embeddings %, 5 .#(% ;) gives the required imbedding
F o HM(Yx)

The group % - is functorial in the following sense: an isomorphism of
Weyl groups W,, W, which takes a family %, to a family %, induces an
isomorphism ¥, — % ;,. We require that this isomorphism be compatible
with the decomposition of W into a product of irreducible Weyl groups
and the corresponding decomposition of % . Hence to define it we may
assume that W, =W, is irreducible. If % # # then we have necessarily
Y5 =%, ={e} (and W, if of type D,,) so there is a unique isomorphism
Y5 3%, f 7 =F we define 9 5 - ¥ 5, to be the identity map.

17.6. Now let #' be a family of QW, and let &% be the
corresponding family of W (defined up to the action of Q). Let 5 be the
stabilizer of # in Q. Then , acts naturally on the group 4%, (by the
functoriality of 4, ). Using this action we construct the semidirect product
Q; %, (with ¥, normal). We define

(176.1) 9, =Q,%,.

Note that # is not uniquely determined by &’ (only its Q-orbit is). If # is
another family of W in the Q-orbit of &, then any element ¢ e which
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takes # to % defines an isomorphism %, 3% 5 (by the functoriality of
% 5) and hence an isomorphism i,: Q;% 5 — Q4 %4, which is the iden-
tity on Qg ; note that Q; =Q since Q is abelian. If we replace o € Q2 by
oo, where g, € Qg then i, =i, i, where i,;: Qz%; > Qz%, is con-
jugation by o,, hence an inner automorphism. Now i,, i,, induce
isomorphisms j,, j,: M (Qs%Gz)—> M(Qs %) W have j,, =j,js
where j,,: M(Qs%5) - M (s % 5) is induced by an inner automorphism
of Q5% 4 and hence j,, =identity. Thus j,, = j,. It follows that

(17.6.2) % is well defined up to isomorphism and #(% ;) is well
defined up to unique isomorphism.

17.7. For any family #’ of QW, we consider the subset
M(Gs)={(xT)VeMZGz) X €Gs}
of M (% z.), with notations in 17.6. We shall define an imbedding
(177.1) F'all(%5.).

We choose a family # of W as in 17.6. For simplicity, we shall write %
instead of 4, and ¥’ instead of ¥ ;.. Let Ee€ % and let 8 be a one-dimen-
sional representation of Q, (see 17.3). We want to associate to E, (see
17.3) an element of .# ;(%'). The imbedding % c .#(¥) (see 17.5) associates
to E an element (x, 1) e A (9 z).

We write W=W, x --- x W, with W, irreducible. Accordingly, we have
4=%,x - x%,where 4, =%, and #, is a family in W,. The group £
acts on W and induces a permutation of the set of indices [1,n]. By
functoriality of ¥, we may identify canonically 4;, 4, for i, j in the same
orbit of Q4 on [1,n]. Then the action of Q4 on ¥ is simply by per-
mutations of the n coordinates. Let 4, be a set of representatives for the
conjugacy classes in %,; we may assume that 4, =9, whenever 4, =%,. We
may assume that x = (x,,..., x,,) € ¥ satisfies x, € Z,.

Let Q, be the centralizer of x in Qg. Then £, normalizes Z4(x).
Moreover, Z, (x) is the semidirect product Q,Z,(x). Indeed, let
0y€Zy4(x), 6€Qyu, ye%. Then ¢~ 'xo=7yxy~'. We have 67 'x0 = (x,),
Xy Xam) Where a is a permutation of [1,n]. It follows that x,,, =
v, x97 ! (v, €%,) for all i. Since x,;, x; € ,, it follows that x,;, = x;, for all i.
Thus, we have 6 'xo =x=7yxy~", hence Z,(x)c=,Z,(x). The reverse
inclusion is trivial. The group €, normalizes Z4(x), hence it acts on the set
of irreducible representations of Z,(x). We now show that
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(17.7.2) The stabilizer of t in ., is equal to Q.

Let ce Q. Since the imbedding &# o .#(%) is functorial, it maps E° to
(o(x), 1°), where E°’, 7° have an obvious meaning. If E°=F then
(o(x), t7) = (x, ) in #(%). In particular, o(x) is conjugate to x in 4. As we
have seen earlier this implies a(x)=1x, ie., 0 €8,.. We also have 1"=1,
hence ¢ stablizes 7. Conversely, if o € Q. stablizes 1, then we see that £ and
E” have the same image under % — .#(%). Since this map is injective, we
have E= E°, hence 6 € Q and (17.7.2) is proved.

We can write Z;(x)=Z, (x;)x --- xZ4 (x,), and Q acts on Z,(x) by
permuting the coordinates. We have 7=1t, X --- X ¢, where 1, are
irreducible Z4 (x;)-modules and we may assume that t, =1, for i, j in the
same Q-orbit on [ 1, n]. Hence t extends naturally to a . Z.(x)-module
f; an element of Q, acts on 7 by permutations of components of a tensor.
We now consider the Z,(x)-module ¥, =Indg:%'! | (8 X 7). (Recall that
Zo(x)=8Q,Z4x)>Q:Z,(x).) Here 0 is regarded as a character of
Q7 ,(x), trivial on Z,(x). Fom (17.7.2) and Mackey’s theorem it follows
that £, is irreducible. We now define the map (17.7.1) by E, — (x, 7). It is
easy to see that it is well defined and injective.

17.8. Let us fix ¥ e &(T); recall that T is a maximal torus of G. In
the discussion of 17.1-17.7, we take W=W,, Q=0Q, (see 5.1) so that
Q4 W, =W, The imbeddings (17.7.1) give rise together to an imbedding

(178.1) WosU.#y(%,)sU.u(%5)

(disjoint union over all families %' of W’,); the restriction of this
imbedding to #’ is just (17.7.1). We denote by m, the image of Ec W',
under (17.8.1); it 1s an element of .#(% 5.} for some F'.

Consider the pairing { , } on .#(% z.) defined by

(1782) {(x, 1), (x’, 1)}

= > [Z(x)] "1 Z(x')| "' Tr(g " 'x~'g, ') Tr(gx'g ', 1)
gebF
1

xgx'g l=gxg-lx
(see [6, (4.14.3)]).

We extend it to a pairing { , } on L .#(% ) as follows. If m, m’ are
in the same piece .#(%x.) then {m, m’} is given by (17.8.2); otherwise,
{m, m'} is defined to be zero.

We consider the following statements for (¥4, £).
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(17.8.3) There exists a bijection G, 1 4. M9 5.), (Am,), (F'
runs over all families in W',) such that

(A:RE)=¢,{m, :mg}

for all Ac Gy and all Ee W',. (Here §, = + 1 is defined as in (15.11.2) and
RZ is defined in (14.10.3).)

(17.84) G is clean and any character sheaf A€ G, satisfies the con-
dition ¢, = £, (see (15.13.1)).

We shall also consider the following statement for G.

(17.8.5) Any irreducible cuspidal perverse sheaf on G is a character
sheaf (see (7.1.1)).

We would like to prove that the statements (17.8.3)-(17.8.5) are always
true. In this paper we shall verify them in the case where G is of type 4 or
an almost simple exceptional group (with some restrictions on the charac-
teristic on k).

In Sections 17.9-17.16, we shall give some reductions of the statements
(17.8.3)-(17.8.5).

179. Let & be a local system of rank 1 on G which is the inverse
image under G - G/G g, of a local system &, € #(G/Gg,,). (Here G, is the
derived group of G, hence G/G,. is a torus. The class of local systems
L(G/Gy,,) is defined just as F(T) in 2.2.) For each ¥ e #(T) we define
L ®6& as the tensor product of & and the restriction &|7; then
L Q@EeF(T). 1t is clear that W'y = W'y o » and that KZ®4 = KZ ® & for
all we W'y,. It follows that

(179.1) 4> A®& is a bijection G4 3G 4 ¢ 4,

(179.2) RZ®4=RZ®¢&, for all Ec W,

(17.93) (A:R¥Z)=(AQ®¢& : RZ®%), for all Ae G, and all Ec W,
(1794) PH(KZ®*)="H(KZ)® &, for all we W', and all i.

It follows that the statements (17.8.3), (17.8.4) hold for (G, #) if and only
if they hold for (G, ® &).

17.10. Let G'=G/Z%, T'=T/Z%, &' € ¥ (T'), & =inverse image of
£’ under the canonical map T— T'. Then £ € &(T). Let n: G — G’ be the
canonical map. It is smooth, with connected fibres, hence 7% takes
irreducible perverse sheaves on G’ to irreducible perverse sheaves on G (see
1.8). From the definitions it follows immediately that n*(KZ')= KZ for all
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we Wy, = Wy, where K is defined with respect to G'. From (1.8.1) it
then follows that for all i, we have #(’H' ™YKL )=rH'~dmG(KZ)
From this and (1.8.1)-(1.8.4) we deduce

(17.10.1) A’ > #A' is a bijection G’y 3G,

(17.102) #RZ =RZ ,for any E'e W,. =W,

(17.103) (4’ :RZ)=(RA':R%), for any A'eG,, and any
EeW,=W,,

(17.104) e, =¢34, €4 =8&z4, for any A'eG'y..

It follows that the statements (17.8.3), (17.8.4) hold for (G', &’} if and
only if they hold for (G, &).

Since any local system in &(7) is of form & ® & with & as above (com-
ing from ¥’) and & as in 17.9, we see, using 17.9, that the statements
(17.8.3), (17.8.4) hold for G’ and any ¢’ € (T") if and only if they hold for
G and any ¥, € #(T). In the same way we see that (17.8.5) holds for G’ if
and only if it holds for G.

17.11. Assume now that G is a product G, x -+ x G,, where G, are
reductive connected groups over k. The character sheaves of G are precisely
the complexes of form 4, X --- & 4, where 4, is a character sheaf on G,
for each i If the statements (17.8.3)-(17.8.5) hold for each G, then they
hold also for G. (The proof is left to the reader.)

17.12. Let L€ %(T) and let I be a subset of the set S of simple
reflections in W such that W', = W', (notation of 15.6). Let L,, RZ" be as
in 15.6 and let i¥ be as in 15.3. Assume that G is clean. We shall prove that

(17.12.1) ¥ defines a bijection (L,), 3G,

(17.122) $(REZ")=RZ for any Ee W'y = W'y, ,,

(17.123) (iSA:RZ)=(A:RZ?’) for any Ae(L,), and any Ec W',

(17.12.4) If I#S, then G, contains no cuspidal character sheaves.
From (15.3.4) and (15.3.2) we see that

(17.12.5) (A iFA )V =3 (rh Ayt g1 AY)

where A, 4’ (L,), and the notations are as in (15.3.4) with I=J. Con-
sider the term in the last sum corresponding to a fixed x; assume that it is
non-zero. From the proof of 15.7, we see that

r 1., A= sum of character sheaves in (L. 1;,,)r¢
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for various ye W, -1, ,,

(r? . _1A’)= sum of character sheaves in (£ _: _1,
Inxix x 'Ixnllx"'zy

for various ze W, ,,.-1. Since our term is non-zero, it follows that there
exist y,z as above such that (L,)yl, (L J)e, are not disjoint, where
J=x"'Ixnl, 4 ="%, % ="""%. Using now 11.2(c), it follows that ¢,
% are in the same W,-orbit. It follows that uy=x"'zv for some
UeWy-1ycny, v€EWy. We have y, z, ueW, and ve Wy, =Wy, (by
assumption), hence ve W, and xe W,. Since x has minimal length in
W,xW,, we must have x = 1. Hence (17.12.5) simplifies to

(17.12.6) (ISA:i54")=(4:4").

This implies that i§: (L;), —» G, is well defined and injective. Now
(17 12.2) follows from 15.7(a) and our assumptlon W= Wy ;. Consider
AeG,. Then (A RZ)#0 for some Ee W', (see 14.12). Using (17.12.2),
we then have (4 :iSRZ’)#0. Hence there exists A, e(I:,) » such that
(A :i5A4,)#0. Since iSA, is a character sheaf, we must have 4 =i SA4,, and
(17.12.1) is proved. Now (17.12.3) follows from (17.12.2) and (17 12.6).
Finally, (17.12.4) clearly follows from (17.12.1). From (17.12.1), (17.2.3),
and 15.12 we deduce that

(17.12.7)  if the statements (17.8.3), (17.8.4) hold for (L,, &) then they
also hold for (G, &) (assuming that G is clean and that W'y = W', ).

17.13. We preserve the notations 1n 17.12, but we drop the

assumptlon Wy=Ws, For each E, € Wy ; we define a W'y-module
J(E))= J W!’ (E,) as the W, -submodule of 1nd # (El) generated by all

irreducible Wg, -submodules E satisfying az = ag,; for any irreducible sub-
module E of ind % jf (E,), we have az > ag [6, (4.1.5)]. (Here aj is defined
with respect to W'y and ag, is defined with respect to W', (see 16.2).) We
extend J by linearity to a homomorphism J: (W', ;) — R(W'y) or J:
R(Wy )®Q, = R(W'4)®Q, (notation of (14.10.3)). From the definition
of families in [6, 4.2] and 174, it follows that given a family % of W',
there is a unique family & of W, with the following property: for any
E, € %, any irreducible W’-submodule of J(E,) is in #. We say that & is
the family of W', induced by %,.
We shall make the following assumption:

(17.13.1) the statement (17.8.4) holds both for (G, #) and for
(Lh g)

We then have a partition
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(17132) G, =LG,
F

(# runs over the families in W'): we say that Ae G, is in G, 5 if the
two-sided cell in W'y, attached in 16.7 to A corresponds by 174 to #. We
define similarly a subset (L,) ».5, for any family % in W’L,. ’

We now define for any character sheaf 4, e (L)) w59 (F as above) an
element j$(A,) e #,(G) as follows. Let # be the family in W’y induced by
%,. Consider i7(A4,) (see 15.3); it is a linear combination 3 ,m A4 of
character sheaves 4 € G, with integral, >0 coefficients m , (see 4.8(b)).

We set, by definition, j$(4,)=3Y m A, sum over all 4 eéy‘f. We also
define by linearity j5(x) for any element xe % (L,;)®Q, which is a Q,-
linear combination of character sheaves in (L,) ».#, From 16.7 and 15.7(a)
it follows immediately that

(17.13.3)  J3(REZ") = R¥r)»

for any E, € #(W'y, ;) ® Q, which is a Qlinear combination of represen-
tations in %. (Here RY'ety(L)®Q; Ri, €H(G)®Q,, and J:
RW, )RQ, » A(W,)®Q, is defined as above.)

It is easy to see that for any we W', in the two-sided cell corresponding
(17.4) to #,, we have

(17134) J(aw’W:,/J):aw.Wy)

where o w,, (resp. “w,w'i,) is the element «,, of (16.2.7) defined with respect
to W},;,,(resp. W). (Compare [6, [5.10.5)].)
Introducing this into (17.13.3) we get

(17.13.5) j,S(R;TW:L",W)zwa‘WT.
Next, we note that if Ee R(W,)®Q, is a Q,-linear combination of
representations in % and A, € (L,) » 5, then

(17.13.6)  (j7(4,): RE)=(4, : RZ/).

(Here J: Z#{W',)®Q, - #(W'y ,)®Q, is the linear map defined by: coef-
ficient of E, in ‘J(E)=coefficient of E in J(E,), (E, € Wy ,, EcW).)
Indeed, by the definition of j3, the left-hand side of (17.13.6) is equal to
(i§(4,) : R¥). Similarly, the right-hand side of (17.13.6) is equal to (4,:
RZ1L)=(A,: r$RE) (see 15.7(c)). It remains to use (15.3.2).

In the remainder of this section we shall assume (in addition to
(17.13.1)) that &, %, have the following property. The map E, - J(E,) is a
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bijection J:% = & ; moreover, there is an isomorphism 4, 3%, (see
17.5) such that the diagram

Fy—os F

(17.7.1) (17.7.1)
MY 5,) — M(% 5)

is commutative. (The bottom arrow is induced by ¥, = %,.) In this case
we shall say that # is smoothly induced by %,.
Under these assumptions we shall prove the following.

(17.13.7) If (17.8.3) holds for (L,, &), then (17.8.3) also holds for
(G, &) as far as G » & is concerned; in other words, there exists a bijection
Gy s Hﬂ(gf),A(A —m,) such that the equality in (17.8.3) for (G, ¥)
holds for all A€ Gy 5 and all E€ .

More precisely, we shall prove
(17.13.8) j3 defines a bijection (L)) g 5,5 G 4 5.

We can then define the bijection in (17.13.7) in such a way that the
diagram
Y
(L) e 7, —=— Gy
|

0 JI’Z
MG 7)) —=— MG 5)

is commutative. (The left vertical arrow is provided by (17.8.3) for
(L;, £).) This bijection has the required property, by (17.13.6).

It remains to prove (17.13.8). First, we show that j5$(4,)#0 for all 4, €
(L) .5, If we had j§(4,)=0 then, from (17.13.6), it would follows that
(4,: R;f;’f’))=0 for all E€ W',. From our assumption J: %, 3 % it follows
that (A4, :!2;;’:”) =0 for all E, € %, contradicting 14.12. Thus, j¥(4,) # 0 for
all 4, e(L) o 5. R

We now fix 4, €(L,) s 4, From 1412 and 164 it follows that there
exists we Wy, such that (4,: RZ')#0, where «,, is defined as in (16.2.7)
with respect to W'y, ,. By 16.6 we have

(17.139) RZ'=n A, +nyd, + - +n,4,
where A4, € (f,,)_g‘fo are distinct (1 <i<r) and #n,, n,,.., n, are integers > 0.
Let &, be the element «,, of (16.2.7) defined with respect to W’,. We have
Je,) =4, (17.13.4); since J: & > F it follows that
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(17.13.10) 'J(&,)=a, + a linear combination of representations in
W' ;not in %.

We have

Y nm(JiA;  jTA) = (F(RZN  jF(RET)  (by (17.13.9))
ij=1

= (jS(RZ1): RY) (by (17.13.5))

= (RZ1: R ) (by (17.13.6))
= (RZ!: RZ) (by (17.13.10))
=3 2 (by (17.13.9)).

On the other hand, j§ A, is a non-zero linear combination of character
sheaves with integral >0 coefficients. Hence (54, : jiA;)is >1 for i=j
and is >0 for i# j. Hence from the equality

r

ang: Z (J;A ]fA)
i=1

ij=1

it follows that (/5 4 ] A;)is 1ifi=jandis 0if i # j. In partlcular J3A,is
a character sheaf i 1n G ».#. Hence j§ defines a map (L,) 4., > Gy.5. We
show that this map is surjective. Let 4 € G, «.7- By 14.12, there exists Ee #
such that (4:R¥)#0. We have E=J(E,) for some E, €%, hence
0+#(4: R )=(A4:j7(RE") (by (17.13.3)). Hence there exists
A, €(L)) 4 5, such that (4, : RZ)#0 and (4 : j§(4,))#0. This implies
A= j$(A,); thus j5 is surjective. We now show it is injective. Assume that
A=j3(4,)=j5(A42), (41, A3 € (L)) 4.5) Let E€ F and let E, € %, be such
that J(E,)=E. Then 'J(E)=E, + a linear combination of representations
in W’_(,., not in %,. We have for i=1 or 2:

(A:R7)=(j3(4): RE)=(4;: RZL)  (by (17.13.6))
=(4;:RE").

Hence (A4,:RZ')=(4,:RL') for all E, €%, This implies that
(4,:RZ')=(A4,: RZ') for all we W'y, ; where a,, has the same meaning as
in (17.139). We now choose w such that (4,:RZ’)#0. Then
(4,: RZ")#0 and we may assume that 4,, 4, are the first two terms in
the right-hand side of (17.13.9). But we have shown eatlier for these A4, that
(j$A4,: j§A;)=0. This contradicts the assumption jSA4, = j$4,, and com-
pletes the proof of (17.13.8) and of (17.13.7).
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We also note the following,

i (17.13.11) In the setup of (17.13.7), assume also that L, # G. Then
G 4 & contains no cuspidal character sheaves.

Indeed, (17.13.8) shows that any AeGg,, is of form j5(4,)
(A, € (Z,)_?,yo), hence it is a direct summand of ind§, (4,), with P, as in
15.3. Hence A is not cuspidal.

17.14. We now assume that we are given £ € & (T) and a family

F < W', such that (17.8.4) holds for (G, #) and such that (17.8.3) holds

for (G, £) as far as Gi,y is concerned (see (17.13.7)). Then & ® ¢ (with ¢
as in (12.9.7)) is again a family in W,.

Assume that we are given a bijection ¢: H(%5)— # (94 &) such that

(17.141)  {¢(m), d(m')} =¢ {m,m’'} for all m, m' e M (% ;),

where m corresponds to AeG ».% under (17.8.3) and m’ corresponds to
Ee % under (17.7.1). Recall that { , } is given by (17.8.2).
We assume also that the following diagram is commutative.

(17.142) F—= F Qe
(17.7.1)‘] r1(17,7.1)

J{(gf)_%’ MG 5 s.)

We show that under these assumptions, the statement (17.8.3) holds for
(G, Z) as far as G4 # &, 1S concerned.
Indeed, we define a bijection

(17143) Gy re, — M(F 5 &.)
by the requirement that the diagram
Gp3—= MY 5)
idll e
Gy.f ge > MGz ®:)

be commutative. Here, the top arrow is the bijection of (17.8.3) for G 5
and +d is defined by A—~£,d(A4) (see 15.5). The fact that +d is well
defined and bijective follows from 15.8(c), (15.4.5), and (15.4.3). It is then
clear that the bijection (17.14.3) has the property required in (17.8.3).

17.15. Let ¥ e %(T) be such that (17.8.3) (resp. (17.8.4)) holds for
(G, &Z). Let we W; we set &' =w*%. Then (17.8.3) (resp. (17.8.4)) holds
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for (G, &’'). This follows easily from 14.15. (We may assume that w is a
simple reflection of W.)

17.16. Let G’ be a connected reductive group over k£ and let =
G’ — G be a surjective homomorphism with finite kernel. Let ¥ e % (T)
and let &' be the inverse image of ¥ under n: = '(T)—> T. We have
W,=W, cW,cWl, in a natural way. If we W', and ieZ then it
follows from definitions that

(17.16.1) #n*KZ=KZ" n* PH'KZ = PHIRY,
and
(17.162) 7, KY' =@ K7 ®°, n, PHRZ = @ , "HKZ®°.

(Here & runs over the one-dimensional local systems on T which are direct
summands of the direct image of Q, under n: n~'(T)— T. They are in
F(T).)

It follows that if 4 is a character sheaf of G then n*A is a direct sum of
character sheaves of G’ such that the associated action (11.5) of ker n is
trivial. Conversely if 4’ is a character sheaf of G’ such that the associated
action (11.5) of kerm is trivial, then n, A4 is a direct sum of character
sheaves of G. From this we can deduce:

(17.16.3) If (17.8.5) holds for G’ then it also holds for G.

Indeed, let A be an irreducible cuspidal perverse sheaf on G. Then 4 is a
direct summand of n,m*4. It is clear that n*4 is a direct sum of
irreducible cuspidal perverse sheaves on G’ with trivial action of ker n. By
(17.8.5) for G, it is a direct sum of character sheaves of G’ with trivial
action of ker 7. Hence n,n*A4 is a direct sum of character sheaves of G, and
therefore 4 is a character sheaf of G.

We also see that:

(17.16.4) 1If (17.8.4) holds for G’ then it also holds for G.

Indeed, let 4 be a cuspidal character sheaf, and let 4" be a direct sum-
mand of n*4. Then A’ is a cuspidal character sheaf of G’, hence it is clean,
by assumption. It follows that n, 4’ is clean. Since A is a direct summand
of n A’ it is also clean. Applying this argument to the Levi subgroups of
parabolic subgroups of G, we see that G is clean.

If 4 is a character sheaf on G and A’ is a direct summand of n*A4, then
by (17.16.1), we have ¢, =¢,. Since A, A’ have supports of the same
dimension, we also have &, =%,. Thus, the equality ¢, =%, implies
¢, =£,, and (17.16.4) follows.
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17.17. For each element ze Z; = centre of G, we denote 1,: G > G
the map g — zg. It follows easily from definitions that

(17.17.1) ¢*KZ=KZ
for any £ € #(T) and any we W',.
This implies that:

(17.172) If AeG, then t*4eG,. (But t*4 is not necessarily
isomorphic to A.)

Hence t* defines a homomorphism *: #;(G)® Q, = #,(G)® Q,. From
(17.17.1) it follows that

(17.17.3) t*RZ=RYZ
for any ¥ € #(T) and any E€ W',.

PropPoSITION 17.18.  Assume that G is clean and let ¥ € ¥ (T).

(a) For any we W'y, the elements R}, R of H(G)Y®Q, are Z-
linear combinations of character sheaves AeG, such that &, =
(—1)" =) (Here ¢ , is given by (15.1.1) and I(w), a(w) are as in 16.6(a).)

(b) If A€ G, satisfies (A: R7)#0 then the map 119 attaches to A
the coset wW .

(Note that this is variant of Theorem 16.6(a) in which the parity condition
(15.13) is not part of assumption; part (a) is similar to the integrality
theorem [6, 6.14(i)].)

Proof. 1In the proof of [6, 6.14] it is shown that (with notations in 16.2
and 16.5)

(17.18.1) a, =(—1)" Y Tr(C, —Y a,,,C,, E(u); —a(w)/2)E

where E runs over W, and y runs over the set of elements in wW , such
that y 7zw; we have

a,, = Y alu”.
ieZ
i>0
i={w)+(y) (mod 2)

Strictly speaking, the proof in [6] applies in the case we W ; however, in

the general case, the proof is the same. From (17.18.1) and (15.10.1) it
follows that

607/59/1-2
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(17.18.2)
(A: RZ)=(—1)Y" Y Tr(C,, E(u); —a(w)/2)(4: RE)
E

—Y Y ¥ (= 1)™a, Te(C,, E(u); —a(w)/2—if2)(A: RE)

E y i>0

— ( _ l)l(w)—u(w)(A: d(pHI(w)—a(wH»dim GKMQ))

_Z Z (_ l)l(w)—a(w)fia(yi)v (A d(pHI(y)fa(w)+dim G—il?,?')).

vy i>0

This shows that (4: RY) is an integer. Since in the last sum over y, i we
have the restriction i=/(w)+/(y) (mod2), it follows that (4:R7)=0
unless &, 40 = (— 1)« (Here, the sign is taken so that +d4 is a
character sheaf.) From the definition of 4 (15.4.1) and from the conser-
vation of ¢, by induction (5.12) it follows that d4 is a Z-linear combination
of character sheaves 4’ such that ¢, =¢,. Hence, we have

(17.183) £,44 =64

Thus (4: RZ)=0 unless ¢, = (— 1)~ ") The analogous result for RZ
follows from the formula

(17.184) R =dRZ

(see 15.8(c) and (16.2.8)).

We now prove (b). In the sum over y in (17.18.2), y runs over elements
in wWg. Hence if (A4:RZ)#0, then we have (d4: "H'KY)=
(A: d?H'K?)#0 for some yewW,. From 13.10 it follows that (dA:
S.(—=1)'?H'K?) #0 and from 12.6 it follows that (d4: Y(— 1)'"’H'’KZ)#0
for some y'e wW .. Now using 15.8(b), we deduce (4: X (= 1)?H'KZ)#0
hence (A: PH’KZ)#0 for some j. From 11.10, we see that under the map
11.9, A is sent to y'W, =wW ., as required.

17.19. Let L e (7). In (a)-(f) below, we consider the following
pairs (E,, E,) of irreducible representations of W’,.

(a) If W, is of type E,, Q,={e}, take E, =512,, E, =512,
(notation of [6, 4.12]).

(b) If W is of type E; x A,, 2, ={e}, take E, =512, X 1, E, =
512, X1 or £, =512, W ¢, E, =512, Me (e= non-trivial character of
A, —factor).

(c) If Wy is of type Eg, Q4 = {e}, take E, =4096_, E, =4096, or
E, =4096', E, = 4096/ (notation of [6, 4.13]).
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In the cases (d), (¢), and (f), assume Q, =7/27 acts non-trivially on
W, E, is the preferred extension (7.12) of Ee W, to W', and E, is the
other extension.

(d) If W, is of type As, E is the unique 16-dimensional represen-
tation in W .

(e) If W isof type A;, E is one of the two 64-dimensional represen-
tations in W,.

(f) If W is of type Eg, E is one of the two 64-dimensional represen-
tations in W .

In all cases, there exist an element x € W, such that (— 1)/® 101y =
E,—E,, l(x)=a(x)+1 (mod 2) and an element x’ e W, such that

o, =E+E,, T(x)=a(x) {mod 2).
(See [6, 5.21, 522, 5.23, (7.6.2), 7.10].)

17.20. Let ¥ e & (T). Assume that W, has no irreducible factors
of type E, or E; and that for any irreducible factor W” of W, of type 4, or
E, the following condition is satisfied: if we Q. normalizes W’, then it
centralizes W’. Then: for any x € W', such that o, #0 we have X(x)= a(x)
(mod 2). The same conclusion holds if W', is as in 17.19 and if xe W, is
assumed to be outside the two-sided cell corresponding to £, and E, where
(E,, E,) is one of the pairs in 17.19. (See [6, (6.18.10) and pp. 231, 232].)

PrROPOSITION 17.21. Assume that G is clean and let ¥ € ¥ (T) be such
that W'y is as in 17.19(e) or (). Assume also that the generator of Qo has
odd length in W. Let Ac G, be such that ¢, =1 and such that dA=§,A.
Assume that under the map 119, A is mapped to the non-trivial coset in
Wo/W . Then t* A=A for all ze Z, (see 17.17).

Proof. Let Ee W', be such that (4:RZ)#0. By 164, we have
(4: RZ)#0 for some x in the two-sided cell corresponding to E and from
17.18(a) it follows that /(x)=a(x) (mod 2). From 17.18(b) it follows that
xe W'y — W, hence I(x)=1(x) + 1 (mod 2), since the generator of 2 has
odd length in W. Thus, X(x)=a(x)+1 (mod 2).

From 17.20, it now follows that E= E, or E,, where (E|, E,) is a pair as
in 17.19 for W. In the same way, we see that (4: RZ + Rg)=0. Since
(4: RZ)#0, it follows that (4:RZ —RgZ)#0. By 17.18 and 17.19,
RE —RZ is a Z-linear combination of character sheaves and by 14.13, it
has inner product (:) with itself equal to 2. It follows that RZ —RE =
vA+v' A’ where v,v'e { +1} and A’ e G is different from A. Applying d
and using 15.8(e) we see that RZ o, —RZ o, =vdA+v' dA’. We have
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{E\,E,}n{E, ®¢ E,®¢e} = hence, by 14.13, we have (Rf —RZ:
RZ ¢, — R% 5.)=0. Thus, we have (vA+v'A": vdA+v dA')=0. By our
assumption we have d4=§,A4. It follows that (4":d4’)+é,=0 hence
dA'= —§,A4',and . = — £ ,. Since the operation ¢* (17.17) clearly preser-
ves the dimension of support and hence &, it follows that 4’ # t* A for any
zeZg.

By (17.17.3), RZ — RZ, is invariant under t*. It follows that vA+v'4'=
vi¥*A+v'i¥A'. Hence we have either t¥* A=A, t¥*A'=A" or t¥A=A4',
t¥4'=A. We have just seen that the second alternative cannot hold. It
follows that t¥ 4 = A4 and the proposition is proved.

18. Grours oF TYpE A

18.1. The main result of this chapter is Proposition 18.5, which
states that the statements (17.8.3)-(17.8.5) hold for groups of type 4. We
shall begin with a result characterizing the cuspidal character sheaves for
any clean G.

PROPOSITION 18.2. Assume that G is clean and let A€ G. Then A is
cuspidal if and only if the following condition is satisfied: if (A: %,
(— VYPHI(KZ)) #0, (we W'y), then w: T/Z% — T/Z2 has only finitely many
fixed points.

Proof. Assume first that 4 is not cuspidal. Then there exists /& S such
that r$4 #0. Since r; 4 is a combination with >0 integral coefficients of
character sheaves of L, there exists ¥’ e #(T), w'e Wy, and ie Z such
that (r 4: H' KZ+') >0 (notations of 15.6) Applying (14.11.1) with G, 4,
&, wreplaced by L,, riA, &', w', we see that (rjA: RZ>')#0 for some
E e W, Itfollows that (r§4: 3 ( —1)'?H'K%") #0 for some w” € W'y .
Now using (15.3.2) and (15.7.1), we deduce that (4: > — 1) ?H'KZ) #0.
(Here, KZ, is defined with respect to G.) From 11.2(c) we see that %’ must
be in the W-orbit of & and from 11.2(b) we see that (A:
SA(—1)Y?H'KZ)#0 for some element we W which is W-conjugate to
w” € W,. The fixed point set of w": T/Z¢, » T/Z, contains Z9 /27 hence it
has dimension > 1. Since w is conjugate to w”, the fixed point set of w:
T/%% - T/%?, also has dimension > 1. This proves one-half of the lemma.
Conversely, assume that Ae G, satisfies (4: Y (—1)'PH(KZ))#0 for
some we W', such that w: T/Z% — T/% has a fixed point set of dimension
> 1. Replacing w by a conjugate, we may assume that we W', ;, (IS 5).
Using (15.7.1) we see that (4: i5(X( — 1)PH'(KZ"))) #0, and using (15.3.2)
we see that r7 4 #0 so that A is not cuspidal. The lemma is proved.
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18.3. Assume that G is clean and let AecG, be cuspidal. Let xW
(xe Q) be the coset in W'y/W o attached to A in 119 and let N be the
number of orbits of the permutation of S (see 2.3) defined by s+ xsx ™.
Assume that for any E€ W', such that (A : RZ)#0, we have

(18.3.1) Tr(T,, E(u))eu™*Q,[u,u""'] for all we xW,,
(notation of (129.3)). Then ¢, =¢ , (see (15.13.1)).

Proof. Let we W, be an element of minimal possible length in W such
that (4: PH'’KZ)# 0 for some i. Then, by (12.7.1), we have (4: PH/KZ) =
(A:PH’KZ) for any j and, in particular, (4: PH'KZ)#0, 1t follows that
YA —1Y(4:PH’KZ)#0. (By 13.10(a), only the terms corresponding to
j=i (mod 2) can be non-zero, hence they all have the same sign.) It also
follows that 3" ( —1)/(A4: H’KZ) # 0. Using 10.2, we see that w acts on the
vector space V spanned by the roots (in the character group of T') without
eigenvalue 1. Since w: V' — V is of finite order and defined over Q, its deter-
minant on ¥ must be equal to ( —1)%™*. Hence /(w) =dim ¥ (mod 2). On
the other hand, we have dim V' =dim(G/Z%) (mod 2) hence

(1832) I(w)=dim(G/Z%)  (mod 2).

We now write the identity (14.11.1) for our 4 and w. The left-hand side
is a non-zero element in w*™“?Q[u,u'] if ¢,=1 and in
W@mG+ D20y 417 if ¢, = —1. The right-hand side is, by (18.3.1), in
u N+ +dim G—Tn)235 1y =17 1t follows that

(183.3) &, =(—1)NV+/n-Tw,
on the other hand, we have

(1834) &,=(— l)dim (G/2}) — dim(supp 4/23) _ (—1 )dim(G/.@’%)

since, by 3.12, (supp 4)/Z2 is the closure of a single conjugacy class in
G/Z?Y and hence, it has even dimension. The identity ¢, =&, is therefore
equivalent to the congruence
N+I(w)+1Tw)+dim(G/Z2%)=0  (mod 2).
By (18.3.2), this is equivalent to the congruence

(183.5) Tw)y=N  (mod2).

This is proved as follows. Let V', be the subspace of V spanned by the
roots in R, (see 2.3) and let =, be the basis of V', formed by the simple
roots of R,. Then w: ¥V — V leaves V| stable, and being of finite order,
defined over Q, without eigenvalue 1, it satisfies det(w, V,)=(—~1)%™"1,
We have w=xw,, where xeQg,, w,eW,, and det(w, V)=
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det(x, V) det(v,, V,)=(— 1)) det(x, V,)=( — 1) det(x, V,). Since x:
Vi, >V, permutes the elements in the basis n, of V,, we have
det(x, V)= (—1)%™"1"~ where N is the number of orbits of the per-
mutation defined by x. It follows that (— 1)4™ V1= (—1)f")(—)dim¥1-~
and (18.3.5) follows. The corollary is proved.

LeMMma 18.4.  Assume that G/Z ; is a product of projective general linear
groups and let & € #(T) be such that W , = {e}. Assume that (17.8.4) holds
for (G, £) and that there exists x € Q o such that x is a Coxeter element of
W. Let o, be the element defined in (16.2.7) in terms of G, ¥, x. Then

(a) 1Qg|=1Zs/Z%I

(b) RZ=@®.A,. (sumover all z€ X ;/Z?), where A, _ is a cuspidal
character sheaf of G with support contained in 2%, {unipotent variety of G}.
In particular, the A, (z€ & ;/Z'%) are distinct.

Proof. We may assume that G is semisimple. The following statement is
a reformulation of (a) in terms of the dual group G'.

(18.4.1) Let s be a regular semisimple element of G’ such that there
exists a Coxeter element w of the Weyl group of G’ with respect to the
maximal torus Z°(s), such that we Z(s). Then | Z(s)/Z°(s)| is equal to the
order of the kernel I of the simply connected covering n: G — G’ of G".

Let §e#~!(s). We have Z.(s)/Z%(s) = {xe G'| x5x ' €5I'}/Z(5). This
shows that | Z;.(s)/Z%.(s)| < | I'| and that to prove equality is equivalent to
showing that for any ye I, § is conjugate to §y. This statement clearly
follows from the statement (18.4.1) in the case where G’ is adjoint. We can
further reduce ourselves to the case where G’ is adjoint, simple, hence,
G' = PGL (k). In this case our assumption on s implies that » is invertible
in k and that s can be represented by the image in PGL,(k) of the diagonal
matrix (1, ¢, {3,..,{"~") where { is a primitive nth root of 1 in k. In this
case it is clear that | Z;.(s)/Z%(s)| =n and (a) is proved.

We now prove (b). Since W, =Q,,, each character §: 2, - QF may
also be regarded as a representation of W, For any x'eQ,, we have
o, =(— 13 ,0(x')0 and from 16.6(a) we see that

(1842) RZ = (-1 X4 8(X)RF = (- 1)/ X, (—1)+dmC
PHY(KZ) is a combination with integral >0 coefficients of character
sheaves. By (14.13), we have

(18.4.3) (fo’,:RfX’,,)=|Qy|, if x'=x"
(x', x"€Q,).
=0, if x #x"
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Hengce, if 4 is a character sheaf such that (4: RZ)+#0 then (4: RZ)=0 for
x"#x. Using (18.4.2) and 18.2, it follows that A is cuspidal. From 3.12 it
follows that the support of A4 is contained in the set zZ? - {unipotent
variety of G} for some z e &;. Then supp(1* 4) = 22 - {unipotent variety }
(see 17.7). Note that t* A4 is again a character sheaf (17.17.2) and it is a
component of RZ, by (17.17.3). When z runs over a set of representatives
for /2%, then the t* A have distinct supports hence they are distinct.
This gives at least | % ;/Z%| distinct character sheaves which are com-
ponents of RZ. By (184.3) and (a), we have (R :RZ)=|Q,|=
| Z ¢/Z|, so that all components of RZ must be obtained as described, and
they all have multiplicity one. The lemma is proved.

PROPOSITION 18.5. Assume that G/% ¢ is a product of adjoint groups of
type A. Then

(a) G satisfies (11.8.5).
(b) (G, &) satisfies (11.84) for any ¥ € F(T).
(c) Let LeL(T), let F=1{E) be a family in Wy, and let F'=

{E4|0 character of 95 =Q4} be the corresponding family in W, (see
(17.3)). Recall that the imbedding F'c M (9 4 ) (see (17.7.1)) is Eg— (1, 8).

Let Gy s be defined as in (17.132). There exists a bijection
GYfH‘ﬂ(gfL Ao (an 9,4) € :/ﬂ(gyf), such that

(A:RE)=(1/12£D)e00x)7",  e4=(-1)"(4€Gy 4, EseF).

(I is the restriction of the length function of W to Qg; we have
x4 €Gg. =8R4.) In particular, (17.8.3) holds for (G, &).

Proof. The proposition is trivial when G has a single element. Assume
now dim G > 1 and that the proposition is true for groups of the same type
as G, of strictly smaller dimension than G; we shall prove that it is also true
for G. If G is not semisimple, then dim(G/Z%) <dim G and the method of
17.10 reduces us to the case of G/Z% to which the induction hypothesis
applies. Hence, we may assume that G is semisimple.

We now prove (b). To prove (b), we may assume by (17.16.4) that G is
simply connected and, by 17.11, that G=SL,(k). Using the induction
hypothesis, we see that it is enough to show that any cuspidal character
sheaf 4 on G is clean and satisfies ¢ , =& ,.

From 3.12 it follows that the support of 4 is contained in the set
z{unipotent variety of G}, for some ze Z;. As in the proof of 18.4, by
replacing 4 by t*A4 (ze Z; see 17.7) we see that we are reduced to the
case where the support of A consists of unipotent elements. We shall apply
7.9 to A. The hypothesis of 7.9 are verified. Indeed, since A is a character
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sheaf, it is strongly cuspidal (7.1.13). From 3.12 it follows that for any
cuspidal pair (2, &) for G with X' a unipotent class we have X = regular
unipotent class. Finally, if & is a Levi subgroup of a proper parabolic sub-
group of G, then any irreducible cuspidal perverse sheaf on L is a character
sheaf (by the induction hypothesis) hence it is strongly cuspidal. Thus, 7.9
is applicable to A and shows that A4 is clean.

LetjeZ, ¥ € #(T), and we W'y be such that (4: PH’KZ) # 0. Since A is
an irreducible cuspidal perverse sheaf on SL,(k) with support in the
unipotent variety, we see from [4, 10.3] that # is invertible in k& and that
the action (11.5) of Z; on A is through a character of order ». From 11.10
we see that the image of the coset wW,c W,/W, under the
homomorphism (11.8.1) has order n. Using (11.8.2) it follows that this
coset has order 7 in the group Wy /W 4.

It is easy to check the following statement: if £ € #(T) and w, e W', is
such that w, W', has order nin W, /W then w, is a Coxeter element in
W and W, = {e}. (An equivalent statement is: if s is a semisimple element
in PGL,(k) such that the group of components of its centralizer has some
element p of order n, then s is regular (hence contained in a unique
maximal torus) and p represents a Coxeter element in the Weyl group of
that torus.)

In our case it follows that w is a Coxeter element and that W, = {e}.
Then 18.3 is applicable and shows that ¢, = £ ,. This completes the proof of
(b), assuming the induction hypothesis.

We now prove (c). As we have seen earlier, we may assume that G is
semisimple. Assume first that either F is not the sign representation of W,
or that W, = {e} and no element of 2, is a Coxeter element of W. Then
it is easy to see that (after replacing if necessary ¥ by w*.% for some
we W, see 17.15), there exists a proper subset I of the set of simple reflec-
tions in W and a family #§ of W', such that %’ is smoothly induced by
F, as in 17.13. By the induction hypothesis, (17.8.3) (or, more precisely,
(c)) bolds for (L,, #) and (17.8.4) holds for both (G, .#) and (L,, &)
Using (17.13.8) we see (just as in the proof of (17.13.7)) that (c) holds for
our family #'. Next, assume that E is the sign representation of W, and
that W, # {e}. We have ¥, =%, .o, =Q,, where ¢ Wi, > {+1} is
given by g(w)=(— 1)) Define a bijection ¢: M (%3 )> M (%5 &.) bY
#(x,0)=(x,0®(|R24)), (xeR,, 6eHom(2,,QF)). Then the diagram
(17.14.2) with this ¢ (and &’ instead of &) is commutative. It is also clear
that {d(x, 8), #(1,6")} =(—1)"{(x, 0), (1,6")} for all xeQ,, and all
characters 6, 0’ of Q. (Both sides are ( — 1)"**¢’(x)~'.) Hence the identity
(17.14.1) is satisfied in our case. (Since (c) is already established for F', we
have ¢, = (— 1) for Ae>m=(x, 0) in (17.14.1).) The proof in 17.14 then
shows that (c) holds for ¥’ ® 6. (Note that ¢, ,, =¢,, as a consequence of
1512 and (15.4.1).)
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We can therefore assume that W= {e} and that Q, contains some
Coxeter element of . We now show that

(18.5.1) for each xeQ,, the element RZ of (18.4.2) is a sum of
character sheaves, each with multiplicity 1.

When x is a Coxeter element of W, this follows from 18.4. Assume now
that xe Q2 is not a Coxeter element. Replacing % by a W-conjugate, we
may assume that x is a Coxeter element of W; where /< S. From (17.13.5)
we see that R is obtained by applying j; (see 17.13) to the analogous
element R’ defined in terms of L,, &, x. We can apply 18.4 to RZ"
(instead of RY) and we see that RZ/ =A, ® 4, ® -~ ® 4, where 4,,..., 4,
are distinct cuspidal character sheaves on L, such that supp 4, =z,29,
{unipotent variety of L,;} and z,,..., z, is a system of representatives for the
cosets Z, /%9 . We shall assume, as we may, that each z,€ Z ;. We have
jiA,=i3 A;since W, = {e}. Hence it is enough to prove the following two
statements.

(18.5.2) For any i, i7 4, is a sum of character sheaves, each with mul-
tiplicity 1.

(1853) (SA4,:i54)=0 for i#j.

To prove (18.5.2) we argue as follows. From the definition of induction
we see that ind(4,) (the perverse sheaf on G induced by A;) has the
property that its restriction to z, x {regular unipotent class of G} is, up to
shift, a local system of rank 1. This forces ind 4, (which is semisimple) to
have at least one irreducible summand with multiplicity one. According to
[4, 3.5, (4.1.1)], the endomorphism algebra of ind(A4,) is a twisted group
algebra of a certain finite group: the isotropy group I";in Ng4(L,)/L, of A,.
Any element y of I'; can be represented by an element in N, (W,). Since it

keeps A, fixed, and 4, € (I/J\,) «, it must map & to a local system in the W -
orbit of & (by 11.2(c)). Replacing y by an element in the same W,-coset,
we see that y can be represented by an element in W, NNy (W,) =
Q, NNy (W,). It follows that I'; is abelian. Our twisted group algebra has
some one-dimensional representation (since ind(A4;)} has some irreducible
component with multiplicity one); hence it is an ordinary (untwisted)
group algebra. Thus, the endomorphism algebra of ind(4,) is abelian and
(18.5.2) follows.

Next, we prove (18.5.3). From (4.3.1) we see that ind(4,) is a direct sum
of irreducible perverse sheaves on G with support equal to the closure of

(1854) X, = | x(z{Z9 ) e Ur)x ™"

xeCG
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where U, is the set of regular unipotent element in L, and (29 )., is the
set of all ge 29 such that Z¢(g)=L,. It is enough to show that

(1855) X,nX,= for i#}].

Assume that we have X, nX;# . Then there exist g, g’ € (27 )req
u,u'elU,,, x, x"€ G such that xz, gux ! =Xx'z; g'u'x'~"; we want to deduce
that i=j. We may assume that x’=1. By uniqueness of Jordan decom-
position, we have xz;gx"'=z;g. We have ZUxz, gx )=
xz,Z%g)x '=xLx"'=%%z g )=L, Hence xe Ng(L,). It follows that
xZ9x~'=%9. Hence from xz;gx '=z;g we deduce z;'z;=
xgx'-g'~'e %9 . But the z, are representatives for the cosets &, /%9,
hence z; 'z; € Z9, implies i = j. Thus (18.4.3) is proved. At the same time,
(18.5.1) is proved.

From (18.5.1) and (18.4.3) it follows that, for any xeQ, fo’ has
exactly | Q| irreducible components (with multiplicity one) which can be
put in 1-1 correspondence with the various characters 8 of Q; we shall
denote them A, ,€ Gy ; thus G consists of | Q2 |? character sheaves A

(xeR4,,0: 2, - QF). We have
(Ao RZ)=1, if x=x
=0, if x#x.

Let R be as in the proof of 18.4. Then

Ry =1Qq17" Y (=1)™0(x)"'RY,

XeRy

see (18.4.2), hence,
(Ao RE)=(—1)"Q4] '0'(x)~".

By (17.18(a), we have &, ,=(—1)"". This completes the proof of (c),
assuming the induction hypothesis.

We now prove (a). Using (17.16.3) we see that we may assume that G is
semisimple, simply connected and using 17.11, we are reduced to the case
G=SL,(k). From [4, 10.3, 2.10] we see that the number of irreducible
cuspidal perverse sheaves on G is ng(n) (if n is invertible in k) and is zero
otherwise. Here ¢(n) is the Euler function. Hence to prove (a) we may
assume that » is invertible in k. Let w be a Coxeter element in W. We can
find & € #(T) such that we W', W, = {e}. The group Wy, =Q is cyclic
of order n and each generator of it is a Coxeter element in W. By 184,
applied to £ and any generator of 2, we see that there are at least ng(n)
cuspidal character sheaves in G, they are indexed by pairs (x, z) where x
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is a generator of Q, and zeZs. It follows that each of the ng(n)
irreducible cuspidal perverse sheaves on G belongs to G . This proves (a)
and completes the proof of the proposition.

Y
19. CrassicaL GRouPs OF Low RANK

19.1. The main results in this chapter are 19.3, 19.4, 19.6 which
assert that the statements (17.8.3)-(17.8.5) hold for certain classical groups
of low rank. This prepares the ground for the study of character sheaves on
exceptional groups in the following two chapters.

ProPOSITION 19.2. Let ¥ € & (T) be such that
(a) (G, &) satisfies (17.8.4).
(b) W, has all irreducible components of type A, except possibly for
one component which is of type D, (4<m<38), B, (2<m<5), or C,
2<m<5).
(c) |Wy/Wy|<3.
Then (17.8.3) holds for (G, ¥).

Proof. We fix a family & in W, and let #' be the corresponding
family in W, (see 17.4). The family & consists of either a single represen-
tation E or of three representations E, M, N where E is a special represen-
tation [6, (4.1.4)].

Case 1. Assume first that W', = W. From results in [6, 4.5] we see
that if # = {E}, then there exists an involution xe W, such that «, = E,
N(x) = a(x) (mod 2), while if # = {E, M, N} then each of the four elements
E+M,E—M, E+ N, E— N is of the form a, for some involution xe W
such that J(x) =a(x) (mod 2).

If # = {E}, we see from 16.6 that RY is a combination with integral >0
coefficients of character sheaves, and from 14.13 that RY is a single charac-
ter sheaf 4. From 17.18(a) we see that ¢, =1.

If # = {E, M, N}, we see from 16.6 that RZ + R7;, RZ — Ry, RZ + Ry,
RZ — RY are combinations with integral >0 coefficients of character
sheaves. From 14.13 we see that the inner products ( : ) of these four
elements are described by the matrix

2 011
0 211
1120
110 2
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It follows that there exist four distinct character sheaves A4,, A4,, 43,
A4 € G4 such that

REZ+RL=4,+4,
RZ—R4L=A,+ 4,
RE+RY=A,+ A4,
RZ—RL=A,+ A,

Thus, we have

R¥ "—‘%(A +A,+A4,+ Ay)
=HA, +A4,—A;—Ay)
=§(A1 —A, +A;— A,)

Moreover, from 17.18(a) we see that ¢,, =1 (1 <i<4). Hence the pattern
of (17.8.3) is established.

Case 2. Next, we assume that W,/W , has order 2 or 3 and Qy = {e}.
Then E and M, N (if defined) do not extend to W',-modules; #' consists
of E'=indE (if #={E}) or of E=ind E, M'=ind M, N'=ind N (if

= {E, M, N}). Here, ind = ind /. The arguments in Case 1 remain valid
1f we replace RZ, RZ, RY by R‘g RE., RE.

Case 3. Assume that W',/W has order 2 and that 2, =Q,. Then E
and M, N (if defined) extend to W’y-modules; we shall denote by £ and M,
N (if M, N are defined) the preferred extensions (see 17.2), and by E’ and
M, N (if M, N are defined) the non-preferred extensions.

When & = {E}, the following result can be extracted from [6, (7.6.6)]:
there exist x, x’€ W, such that E+ E'=«a_, [(x)=a(x) (mod 2), E—E' =
(—1)I=et9% . Now wusing 166 we see that RZ+RZ and
(= 1)=)=a"YRZ — RZ) are linear combinations with integral >0 coef-
ficients of character sheaves. From 14.13, the inner products ( : ) of these
two elements are described by the matrix (3 9). Hence there exist four dis-
tinct character sheaves A4, (1<i<4), such that RfE+REf=A,+4,,
(— 1))=Y RE — RE)= A5 + A,, and from 17.18(a), we see that ¢, =
€q, =1, 64, =6, =(—1) )79 We have

E I(A +A4; te4,45 te4,4,4 )
RE=XA,+4,— Eq, Az —4,Ay)

so that the pattern of (17.8.3) is established.
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When & = {E, M, N}, the following result can be extracted from [6,
(7.6.7)]: There exists x;e€ W, (1 <i<8) such that

E+E+M+M=q,

E+E—(M+M)=a,

E+E+(N+N)=a,,

E+E—-(N+N)=a,

(= 1)lss e E_ B 4 (M — M) =«

(= 1y e B E'— (B §T')) =a,

(= 1y E— B4 (N N')) =,

(— 1y« E_F (N—N')=a,

and /(x;)=a(x;) (mod 2) for 1<i<4.

Now using 16.6, we see that the eight elements Ry where ? runs over the
last eight expressions are linear combinations with integral >0 coefficients

of character sheaves. From 14.13, the inner products ( : ) of these eight RY
are described by the matrix

4 0 2 2
0 4 2 2
v240 | O
22 0 4

O

[ NS I S ST
{35 I S R - A
S BN
B O N

It follows that there exist 16 distinct character sheaves 4; (1 <i< 16) such
that

RE+REARE+RE=A,+A4,+A4;+ 4,
REZ+RE—RELE—RE =As+Ag+ A7 + Ay
RE+RE+RE+RE=A, +A,+ A5+ A,
RE+RE—RF—RiE=A;+ A, + A4, + Ay

( _ l)l(xs)—a(xs)(Rs’ — RZ

RN
+
=

)

- R%)
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(— 1)@ RE — RE—RE+RE)=Aps + Ay + A5 + A
(— 1)[('“)7‘1("7)(1{%)_1{%"'R}%—R}%)=A9 t+Ap+A;s;+Au
(— I)I(XS)‘aM)(R'g_R'g_Rg'*‘R%)ZAM +A,+A;5+ A

From 17.18(a), we see that ¢,,=1 (1<i<8), and &, = (— 1)~ for
9<ig6, 5<j<8.

From this we can express each of R€, RZ, R%, R%, R%, RE, as an
explicit combination of ¢, A4, (1 <i<16) with coefficients of form + 1, and
we see that the pattern of (17.8.3) is established.

Case 4. Assume that W',/W, has order 3 and that Q, =Q,.
Then E and M, N (if defined) extend to W’,-modules; we shall denote by E
and M, N (if M, N are defined) the preferred extensions (see 17.1), and
by E¢ and M,, N, (if M, N are defined) the extensions obtained from
E, M, N by tensoring with a non-trivial character ¢ of Q, (regarded as a
representation of W', with kernel W, ). Let ¢', ¢” be the two non-trivial
characters of 2,. When & = {E}, the following result can be extracted
from [6, (7.6.6)]: for any weQ,, there exists x, ewW, such that
E+ ¢'(w)E¢ +¢"(w )E¢ =a, and I(x,)=a(x,) (mod 2).

Using 16.6, we see that the three elements R + ¢'(w R" +¢”(w)R
(we 2,) are linear combinations with integral >0 coeﬁiments of character
sheaves. From 14.13, the inner products ( : ) of these elements are
described by the matrix

o O W
O W O
w o O

Hence there exist nine distinct character sheaves 4,,; (weQ.,, 1<i<3)
such that

RE+P(IRE A+ (@RE, =41+ Ao+ A0y (0€Qy).

Moreover, from 17.18(a), we see that ¢, =1 for all w. i We have
Ey__ZAwt
{=—Z¢(w”)Aw,, for ¢=¢" or ¢,

and the pattern of (17.8.3) is established. When # = {E, M, N}, the follow-
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ing result can be extracted from [6, (7.6.7)]: for any weQ,, there exist
Xes Vs Zop» Ugy € OW o such that

(E

(E—
(E
(E

)+ 8" ()Ey + My)+ ¢ () Ey + M) =u,,

)+ ¢ (@)Ey — M y)+¢"(oNEy — My)=a,,
+ M)+ ¢ (0)Ey + Ny)+ 4" (0)Ey + Ny) =0,

— M)+ # () Ey - Ny) +4"(0)Ey - Ny) =2,

+M
M

and /(x,)=a(x,) (mod2), l(y,)=al(y,) (mod?2), {z,)=a(z,) (mod ?2),
Hu,) = a(u,) (mod 2). Using 16.6 we see that the four elements Ry’ where ?
runs over the last four expressions (for fixed w) are linear combinations
with integral >0 coefficients of character sheaves. The inner products ( :)
of these four RY are described by the matrix

6 0 3 3
06 3 3
3360
3 3006

Moreover two Ry corresponding to distinct w have ( : )=0. It follows
that there exist 36 distinct character sheaves 4,,; (weQ,, 1<i<12)
such that

RE + R +¢'(0)(RE, + RE,) +¢"(0)(RE, + RE,)
=Ap +Aps+Aps+Aps+Ays+Aus

Rf —RE+ ¢ (w)(RE,— RE,) + 4" (0)(RE, — RE,.
=A,7+A,s+ A, +Ap10 T Api +Auiz

R¥ + R{ +¢'(0)(RE, + RE,) + ¢"(w)(RE, + RY,
=Ay1+Apr+Aus+Apio+Awn +Auiz

Rf — Rf +¢'(w)(RE, — RE,) + ¢"(w)(RE, — RE,
=AystAps+ Ayt Ay + A, +A4,,.

From 17.18(a), we see that ¢, , =1 for all w,i. We can now express each
of R, R%, RE, Ri’;,,... as an explicit combination of the 4, ; with coef-
ficients of form { x sixth root of 1, and we see that the pattern of (17.8.3) is
established. This completes the proof of the proposition.
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PROPOSITION 19.3.  Assume that G/Z ; has all its irreducible factors of
type A, except possibly for one factor which is of type D, (4<m<T)or C,,
(2<m<3). Assume also that | /2% | < 3. Then (17.8.3)-(17.8.5) hold for
G.

Proof. We may assume that dim G>1 and that the proposition is
already proved for groups satisfying the same assumptions as G, but of
dimension strictly smaller than that of G. If we can prove (17.8.4) for G
then (17.8.3) will also hold for G, by 19.2. Thus, it is enough to prove that
(17.8.4), (17.8.5) hold for G.

Let G, G,,.., G, be the set of almost simple closed normal subgroups of
G. Applying the results in 17.16 to the finite covering map G, x G, x -+ x
G, — G given by multiplication in G, and applying 17.11 to the product
G, xGy,x -+ xG,, we see that we are reduced to the case where G is
almost simple. Since the case where G is almost simple of type A is covered
by 18.5, we see that we are reduced to the case where G is almost simple of
type D,, (4<m<T7)or C,, (2<m<3), and the centre of G has at most two
elements. To check the statement (17.8.4) for G it is enough, using the
induction hypothesis, to check that any cuspidal character sheaf 4 on G is
clean and satisfies ¢, = ¢,. We now consider the classification of irreducible
cuspidal perverse sheaves on G, following [4]. (This list contains as a sub-
list the cuspidal character sheaves of G; at this stage we do not know that
the two lists coincide.) We shall write for any G:

(19.3.1) Irr°G = set of irreducible cuspidal perverse sheaves on G.

(a) G=_S80s(k), char k #2. There are exactly two complexes A’, A"
in Irr°G. They have the same support: the closure of the class of su whre s
is a semisimple element with Z;(s)=0,(k) and u is a regular unipotent
element in Z%(s). Then A’ and A" are clean by 7.11(d) and 18.5 for SO,(k).
Assume that 4’ € G ,. To verify the parity condition (15.13.1) for A’ we use
18.3. The possibilities for ¥ are restricted by 17.12: we must have W, =
We=Wor Wy,=W_,oftype A, x A,. In both cases, N in 18.3 is even and
the representations of the corresponding Hecke algebra have traces in
Q[u, u~']. Thus, 18.3 is applicable. We see that if 4’ or A” is in G then it is
clean and satisfies the parity condition. (If neither 4’, A” is in G then there
is nothing to prove.) Thus G satisfies (17.8.4). Now, by 19.2, we see that
(17.8.3) holds for G.

Let &; (i= 1, 2) be the two local systems in ¥ (T) whose stabilizer in W
is W itself. From 11.2(e) it follows that G’gl ?éégz. Let % be either &, or
&,. We have Wy,=W,=W. Let AecG, be the character sheaf
corresponding under (17.8.3) to the family & < W such tat 9, = Z/2Z,
and to the pair (g,, ¢) € #(% z); here g, is the element #e of Z/27Z and ¢ is

the non-trivial character of 4. From (17.8.3) we see that (¢,4: RY) =13,
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(44:R7)= ~3, (e4A:R7)= —3, where p is the two-dimensional
irreducible representation of W and ¢,, ¢, are its one-dimensional represen-
tations other than 1 and sign; we also see that (¢,A4: RZ)=0,
(e44:RE,)=0. It is easy to check that the character of the virtual
representation p —&, —e, of W vanishes on elements with some eigenvalue
1 in the reflection representation of W. It follows that (g, 4: y(KZ))=0 (see
6.5) whenever we W has some eigenvalue 1. From 18.2, it follows that A is
cuspidal. We thus find two cuspidal character sheaves of G (one for
¥ =6, on for ¥=4¢6,). As the set of cuspidal character sheaves of G is
contained in the set {4, A"}, these two sets must coincide and (17.8.5) is
verified.

(@’) G=Spyk), char k # 2. There is a unique complex in Irr°G. It is
A=n*A"=n*A" (4’, A" as in (a)), where n: Sp,(k) = SO,(k) is the stan-
dard double covering. Using (a) and the arguments in 17.16, we see that 4
is a character sheaf of G, that it is clean and that it satisfies ¢, = £ ,.

(a”") G is simple of type B,, char k =2. There is a unique complex 4
in Irr°G. Its support is the unipotent variety of G. If A is a character sheaf,
then it is clean by 7.9, and, as in the proof in (a) it satisfies the parity con-
dition. Thus (17.8.4) is satisfied by G. (If A is not a character sheaf, there is
nothing to verify.) By 19.2, we see that (17.8.3) holds for G. Arguing as in
(a) with # =Q,, we see that G, contains a cuspidal character sheaf which
is necessarily 4. Thus, G satisfies (17.8.5).

(b) G=PSpe¢(k), chark#2, or a simple group of type Cs,,
char k = 2. The set Irr°G is empty, hence there is nothing to check.

(c) G=Spglk), char k #2. The set Irr°G consists of two complexes
A’, A". The centre of G acts (11.5) nontrivially on both A’, A". The support
of A’ is the closure of a unipotent conjugacy class and A” is obtained by
applying t* to A’ for z= —1€G (see 17.17). If A’ G then it is clean by
7.9; from (17.17.1) it then follows that A” € G and is also clean. If A" € G,
then by (17.17.1) we have A’ € G, hence again both A’, A” are clean. In any
case, G is clean. If 4’eG, we show that ¢, =¢, as follows. The
possibilities for & are restricted by 17.12; we must have W,=W, =W or
We=A4A,xA, xA4,, 24 of order 2 acting non-trivially on W, or
Wy = A, Q4 of order 2 acting-nontrivially on W, or Wy, =B,, Q, of
order 2. In the case where W'y, = W, = W, we see from 11.10 that the cen-
tre of G acts trivially on any character sheaf in G ; thus A’ cannot be in
G . In the remaining cases, the hypothesis of 18.3 are verified: in all cases,
N in 183 is even and the representations of the corresponding Hecke
algebras have traces in Q[u, u~!]. From 18.3 we see that e, =£,.. The
same argument applies to A” if A” € G . Thus, G satisfies (17.8.4). By 19.2,
we see that G also satisfies (17.8.3). Now let £ € #(T) be such that W, is

607/59/1-3
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of type B, and Q. is of order 2. Let # be the family {p,¢,,¢,} of
W, =B, (see (a)), and let #' be the corresponding family of W’,. Then
Y, =%5 xQ,. Consider the character sheaves A, A" in G,
corresponding under (17.8.3) to ((g,, £5), ¢ ® 1) or ((g,, 82), e X ¢) in
M (% ;). Here g, denotes the element # e of ¥, or 2, ¢ denotes the non-
trivial character of 4, or Q.; when we write ¢ X 1, the factor ¢ refers to
% ;- and the factor 1 refers to 2. We now use the fact that the character of
the virtual representation (pXe—p X 1—¢ Ke+e X1—g Xe+
g, @ 1) of W,=W, xQ2, vanishes on elements of W', which have some
eigenvalue 1 in the reflection representation of W. As in (a), we see that 4,
A" are cuspidal. Hence they are 4" and 4” and (17.8.5) is verified for G.

(d) G=PSOg4(k), char k #2. There are exactly four complexes A4,
(1 <i<4)in Irr°G. They have the same support: the closure of the class of
su, where s is a semisimple element such that Z%(s) is isogenous to
SL,(k)Yx SL,(k)x SL,(k)x SL,(k) and u is a regular unipotent element in
Z%s). The A; are clean by 7.11(d) and 18.5 for Z%‘(s). To verify the parity
condition (15.3.1) for A, (assumed to be in G.) we use 18.3. The
possibilities for .# are restricted by 17.12: we must have W= W, = W or
We=Wg,oftype A, x A; x A, x A,. In both cases, N in 18.3 is even and
the representations of the corresponding Hecke algebras have traces in
O[u, u~']; thus, 18.3 is applicable. It follows that G satisfies (17.8.4). Using
19.2, we see that (17.8.3) holds for G.

Let & (1 <i<4) be the four local systems in & (T) whose stabilizer in W
is W itself. From 11.2(e), it follows that the sets Gg, (1 <i<4) are disjoint.
Let % be one of the &. We have W', = W, = W. Define A € G , exactly as
in (a). From (17.83), we see that (¢,4:R7)=3, (eq4: RY)= —1,
(e44: R}))= — 3 where {pg, p¢, p,} is the unique family in W with three
members, dim p; = i. Moreover, we have (¢,4: RY)=0 for all other pe W.
It is easy.to see that the character of the virtual representation
ps — ps — p,) of W is concentrated on elements without eigenvalue 1 in
the reflection representation of W. As in (a), it follows that A is cuspidal
and that each of 4,, 4,, A5, A, is a character sheaf. Thus, (17.8.5) holds
for G.

(d") G=S804(k), char k#2. Let n: SOg4(k) —» PSOg4(k) the standard
double covering. There are exactly two complexes 4', 4” in Irr°G. We may
arrange notation so that A'=n*4, =n*4,, A"=n*4; =n*A,. Using (d)
and the arguments in 17.16, we see that A, 4" are clean character sheaves
satisfying the parity condition.

(d”) G is simple of type D,, char k =2. There is a unique complex 4
in Irr°G. Its support is the unipotent variety of G. If A is a character sheaf,
then it is clean by 7.9 and as in the proof of (d) it satisfies the parity con-
dition. Thus (17.8.4) is satisfied for G. By 19.2, we see that (17.8.3) holds
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for G. Arguing as in (d) with ¥ =Q, we see that G, contains a cuspidal
character sheaf which is necessarily 4. Thus, G satisfies (17.8.5).

(¢) G is simple of type Ds or D¢, chark=2, or G=PSO k),
SO o(k), PSO,,(k), or SO,,(k), char k #2. The set Irt°G is empty, hence
there is nothing to prove.

(fy G =14Spin,,(k), char k # 2. (The half spin group 4Spin,,(k) is the
quotient ( # S0,,(k)) of Spin,,(k) by a central subgroup of order 2, for
n>3.) There are exactly four complexes A,, 4,, A;, A, in Irr°G. They
have non-trivial action of the centre of G. They have the same support: the
closure of the class of su, where s is a semisimple element such that Z%(s) is
isogenous to SL4(k)x SL,(k) and u is a regular unipotent element in Z2(s).
Each 4, is clean by 7.11(d) and 18.5. Hence G is clean. Let £ € % (T) be
such that W is of type A; and Q2 is of order 2 acting non-trivially on
W .. (Up to W-conjugacy, there are two such #.) Let E be the unique 16-
dimensional irreducible representation of W, let E be its preferred exten-
sion (17.2) to W', and let E be the other extension of E to a W’,-module.
From 17.19 we see that there exists xe W, such that E—E'=
(= 1) -1+ Tx) £ a(x) (mod 2). Such x must necessarily be in
Wy, —W,, since for any ye W, E and E' appear with the same coef-
ficient in «,. It is easy to check that for our %, the non-trivial element of
2., has odd length in W. Hence Il(v)=Il{v)+1 (mod2) for all
ve W, — W,. It follows that E— E' =« I(x)=a(x) (mod 2). From 17.18
we see that R;%’ — R¥ is a Z-linear combination of character sheaves 4 such
that ¢, = 1. From 14.13, it follows that (RZ — R : Rf — R£) =2, hence we
have Rf ~ R£ =+ A + A" where A’ # A" are two character sheaves. We
have ¢ ,, = ¢, = 1. Now let E, be any irreducible representation of W, and
let El, E be its extensions to W’,. It is known from [6, 5. 16] that
E-E = +a, for some ye W'y — W . From 17.18 we see that R¥
is a Z-linear combmatlon of character sheaves A4 such that ¢, = —1
whenever E, # E. Hence (A’ RZ — R£)=0. On the other hand, for any
E,, the character of E, + E/ is concenirated on W, and it follows from
11.10 that RE + Rf is a Q,-linear combination of character sheaves A with
trivial action of the centre of G. The same result shows that 4’ has non-
trivial action of the centre of G. It follows that (4": R + RZ)=0. We
deduce that (A:Rf)= —(4:RE)= +1/2, (4" Rf)_(A Ri’) 0 for
E,#E.

The virtual representation E— E' of W, has character concentrated on
elements in W', — W, without eigenvalue 1 in the reflection representation
V of W. (This is proved as follows. Let V="V, ® V; be the W -stable
decomposition of ¥ with V3 one-dimensional, and let y be the generator of
Q.. Any element yw, we W, acts as —1 on V; and as —wuw on ¥,
where w, is the longest element in W . Its trace on E—F is, up to sign,
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the trace of wyw on E. Hence, it is enough to show the following: if
Tr(wow, E)#0 then —wyw has no eigenvalue 1 on V,. We can choose an
isomorphism W, =~ Sp,(F,); then E becomes the Steinberg representation
of Sp,(F,). Its character is zero on elements of order divisible by 2. Hence
we are reduced to the following obvious statement: if o€ W, has odd
order then it has no eigenvalue —1 on V)

It follows that (A" y(K3))=0 (see 6.5) whenever we W', has some
eigenvalue 1 on V. From 18.2 it follows that A’ is cuspidal. Similarly, 4" is
cuspidal. Thus, G, contains at least two cuspidal character sheaves. Since
there are two choices for .Z, as above, we see that A4, (1 <i<4) are exactly
the cuspidal character sheaves of G, so that (17.8.5) is verified. To verify the
parity condition it is enough to show that ¢, =&, for A’ as above. We
have seen already that ¢, =1. From (18.3.4) we see that £, =1 since
dim G is even. Thus, (17.8.4) is verified for G.

(g) G is simple of type D,, char k=2 or G=PSO0,(k) or SO 4(k),
char k # 2. The set Irr°G is empty, hence there is nothing to prove.
This completes the proof of the proposition.

PROPOSITION 19.4.  Assume that G satisfies one of the following:
(a) G/ZG=S0,(k)
(b) G=S80y(k), char k # 2.
(c) G=PSO k), chark#2.

Then (17.8.3)~(17.8.5) hold for G.

Proof. (a) Since Irr°G (19.3.1) is empty, the statement (17.8.4) for G
follows form the analogous statement for Levi subgroups of proper
parabolic subgroups, where 19.3 applies. Using 19.2, we see that (17.8.3)
holds for G. The statement (17.8.5) is empty in our case.

(b) In this case Irr°G consists of a single complex A. It support is the
closure of a unipotent class in G. Since (17.8.5) holds for the Levi sub-
groups of proper parabolic subgroups by 19.3 and (a), we see from 7.9 that
A is clean if it is a character sheaf. It follows that G is clean (without
assumption on 4). We now assume that A €G, and prove that e, =§,.
The possibilities for .# are restricted by 17.12: W'y, = W, must be of type
B,, B;xA,, or B, xB,. In each case, N in 18.3 is even and the represen-
tations of the corresponding Hecke algebras have traces in Q[u, u~']. By
18.3, we see that £, =£,. Hence (17.8.4) holds for G. We now prove that
AeG. Let & e %#(T) be such that W', = W, is of type B, x B,. The proof
of 19.2 (Case 1) applies without change as far as the families with one or
three members in W, are concerned and establishes (17.8.3) for them. We
now consider the remaining family .%; it consists of nine representations
E X E' where E, E' run over the representations p, ¢,, &, (see the proof of
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19.3 (a)) of the Weyl group B,. As in the proof of 19.2 (Case 1) we see that
the following are combinations with integral >0 coefficients of character
sheaves:

Rf&p+RpY|Zla,+R§;IEp+R§IZIe,-’ i, je {1,2}

Ry, — Ry, —R%y,+RZy,, i je{1,2}
RZy,+R%s, —RZs,—RZy,, ije{l,2}

pBp
RYw,—Rfx,+RIx,—Rfx,, ije{l,2}.

pXp
By 14.13, the inner product ( :) of any two of these 16 expressions is
known (it is 4, 2, 1, or 0). This forces the decomposition pattern of these
expressions: there are 16 character sheaves A,, 4,,.., 4, such that
(4;: R 5 p)= 5 with the pattern of signs described by (17.8.3); from
17.18(a) we see that ¢, =1. (In our case, ¥, =Z/2Z x Z/2Z.) We now
consider the character sheaf A4,, i,e[l,16], which under (17.8.3)
corresponds to the pair ((g,, g,), ¢ X &) e #(%5). (Here, g, is the element
#e of Z/2Z and ¢ is the non-trivial character of Z/2Z.) We have

(Ay: REg ) =4, if ERE=pRpe Re,ije{l,2)

= —4  otherwise.

It is easy to check that the character of the virtual representation p X p +
28 Xe—>,pXe —3 6 W pof W, vanishes on elements which have
some eigenvalue 1 in the reflection representation of W. It follows that
(4, x(KZ)=0 whenever we W, has some eigenvalue 1. From 18.2, it
follows that A4, is cuspidal. Hence 4 = 4, and (17.8.5) is verified for G. We
have also verified (17.8.3) for one particular #. For the other %, the proof
of 19.2 is applicable; thus (17.8.3) holds for all Z.

(c) In this case, Irr°G consists of a single complex A. The proof of
(b) applies with minor changes; the various & such that G, can possibly
contain a cuspidal character sheaf have W,=W, of type Dy,
DgxA,xA,, Dsx A, Dy x Ay, and for the & such that W, is of type
D, x D,, we see exactly as in (b) that G, contains a cuspidal character
sheaf (which must be 4).

19.5. Let G =Spin,(k), char k #2. From [4] it follows that Irr°G
consists of eight complexes 4, (1 <i< 8). We may arrange notation, so that
A,, A, have the same support, the closure of a unipotent class, and A;
(3<i<8)are of form t¥A4, or t* A4, (17.17) where z runs through the non-
trivial elements of the centre of G. Moreover, the centre of G acts on each
A, by characters of order 4. We now state the following result.
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PROPOSITION 19.6. With the notations in 19.5, A, (1 <i<8) are clean,
cuspidal character sheaves of G.

Proof. 1If L is a Levi subgroup of a proper parabolic subgroup P of G,
then either L/% , is a product of groups of type A4, hence, 18.5 applies to it,
or #,/%9 has order at most 2, hence, 19.3 applies to it. In particular,
(17.8.4) and (17.8.5) hold for L. Now using 7.9, we sce that if 4, (or 4,) is
a character sheaf, then it is clean. Since any other A; is related to A, or 4,
by t* (see 19.5) it follows that those A, which are character sheaves are
clean. Hence G is clean.

Let ¥ € #(T) be such that W, is of type A, and Q, is cyclic of order 4,
acting non-trivially on W . (Note that & is uniquely determined up to W-
conjugacy. It corresponds to a semisimple class in the dual group
PSO,4(k): the class containing the image of a semisimple element in
S0 ,o(k) with two eigenvalues 1, two eigenvalues — 1, three eigenvalues
i=./—1, and three eigenvalues —1i.)

Let E be the two-dimensional irreducible representation of W, 1 the
unit representation, and o the sign representation. For each character 6:
Q, —»QF we define the Wy-modules E, =E®0, 1,=1®0, 6,=6®10
extending E, 1, and o, as in 17.3. Fix a generator w of Q. Let s,, s, be the
simple reflections of W, so that ws,w ™' =s,, ws,w ' =5,. We have

awsz.\'l = awslsz = ( - l)l(wj+ ! Z g(w)Eﬁ
6
a2, = (= 1)} 8(w)1,
2]
awslszsl = ( - l)l(w) Z 9((0)&9
2]

o, =0, =0.

wsy T Yws2

The same formulas remain valid when o is replaced by w ~'. On the other
hand, for i=0 or 2, we have

Apisy = Loyis; = Z H(CUI)EH
8
aw’e = z B(w!)T9
2]

aw[slszsl = z O(wl)&B
6
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From 17.18, we see that 3 ,0(w) R is a Z-linear combination of character
sheaves A such that ¢, = (— 1) *! and such that 4 is mapped by 11.9 to
the coset wW . From the same result we see that Z,,H(w)R-“;, > G(w)R;,?;
are Z-linear combinations of character sheaves B such that £, = (— 1)"*;
so these B are not among the A above. From 17.18(b) we see that for any
peWy,, Yeb(@)RY (0'#w) is a Z-linear combination of character
sheaves C which are mapped by 11.9 to the coset 0'W 4 #wW 4; so these
C are not among the A above. It follows that if 4G, is such that
(A: Xp0(w)RE)#0 then we have:

(4:Y 8(@)RE)=0, if o'#w
[}

0, forall i

(4: T 0(e)RY))
[}

(4:Y 6(w')RZ)=0,  forall i
¢}

Hence we have

(4:RY) =0, forall 6
(A:R%)=0, for all 6

(A: RE)=r(w) O(w) ", for all .

where r(w)+# 0 is independent of 6.

From this we can deduce (as in the proof of 19.3 (f)) that A4 is cuspidal,
using 18.2. It is enough to check that the character of ¥ ,0(w)~E, vanishes
at all elements of W', which have some eigenvalue 1 in the reflection
representation of W. The value of this character at w'x (xe W) is zero if
w'#wand is + Tr(s,s,5,x, E) if o' =w. The last trace is nonzero precisely
when x=s,, s, or s,5,8,. Thus we must prove: if xe W, is a reflection,
then wx has no eigenvalue 1 on the reflection representation V' of W. We
identify the roots with vectors in V. We denote the simple roots by «;
(1<i<5)so that a, a,, as correspond to ends of the Dynkin diagram, «;
to a branch point, and aj is joined to a,, a4, 5. Let s; be the simple reflec-
tion corresponding to «;. We may assume that W is generated by s,, s,.
There are exactly two elements of order 4 in W which map «, to «, and a,
to «,. One of them maps o, - a5 - —a, - —as — &, and the other maps
oy = — g = — 0, —>0s = 0,; both map a3 to —a; + a combination of
oy, y, 0y, 0s. It follows that w must be one of these two elements. From
this, we see that the characteristic polynomial of s;® or s, on V is
(¢ +1)(¢g>*+1) and the characteristic polynomial of s;s,5,w on V is
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(g+1)*(g*> + 1). Neither of these polynomials has g=1 as a root. This
proves that A4 is a cuspidal character sheaf. It is one of the 4, (1 <i<8)in
19.5.

From 19.5 we see that t* 4 (z ecentre of G) are distinct. They are com-
ponents of 3,0(w) RE, with the same multiplicity as 4, since 3,0(w) R is
invariant under all ¢} (see (17.17.3)). Since (X,0(w)RE : Y o0(w)RE) =4
(by 4.13), it follows that 3 ,0(w)R% = + 3 ..t*¥ A (z runs over the centre of
G). An analogous result with the same proof holds for de(w“‘)Rﬁ; it is
up to sign a sum of four distinct cuspidal character sheaves. Moreover,
these must be different from the ¥4 above since by 17.18(b), the first four
are mapped by 11.9 to oW, and the last four are mapped to @ 'W,,.
Thus, there exist at least eight different cuspidal character sheaves on G. It
follows that each of the 4, (1 <i<8) in 19.5 is a cuspidal character sheaf.
From this we deduce, as we have seen at the beginning of the proof, that
each A, is clean. The proposition is proved.

20. Groups oF TYPE E¢, E,, G,

20.1. The main results in this chapter are 20.3, 20.5, 20.6 which
assert that the statements (17.8.3)—(17.8.5) hold for the groups E,, E;, G5,
at least under certain restrictions on char k.

ProrosITION 20.2. Let ¥ € #(T) be such that (G, &) satisfies (17.8.4)
and W'y = W .. Assume that one of the following conditions is satisfied.

(a) Wy is of type Eg x A,,.

(b) Wy is of type E; x A,,.

(c) Wy is of type G,.
Then (17.8.3) holds for (G, £).

Proof. We fix a family # in W,. When % consists of one or three
representations, the argument in the proof of 19.2 (Case 1) applies without
change and shows that the RZ (Ee€ %) decompose according to the pat-
tern of (17.8.3). Assume now that % is a family consisting of two represen-
tations. Then we are in case (b) and we have & = {E, E'} where E=
512, W p, E'=512, X p where 512,, 512, are as in 17.19 and p is an
irreducible representation of the A4, -factor of W .. From [6, 5.22], we see
that there exist x, x'€ W such that

o, =E—F, T(x)=a(x) + 1(mod 2)
a.=E+F, Tix)=a(x’) (mod?2).
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From 16.6 it follows that R — RZ and RZ + R are combinations with
integral >0 coefficients of character sheaves. By 14.13, the inner products
( ) of these two elements are described by the matrix (29). It follows that
there exist four distinct character sheaves 4, (1<i<4) in G, such that
RZ-RE=A,+4,, RZ{+RE=A4;+A4,. Thus, we have RZ=
A, + A, + A3+ A4,), RE=1—-A,~-A4,+A45,+A4,). Moreover, by
17.18(a) we have &, =6, = —1, ¢4, =¢,,=1. Hence the pattern of
(17.8.3) is established.

Next, we assume that in case (a) with n=0, & is the family consisting of
80,, 60,, 90,, 10, 20, (notations of [6, 4.11]). By [6, 7.3] each of the vir-
tual representations 80, +¢-60, + 10,, 80, +¢-60, +90,, 2-80,—10,,
2-80,—90,, 80, —20, (¢= + 1) is of the form «, for some xe W, such
that X(x)=a(x) (mod2). From 16.6, we see that the expressions
R +eRG +RY, Ry +eRE +RS, 2-Rig —RY, 2RE —RE,
Rg,— R, (e= 1) are combinations with integral >0 coefficients of
character sheaves. Using [6, 7.7(iii) ] we deduce that the pattern of decom-
position of each R; (E€ %) is as in (17.8.3). (For each A€ G, we have
¢4 =1 by 17.18(a).) The same argument applies whenever % is a family
with five representations. Essentially the same argument, using [6, 7.7(ii)]
instead of [6, 7.7(iii) ], applies in the case where # is a family consisting of
four representations (which can only arise in case (c)). Since in our case,
there are no families with more than five representations, the proposition is
proved.

ProrosiTION 20.3.  Assume that G is one of the following:
(a) an adjoint group of type E,
(b) a simply connected group of type Eq, with char k # 2,
(c) an adjoint group of type E,.
Then (17.8.3)-(17.8.5) hold for G.

Proof. In many respects the proof is similar to that of 19.3.

(a) To any Levi subgroup of a proper parabolic subgroup of G, we
may apply 19.3. Hence to check (17.8.4) for G it is enough to check that
any cuspidal character sheaf of G is clean and satisfies the parity condition.
The complexes in Irr°G are classified as follows [4]. If char k # 3, Irr°G
consists of six complexes with the same support: the closure of the con-
jugacy class of su where s is a semisimple element whose connected cen-
tralizer is isogenous to SL;(k)x SL;(k)xSLy(k) and u is a regular
unipotent element in Z%(s); these complexes are clean by 7.11 (d) and 18.5.

If char k=3, Irr°G consists of two complexes with the same support: the
unipotent variety of G; if one of these complexes is a character sheaf, then
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it is clean by 7.9, since (17.8.5) is known to hold for proper Levi subgroups.
Hence G is clean.

If G, contains a cuspidal complex, we see from 17.12 that the
possibilities for ¥ are restricted: we must have W, =W, of type E,
A, x A, x A, or As x A,. In each of these cases, 18.3 shows that the parity
condition is satisfied.

Thus, G satisfies (17.8.4). Now using 20.2(a) and 19.2, we deduce that G
satisfies (17.8.3). To prove (17.8.5) it is enough to prove the following
statement: if W, =W then G, contains at least two distinct cuspidal
character sheaves. (When char k # 3, there are precisely three . such that
W, = W; when char k=3, there is only one such Z.)

We consider & € £ (T) such that W, = W. Let 4, be the character sheaf
in G, which under (17.8.3) corresponds to the family # = {80,, 60, 90,,
10,, 20,} (notation of [6, 4.11]) and to the element (g5, 0) € #(% 5) where
g5 is an element of order 3 of 4,~®, and 0 is a non-trivial character of
Zo,(8)=Z/3L.

From (17.8.3) it follows that

(€040 : RE) =14, (€4,40 1 RE)=0, (€4,dp 1 RE)=—4%
(8A(;A9 : R%S) = %’ (EA()AH : R%A.) = %7

and
(ea,dp : RE)=0  forall EcW, E¢ZF.

In order to prove that A, is cuspidal it is enough, using 18.2 as in the
proof of 19.3(a), to show that the character of the virtual representation
80, — 90, — 10, 4 20, of W vanishes on all elements of W which have some
eigenvalue 1 in the reflection representation W. This is easily verified, using
for example the character table of W. Thus the 4, for the two choices of 0
are cuspidal and the proposttion is proved in our case.

(b) If char k=3, this is proved exactly as in (a). Hence, we may
assume that char k #2, 3. As in (a), to check (17.8.4) for G it is enough to
check that any cuspidal character sheaf of G is clean and satisfies the parity
condition. The complexes in Irr°G are classified as follows (see {4]). The
set Irr°G consists of 14 complexes. Two of these have trivial action of &
and are of the form n*A4 where A4 is one of the cuspidal character sheaves
of G/%, described in the proof of (a). (Here, n: G - G/Z,; is the canonical
map.) Hence these two complexes are clean character sheaves satisfying the
parity condition. In addition, there are six complexes in Irr°G whose sup-
port has the following form: the closure of the conjugacy class of an
element su where s is a semisimple element whose centralizer is isogenous
to SL,(k)x SLg(k), and u is a regular unipotent element in Zg;(s); these
complexes are clean by 7.11(d) and 18.5.
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Next, there are two complexes A, A” in Irr°G with the same support: the
closure of a unipotent class in G. Finally, t*A’, t* A" (see 17.7), where z is
a non-trivial element in Z;, are in Irr°G. If one of the complexes A’, A" is a
character sheaf, then it is clean, by 7.9. The same is then true for ¢* A’,
t*A". Thus, G is clean. Assume now that 4G, is a cuspidal character
sheaf. The possibilities for & are restricted by 17.12: we must have W', =
We=Wor We=Wg of type As x A or W, of type A, x A, x A, with
Q4 of order 3 acting by cyclic permutation of the factors, or W, of type
D, with Q. of order 3 acting non-trivially on W, or W, of type
A, xA; xA, xA, with Q4 of order 3 acting non-trivially on .. Using
18.3, we see that A satisifes the parity condition, Thus, G satisfies (17.8.4).
Using 19.2 and 20.1(a), we see that G satisfies (17.8.3). It is then enough to
show that G has at least 14 distinct character sheaves. As we have seen
earlier in the proof (as a consequence of (a)), G has at least two character
sheaves with trivial action of Z.

Let ¥ e€%(T) be such that W, is of type D, and Q.. is of order 3,
acting non-trivially on W. Then .# is uniquely determined up to W-con-
jugacy. It is enough to show that G, contains at least 12 character sheaves
which are mapped by 11.9 to some nontrivial coset in W,/W.. Let
F < W, be the family {ps, ps, p,} (notations as in the proof of 19.3(d)),
and let #' be the corresponding family {(5s)s, (Ds)e> (P2)s} in Wi
(Notations are as in the proof of 19.2 (Case 4); 6 is any character of 2_,.)
We have 9, =Q, x7Z/2Z. We denote by g any element of Z/2Z, by w
some generator of 24, and by ¢ the non-trivial character of Z/2Z. Then
0 X ¢ is a character of 4. and we denote by A4, ., the character sheaf in
G corresponding under (17.8.3) to %' and to (wg, 8 X ¢)e . # (%4 ).
When o, g, 0 vary, we get 12 different character sheaves. We shall show
that 4, ,, is cuspidal. From (17.8.3), we see that

(w)il’ (8 Amg@ R(p2)9)— éel(w)_l’

(ElAw,gG :ngg)g) %6
0 (@) "e(g), (144,00 : RE)=0

(81 Aw,g 6 - Rigp,ﬁ)g )

for any E, € W, — #'. Here, ¢, € { + 1}. To show that 4, g0 18 cuspidal, it
is enough, using 18.2 as in the proof of 19.3(a), to show that the character
of the virtual representation

L0(@) " ((Bs)o — (P2)e +2(8)(Pe)o)
s

of W', vanishes on all elements of W', which have some eigenvalue 1 in
the reflection representation of W. This, in turn, follows from the following
statement.
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(20.3.1) The characters of both virtual representations gz — g, and g
of W, vanish on all elements of form wxe W, (v = generator of 2,
xe W) which have some eigenvalue 1 in the reflection representation
of W.

This can be checked as follows. We may assume that W is generated by
four simple reflections of W. The normalizer W’ of W, in W is isomorphic
to a Weyl group of type F, and W', is a subgroup of index 2 of W'. The
representations fg, §,, §e of W’y extend to representations of W’. We can
then make use of the character table of a Weyl group of type F, and see
that (20.3.1) holds. This completes the proof of the proposition in case (b).

(c) U L is the Levi subgroup of a proper parabolic subgroup of G,
we may apply either (a) or 19.3 to L/Z9. Hence (17.8.4) holds for L/%9
and for L. Hence to check (17.8.4) for G it is enough to check that any
cuspidal character sheaf of G is clean and satisfies the parity condition. The
complexes in [rr°G are classified as follows. If char k # 2, then Irt°G con-
sists of four complexes with the same support: the closure of the conjugacy
class of su where s is a semisimple element whose connected centralizer is
isogenous to SL,(k) x SL,(k)x SL,(k) and u is a regular unipotent element
in Z2(s); these complexes are clean by 7.11(d) and 18.5. If char k =2, then
Irr°G consists of two complexes; they have the same support: the unipotent
variety of G. If one of these is a character sheaf, then it is clean by 7.9, since
(17.8.5) is known to hold for proper Levi subgroups. Hence G is clean.
Let & € #(T) be such that W, = W, = W. If char k # 2, then there are
two such %, and if char k=2, there is a unique such .#. If we show that
G, contains at least two cuspidal character sheaves 4,, 4, with
g4, =£&4, = —1 then it will follow that (17.8.4) and (17.8.5) are verified for
G. (We have necessarily é, =¢,, = — 1, since G has odd dimension; see
(18.3.4).) By [6, 5.22] there exist x, x' € W, such that

o, =512, —512, (x)=a(x)+1 (mod 2)
o, =512, —5127, I(x)=a(x) (mod 2)

I

(notations of 17.19). If we set E=512,, E'=512/, it follows from 17.18
that RY — RZ is a Z-linear combination of character sheaves A such that
¢, = —1 and that R¥ + RZ is a Z-linear combination of character sheaves
A’ such that ¢, =1. By 14.13 we have (RZ — RZ : RZ — RZ)=2, hence,
there exist two character sheaves 4, # A4, such that R — RZ =1+ A, + 4,.
Moreover, we have ¢, =¢4, = —1 hence, (4, : Rf + R£)=0, for i=1,2.
Any E, € W, othen than E, E' is a Q-linear combination of elements a, for
y in a two-sided cell other than that of x (see 16.4). From 17.19, for all such
y, we have I(y) = a(y) (mod 2); now using 17.18, we see that R is a Q-



CHARACTER SHEAVES, IV 43

linear combination of character sheaves 4 such that ¢, = 1. It follows that
(4;:RZ)=0, for i=1,2 and E, # E, E'". We also see that

(4;:Rf)=—(4;:RZ)=13 (i=12),

We shall show that 4,, A, are cuspidal. Using 18.2 as in the proof of
19.3(a), we see that it is enough to show that the character of the virtual
representation 512, — 512, of W vanishes on all elements of W which have
some eigenvalue 1 in the reflection representation ¥ of W. This is proved as
follows. We identify W with Spg(F,) x Z/2Z and 512,, 512, with the two
extensions of the Steinberg representation of Spy(F,) to Spe(F,)x Z/27Z.
(The Z/2Z-factor is generated by the longest element w, of W.) The charac-
ter of the Steinberg representation is zero on elements of order divisible by
2. Since w, acts as —1 on ¥V, we are reduced to the following obvious
statement: if we W has odd order then it has no eigenvalue —1 on V.
(Compare with the proof in 19.3(f).) Thus, 4,, 4, are cuspidal. This shows
that (17.8.4), (17.8.5) hold for G. We may now apply 20.2(b) and we see
that (17.8.3) also holds for G. This completes the proof of the proposition.

COROLLARY 20.4. Assume that G is an adjoint group of type E¢. Let
f:G— G be the non-trivial outer automorphism of G such that f(B)= B,
f(N)=T. Let £=Q,e L(T). Then for any A€ G, we have f*AxA.

Proof. We have W, = W. It is clear that f* takes G, to itself. For any
Ee W, we have f*R¥Z = RY where E is the W-module obtained from E by
composition with the automorphism of W induced by f. As this
automorphism of W is inner (conjugation by the longest element), we have
E=E hence, f*Rf = RZ. Hence, for any Ee W and any 4e G, we have
(f*4: RZ)=(A : RZ). From (17.8.3) for (G, &), we see that Ae G, is
completely determined by the multiplicities (4 : RY), (E € W), except when
A is cuspidal. ,

Hence, f*A~ A if A€G, is non-cuspidal. Assume now that A€ G, is
cuspidal and char k = 3. Then A is completely described by a (non-trivial)
one-dimensional representation of the group Z(u)/Z°(u) of components of
the centralizer of a regular unipotent element v e G. (The support of A4 is
the closure of the class of u.) We can choose u such that f(u)=u; it is then
enough to show that f acts trivially on Z(u)/Z°(u). This follows from the
known fact that Z(u)/Z°%u) is a cyclic group (of order 3) generated by the
image of u.

Assume next that char k # 3. Let se T be a semisimple element such that
the simple root corresponding to the branch point takes the value 0 e€k*
(=1, 8% 1) on s and all other simple roots take the value 1 on s. Then
Z°(s) is isogenous to SLj(k)x SL;(k)x SLs(k). Let ue Z°s) be a regular
unipotent element. We have f(s) =s and we may assume that f(u) =u. The
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group of components Z(su)/Z°su) is isomorphic to C; x Cy where Cs, C}
are cyclic groups of order 3 and C, is generated by the image of su. The
action of f on Z(su)/Z°%su) is as follows: f is the identity on C, and f acts
as g —» g~ ! on C;. The six cuspidal character sheaves of G are supported by
the closure of the class of su; they are completely described by a one-
dimensional representation of Z(su)/Z%su)= C; x C; which is non-trivial
on C;. From the description of the action of f on C; x C§ given above it
follows that there are exactly two cuspidal character sheaves of G which are
fixed by f*. If a cuspidal character sheaf is in G ., £’ # &, then it is not
fixed by f*, since f maps ¥’ to %’ ~! which is not in the W-orbit of &'
This implies that the two cuspidal character sheaves in G, must be fixed
by f*. The corollary is proved.

PROPOSITION 20.5. Assume that G is simply connected of type E,,
char k #£3. Then (17.8.3)}-(17.8.5) hold for G.

Proof. 1If char k =2, this is proved exactly as in 20.3(c). We assume now
that char k # 2, 3 and we denote by z the non-trivial element in ;. By 19.3
and 20.3(a), the statements (17.8.3)}-(17.8.5) hold for /%% where L is any
Levi subgroup of a proper parabolic subgroup of G; hence they also hold
for L.

According to [4], the set Irr°G consists of eight complexes. Two of these
have trivial action of Z; and are of form n*4, where 4 is one of the
cuspidal character sheaves of G/Z; described in the proof of 20.3(c). (Here,
n: G - G/%; is the canonical map.) Hence, these two complexes are clean
character sheaves satisfying the parity condition; they belong to G «, Where
Z,=Q,. In addition, there is a unique complex A4 € Irr°G whose support is
the closure of a unipotent class. If it is a character sheaf, then it is clean, by
7.9. The same is true for t* 4 € Irr°G. Note that t* 4 # A since they have
different support.

Next, there are two complexes A, A” € Irr°G with the same support: the
closure of the conjugacy class of su, where s is a fixed semisimple element
whose centralizer is isogenous to SLg(k)x SL4(k), and u is a regular
unipotent element in Z;(s). Then A’, A” are clean by 7.11(d) and 18.5; the
same holds for t*¥4’, t* A" e Irr°G.

Note that t* 4’, t¥ A” have the same support which is different from the
support of A, 4” since zs is not conjugate to s. This completes the list of
complexes in Irr°G. The complexes A4, t*A, A', A", t*4’, t* A" all have
non-trivial action of Z; and none of then is fixed by ¢*. We see that G is
clean.

To prove that G satisfies (17.8.4), it is now enough to prove that for any
cuspidal character sheaf 4 of G on which Z, acts non-trivally, we have
g4=24,
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If A€ G, then R, must be of order 2 (since &, acts non-trivially on A)
and the possibilities for & are further restricted by 17.12. We must have

(i) W of type A5 x A3 x A,, with Q 5 switching the two A-factors.
(i) Wy of type A,, with Q, acting non-trivially on W,.
(iii) W, of type E4, with Q, acting non-trivially on W,.
(iv) W of type D, x A, x A, with Q, acting non-trivially both on
the D,-factors and on the 4, x 4, factor.
(v) Wy of type A, x A, x A,, with Q switching two of the A4,-
factors.

In all cases, 2 has four orbits on the set of simple reflections of W . If
we are in case (i), {iv), or (v), the representations of the Hecke algebra
corresponding to W', have traces in Q[«, #~'], and from 18.3, we see that
£, =£,. Assume now that we are in case (ii) or (iii). Since A4 is cuspidal, we
have dA=E,A4 (see 15.5). Since Z; acts non-trivially on 4, we have
t¥ A # A, as we have seen earlier in the proof. Now using 17.21, it follows
that ¢, = — 1. (It is easy to check that the generator of Q2. has odd length
in W.) Since G has odd dimension and A is cuspidal, we have £, = —1 (see
(18.3.4)). Hence, again we have é,=¢,. This shows that G satisfies
(17.8.4).

We now show that (G, %) satisfies (17.8.3) for any L e #(T). If £ is
not as in (iii) above, this follows from 20.2 and 19.2. Hence we may assume
that % is as in (iii) above. We may also assume that W is generated by a
subset 7 of S. Any family in W'y, consists of 2, 6, or 10 representations. For
families with 2 or 6 representations, we may argue exactly as in the proof of
19.2 (case 3).

Let us now consider the family #’ in W, consisting of the represen-
tations §T)s, 365, 563, Es, EZVOS (preferred extensions to W', of the represen-
tations 80,, 60,, 90,, 10, 20, of W, ; see [6, 4.11]) and 80,, 60, 90,, 10,
20, (the non-preferred extensions). We have W, = W, = W', , (notation of
15.6). Let # be the family {80, 60,, 90,, 10,, 20,} of W.. Let L,, RZ!be
as in 15.6 and let i¥ be as in 15.3. If 4, A'e(L,),, we have

(205.1) (i$A:i5A)Y=(A:A)+(4:f*4')

where f: L, —» L, is the map given by conjugation by a representative in
N(T) of the non-trivial element in € ... The proof of (20.5.1) is almost iden-
tical to that of (17.12.6); the only difference is that x in that proof is not
necessarily 1; it can be any element of Q.. We have ¥ == é,| T, where
To: Ly = L/(L))ge is @s in 17.9 and &, € #(L,;/L,)q4..) is the unique local
system such that & #Q,, €8?=Q,. Let n,: L, > (L,),4 be the canonical
projection, T the image of T under =, and let ¥, be the local system Q,
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on 1 T. From 17.9 and 17.10 it follows that 4, » #, A® n¢ &, is a bijection

((L Jad) %, - (L;)y. Now using 204, and the isomorphism f*(nfé&,)=
ng&é,, we see that f*4'= A’ for all A’e(L,),. Hence (20.5.1) becomes

(2052) (SA:i54")=24:4").

This implies that for each character sheaf A€ (L), there exist two charac-
ter sheaves 4 # A’ on G such that

(2053) $A=A+ A"

Moreover, A is uniquely determined by either 4 or 4". If E€ %, we have
de =E+E; using 15.7(i) it follows that iS(RZ')y=R¥ + RZ. Since

(17. 8 3) is already known for (L,, #) (it follows from 20.3(a)), we know
that (L), 1) ».# consists of eight character sheaves 4,, 4,,..., 45 and we know
explicitly the coefficients ¢, ; in

RZ! = Zc (Ee F).

i=1

Applying ¥ and using (20.5.3) we find
8 A~ A~
(2054) RE+RE=Y ¢ oA, +A) (Ec).

In particular, the 16 character sheaves 4,, 4/ (1 <i<8) are in (G) «.# and
the multiplicities (A Rf + RZ)=(4;: R + RZ)=c,, are known.

Note also that 4,, 4! have trivial action of %;. (Indeed, L, has a connec-
ted centre; this 1mp11es that each i§ A; has trivial action of %, hence our
asserition.)

This gives only a part of the pattern (17.8.3) for #'. To get the full pat-
tern we must also decompose the differences Rf — RZ (E e #). We shall do
that using the following statement.

(20.5.5) For any AeG ».7 With non-trivial Z;-action, we have
1¥*A+#A.

Assume for a moment that (20.5.5) is proved. From [6, 7.10], we see
that the following seven virtual representations of W', are of form «, for
some x € W'y, — W, such that I(x)=a(x) (mod 2):
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(205.6) (80, —30,) +£(60, — 60,) + (10, — 10,),
(80, —380,) + (60, — 60,) + (90, —90,),
2(80, —80,) — (10, — 10,),
2(80, —80,) — (%0, —90,),
(80, —80,) — (20, —20,).

Here, 6= + 1.

By 16.6 and 17.18(b) the elements Ry, where ? is one of the expressions
(20.5.6), are combinations with integral >0 coefficients of character
sheaves with non-trivial action of %;. Moreover, from (20.5.5) and
(17.17.3) we see that these R are combinations with integer, >0 coef-
ficients of expressions (A +t* A) where A are character sheaves in Gy 5
with non-trivial action of Z;. The inner product ( : ) of any two such RY
is known from 14.13. We may apply [6, 7.7(ii), (iii)] to the real vector
space V spanned by all 4+ ¢* A4 (where A4 is any character sheaf in G Py
with non-trivial action of %), with orthonormal basis (1/\/5)(A +1¥A4),
and to the orthonormal set (l/ﬁ)(Rf —RE) (EeF).

This gives each of (1 /ﬁ)(Rf — RZ) as an explicit Q-linear combination

of J(A"+1*¥A") (1 <i<8) where 4',..., 4%, t*A',.., t* A® are distinct charac-
ter sheaves with non-trivial action of Z;. (Hence, they are distinct from
Ay, Ag, A},.., A5 above.) This gives the pattern of decomposition of each
RE — RZ (E€ ). Since the pattern of decomposition of each R¥ + R¥ is
already known, we find the pattern of decomposition of each R¥ and R¥
in terms of the 32 character sheaves A',.. A% t¥A4'. t*4% 4,,., A,
4'..., A;, and we see that the pattern of (17.8.3) is verified.
Let us now verify (20.5.5). If 4 (as in (20.5.5)) is cuspidal, then we have
t* A # A. (As we have seen earlier in the proof, for any A’ € Irr°G with non-
trivial &;-action, we have t* A4 # A.) Assume now that A4 is noncuspidal.
Then 4 is a direct summand of a complex induced by a cuspidal character
sheaf A’ of the Levi subgroup L; of a parabolic subgroup P, of G of type
Dgor A, xA; x A,. (In the last case, P, is defined by the following three
vertices of the Coxeter graph of E,. One is the end point v, at distance one
from the branch point, one is the end point v, at distance three from the
branch point and one, v,, is at distance two from both v, and v,; see [6,
15.17.)

The case where P, is of type Dy cannot actually occur. Indeed, in that
case we would have £, =1 (see the proof of 15.5), hence, ¢, =1 (since
(17.8.4) holds for G). On the other hand, from (18.3.3) we see that e, = —1
for all A€ Gy & (Indeed, in (18.3.1) we have N even for all Ee #'.)
Hence P, must be of type 4, x 4, x A, (described above). In this case, it
follows that the support of A is the closure of one of the following two sets
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Xi = U x(zi(ggl)reg UL/)X_l’ i= 1, 2,

xelG

where 279 )..,, U,, are defined as in (18.5.4) and z, =e¢, z, =z Just as in
the proof of (18.5.5) we see that X, nX, =, hence, X, # X,. We have
X, =zX,. Hence, if 4 has support X, (resp. X,) then * 4 has support X,
(resp. X ), so that 7* 4 # A4, and (20.5.5) is verified. This also completes the
verification of (17.8.3) for G. It remains to prove that G satisfies (17.8.5).
We have seen already that if %, =Q,, then G «, contains at least two
cuspidal character sheaves. It is then enough to show that, if & is as in (iii)
above, then G, contains at least six distinct cuspidal character sheaves.
Consider the family %' in W', consisting of 10 representations. We have
Y 5 =, x ;. We consider the character sheaves 4, € G’Z‘y (1<i<6)
which under (17.8.3) correspond to the elements (wg;, v X ), (v, v X 1)
in #(%4.); here v is any character of Q, ~7/27, w is the generator of
Q,, gy is an element of order 3 of Zg (g;)~7Z/3Z, 6 is a non-trivial
character of Z_(g3), and 1 is the unit representation of ;. We show that
A,y (1<i<6) are cuspidal. Using 18.2 as in the proof of 19.3(a), we see
that it is enough to show that the characters of the virtual representations

(
it

of W', vanish on all elements of W", which have some eigenvalue 1 in the
reflection representation of W. This, in turn, is equivalent to the following
statement. The characters of the virtual representations

~_

- (0 -90,)— (0—10)+(0—20)
J) + 3(60, — 60,) +2(90, —90,) + 2(10, — 10,) + (20, — 20,)

80, — 80,
80, — 80

80, —90, — 10, + 20,
80, +3-60, +2-90, +2- 10, + 20,

of W vanish on all elements of W, which have some eigenvalue —1 on
the reflection representation of W . This can be checked using the charac-
ter table of W . This completes the proof of the proposition.

PROPOSITION 20.6. Assume that G is simple of type G, and char k #2.3.
Then (17.8.3)-(17.8.5) hold for G.

Proof. By 18.5, the statements (17.8.3)—(17.8.5) hold for L/Z9 where L
is any Levi subgroup of a proper parabolic subgroup of G; hence, they also
hold for L. The complexes in Irr°G are classified as follows [4]. The set
Irr°G consists of four complexes. One of them is supported by the closure
of the conjugacy class of su where s is a semisimple element with centralizer
~80,(k) and u is a regular unipotent element in Z(s). This complex is
clean by 7.11(d) and 18.5. Two other complexes in Irr°G are supported by
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the closure of the conjugacy class of s'«’ where s’ is a semisimple element
with centralizer ~SL,(k) and «’ is a regular unipotent element in Z(s).
These complexes are clean by 7.11(d) and 18.5. Finally, there is a complex
in Irr®G which is supported by the closure of the subregular unipotent class
in G. If this is a character sheaf, then it is clean by 7.9. It follows that G is
clean.

To prove that G satisfies (17.8.4) it is now enough to show that for any
cuspidal character sheaf 4€ G, we have ¢, =§,. The possibilities for &
are restricted by 17.12; we must have W', = W, of type G,, A, or A, X A;.
In each case, we see from 18.3 that ¢, =£,. Thus, G satisfies (17.8.4). Now
using 20.2(c) and 19.2, we see that (17.8.3) holds for G. To prove that
(17.8.5) holds for G, it is enough to show that if ¥ =Q,, then G, contains
at least four cuspidal character sheaves. Let 4,, 4,, 4;, A,€G, be the
character sheaves corresponding under (17.8.3) to the family & = {V, V/,
€1, 623 of W (notations of [6, 4.8]), and to the elements (1, ¢), (g, &),
(g3, 0), (g3,0%) in M(%5)=#(®;). Here g, is an element of order 2 of
®;, ¢ is the sign character of ®; or its restriction to Zg,(g;), g3 is an
element of order 3 of ®,, and 6, 67 are the nontrivial characters of Zg,(g5).
We shall show that 4, 4,, A5, A, are cuspidal. Using 18.2, as in the proof
of 19.3(a), we see that it is enough to show that the characters of the vir-
tual representations

V—3V"+2¢ + 2¢,, V-V, V—g —¢&

of W vanish on all elements of W which have some eigenvalue 1 in the
reflection representation of W. This is easily checked using the character
table of W. This completes the proof of the proposition.

21. Groups ofF TYPE Eg AND F,

21.1. In this chapter we shall prove that the statements
(17.8.3)-(17.8.5) hold for the groups of type F; and F,, assuming that we
are in good characteristic.

PROPOSITION 21.2. Assume that G is simple of type Eg and char k #2, 3,
5. Then G satisfies (17.8.4).

Proof. By 20.3, 19.3, the statements (17.8.3)-(17.8.5) hold for L/Z9
where L is a Levi subgroup of any proper parabolic subgroup of G; hence,
these statements also hold for L.

According to [4], the set Irr°G consists of 13 complexes.

(a) There is a unique complex in Irr°G supported by the closure of a
unipotent class; if it is a character sheaf, then it is clean, by 7.9.
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(b) There is a unique complex in Irr°G supported by the closure of
the class of su, where s is a semisimple element with Z(s) isogenous to the
product of SL,(k) with a simply connected group of type E- and u is a cer-
tain unipotent element in Z;(s); this complex is clean by 7.11(d), 18.5 (for
SL,(k)), and 20.5.

(c) There are two complexes in Irr°G with the same support: the
closure of the class of su, where s is a semisimple element with Z;(s)
isogenous to the product of SL,(k) with a simply connected group of type
E¢ and u is a certain unipotent element in Z(s); these complexes are clean
by 7.11(d), 18.5 (for SL,(k)), and 20.3(b).

(d) There are two complexes in Irr®G with the same support: the
closure of the class of su, where s is a semisimple element with Z;(s)
isogenous to Spin, (k) x SL,(k) and u is a certain unipotent element in
Z;(s); these complexes are clean by 7.11(d), 18.5 (for SL,(k)), and 19.6.

(¢) There are four complexes in Irr®G with the same support: the
closure of the class of su, where s is a semisimple element with Z(s)
isogenous to SLs(k)x SLs(k) and u is a regular unipotent element in
Zs(s); these complexes are clean by 7.11(d) and 18.5 (for SL4(k)).

(f) There are two complexes in Irr°G with the same support: the
closure of the class of su, where s is a semisimple element with Z;(s)
isogenous to SL,(k)x SL4(k)x SL¢(k) and u is a regular unipotent element
in Z4(s); these complexes are clean by 7.11(d) and 18.5.

(g) Finally, there is a complex in Irr°G whose support is the closure
of the class of su, where s is a semisimple element such that Z;{(s) is
isogenous to Spin, (k) and u is a certain unipotent element in Z;(s). This
complex is clean by 7.11(d) and 19.4(c). (Note that from [4] it follows that
any complex in Irr® Spin 4(k) supported by the closure of a unipotent class,
comes from a complex in Irr® PSO ((k), so that 19.4(c) is applicable.).

This completes the classification of complexes in Irr°G and shows that G
is clean. Assume now that A€ G is a cuspidal character sheaf. To com-
plete the proof it is enough to show that ¢, =&,. The possibilities for &
are restricted by 17.12; we must have W', =W, of type Es, E; xA4,,
EgxAy, Dsx Ay, Ay x Ay, As x A3 x A, Ag, A; x A, Dg. In all cases but
the first two, we may apply 18.3; the integer N in 18.3 is even in these cases.
Hence, we may assume that W, is of type E; or E; x A,. Assume first that
W is of type Eg (hence, W, = W). From (18.3.4) we see that £, =1.
Assume that ¢, = —1. We shall reach a contradiction as follows.

Let 4, (i=1, 2) be the two cuspidal character sheaves in (L,),, where
I< S is such that L,/2? is an adjoint group of type E, (see the proof of
20.3(c)). If ne G normalizes L,, then conjugation by » leaves each A,
stable; indeed 4; come from cuspidal character sheaves of L,/29, and con-
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jugation by n induces an inner automorphism of L,/Z9 . It follows that in
our case, (17.12.5) simplifies to

(IFA, 1 i§4,)=2(4, : 4)), i, je{l,2}.

Hence, we can write iS4, =4, + 4}, iS4, = 4, + A, where 4,, 4}, 4,, 4,
are four distinct character sheaves of G. By (17.8.3) for L,, we have
RZI —RZL=A,+4,. Applying i to both sides and using 15.7(i), we find

512

(21.7.1)  Rifoe — Rivos: + Rios, — Ribos, = A1 + A1 + 4, + 45.

4096

From 17.18 and 17.19 we see that both Rf;% Rﬁ% and Res. — Rifos,
are Z-linear combinations of character sheaves; since both of these
elements have self inner product ( : ) equal to 2, we see from (21.7.1) that
each of them is the sum of two of the character sheaves 4,, 4, 4,, A.
From the definition of 4,, 4, 4,, A,, we see that neither of them is
cuspidal. We deduce that our given cuspidal character sheaf A satisfies
(4: R4O96 R, )=(A: RGs — Rioes.)=0. From 17.8 and 179 we see

that RZ ..+ RZ . and Rgs + Rifss are Z-linear combinations of charac-

4096 4096
ter sheaves A4’ such that ¢ , =1.8ince ¢, = —1, we must have (4 : RZ a0, +
4096 ) =(A4 : R, + Riges,)=0. It follows that (4 : R4096 )=(4: R“096 ) =

(4: R4096 )=(A4: R )=0. For all Ee W such that dim E #4096, the
character of the corresponding representation E(u) of the Hecke algebra
has values in Q[u, u~']. We may therefore use 18.3 and we see that
¢4 =£&,, a contradiction.

The case where W, is of type E; x A, is treated in an entirely similar
way. (In this case, the trouble is created by the four irreducible represen-
tations of degree 512 instead of those of degree 4096 for W, of type Ey.)

This completes the poof.

PROPOSITION 21.3.  Assume that G is simple of type F, and char k #2, 3.
Then G satisfies (17.8.4).

Proof. By 19.3 and 19.4(a), the statements (17.8.3)-(17.8.5) hold for L
where L is a Levi subgroup of any proper parabolic subgroup of G.
According to [4] the set Irr°G consists of seven complexes.

(a) There is a unique complex in Irr°G supported by the closure of a
unipotent class; if it is a character sheaf, then it is clean, by 7.9.

(b) There is a unique complex in Irr°G supported by the closure of
the class of su, where s is a semisimple element with Z,(s) isogenous to
Spe(k) x SL,(k) and u is a certain unipotent element in Z(s); this complex
is clean by 7.11(d), 18.5 (for SL,(k)), and 19.3.

607/59/1-4
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(c) There are two complexes in Irr°G with the same support: the
closure of the class of su, where s is a semisimple element with Zg(s)
isogenous to SL,;(k)x SL;(k) and u is a regular unipotent element in
Zs(s); these complexes are clean by 7.11(d) and 18.5 (for SL,(k)).

(d) There are two complexes in Irr°G with the same support: the
closure of the class of su, where s is a semisimple element with Z.(s)
isogenous to SL,(k)x SL,(k) and u is a regular unipotent €lement in
Z(s); these complexes are clean by 7.11(d) and 18.5.

(e) There is a complex in Irr®G supported by the closure of the con-
jugacy class of su, where s is a semisimple element such that
Z;{(s)~Spinyg(k) and u is a certain unipotent element of Z;(s); this com-
plex is clean by 7.11(d) and 19.4(b). (Note that from [4] it follows that
any complex in Irr® Sping(k) supported by the closure of a unipotent class
comes from a complex in Irr® SO4(k), so that 19.4(b) is applicable.)

This completes the classification of complexes in Irr’G and shows that G
is clean. To complete the proof it is enough to show that ¢, =£, for any
cuspidal character sheaf A€ G,. The possibilities for % are restricted by
17.12; we must have W', = W, of type F,, C4, By x Ay, Ax x A5, A3 x A|.
In each case, 18.3 shows that £, =¢,. This completes the proof.

COROLLARY 21.4. Assume that G is as in 21.2 and 21.3.

(@) If ZeP(T)is alocal system # Q, then (17.8.3) holds for (G, &£).

(b) If £ eS(T) is the local system Q, and F < W is a family with
at most five representations then (17.8.3) holds for (G, £) as far as F is
concerned.

Proof. (a) follows from 20.2(a), (b), and 19.2, since (17.8.4) holds for G,
by 21.2, 21.3. We now prove (b). If # has one or three representations, the
proof of 19.2 (case 1) applies without change. If & is a family with two or
five representations, the argument in the proof of 20.2 applies without
change. This completes the proof.

21.5. Assume that %, = Q, e #(T). According to [4, 9.2(d)], the
endomorphism algebra of K#* = K% is canonically isomorphic to the group
algebra Q,[W]. Hence, we have a canonical direct sum decomposition
K5 =@ p.w (E® Ag), where A, are character sheaves of G and EQ A is
an isotypical component for the action of W. Recall that in 17.8 we have
defined m . to be the image of E e W under the imbedding (17.8.1) (we now
have ¥ = %). Thus, m, e Ll o #(% ), where # runs over the families of
W. With these notations, we can state the following resulit.
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PROPOSITION 21.6. Assume that G is clean. For E, E' € W we have
(Ap : Ré’“) = {mE’9 mE}
where { , } is defined as in (17.8.2).

Proof. We may assume that k is an algebraic closure of the finite field
F,. We choose an F-rational structure on G as in 13.1. We assume that g
is large enough so that each maximal torus in G defined over F, contains
regular clements defined over F,. We shall show that the desired formula
can be reduced to an analogous formula concerning irreducible represen-
tations of G(F,), which in turn, is a special case of the main theorem 4.23
in [6]. For each Ay (E€ W) we have a canonical choice for the
isomorphism ¢, : F*A; ~ A (see (13.8.1)) with the following property: If
s, € G(F,) is a regular semisimple element corresponding to the conjugacy
class of we W, then x,.,, (s,)={(—1)%°Tr(w, E). It follows that the
number £ ,, attached to A, in 13.10(b) is equal to 1. (Indeed it is enough to
test the eigenvalues of ¢,,: V4, ;. = V4.0 in 13.10(b) for w=e.)

Let us write the identity in 14.14 for 6 =1 and g=s,,, as above. In the
right-hand side of that identity, we have a sum over all A¢ G «,3 however,
the only 4 which can contribute to the sum are those for which
X4.4,(5,) #0. For such 4, the support of 4 contains some regular semisim-
ple elements, hence A must be of form 4, (Ee W). Moreover, in that for-
mula, we have v(4)=1 (see 14.7), since G is adjoint; we also have £ ,, =1,
as noticed above. Hence, in our case, the identity of 14.14 reads

(216.1) Ti(s,, )= ¥ (A :RL)Tr(w, E')  (EcW).
E'eW

Here 2} is an irreducible principal series representation of G(F,). Its
character at the regular semisimple element s, € G(F,) is equal by [3, 7.9]
to the multiplicity of 2} in the virtual G(F,)-representation RT( " of [3],
where T, is the maximal torus of G containing s,,. This multiplicity is
computed by [6, 4.23] (the relationship of 2% with the parametrlzatlon in
[6, 4.23] is explained in [6, 10.2]). It follows that

(21.62) Ti(s,,?L)= Y {mg,mg} Tr(w, E').

EeW

Comparing now (21.6.1) and (21.6.2) we get the identity

Y ((Ag :RE)— {mp, me}) Tr(w, E)=0
EeW
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for all we W. Since the functions w — Tr(w, E') on W are linearly indepen-
dent (E'e W), it follows that (4 : RY)= {mg, m}, as desired.

21.7. Assume that G is as in 21.3 and that % =Q,e L (T). We
wish to classify the non-cuspidal character sheaves in G . They are of two

types:
(a) the 25 character sheaves A, (Ee W) (see 21.5);

(b) the components of ind§ (4') where P, is of type B, and A'is the
unique cuspidal character sheaf in (L,;), (see 19.3(a)).

Next, assume that G is as in 21.2 and that % =Q, e #(T).
The non-cuspidal character sheaves in G, are of four types:

(c) the 112 character sheaves A, (E€ W) (see 21.5);

(d) the components of ind§ (A4') where P, is of type D, and A" is the
unique cuspidal character sheaf in (L,) 4, (see 19.3(d));

(e) the components of ind‘,?l(Ai) (i=1,2) wllere P! is of type E¢ and
A’ are the two cuspidal character sheaves in (L), (see the proof of
20.3(a));

(f) the components of ind§(A’) (i=1, 2) where P, is of type E, and
A" are the two cuspidal character sheaves in (L,)4, (see the proof of
20.3(c)).

In each of the cases (b), (d), (e), (f), the endomorphism algebra End
ind§ (A4°) is isomorphic to a twisted group algebra of N(L,)/L, (N(L,) =
normalizer of L, in G); see [4, 3.5, 3.6, (4.1.1)]. Note that in each case A’ is
stabilized by the full N(L,)/L,. (This is obvious in cases (b), (d), and has
been verified during the proof of 21.2 in case (f); in case (e) it follows from
the arguments in the proof of (20.5.2).)

The twisting is described by a 2-cocycle of N(L,)/L,. The twisting is in
fact trivial. To show this it is enough to show that the algebra End
ind§ (4') has some one-dimensional representation or, equivalently, that
there exists a character sheaf of G which appears with multiplicity 1 in
ind§ (4°); this is verified in Lemma21.8 below. Assuming that this
verification has been done, we see that:

-There are exactly 5 character sheaves of type (b). (The group
N(L,;)/L; is a Coxeter group of type B,, hence it has five irreducible
representations.)

~There are exactly 25 character sheaves of type (d). (The group

N(L,)/L, is a Coxeter group of type F,, hence, it has 25 irreducible
representations. )
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~There are exactly 6 + 6 character sheaves of type (e). (The group
N(L,;)/L, is a Coxeter group of type G,.)

—There are exactly 2+ 2 character sheaves of type (f). (The group
N(L,)/L, is of order 2.)

It follows that if G is as in 21.2, then G %, contains exactly 153 =
112+ 25+ 12 + 4 non-cuspidal character sheaves. If G is as in 21.3, then
G 4, contains exactly 30 =25 + 5 non-cuspidal character sheaves.

LemMa 21.8.  In each of the Cases (b), (d), (e), (f) in 21.7, there exists a
character sheaf A of G such that (A :ind§ A')=1. Here we have i=1 in
Cases (b), (d) and i=1, 2 in Cases (e), (f).

Proof. 1In the case (f), this already has been verified, during the proof of
21.2.

In the case (b), let # be the family {42, 2, 2,} (notation of [6, 4.10]).
From 21.6, we see that 4,,, 4, , A,, are in Gi,oy By 21.4, the statement
(17.8.3) holds for #. In particular, there is a fourth element 4 in G 2. and

A+ Ay, + Ay + 4, =2RE.

For any Ec W we have (4, : indﬁlA‘) =0 since all irreducible components
of ind§ 4" have support # G. Hence

(4:1nd$,A") = (A + Ay, + Ay, + 45, : ind§,4")
= 2(R%:ind§ 4')
=2(res§ (RZ) - A")
=2(R%,, : 4') (by 15.7(b))
=1 (by (17.8.3)for L))

so that A has the required property.

The case (d) is entirely similar: we replace in the previous argument {4,,
2,,2;} by {112,, 84, 28} (notation of [6, 4.13]).

In case (¢), let # be the family {1400,, 1344, 1008,, 448,, 56.}
(notation of [6, 4.13]). By 21.4, the statement (17.8.3) holds for #. We
have ¥, = ®;. Let g, be an element of order 3 of 4, and let 6, 6° be the
non-trivial characters of its centralizer (~Z/3Z). Let r be the two-dimen-
sional irreducible representatlon of 5. Let A, (resp. Az, A) be the
character sheaf in G «,.# corresponding under (17.8.3) to (g3, Ne #(%y)
(resp, (g3,6%), (1,r)). From 21.6, we see that AlmszeGﬁoy and that
(A8, : REY) = (A4 : RZ) for all E€ #; the last inner product is determined
by (17.8.3) for #. From (17.8.3) we also see that if A'€ Gy, 4 satisfies
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(A’ : R%)= (4 : RY) for all Ec #, then A’ = 4. It follows that 4 = A 1008,
and hence its support is the whole of G. Since all components of ind§,(4°)
have support # G, it follows that (A4 : ind% 4°) =0 and hence

(Ao + Age : indS A7) = (Ag + A + A : ind§ 4.

From (17.8.3) for # it follows that 4, + Ag + A=RZy — Ry + RE.
Hence,

(Ag + Ag 1 ind§ (4")) = (R{0. — RiDs. + RE :ind§ 4")
= (Rf:gmoo: - R;{SIOOS_- + R;fs"%: :A')
=1 (by (17.8.3) for L,).

Hence, precisely one of 4,, Aq appears in ind§ (4’) with multiplicity 1.
This holds for both i=1 and 2. Since ind§ (4'), ind§ (4°) have no com-
mon components, it follows that one of 4,, A, appears with multiplicity 1
in ind§ (4') and the other appears with multiplicity 1 in ind§ (4°). The
lemma is proved.

219. Assume that G is as in 21.2 or 21.3 and %, =Q,e (7). If
F < W is a family with a single representation E, we see from 21.6 that
Az€Gg, 5, and from 21.4(b), we see that Gps={Ar}. U FcWisa
family consisting of three representations {E, E', E"}, we see from 21.6 that
Ag, A, Ap- €Gy, s and from 21.4(b) that Gfof {Ag, Ag, Ap., A},
where A is a fourth character sheaf. Just as in the proof of 21.8 we can
compute (A4 : ind§ (A )) where P,, A' are as in 21.7(b) or (d); we find that
it is non-zero, hence A is a component of ind$ (A ). We shall denote by %,
the unique family in W which consists of strlctly more than five represen-
tations. If G is as in 21.3, the previous argument shows that {J 5 . 5, G SoF
consists of 14 character sheaves of type 21.7(a) and of 2 character sheaves
of type 21.7(b). It follows that

(219.1) G 2.5 consists of 11 character sheaves of type 21.7(a) (the
Ag such that Ee %), of 3 character sheaves 4} (1 <i<3) of type 21.7(b),
and of an unknown number of cuspidal character sheaves,

Assume now that G is as in 21.2. If # < W is a family consisting of two
representatives {E, E'}, then we see from 21.6 that 4,, A, €G %7 from
the proof of 21.2 we see that G ., # contains two character sheaves of type
21.7 (f), and from 21.4 (b) we see that G #,# contains no further character
sheaves.

If # c Wis a family consisting of five representations, we see from 21.6
that A, €G #.# for all Ee #. Exactly as in the proof of 21.8, we see that
there is one character sheaf in G «,,# Which has multiplicity 1 in ind§ (4")



CHARACTER SHEAVES, 1V 57

and another character sheaf in G4, » which has multiplicity 1 in ind§,(4%).
(Here P,, A’ are as in 21.7(e).) This accounts for seven out of the eight
character sheaves in G «,# (see 21.4(b)). Let A be the eight character sheaf
in G .9 By 21.4(b). A appears with coefficient 1/2 in RZ* where E is the
special representation in #. All 4'eG %5 other than A are of type other
than 21.7(d), hence if we write Py, Ly, A! instead of P,, L,, A" in 21.7(d),
we have

(4:indg(A")) = Y(RZ : ind%(4"))

2
=4(res G RZ : A")
=4{(RZ - A").
The last inner product may be computed using (17.8.3) for Ly and turns
out to be non-zero. It follows that A4 is of type 21.7(d).
We see now that |z 4 5, G 2, consists of 95 character sheaves of type

21.7(c), of 20 character sheaves of type 21.7(d), of 8 character sheaves of
type 21.7(e), and of 4 character sheaves of type 21.7(f). It follows that

(2192) G w9, consists of 17 character sheaves of type 21.7(¢) (the
Ay such that Ee %,), of 5 character sheaves A}, (1 <i<5) of type 21.7(d),
of 4 character sheaves A’ (1 <i<4) of type 21.7(e), and of an unknown
number of cuspidal character sheaves.

21.10. We shall need a variant of Lemma 14.3. Assume that G is
semisimple and let (X, &) be a cuspidal pair for G (as in (7.1.2)). Let A be a
perverse sheaf on G which is a direct summand of the complex K’ induced
by an irreducible cuspidal perverse sheaf of a Levi subgroup of a proper
parabolic subgroup. We shall prove the following result.

(21.10.1) If X is a regular conjugacy class of G and char k is not a bad
prime for G, then the local system #'A|X does not contain & as a direct
summand.

This is proved as follows. We may assume that A= K'. Using 7.11(a),
and (14.2.1), (14.2.2), we see that we are reduced to the case where X is a
unipotent class. From the results of [4], it is known that (in good charac-
teristic), the regular unipotent class of G cannot carry a cuspidal pair
unless G is isogenous to a product of groups SL (k). Hence we may further
assume that G is as in 18.5. In this case, by 18.5, G is clean and any
admissible complex on G is a character sheaf. Hence Lemma 14.3 is
applicable and the result follows.

We now state the following result.



58 GEORGE LUSZTIG

Lemma 21.11.  Assume that G is semisimple, simply connected, and that
char k is not a bad prime for G. Let A, be an irreducible cuspidal perverse
sheaf on G on which & g acts trivially and such that supp Ao =X, where X is
a regular conjugacy class of G. Then A, is a character sheaf of G. More
precisely, if w is a Coxeter element of minimal length of W and if ¥, =
Q, e #(T), then (A : x(KZ))=1.

Proof. Recall from 24 that K*=(n,),Q,. According to Steinberg
(18], we can choose ge X such that ge BwB. We have a commutative
diagram

G/% ¢ —E—>G/Z4(9)

iy ¥
where B is the canonical map, a(x)=(xgx ', xBx™'), «'(x)=xgx L
Clearly, o’ is an isomorphism. According to [16, 8.2] (which is just a refor-
mulation of Steinberg’s results in [187]), the map « is also an isomorphism.
It follows that K2| X = ('), 8,Q,. We now factorise § as follows

GIZ ¢ —D oGl (Z 5 Z%2) —E— G/Zs(2).

According to 3.12, the group Z%(g) is unipotent; its dimension is r =
rank G. Since all fibres of §, are isomorphic to Z%(g), we have (8,),Q, =
Q, [ —2r]. (We disregard the Tate twist.) On the other hand, f, is a prin-
cipal covering with (finite) group Z4(g)/(Z - Z%(g)), hence, §,Q,[2r]=
(82),(81).Q,[2r]=(B,),Q, = direct sum of all G-equivariant local systems
on X corresponding to irreducible representations of Z;(g)/Z%(g) which
are trivial on Z';. All these local systems are one-dimensional and appear
with multiplicity 1, since Z;(g)/Z%(g) is abelian. In particular we see that,
if & is the local system on X such that 4,| 2 =&[dim X], then & appears
with multiplicity 1 in the local system #*(KZ°)| X and & does not appear
in the local system #'(KZ°)| X for i# 2r. Hence,

(21.11.1) ¥ (—1) (multiplicity of & in #(KZ%)|Z)

is equal to 1.
On the other hand, the expression (21.11.1) is clearly equal to

DA (K -my

A
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(sum over all AeG ) where
m, =Z( —1)' (multiplicity of & in H#'(A4)|X).
It follows that
(21.112) (A4 : y(KZ)m, =1.
P

From (21.10.1), we see that m, =0 whenever A is not cuspidal. It is also
clear that m, =0 if 4 is cuspidal with support # X, (Since X is a regular
class, we have X csupp 4 ==X =supp 4, for A4 cuspidal.) If 4 is cuspidal
with support X, then from the definition of m, we see that
my=(—1)4""%=1if 4| T~ &[dim X] and m, =0, otherwise. It follows
then from (21.11.2) that there is a unique cuspidal Ae G , such that
A| X~ &[dim X7 (hence A = A,), and that (4, : x(KZ))=1. The lemma is
proved.

ProposITION 21.12. Let G be as in 21.2 and let ¥, =Q,e #(T). Then
(17.8.3) holds for (G, %) and (17.8.5) holds for G.

Proof. By 21.4(b), we know that (17.8.3) holds for (G, %) as far as #
is concerned for any family & # %, where %, is the unique family in W
such that 4 ; = S;.

In [6, p. 227] we have described 28 virtual representations X, ,,..., X, 4 of
W of the form «, for some y € W such that /(y) = a(y) (mod 2). By 16.6, the
corresponding 28 elements RY? ..., R-“"’ are combinations with integral >0
coefficients of character sheaves in G %%, Let us consider a Coxeter
element w of minimal length in W. From (14.10.3) it follows that

(21121) yx(K2)= Y Tr(w, E)RZ.
EeWw

As noted in [6, p. 310], any Ee %, is a Q-linear combination of the 28
virtual representations X, ;,..., X7, and of 3¢ & Tr(w, E)E. It follows that
in order to establish (17.8.3) for %, it is enough to establish the pattern of
decomposition of RX“, ,Rf;’4 and of 3 .. 5 Tr(w, E) RE®. Some of the
elements X ; are of the form J(B) where J: B(W,) - R(W) is defined as in
17.13 with I < § and where B is a virtual representation of W, of form «,
(relative to W) (see [6, pp. 173, 228]). From (17.13.5) it follows that the
corresponding R-""’ are of form j7(RZ*'), hence, all irreducible components
of R-”o are also components of i (R-"“ !). Using this, we can tell what type of
components R-"’O can have. In partlcular we see that
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(21.122) R3® (1<i<7) are combinations of A, (E€ %) only; the
elements RY (1< i<5), R Yoo nga are combinations of A (Ee %) and of
A} (1<j<5) (see (21.9.2)); the element R3?, is a combmatlon of A,
(EeJo) and of A7 (1< j<4) (see (21.9.2)); the element sz‘g is a com-
bination of 4, (Ee %), of 44 (1<j<5), and of 47 (1< j<4).

Using 14.13 and (21.12.1) we see that

(KLY ((KZ)) =}, Tr(w, E) Tr(w, E')=30
EEeW
since the order of the centralizer of w in W is 30. This can be expressed in
an equivalent form:

(21.12.3) Y (A4 x(KZ))*=30
AeGy
Since (4 : R%v) is already known for any Ec W and any 4 ¢ G 2. 7,> WE Can
also compute (by (21.12.1}) (4 : )((K“”0 )) for such 4. We find that it is + 1
for exactly 20 character sheaves A€ G s, -G @7, and it is zero for the
remaining character sheaves in G, % -G, w7 Now using (21.12.3) we
deduce that

QL124) Y (4 y(K£))*=10.

AeGyy 5

From 21.11, we see that the four complexes (say K,q, Ki;, Ko, K,3) in
21.2(e) and the two complexes (say K, K;) in 21.2(f) are in G_%, and they
have inner product 1 with y(KZ); by 21.9, they are necessarily in G, Zo. T
Hence from (21.12.4) we deduce

(21.12.5) S(A 1 y(K2))2 =4,

sum over all Aeéyo_%, A#K,, Ky, Ko, Ky, K5, Ki5. If A=A where
Ee %, then (A4 : y(K%)) is computable from (21.12.1) and 21.6; we find
that this equals 1 if £=70,, the unique 70—dimensional representation in
%, and is zero for all other E in %,. It follows that

(21.12.6) T(A : y(K£))2 =3,

sum over all 4 eégofo, A#Kg, K7, Ko, K11, K3, K|3; A not of form 4.
Using 14.13 and (21.12.1) we can compute (3(KZ): R )=2. The only
character sheaves which can appear both in y(K%) and R0, are Ag
(E=70,) and A} (1<i<5). We have seen that 4., appears with mul-
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tiplicity 1 in y(K;?) and, by 21.6, it also appears with multiplicity 1 in R¥?,
Hence,

(21.127) Y (AL y(K2)) (A R ) =1

1<igs

It follows that (4% : x(K£))#0 for some i€ [1, 5]. Similarly, from
(21.128) (x(K2?): R%)= —2

it follows that (47 : x(KZ))#0 for some je[1,4]. From the definition of
AJ we see that the Verdier dual of 47 is A7 for some j'# j, /e [1,4]. On
the other hand it is easy to see that the components of y(KZ°) are permuted
by Verdier duality (since %, is self-dual). It follows that there are at least
two indices j, j'€ [1, 4] such that (A7 : y(KZ)) #0, (47 : y(K2)) #0.
Now using (21.12.6) we see that there is a unique index 7 in [1, 5] (say
i=3) such that (4} : x(K2*)) #0, and exactly two indices j, j/ in [1, 4] (say
1 and 2) such that (A47:y(K?))#0, (A7 : x(KZ))#0; moreover, these
three inner products are + 1. Using (21.12.7) and (21.12.8) it follows that

(A7 (K2 =1, (Ag: x(KI®) = (47 : f(K70)) = —1.

We also see from (21.12.6) that there are no cuspidal character sheaves
other than K, K;, Ko, K11, K12, K;3 which appear in y(KZ). From 16.6
and (21.12.1) we see that

Y Tr(w, E)RP= Y (4:1K2))A.

Ee %y Ae G_ft’o,fo

It follows that

(21.129) Tr(w, E)RZ = Ay, + A3 — A — A2+ K¢ + K-
y d e

Ee#y

+K10 +K11 +K12 +K13'

Let us now consider the euclidean space H with orthonormal basis given
by the 39 objects Ap (E€ %), A, (1<i<5), A(1<i<4), and K
(1<i<13). (The last 13 objects correspond to the 13 irreducible cuspidal
perverse sheaves on G described in 21.2(a)-(g); 6 of them are already
known to be character sheaves by (21.12.9).) We can regard R3? .., RY®, as
28 vectors in H. They have integral and > 0 coordinates; some of the coor-
dinates are known a priori to be zero, by (21.12.2). The mutual inner
products of these vectors are known by 14.13. The inner products of these
vectors with the vector given by the right-hand side of (21.12.9) are also
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known by 14.13. The coefficients of 4; (E€ %) in these 28 vectors are
explicitly known by 21.6.

We also know that both 43, A% appear with coefficient >0 in at least
one of our 28 vectors. These properties determine uniquely the pattern of
coefficients of our 28 vectors; in particular, they force each K, (7<i<13)
to appear with coefficient >0 in at least one of the 28 vectors. (Hence,
(17.8.5) holds for G.) The pattern is the one described in the table in [6,
pp- 304, 305] which should be interpreted as follows. The rows X .., X7,
in that table correspond to our vectors; the first 17 columns correspond to
the A (E€ %), the next 5 columns correspond to the A%, the next 4
columns correspond to the A%, and the last 13 columns correspond to the
K,. The columns of that table are put into 1-1 correspondence with the
elements of #(S;) in {6, pp. 369, 370]; this also defines a 1-1 correspon-
dence G 4, 4, +> #(S;). This completes the proof.

PROPOSITION 21.13. Let G be as in 21.3 and let %, =Q,€ S (T). Then
(17.8.3) holds for (G, %,) and (17.8.5) holds for G.

Proof. The proof is entirely similar to that of 21.12. We must check
(17.8.3) for (G, %) only as far as %, is concerned, where %, is the unique
family in W with 4 5, = S, (see 21.4(b)).

In [6, p. 227] we have described 19 virtual representations Y, ,,.., ¥, s of
W of the form o, for some y € W such that /(y)=a(y) (mod 2). By 16.6, the
corresponding 19 elements RY? ..., Ry are combinations with integral >0
coefficients of character sheaves in G, 5. Let us consider a Coxeter
element w of minimal length in W. As in 21.12, we see that y(KZ°)=
S e wTr(w, E)YRZ® is a combination of 12 character sheaves, with coef-
ficients 1, and that

(21.13.1) Y. Tr(w, E)Rfr=A,,—A}+K, + K, + K5 + K,

Ee %y

where 6, is the exterior square of the reflection representation of W, A, is
as in (21.9.1), K|, K, are the two complexes in 21.3(e), and K;, K, are the
two complexes in 21.3(d).

One checks that any Ee€ %, is a Q-linear combination of the 19 virtual
representations Y, ..., Y, s and of X ;. 5 Tr(w, E)E. It follows that in
order to establish (17.8.3) for 4 it is enough to establish the pattern of
decomposition of RY? ..., RY® and of 3 ¢, & Tr(w, E)RZ".

We now consider the euclidean space H with orthonormal basis given by
the 21 objects Az (Ec %), A}, (1<i<3), and K, (1<i<7). (The last 7
objects correspond to the seven irreducible cuspidal perverse sheaves on G
described in 21.3(a)-(¢); the first four of them are already known to be
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character sheaves; see (21.13.1).) We can regard R7? ..., R7?, as 19 vectors
in H. These vectors have the following properties:

—They have integral >0 coordinates.
—R7? (1<i<5) are combinations of 4, (Ee€ %) only.

-R7?,, RY?,, R{, R are combinations of 4, (Ee %) and 4,
(1<ig3).

-The mutual inner products of these 19 vectors are known by 14.13.

—The inner products of these 19 vectors with the vector given by the
right-hand side of (21.13.1) are known by 14.13.

—The coefficients of 4, (Ee %) in these 19 vectors are explicitly
known by 21.6.

These properties determine uniquely the pattern of coefficients of our 19
vectors; in particular, they force each K; (5<i<7) to appear with coef-
ficient >0 in at least one of the 19 vectors. (Hence, (17.8.5) holds for G.)
The pattern is the one described in the table in [6, p. 306] which should be
interpreted as follows. The rows Y| ;,.., Y 5 in that table correspond to our
19 vectors; the first 11 columns correspond to the A (Ee %), the next 3
columns correspond to the 4 and the last 7 columns correspond to the X,.
The columns of that table are put into 1-1 correspondence with the
elements of .#(S,) in [6, pp. 371, 372]; this also defines a 1-1 correspon-
dence G w05, < H(S,). This completes the proof.

SELECTED REFERENCES FROM PARTS I-I11

3. P. DELIGNE AND G. LuszTiG, Representations of reductive groups over finite fields, Ann. of
Math. 103 (1976}, 103-161.

4. G. LuszTig, Intersection cohomology complexes on a reductive group, Invent. Math. 75
(1984), 205-272.

5. G. LuszTmiG, Character sheaves, I, Adv. in Math. 56 (1985), 193-237.

6. G. LuszTig, Characters of reductive groups over a finite field, Ann. of Math. Studies 107,
Princeton Univ. Press, Princeton, N.J., 1984.

13. G. LusztiG, Character sheaves, II, Adv. in Math., in press.

ADDITIONAL REFERENCES

16. G. LuszTmig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976),
101-159.

17. G. LuszTiG, Character sheaves, III, Adv. in Math., in press.

18. R. STEINBERG, Regular elements in semisimple algebraic groups, Publ. Math. IHES 25
(1965), 49-80.



ADVANCES IN MATHEMATICS 61, 103-155 (1986)

Character Sheaves, V
GEORGE LuszTiG*

Department of Mathematics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

This paper is part of a series [5, 13,17, 24] devoted to the study of a
class G of irreducible perverse sheaves (called character sheaves) on a con-
nected reductive algebraic group G over an algebraically closed field .
(The numbering of sections, subsections, and references will continue that
of the earlier parts.)

Most results in this paper hold under a very mild restriction on the
characteristic of k, see (23.0.1). For simplicity, in this introduction, we
assume that the characteristic of k is good for G; this implies in particular
that (23.0.1) holds. One of our main results is Theorem 23.1 which gives a
classification of the character sheaves of G on which the group of com-
ponents of the centre acts faithfully; moreover, it gives a multiplicity for-
mula rather analogous to the main theorem (4.23) in [6]; it also states that
G is clean (in the sense of (13.9.2)), it satisfies the parity condition (15.13)
and that the class of character sheaves on G coincides with the class of
admissible complexes defined in [4]. In the case of groups of type 4 and
exceptional groups, this has been essentially done in part IV [24]; the case
of classical groups is dealt with in this paper (Sections 22 and 23). One of
the applications of our results is the computation of the local intersection
cohomology sheaves #*IC(C, &) of the closure C of any unipotent class C
in G with coefficients in any G-equivariant irreducible local system & on C.

For G=GL,(k), this was done in [22]; for the other simple G, it has
been done in [27, 28, 20] for those (C, &) which are assumed to be in the
image of Springer’s correspondence [7].

In this paper, we complete this computation by removing the last
assumption on (C, &). (See Theorem 24.8.) The computation uses in an
essential way the theory of character sheaves.

In Section 25, it is shown that in the case where G is defined over F,, the
characteristic functions yx,o, (see (25.2.1)) of the character sheaves 4
which are themselves defined over F,, form an orthonormal basis of the
space of class functions on G(F,). It may be conjectured that this is the

* Supported in part by the National Science Foundation.

103
0001-8708/86 $7.50

Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.



104 GEORGE LUSZTIG

same (up to multiplication by roots of 1) as the basis of “almost-charac-
ters” of G(F,); see [6,13.6].

Section 22 contains classical groups in characteristic 2. Section 23 shows
the classification of character sheaves and the multiplicity formula. Local
intersection cohomology with twisted coefficients of the closure of a
unipotent class are contained in Section 24 and class functions on a reduc-
tive group over a finite field are given in Section 25.

22. CrLassICAL GRouUPS IN CHARACTERISTIC 2

22.1. In this section we assume that k has characteristic 2 and we
shall verify properties (17.8.3)-(17.8.5) for G, simple of type B, C, or D
over k. Let us recall the content of these properties. Property (17.8.3) gives
a parametrization of G and some multiplicity formulas. Property (17.8.4)
for G states that G is clean and any character sheaf 4 on G satisfies the
parity condition ¢,=4&,, se (15.13.1). Property (17.8.5) for G states that
any irreducible cuspidal perverse sheaf on G is a character sheaf, see (7.1.1).

LEMMA 22.2. Assume that G is simple of type B, or C, (n=2). Then

(a) Ifn=m?+m (meN), then Irr°G consists of a single complex; it is
supported by the closure of a unipotent class. If n is not of the form m*+m
then Irr°G is empty.

(b) G satisfies (17.8.4) and é,=1 for all A€G.

Proof. We may assume that (in the case »>2) the lemma is already
proved for G replaced by a simple group of type B, or C,. (2<n’<n) over
k; we may also assume that G is adjoint. Statement (a) follows from [4].
We now prove (b). Let L be the Levi subgroup of a proper parabolic sub-
group of G. Then L/Z9 is a product of PGL,(k)'s and possibly a simple
group of type B, or C, (2<n’'<n). Using the induction hypothesis and
18.5, 17.11, we see that (17.8.4) holds for L/%9, hence it also holds for L,
by 17.10. It is then enough to check that any cuspidal character sheaf 4 of
G is clean and satisfies ¢, =£&,=1. The equality §,=1 follows from (a).
The cleanness of 4 follows from (a) and from 7.9. To prove the parity con-
dition for 4, we use 18.3. If 4 € G, then from (17.2.4) we see that ¥ must
satisfy W, = W', = W. The number N in 18.3 is now even, by (a). Using
18.3 and the rationality of the representations of the Hecke algebra of W,
we see that ¢, =£,. The lemma is proved.

LEMMA 22.3. Assume that G is simple of type D, (n=>4). Then:

(@) If n=4m>’(meN), then Irt°G consists of a single complex; it is
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supported by the closure of a unipotent class. If n is not of the form 4m* then
Irr°G is empty.

(b) G satisfies (17.8.4) and §,=1 for all A€G.
Proof. 1t is essentially the same as that of 2.22 and will be omitted.

224. In this subsection, we assume that (W, S) is a Weyl group of
type B, or C, and n=d?+d. We shall describe the irreducible represen-
tations of W in terms of symbols, as in [6,4.5]. Let % < W be the family
consisting of all representations in W whose symbol contains exactly the
entries 0, 1,.., 2d (d+ 1 of them in the first row and the remaining 4 in the
second row of the symbol). As in [6,4.5], we attach to %, an F,-vector
space V of dimension 2d with a symplectic form (,): VxV —F,. By
definition, V is the set of subsets of even cardinality of {0, 1,.., 2d}; the
group structure on V is given by M+ M =(MuM)— (M~ M)
M, M’ e V. The symplectic form is (M, M')=|M n M'| mod 2. We identify
%, with a subset of V as follows: to the irreducible representation E in %,
whose symbol has second row M < {0, 1, 2,.., 2d}, we attach the element
vgeV defined by ve={ieM|ieven} U {1<i<2d—1]iodd, i¢ M}. Let
V be the image of the imbedding % < V. For ye ¥, we denote by E, the
corresponding object in %, Let e, be the 2-element subset {i—1,i} of
{0,1,2,...,2d}, 1<i<2d. Then e,,.., e, is a basis of V. Let n,: V> F, be
the linear form defined by ny(e;) =1 for 1 <i<2d.

We shall need the foliowing fact.

(22.4.1) The character of the virtual representation 3., {(—1)""E, of
W vanishes on all elements of W which have no eigenvalue 1 in the reflection
representation of W.

To prove this result we shall use some results in [6] on the represen-
tation theory of the finite group Sp,.(F,) (g is a large power of 2). It is
known that in our case (n=d”+d), the group Sp,,(F,) has a unique
unipotent cuspidal representation p. From [6,9.5] and its proof we see
that to each ne Hom(V, F,) there corresponds a unipotent representation
p, of Sp,,(F,) such that:

(a) the character of p, on a regular semisimple element of type w in
Spy.(F,) is equal to 3, . p(—1)"'Tr(w, E,)

(b) If #',n"eHom(V, F,) satisfy for some i the identities
n'(y)+n"(y)=(y,e)forall ye Vand n'(e;)=n"(e;) =0, then p,. + p,- is a
summand of a representation induced from the Levi subgroup of a proper
parabolic subgroup (over F,). Moreover, from [6, (8.5.6)] it follows that p
must be equal to p, for some n € Hom(V, F,). Since p is cuspidal, we see
from (b) that # must be equal to n,, so that p=p, . If w has some eigen-
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value 1 in the reflection representation of W, then the regular semisimple
elements of type w in Sp,,(F,) are contained in an isotropic torus, hence
the character of p,, vanishes at them, since p, is cuspidal. This, together
with (a) above yields (22.4.1).

22.5. In this subsection, we assume that (W, S) is a Weyl group of
type D,, and n=d" > 4. Let W’ be the semidirect product of W and Z/2Z,
with Z/27 acting on W nontrivially, preserving S. We shall describe the
irreducible representations of W in terms of symbols as in [6,4.6]. Let
Fy = W be the family consisting of all representations in W whose symbol
contains exactly the entries 0, 1,..., 2d — 1 (d of them in one row, and the
remaining 4 in the other row of the symbol). Let & be the set of
irreducible representations of W’ whose restrictions to W are in %, Let V
be the F,-vector space of all subsets of even cardinality of {0, 1,..,2d—1};
the group structure and the symplectic form on ¥V are defined just as in
22.4; in the present case, however, the symplectic form has a one-dimen-
sional radical Rad V; it is spanned by {0, L,..,2d—1}. As in [6,4.6], we
identify %, with a subset P+ of V'* = V/Rad V; as in [6, 4.18] we identify

o with a subset 7 of V. For ye P+ (resp. y' € V) we write E, (resp. E})
for the corresponding object of % (resp. #4). One deﬁnes a basis
€1, €2y €251 Of V as in 22.4; we shall denote in the same way the images
of ¢, under V' — V/Rad V. Let n,€ Hom(V, F,) be the linear form defined
by no(e;)=1 for all i If d is even, then 5 is zero on Rad ¥ and hence
defines a linear form 5, Hom(V ™", F,). (Note that Rad V is spanned by
e testes+ ey )

We shall need the following two facts.

(225.1) If d is even, the character of the virtual representation
Y, (—1)®YE of W vanishes on all elements of W which have some
eigenvalue 1 in the reflection representation of W.

(225.2) If d is odd, the character of the virtual representation
>yer(— 1)%)E . of W' vanishes on all elements of W’ which have some
eigenvalue 1 in the reflection representation of W, extended to W'

These two statements are proved using the representation theory of split
(resp. twisted) even orthogonal groups over F, (¢ = large power of 2) in the
same way as (22.4.1) was proved using the representation theory of
Sp1.(F,). We omit further details.

PROPOSITION 22.6. Assume that G is simple of type B, or C, {(n=2).
Then (17.8.3}-(17.8.5) hold for G.

Proof. We shall only consider the case C,; the case B, is identical. We
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may assume that n>3 (see 19.3) and that the proposition is true when n is
replaced by n’, 2<n’' <n. From 22.2(b) we see that (17.8.4) holds for G.
The map G — G, is bijective and the character sheaves do not feel the dif-
ference between G and G,,. Hence we may assume that G is adjoint. Let L
be a Levi subgroup of a proper parabolic subgroup of G. Then L/Z9 is a
product of PGL,(k)'s and possibly a simple group of type C,., 2<n'<n.
Using the induction hypothesis and 18.5, 17.11, we see that (17.8.3) holds
for L/Z9 hence it also holds for L, by 17.10. Let ¥ € #(T) be such that
£ #@Q,. Then there exists we W and I g S such that &' =w*¥ satisfies
Wy =W ;. From 17.12, we see that (17.8.3) for G . is a consequence of
the analogous statement for L,, which is already known. Using 17.15, we
see that (17.8.3) holds for G .

We now begin the proof of (17.8.3) for G in the case where £ =Q,.
This decomposes into statements for each G 2.# where # is any family in
VE’. Let # be a family in W such that there exists [ g Sand a family # in
W, such that # is “smoothly induced” by % (see 17.13). Using 17.13 and
the fact that (17.8.3) is already known for L,, we see that (17.8.3) holds for
G ».¢. Using 17.14, we see also that (17.8.3) holds for any family & in w
such that the family & ®sign is smoothly induced from a family of a
proper parabolic subgroup of W. By 22.2(a), we may therefore assume in
the rest of the proof that n=d”+ d. We shall take &# = %, (we shall use
the notations of 22.4). The statement (17.8.3) for G, ,, (which we are try-
ing to prove) can be reformulated as follows, see [6, 4.5].

(22.6.1) There exists a bijection G z.5, Hom(V, F;) (A, n), such
that (4,: RE)=2"%~1)"" for all ye ¥ and all ne Hom(V, F,).

The proof of (22.6.1) will follow closely the proof of the main theorem in
[6] for classical groups, given in [6,9.1]1-[6, 9.5].

As in [6, 9.1], with the basis e,,..., e,; of ¥ (see 2.4) one can associate a
collection 7 (¥) of lagrangian subspaces of ¥; the union of subspaces in
T (V) is precisely ¥. According to [6, (9.5.2)] for any Ce 7 (V) and any
linear form ¢: C— F,, there exists xe W such that 3, (—1)*VE =q,.
Here «, is as in (16.2.7). Applying now 16.6(a), we see that
Pee=""T,cc(—1)*"Rg is a linear combination of character sheaves in
G ., with integral, >0 coefficients, for any Ce 7 (V), { e Hom(C, F,). If
(C', &) is another pair like (C, £), we have

(22.6.2) (pce: pce)=number of linear forms #: V' — F, such that
nCc=&n|C=¢"

This follows immediately from 14.13.
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Now let D= {n’,n"} be a two element subset of Hom(V, F,) such that
n’ +n” is equal to the inner product with the standard basis element ¢; of V'
and #'(e;)=n"(e;)=0. Using [6, (4.5.4)], we see that there exists a subset
Ic S, |1l =|S| —1 and a family & in W, such that the truncated induction
J: R(W,) - R(W) (see 17.13) takes each representation in & to the sum of
two distinct representations E,+E, ., in %. Here ye V, y+eeb,
(y,e;)=0. Moreover, J defines a bijection between % and the set
{ye V| (y,e)=0} modulo the equivalence relation y~ y+e,. Let E} be
the representation in % corresponding to the class y of y. The statement
(17.8.3) for L,, ¥ =0,, # is already known; it implies that for each
{eHom(V, F,), ((e;})=0, there exists A;e L, such that (Ag: R")—
2-@=D(_1)¢ for all ye P, (y,e,)=0. Here, ( :) is with respect to L,.
We now take { =#" and we consider the object {4, € #y(G) (see 15.3). It is
a linear combination with integral, >0 coefﬁcients of character sheaves of
G; we denote by p, the result of omiting from this sum the character
sheaves which are not in G > Fo

Then for any ye ¥, we have

(pp: R-*’) = (i§4; , RZ) by definition of G 4 4,
= (A, Rres ) by 15.7(b).
By definition of E;, we have

E,+ o if (y,e)=0

s —
res; £, {«p it (y,e)#0,

where @ is a sum of irreducible representations of W, in families #.%.
Hence

_ [(4y:RE) i (y,e)=0
(A Rres,Ey) {0 ' lf (y, ei) # 0
_{2—”“(—1)“” i (y,e)=0
- 0 if (y, ei);éo'
Thus,
2-E@-1(_1)yr» if (y,e)=0
. REY = ' :
(pD'REy {0 if (y, ei)7é0

It follows that for any Ce 7 (V) and any ¢ € Hom(C, F,), we have

(PDZPC¢)= Z (_l)é(y)+rr’(y)2—(d~l)’

veC
(y.ei)=0
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hence
(Pp: pce)=numberof ne Dsuch thatn | C=¢. (22.6.3)

Next, we note that any AeGy %, appears with >0 coefficient in some p,
as above. Indeed, given A, we can find ye ¥ such that (4: RZ ) #0. Now
let CeJ (V) be such that ye C. Then, clearly,

RZ=2""Y (—1)Wpg, (22.6.4)
4

sum over all { e Hom(C, F,). Hence, for some ¢ we have (4: pc.)#0, as
desired. Applying now [6,9.2] to the elements p. ., pp of Ho(G) (which
satisfy (22.6.2), (22.6.3)), we deduce that there exists a bijection 7 4,
between Hom(V, F,) and G, %, such that

Pce= Z 4,
'IIC’!=5

for all Ce (V) and all £ e Hom(C, F,) and
pp=Ay+ 4,

for all D= {n’, n"} as above. Using now (22.6.4), we see that for any ye ¥,
and any # € Hom(V, F,), we have

(A RE) =277 Y (=14, pcy)
4
teC

— 2—d( — 1)'I(Y),

where C is any subspace in J (V) containing y. This completes the proof of
(17.83) for G, #,- To complete the proof, it is enough to show that if #, is
as in 22.4 then 4,  is cusipal. (This, together with 22.2(a) will show that
(17.8.5) holds for G.) Using 18.2, as in the proof of 19.3(a), we see that we
are reduced to the statement (22.4.1). This completes the proof.

PROPOSITION 22.7. Assume that G is simple of type D, (n>4). Then
(17.8.3)-(17.8.5) holds for G.

Proof. The proof is very similar to that of 22.6; we shall only sketch it.
We can assume that G is adjoint. We again use induction on n. From
22.3(b), we see that (17.8.4) holds for G. To verify (17.8.3), we are reduced
to the case G 4 4,, n=d’, where ¥ = §, and % is as in 22.5. As in 22.6, we
see that (W1th the notations in 22.5) there exists a bijection 7 <> 4, between
Hom(V*. F,) and G4 5, such that (4,: RE)=2"1=1(~ 1)"“” for all
ye ¥ and all ne Hom(V*, F,). This establishes (17.8.3) for G #o TO
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establish (17.8.5), it is then enough (by 22.3(a)) to show that, in case where
d is even, A4, is cuspidal; this follows from (22.5.1). This completes the
proof.

23. CLASSIFICATION OF CHARACTER SHEAVES
AND THE MULTIPLICITY FORMULA

23.0. We recall that G is a connected reductive algebraic group
over k, an algebraically closed field of characteristic p 2 0. Let £ e ¥ (T)
(see 2.2), and let y: Z;/Z% — OF be a character. For each family #' < Wy,
let #(%,.)* be the subset of .#(%;.) consisting of all pairs (x, ¢) such that
the 2 z-component (see (17.6.1)) of x is mapped by (11.8.1) to . For each
EcF', let mye M(%z) be as in 17.8. For any ze Z,/Z?, let t¥ be as in
17.17 and let o, be the image of z under the map Z;/2% —» Hom(2,, 0}F)
dual to (11.8.1); we denote also by o, the restriction of ¢, to 25 and also
the corresponding character 45 = Q25 %, — QF, trivial on ¥;.

We shall need the following notation. We have a partition G = I, G*
where G* consists of all character sheaves of G on which 2,/ acts (see
11.5) according to yx (a character Zy/Z% — QF). This induces a partition
Gy,=1, G, for each £ e #(T). In the case where the parity condition is
satlsﬁed it also induces a partition G & & =11 G% ; for each ¥ € #(T) and
each family % c W, Similarly, the set Irr°G (see (19.3.1)) has a natural
partition Irr®G = LIZ(IrrOG)’( where y runs over the characters of Z;/Z?2.

In the following theorem, we shall make the following assumptions on p.

If p =35, then G has no factors of type Ejg.
If p=3, then G has no factors of type E,, Eg, Fy, G,. (23.0.1)
If p=2, then G has no factors of type E;, E;, Eg, Fa, G>.

def

(factor =" almost simple, closed, normal subgroup).

THEOREM 23.1.  Assume that p satisfies (23.0.1). Then the following holds
for G.
(a) G is clean and any character sheaf A on G satisfies € ,=£,4.

(b) Any irreducible cuspidal perverse sheaf A on G is a character
sheaf.

(c) Consider ¥ e S(T) and let y: Z5/Z2% — QF be a faithful charac-
ter. Then there exists a bijection

o U M) (Ao,
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where F' runs over all families in W'y, such that
(A: R§)= éA{mA, mE}

for all AcGy, and all Ec W'y, and such that ze Z %%, AeG,,
rhA=(x, G)Ga”(gy')x:’;l,;,g=(x,O'®O'z).

Property (a) is just (17.8.4), property (b) is just (17.8.5). Property (c) is a
variant of (17.8.3). It can be formulated for arbitrary y (not necessarily
faithful) in the same way, but we shall prove it only for faithful y; we shall
refer to it as “property (17.8.3), for G, £”. When this property is satisfied
for all & we shall say that “(17.8.3), holds for G.” It is clear that if G
satisfies (17.8.3), for all x, then G satisfies (17.8.3).

The proof of the theorem will be given in 23.21. Most of this section will
be concerned with the case where G is of type B, C, or D and p#2. The
strategy of proof in these cases is rather similar to that in the previous sec-
tion. Using an inductive hypothesis one first shows, using 7.9 and the
classification of Irr°G in [4] that G is clean. We then show that if G is not
a spin-group then it satisfies the parity condition; the proof of (17.8.3) and
after it that of (17.8.5) are then carried out as in the previous section. There
are additional difficulties for spin-groups since for them the parity
condition will not be known until a late stage in the proof. In all sections
concerned with classical groups (23.2-23.7, 23.12-23.20) it will be assumed
that p#2.

232. We now describe the sets (Irr°G)* in the case where G is
semisimple of type B, C, or D and y is a faithful character of 2. The
results in this section can be extracted from [4].

(a) G=PSp,,(k) (n=1). If n is odd then Irr°G is empty. We now
assume that n is even. Then to each unordered pair (N,, N,) of triangular
numbers >0 such that n=N,+ N, one can associate one complex
Ay v €l®G, if Ni#N,, and two complexes Ay, n,, A, v, €I11°G, if
N, =N,, so that all complexes in Irr’G are obtained exactly once. The sup-
port of A, y, is the conjugacy class of su, where s is a semisimple element
in G with Z%s) doubly covered by Sp,y, (k) x Span,(k) and u is a certain
unipotent element in Z°(s). Moreover, Ay, n, has the same support as
Ay, n,- We have s=e if and only if one of N, N, is zero.

(b) G=Spy,(k), x#1 (n=1). If n is even, then (Irt°G)* is empty.
Assume now that n is odd. There is a 1-1 correspondence N,, N, > Ay, x,
between the set of ordered pairs N,, N, of triangular numbers such that
n=N,+ N, and the set (Irr°G)*. The support of A, v, is the closure of the
conjugacy class of su, where s is a semisimple element in G with Z(s)
isomorphic to Sp,y,(k) % Spax,(k) and u is a certain unipotent element in
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Z(s). If z is the non-trivial element of 2, then t¥A4,, y,= Ay, »,. Since n is
odd, we have N, # N, and supp ¥4y, v, #Supp Ay, n,- We have s=e if
and only if N;=0 and s =z if and only if N, =0.

(c) G=PSO,(k) (m=3). We assume that m is either odd or
divisible by 8; otherwise, Irt°G is empty. To each unordered pair (N,, N,)
of squares, which are not both odd, such that m=N,+ N,, one can
associate:

(i) one complex Ay, v, €Irt°G, if N, or N, is zero,

(ii) two complexes Ay, n,, Ay, n,€Irr°G, if N;>0, N,>0,
Nl # NZ,
(iii) four complexes Ay, v, Anyni> Aring Argngs if Ny=N,,

so that all complexes in Irr°G are obtained exactly once, and supp Ay, v, is
the closure of the conjugacy class of su where s is a semisimple element in
G with Z°(s) isomorphic to, or doubly covered by SOy, (k) x SO (k) and u
is a certain unipotent element in Z°(s); moreover, A’ NLNL A NiN }’JI ~, (if
defined) have the same support as Ay, y,. We have s=e¢ if and only if N, or
N, is zero.
(d) G=S80,,(k), y#1 (n=2). If n # 2 (mod 4), then (Irr°G)* is
empty. Assume now that n=2 (mod 4). To each ordered pair (N,, N,) of
even squares such that 2n= N, + N, one can associate:

(i) one complex A4, r, € (Irr’G)%, if Ny or N, is zero,
(ii) two complexes Ay, y,, AW, 5, € (Irt°G)%, if N, >0, N,>0,

so that all complexes in (Irr°G)* are obtained exactly once, and supp A, x,
is the closure of the conjugacy class of su where s is a semisimple element in
G with Z°(s) isomorphic to SO, (k) x SO ,(k) and u is a certain unipotent
element in Z°s); moreover A)y, 5, (if defined) has the same support as
An,n,- If z is the nontrivial element of 2, then t¥4, y,= Ay, 5, and
t}¥Ay vy = Anyn,> if Ny >0, N;>0. Since n # 0 (mod 4), we have N, # N,
and supp t¥Ay n, #SUpp An, n,» SUpp t¥Ay, v, #supp Ay, n,. We have
s=e if and only if N, =0 and s=z if and only if N, =0.

(e) G=Spin,,(k) (m=3), y faithful, hence m # 0 (mod 4). To each
ordered pair (N,, N,) of triangular numbers, with N, even, such that
m= N, + N,, one can associate two complexes 4y, v,, Ay, 5, € (Irr°G)*, so
that all complexes in (Irr°G)* are obtained exactly once. If N, >0 and
N,>1 (resp. N,=1) we have supp A, n, =supp A%, n,=closure of the
conjugacy class of su where s is a semisimple element in G such that Z(s) is
doubly covered by Spin y, (k) x Spin y,(k) (resp. Z(s) = Spiny,(k)) and u is a
certain unipotent element in Z(s). For N, =0, we have supp A4, », = closure
of a unipotent class of G and supp A4; v, (and supp 4,0, supp A, for m
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even) are obtained from supp 4,y, by left translation by nontrivial
elements in Z. The action of Z; on (Irr°G)* by t* is free.

(f) G =4Spin,(k) (half-spin group), y#1, m=0 (mod 4) (m>12).
To each unordered pair (N,, N,) of even triangular numbers such that
m= N, + N,, once can associate

(i) two complexes Ay, y,, AW, n,€ (IT°G)* if Ny 5 N,,

(i) four complexes Ay n, Awn, ANny ANy, €T°G) if
N,=N,

so that all complexes in (Irr°G)* are obtained exactly once. If N, >0 and
N,>0, we have supp Ay, n,=supp A, v, (=supp Ax, n,=supp Ax, n,, if
defined) =closure of the conjugacy class of su where s is a semisimple
element in G such that Z°(s) is isogenous to Spin w (k) x Spiny,(k), and u is
a certain unipotent element in Z°%(s). For N, =0, we have supp Aon, =
closure of a unipotent class of G and supp A4 ,, is obtained from supp 4, y,
by left translation by the nontrivial element z€ 2. The action of Z; on
(Irr°G)* by t¥* is free.

The results in this subsection will be used in 23.3-23.7 to prove the clean-
ness of G and, in some cases, the parity condition under an inductive
assumption.

LEMMA 233. Let G = PSp,,(k) (n=1) and assume that (17.84), (17.8.5)
hold for all Sp,,(k), n'<n. Then G is clean and for any Ac G we have
GA = éA = 1.

Proof. Let L be a Levi subgroup of a proper parabolic subgroup of G.
Then L/Z9 is a product of PGL,(k)’s and possibly a copy of PSp,,(k),
n’ <n. Using our assumption and 18.5, 17.11, 17.16 we see that (17.8.4)
holds for L/Z¢ hence also for L, by 17.10. It is then enough to check that
any cuspidal character sheaf A of G is clean and satisfies ¢, =£,=1. The
equality £,=1 follows from 23.2(a): if Irr°G is nonempty, then n is even.
Assume now that the support of A is the closure of a unipotent class of G.
By 23.2(a) there cannot be more than one A with this property. Hence A is
clean, by 7.9. If 4 is not of this type, then its support is the closure of the
conjugacy class of an element whose semisimple part has centralizer doubly
covered by a product of two symplectic -groups for which our inductive
assumption applies. Using 7.11(d), it again follows that 4 is clean. Thus 4
is clean in all cases. We now check the parity conditions for A, using 18.3.
Let % be such that A€ G o From (17.12.4), we see that W', is restricted in
the following way. We have

i) We=Wgoftype D,xC,. (r+r=nrz2,r>1)or D,, or
(i) We=W,=W.
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It follows that the number N in 18.3 is equal to »n. Using 23.2(a), it follows
that N is always even. The assumption (18.3.1) in 18.3 is satisfied by the
rationality of representations of the Hecke algebras of W', in (i), (ii).
Hence, from 18.3 we can deduce that ¢, =&, and our statement is proved.

LeMMA 234. Let G=Sp,,(k) (n=1), and let y: Z5— QF be the non-
trivial character. Assume that (17.8.4), (17.8.5) hold for all Sp,,(k), n' <n.
Then G is clean and for any A€ G*, we have e ,=§&,= —1.

Proof. Let L be a Levi subgroup of a proper parabolic subgroup of G.
Then L is a product of GL,(k)’s and possibly a copy of Sp,,(k), n’ <n. As
in 23.3, we see that (17.8.4) holds for L. From 23.3, it follows that any
cuspidal character sheaf of G with trivial Z -action is clean. It is then
enough to check that any cuspidal character sheaf 4eG* is clean and
satisfies ¢,=£,= —1. The equality £,= —1 follows from 23.2(b): if
(Irr°G)* is nonempty, then » is odd. if the support of A4 is the closure of a
unipotent class of G, then A is uniquely determined (23.2(b)) and hence is
clean by 7.9. The case where the support of A4 is a central element times the
closure of a unipotent class is reduced to the previous case, using ¢}. If 4 is
not of this type, then we may apply to it 7.11(d) and our inductive
hypothesis (as in 23.3) and we see again that A is clean. Thus A is clean in
all cases. We now check the parity condition for 4, using 18.3. Let ¥ be
such that 4eG*. From (17.12.4), we see that W', is restricted in the
following way. We have

(i) W of type D,xC, (r+r'=n,r=2,r'21), or D, and Q, of
order 2 acting nontrivially on the D,-component, or

(iil) Wy of type C,_,, Q4 of order 2.

It follows that the number N in 18.3 is n — 1. Using 22.3(b) it follows that
N is always even. The assumption (18.3.1) in 18.3 is satisfied, by the
rationality of representations of the Hecke algebras of W', in (i), (ii)
above. Hence, from 18.3, we can deduce that ¢ , =& ,, and our statement is
proved.

LEMMA 23.5. Let G=PSO,,(k) (m>=3) and assume that (17.§.4),
(17.8.5) hold for all SO,,(k), m’ <m. Then G is clean and for any A € G we
have ¢ ,=¢,=1.

The proof is very similar to that of 23.3 (it uses 23.2(c) instead of
23.2(a)) and will be omitted. We note only that if 4 € G, is cuspidal, then,
by (17.12.4), W', = W must be one of the following.

(i) Em=2n+1, then W is of type B,x B, (r+¢' =n,rz1,r >1)
or of type B,.
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(ii) If m=2n, then W is of type D, x D, (r+r' =n,r=2,r' 22} or
W_g= W.

LEMMA 23.6. Let G=S0,,(k) (n>2) and let y: Z5;— QF be the non-
trivial character. Assume that (17.8.4), (17.8.5) hold for all SO, (k), n' <n.
Then G is clean and for any A € G*, we have ¢ ,=§,=1.

The proof is very similar to that of 23.3 or 23.4. We shall only indicate
the proof of the parity condition for a cuspidal 4 € G*. We shall use again
18.3. Note that if 4 € G%, is cuspidal then, by (17.12.4), W", must be of the
following form.

(i) Weisof type D,xD, (r+r'=n, r22, r'22), 2, of order 2
acting nontrivially on each factor D,, D,., or

(ii) Wgisof type D,_, (if n=3), Q. of order 2 acting nontrivially
on W.

It follows that the number N in 18.3 is n— 2. Using 23.2(d), we see that N
is always even. The assumption (18.3.1) in 18.3 is satisfied by the rationality
of representations of the Hecke algebras of W'y, in (i), (ii) above. Hence,
from 18.3, we can deduce that ¢ ,=¢,, as desired.

LemMa 23.7. Let G=Spin,(k) (m>3), or G=1Spin,(k) (m>12,
m =0 (mod 4)). Assume that (17.8.4), (17.8.5) hold for all Spin,, (k), m" <m.
Then G is clean.

The proof is entirely similar to that of 23.4; it will be omitted.

Note that we are not able to prove a parity condition for G, as we did in
the other cases (23.3-23.6); the difficulty is that we cannot apply 18.3 since
the groups W, which appear may contain factors 4, with nontrivial action
of Q, and there is no simple rationality statement for the representations
of the corresponding Hecke algebras.

23.8. We now consider a general G, an % € #(T) and a character
X Ze/ZG— O

(23.8.1) Assume that G satisfies (17.8.3), and G’ satisfies (17.8.3),.. (Here
G’ is another group like G, and y': Z; /%% — QF is a character.) Then
G x G’ satisfies (17.8.3), ., where y x x": P56 ]Z% . - — OF is the product
of y, x'. -

(This is a refinement of 17.11; the proof is left to the reader.)

(2382) Let G=G/Z% so that Zs;=2,/Z%, and let 7 be the

corresponding character of Z; defined by . If G satisfies (17.8.3),, then G
satisfies (17.8.3),.
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(This is proved just as in 17.10.) A
Note that for any A€ G%,, any E€ W, and any character ¢ of W, /W,
we have

(4: REgs)=9(x)"'(4: RE). (23.8.3)
Indeed, from (16.2.9), 11.9, and 17.18(b) we see that

(A:Rfgy)= Y ¢pee4:RI)= ¥ ¢, 1peid:RY)

yeWy yexWy
=¢(x)™" Y c1e(4:RZ)=¢(x)"(4: RE).

It is easy to check that for any 1 € .# (%, )* (F' family in W",) and E, ¢ as
above, we have (1, meg4)=@(x) ™" (M, mg).

(23.8.4) It follows that, assuming y: Z5/Z% — Q, is faithful, we have
(A4:RE)=0 (AEG_Q,, Ee W',) unless the restriction of E to W, is
irreducible (such E are said to be nonsingular).

In this case, we see also that the condition “(4 : RZ)=£ ,(m , mg) for all
AeGy, Ee W,” in (178. 3), is equivalent to the condition “(A R =
sA I.le (4, mg) for all 4eG% and all nonsingular Ee W',”, wherc

=3, #(x)REg, and ¢ runs over all characters of W'y /W, =Q,.

LEmMMA 239. Let n: G'— G be a surjective homomorphism with finite
kernel I', where G, G’ are connected semisimple groups over k. Let yx:
25— QF be a character and let y': &5 — Q, be the composition of y with the
map %, — % induced by m.

(a) If the parity condition ¢, = ¢, is satisfied for all A€ G*, then it is
also satisfied for all A'e G'%.

(b) Assume that Irr®(G)* < G*. Then Irt(G')¥ = G'*.

(c) Assume that any cuspidal AeG* is clean. Then any cuspidal
A’ €G'¥ is clean.

(d) Assume that (17.8.3),. holds for G’ and that t*4' £ A’ for any
A'€G'¥ and any ze T, z #e. Assume also that T is cyclic of order m.

Then (17.8.3), holds for G.

Proof. The statements (a), (b), (c) are proved by the arguments in
17.16. (Note that if 4’ € Irr%(G’)* then n, A’ is a direct sum of complexes in
Irr°(G)*.) We now prove (d). Let T be a maximal torus of G and let
T'=n"YT). Let L€ L(T) and let &' =n*%. For any A’ € G'¥, the direct
image n, A" is a direct sum of irreducible perverse sheaves on G, each one
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with multiplicity one (since I" is cyclic). These irreducible perverse sheaves
are in fact in G% (see 17.16). Conversely, if 4 € G*, then the inverse image
n*A is a direct sum of character sheaves in G'*, each one with multiplicity
one. For A’e G’* and A e G* we denote by f 4.4 the multiplicity of 4 in
n, A’ or, equivalently, the multiplicity of 4’ in n_A. Then f,. , is always 0
or 1. There is a natural action of I" on G'¥ by z: A’ - 1*4’ (zeT), see
17.17, and a natural action of I'=Hom(I, J}*) on G* by a: 4 > AR &,.
(Here, ae I and &, is the local system on G associated to the principal /-
bundle G’ - G and to a.) We have a 1-1 correspondence between the set of
I-orbits on G'* and the set of I-orbits on G*: the orbit of 4’e G'*
corresponds to the orbit of A€ G* precisely when f, 1+ =1. When two such
orbits correspond, the number of objects in one orbit times the number of
objects in the other orbit is always equal to m=|I'|. In our case, I'" acts
freely on G'*, by assumption. It follows that n, defines a bijection between
G'*, modulo the action of I', and G*%, and also:

(239.1) a bijection between G'%., modulo the action of I', and G%,.

Since G', &' satisfies (1‘7.8.3)1,, I’ must act freely on LI, #(%;.)* by
z:{x, 0) = (x, c @ 0.) (see 23.8); here, %5 are defined in terms of W', and
F' runs over all families in W'g,,. If #' is such a family, then #'
corresponds to a family % in W.= W, well defined up to the action of
Q.. (Recall that W, =Qg4W..) We have 9%.=Q,. 59, where
Q. & is the stabilizer of # in Q. and ¥, is defined as in 17.5, in terms of
F c Wy =W,. We have a commutative diagram

Qg <— Hom(Z;., OF)

J J (23.9.2)

Q, = Hom(Z;, 0F),

where the horizontal maps are given by (11.8.1); the right vertical map is
composition with =, so it carries y to x".

(23.9.3) From the definitions, it follows that there is an induced
imbedding 2 ,./Q ., c Hom(Z., 0 ¥)/Hom(Z,;, 0F)=Hom(I, O}F).

We must construct a bijection

Gy - 11 M (%5 ), (23.9.4)
py

where 9. are defined in terms of W, and &' runs over all families in W'.
We may assume that there exists x, € 2, which is mapped to y by (11.8.1);

607/61/2-2
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otherwise, both sets in (23.9.4) are empty and there is nothing to prove.
Instead of defining (23.9.4) directly, we shall first define a bijection

4

(]_[ /l(gy,)x')/lﬁ—» a J/l(%;) (23.9.5)
e F

and then define (23.9.4) as composition of (Ll (4, )* )/ (G'L)/T
(obt?ined fiom (17.8.3),.) with (23.9.1) and with (23.9.5). Let # be a family
in W,.=W_, which is x,-stable (i.e., stable under conjugation by x;), let
F', F' be the corresponding families in W',., W, respectively, and let
Ry z,24 5 be the stabilizers of  in 24, 24, respectively. Consider
the element (x,, 1) .#(%;.)¢; here 1 denotes the unit representation of
Zy,(x0)=Q 4 5 Z4,(xo). We know that the I-orbit of (x,, 1) consists of
|I") = m elements. This means that the restrictions of g, (z€ I, see 23.8) to
Q4. & are distinct; however, the restrictions of o, to 2 5 are all trivial. It
follows that Q. z/Q2., 5 has at least m distinct characters. Hence the
index of Q4 5 in 24 5 is at least m. Using (23.9.3), we see that in the
imbedding Q4 /2, ;<Q4/2¢ we have m<|Qy /24 5| <
|2, /2 4| <m hence this imbedding is an equality. It follows that the Q . -
orbit of # is the same as the Q ,-orbit of #. Hence we have a natural
bijection between the set of families #' in W',. such that .#(%; )" # &
and the set of families Z' in W', such that .#(%z.)* # J. Hence to define
(23.9.5) it is enough to construct for each #, F', #' as above, a bijection

MGy N IT > M (G5 )", (23.9.6)

Let x, €95 ; consider the lement (xyx,, 1)€.#(%)*; here 1 denotes the
unit representations of Z4,.(x,x,). We know that the I™-orbit of (xoxy, 1)
consists of |I'| =m elements. This means that the restrictions of o, (ze 1)
to Zg,(Xox,;) are distinct; on the other hand, the restriction of o, to
Zg,(xoxy) are trivial. It follows that Zg, (xox,)/Z 4, (xox,) has at least m
elements; it is contained in %, /97 =Q4 »/Q+  which has exactly m
elements. Hence the imbedding Z,, (xox,)/Z4;(xoX,) S 95./%# is an
equality. It follows that we have a canonical bijection beiween the set of
%, ~conjugacy classes of elements in %z of form xyx, (x, € %5 ), and the set
of %z-conjugacy classes of elements in %z of form x,x, (x;€%;).
Moreover, for each such x,, the group Zg, (xox;)/Zg,(x0X,) is cyclic of
order m, and by assumption, I acts freely on the set of irreducible
representations of Zg, (xox,), via ® o,. It follows that restriction of
representations defines a bijection between the set of I™-orbits on the set of
irreducible representations of Z,, (xox,) on the one hand, and the set of
irreducible representations of Z,, (x,x,) on the other hand. This gives rise
to the bijection (23.9.6) and hence to the bijection (23.9.5).
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Now let 4eG%, and let Ec W',. Let i = (xoX,, 0) € #(%z.)* be the
element corresponding to 4 under (23.9.5) and let m; be as in 17.8. Let

€G'%. be such that n,4'=4 and let E,., E, be the irreducible
representations of W' whose restrictions to W, are E. Let m, =
(x0xy,0')€ M(F5)* be the element corresponding to A’ under (17.8.3),
and let m be as in 17.8. Note that £,,=¢,. We have

(4:RZ)=(n A" :RZ)=(A":n*R¥)

m
A" :RE)= Y el mg)

i=1

éA {(xoxl, a'), mE}

Using the definitions and the fact that ¢ is the restriction of ¢’, we see that
the last expression is equal to &,{(xox;, o), mg}. The verification of the
fact that the bijection (23.9.5) is compatible with the action of Z;/Z% (see
23.8) is left to the reader. This completes our proof.

LemMa 23.10. Assume that G is a connected semisimple group over k and
let y: Z5—QF be a faithful character. Assume that (17.8.3), holds for G.
Then t*A # A for any Ae G* and any z€ %, z #e.

Proof. Using (17.8.3), we see that it is enough to prove the following
statement. “Let ¥ € #(T), let xo,€ 2, be such that x, is mapped to y by
(11.8.1), let # €W, be a family stable under conjugation by x,, let
x, €9z, and let ¢ be an irreducible representation of Z, 4, (x,x,). Then
o ® o, is not isomorphic to ¢ for any ze %, z #e (see 23.8).” It is enough
to show that g,(xqx,)#1 for all z #e¢, or equivalently that ¢,(x,)#1 for
all ze Z;, z #e. By the definition of x,, o,, we have o,{x,)=x(z) and we
have y(z)#1 for all ze %, z # e since y is faithful.

LEMMA 23.11.  Assume that G # {e} is a semisimple connected group over
k, and let y: Z5;— QF be a faithful character. Let G, G,,..., G, be the set of
almost simple, closed normal subgroups #{e} of G, and let y,;: % > O} be
the restriction of y to %, (1 <i<r). Assume that (17.8.3),, holds for G, for
all i. Then (11.8.3), holds for G.

Proof. We may assume that r>2 and that the result is true for r— 1.
Let G, be the subgroup of G generated by G,,..., G,, let G'=G, x G, and
let n: G’ - G be defined by n(g,, g5)= g, g>. From our assumption, it
follows that, if x; is the restriction of x to %, (a subgroup of 2), then
(17.8.3),; holds for G;. From (23.8.1) it follows that (17.8.3), holds for G’
where y: %, — QF is the composition of y with n: %, —» %,;. (We have
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Zo=Z5,x Zg, and y'(a, b) =y (a) x3(b), for ae &, beQ’GZ) Let I be
the kernel of 7. Then I'= {(a, b)efl"clxﬁ"c2 |a=b""} is isomorphic to
Zs, n.ZZ’G c Z; hence it is cyclic since x;: % — QF is faithful. Let
A'eG'¥, "and let z=(a,a”')el, z#e (ae Zs N Z;). We want to show
that t*4'#A4. We have A'=A, X A, where A,eGr, A,eGy,
t¥A' =1X4] X t*.1 4,. To show that 4" #1*A4’, it is enough to show that
A} #£1¥A47, and this follows from 23.10 since x, is a faithful character of
%, (Note that Z; is a subgroup of Z;.) It remains to apply 23.9. The
lemma is proved.

23.12. We shall now fix G and y: 25— QF as in (a), (b), (c), (d),
(e), or (f) below and we shall make an inductive assumption as indicated.

(a) G=PSp,,(k) (n=2), y=1. Assume that (17.8.4), (17.8.5) hold
for all Sp,,.(k), 1<n’<n, and that (17.8.3) holds for all PSp,,(k),
I<r <n

(b) G=Sp,,(k) (n=2), x#1. Assume that (17.8.4), (17.8.5) hold for
all Sp,,(k), 1 <n’<n, and that (17.8.3), holds for all Sp,,(k), 1 <n’ <n,
where y’ is the nontrivial character of the centre, (see 23.8).

(c) G=PSO,,(k) (m=4), y=1. Assume that (17.8.4), (17.8.5) hold
for all SO,.(k), 3<m <m, and that (17.8.3) holds for all PSO,,(k),

I<m <m.

{(d) G=S0,,(k) (n=3), y# 1. Assume that (17.8.4), (17.8.5) hold for
all $0,,/(k), 2<n’' <n, and that (17.8.3), holds for all SO,,(k), 2<n"<n,
where x' is the nontrivial character of the centre (see 23.8).

(e;) G=Spin,(k) (m=5 m odd), y+#1. Assume that (17.84),
(17.8.5) hold for all Spin,,(k), 3<m’<m and that (17.8.3), holds for all
Spin,,.(k) (3<m’'<m, m’ odd) where y’ is the nontrivial character of the
centre.

(e;) G=Spin,,(k) (m=10, m=2 (mod 4)), y faithful. Assume that
(17.8.4), (17.8.5) hold for all Spin,,(k), 3 <m’ <m and that (17.8.3),  holds
for all Spin,, (k) (6<m'<m, m'=2 (mod 4)) where y' is any faithful
character of the centre.

() G=4%Spin,,(k) (m=12, m=0 (mod4)), y#1. Assume that
(17.8.4), (17.8.5) hold for all Spin,(k), 3 <m’ <m, that (17.8.3), holds for
all 1Spin,. (k) (8<m'<m, m'=0 (mod4)) where x’ is the nontrivial
character of the centre and that (17.8.3),. holds for all SO,,(k) (6 <m' <m,
m’ =2 (mod 4)) where y” is the nontrivial character of the centre.

Lemma 23.13. Let G, x be as in 23.12. Then:

(a) If L is a Levi subgroup of a proper parabolic subgroup of G, and
x1:Z/ZS - QF is a faithful character, then (17.8.3),, holds for L.
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(b) Let L€ (T) be such that for some we W, and some I g S,
=w*¥ satisfies W'y. = W'y ;. Then (11.8.3) holds for G, &.

Proof. (a) Using (23.8.2) we may replace L by L= L/Z9 and g, by the
corresponding character of 7. We shall apply 23.11 to L. This is
applicable, in view of the inductive assumptions on G (see 23.12) and the
following statement:

(23.13.1) Any almost simple group of type A satisfies (17.8.3), for any
character y of the centre.

(This statement can be extracted from the proof of 18.5.)

(b) We may assume that w=e or w=s, a simple reflection. The case
w =75 reduces to the case w=e by the method of 14.15. Assume now that
w=e¢, so that ¥’ = %. Then the method of 17.12 shows that (b) for x, G is
a consequence of (a) for y,, L,. Here, y, x, are related by y =y, ¢, where
¢: Zs— %,,/Z9, is the natural (surjectlve) homomorphism; ¢ must in fact
be an isomorphism, otherwise, G% is empty. To be able to apply the
method of 17.12, we need to know that G is clean. But this has been
verified in 23.3-23.7. This completes the proof.

23.14. Let G, x be as in 23.12(a), (b), (c), (d), (&), (e,), (f). To
prove (17.8.3), for G, & (£ € #(T)) we may assume by 23.13(b) that £ is
restricted in the following way:

(a) £ is as in 23.3(i), (ii).

(b) £ is as in 23.4(i), (ii).

(c) £ is asin 23.5(1), (ii).

(d) £ is as in 23.6(i), (ii).

(e))(i) W is of type B,xB,xA, (2r+r+1=im—-1), rz1,
r'=1) with Q. of order 2 switching the two B,-factors, and (if r' = 2)
acting nontrivially on the A4, -factors, or

(ii)) Wgisoftype 4, (' +1=1(m—1)), with Q of order 2 acting
nontrivially (if ¥ 22) on W or

(i) Wy is of type B,x B, (2r=4m—1), r= 1), with Q4 of order
2 switching the two B, -factors.

(e;) (i) Wy is of type D,xD,xA, 2r+r+1=im, r=2, r>21),
with Q. cyclic of order 4 with the generator corresponding to y (see
(11.8.1)) switching the two D, -factors, and (if ' >2) acting nontrivially on
the A,-factor (the square of the generator acts nontrivially on each D,-
factor), or

(ii) W is of type A, (r' + 3 =1m), with Q, cyclic of order 4 with
generator corresponding to y (see (11.8.1)) acting nontrivially on W .
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(N({) Wyisoftype D, xD,x A, 2r+r'+1=4m,r22,¢' 21), with
Q. of order 2 switching the two D, -factors and (if r'>2) acting non-
trivially on the A4, -factor, or
(i) Wy is of type A, (r' + 1 =1m), with Q, of order 2 acting non-
trivially on W, or
(ili) W is of type D, x D, (2r = im), with Q4 of order 2 switching
the two D,-factors.

In the cases (a), (b), (c), (d), the parity condition ¢, = £, is satisfied (see
23.3-23.6), hence for each family # = W', the subset G%, , of G, 5 is well
defined, (see (17.13.2), 23.0).

In the cases (e,), (¢,), (f), the parity condition is not yet known. We shali
define G*+ = {AeG* | e,=(—1)**%} and G4+ =G** N G4 If Ae G*7,
then the parity condition ¢, =&, is satisfied. Indeed, if 4 is cuspidal, then
§,=(=1)2%C (by (154.7), 155, (15.11.2)) and &,=(—1)""*% by
assumption; if A is noncuspidal then the equality ¢, = £, follows from the
inductive assumptions on G in 23.12 and from the conservation of ¢4, £, by
induction (15.12). We could also define G* ={AdeG*|e,=
(= 1)@+ Gr— = G*~ n G1,; the parity condition for 4 € G* "~ is not
yet known at this stage in the proof. We shall also attach a sign + or — to
any nonsingular E€ W',. (Recall that F is said to be nonsingular, if its
restriction to W, is irreducible, see 23.8.) Let ¢ be the two-sided cell of W',
such that E~, .z for some zec. From (16.2.9) we see that there exists
yexW,nc (where xeQ, corresponds to y under (11.8.1)) such that
a, #0. One checks that /(y)—a(y) (mod 2) is independent of the choice of
y; it depends only on of ¢ and x. (This is a result of the same type as
17.20.) We say that E (or the corresponding two-sided cell ¢, or the
corresponding family in W) is of + type (resp. — type) if {(y)—a(y)+
rank(G) is even (resp. odd). If yec is as above (yexW, a,.#0) then from
17.18 we see that ‘

(23.14.1) ij , Rj"; ~ are Z-linear combinations of character sheaves
Ae Gy (resp. A4 eG4 if ¢ is of + type (resp. of — type).

Since the parity condition £ ,=§£, is known for A€ é’_ﬁ; , we sec that the
proof of the disjointness theorem 16.6 can be carried out and yields the
conclusions (a) and (b) of 16.6 provided that we assume that w in 16.6(a) is
in a 2-sided cell of + type of W, and in xW, 4 is in G4, and E, E are
nonsingular of + type. From (23.14.1), we see also that if Ee W', is non-
singular of — type and A€ G%*, then (4 : RZ)=0. For each family # of
+ type in W, (corresponding to the two-sided cell ¢), we define GA@,&, to
be the set of all 4 Gf,f such that (4 : RZ)#0 for some E€ %. Then the
sets GAQJ form a partition of G%* (cf. (17.13.2)). (Note that, at this stage,
we cannot define an analogous partition of G‘X_Q,‘.)
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(23.14.2) We shall say that a family # < W', of + type (or in cases (a),
(b), (c), (d), an arbitrary family # < W',,) satisfies (17.8. 3),.# if there exists
a bijection G Ys o M(Ig)' (A m,) such that (4: REY=¢,{m,, mg}
for all AeG, and all Ee W' and which is compatible with the actions of
% (see 23.8).

23.15. Let G, x, £ be as in 23.14(a), (b), (c), (d), (e,), (e,), or (f).
Let # < W', be a family; in cases (e,), (¢,), (f) we assume that & is of +
type. Assume that there exists I & S such that either # or # ®¢ (¢ as in
(12.9.7)) is smoothly induced from a family of W', , (see 17.13). Using
23.13(a) and the method of proof of (17.13.7), we see that (17.8.3), & holds.
More generally, assume that there exists 7 = S and we W such that
w*¥ = &' and conjugation by w carries # ¢ W, to a family % < W',
such that # or # ®c¢ is smoothly induced from a family of W', ,. Then
the method of 17.15 reduces us to the previous case and shows again that
(17.8.3), & holds. For given %, there is at most one & < W, for which
IcS and we W as above cannot be found. (Such # is said to be a
cuspidal family.)

23.16. Using [6, 8.1], we have the following description of
cuspidal families. Let W, =T]; W%, be the decomposition of W, into a
product of irreducible Weyl groups. The condition that a cuspidal family
exists in W', is the following:

(i) if W', is of type B, or C,, then r=d* +d for some d>1,
(ii) if W, is of type D,, then r = d* for some d>2,
(iii) if W% is of type 4,, then r+ 1 = 4(d*> + d) for some d>2.
If these conditions are satisfied then the cuspidal family consists of the

irreducible representations of W', whose restrictions to W, contain an
irreducible representation E= ®, E', (E'e W’,) where

(i) E' belongs to the family of W, described in 224, if W, is of
type B or C,

(i) E’ belongs to the family of W', described in 22.5, if W', is of
type D,

(iii) E’ has symbol [1, 3, 5,.., 2d— 1] (see [6,4.4]) if W, is of type
A(l/2)(af2+d)~l-
In the cases (e;), (e,), (f) the cuspidal family % in W7, (if it exists)
is automatically of + type. We shall prove this, for example, in the
case 23.14(e,)(i), when W, is of type B,xB,xA, r=d*+d>2,
r'=4d?+d)—122, and Q, is of order 2 acting nontrivially on B, x B,
and on A4,. Let ye W' — W be in the two-sided cell corresponding to #.
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We have {y)—a(y)=ar+ A, (mod2), where E is the irreducible
representation of the 4,-component of W, with symbol [1, 3, 5,..., 2d— 1]
(cf. [6, (7.6.3)]). Since E'~ F' ®sign, we have Ap = —ag +r'(r'+1)/2
(see [6, (5.11.5)]). Hence X y) — a(y) = (r'(r' + 1)/2) (mod 2). Let x be the
generator of 2,. Then N y)=7y)+/(x), rank G=2r+r +1, and it
remains to show that {(x)=r"+1+ (r'(r' + 1)/2) (mod 2); this is left to the
reader.

23.17. Let G, y, & be as in 23.14(a), (b), (c), or (d) and let # be a
cuspidal family in W’,. We want to prove that (17.8.3), & holds. First, we
consider the case 23.14(b). Thus G = Sp,,(k) (n=1), y: Z; - QF is non-
trivial; we assume that & is as in 23.4(i), that is, W is of type D, x C,.
r=d’>4, ¥ =d*+d>2, r+r =n, and 2, is of order 2 acting non-
trivially on the D -factor. Let V| (resp. V,) be the F,-vector space of all
subsets of even cardinality of {0, 1, 2,..,2d—1} (resp. of {0, 1, 2,..., 2d'}),
and let V=V, @ V,. Any representation E in & is of form E,® E, where
E, is an irreducible representation of the D,-factor extended by Q. and E,
is an irreducible representation of the B,-factor.

As in 22.5, we make E, correspond to a point v, € V| and as in 22.4, we
make E, correspond to a point v,eV,. We attach to E the point
(v, vy)eV. This defines an injective map % — ¥ whose image 7 is just
7, x ¥/, where V', c V|, ¥, <V, are defined as in 22.5, 22.4. We write E,
for the representation in & corresponding to ye V. The symplectic forms
on V,, V,in 22.5, 224 give rise by direct sum to a symplectic form on V
with 1-dimensional radical Rad V. Let £,: Rad V' — F, be the unique linear
form #0.

In our case, the statement (17.8.3), 5, which we are trying to prove, can
be reformulated as follows. Let X= {neHom(V, F,):n | Rad V=2¢,}.

(23.17.1) There exists a bijection c‘;x,f«g)(x{o,l} (A0 (1,0),
A, > (n, 1)) such that (4,,;: RE)= 27D 1y for all yeV, all
neX and for ie {0, 1}, and such that

tzAn,O—'Ar].l’ i Aql"

where z is the nontrivial element in % ;.

Let ey, e,,..., €24, 241 D€ the basis of V such that e,, €;,.., €,4_; is the
canonical basis of V| defined in 2.5 and ey, €154 s €204 24 ~1 15 the
canonical basis of V, defined in 2.4. Let 7 (V) be the collection of maximal
isotropic subspaces of V associated to the basis e, e,,..., €25, 22, as in
[6,9.1]. Using [6, (9.5.2)] we see that for any Ce Z (V) and any linear
form &: C — F, such that ¢ | Rad V' =¢,, there exists we Wy — W, such
that 3. o(—1)*YE, = —a,, see (16.2.7). (The minus sign in front of a,
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comes from the fact that /(w) =Tw)+ 1 (mod 2).) Applying 16.6(a), we see
that

(23.172) poe=""%,c (- 1)s+ 'R¥ is a linear combination of charac-
ter sheaves in G%, ; with integral, >0 coefficients.

If (C', &) is another pair like (C, &) we have, using 14.13:

(23.17.3) (pce: peg) =twice the number of ne X such that | C=¢,
nlC'=¢.

We note that for any ye ¥ and any Ce 7 (V) containing y, we have (by
(23.17.2))

2d+d’~1(R.g;_R£+v)=z(_1)5(«")+1PC’§ (23.17.4)
¢

sum over all £e Hom(C, F,) extending ¢,. (Here v is the generator of
Rad V) In particular, the right-hand side of (23.17.4) is independent of C;
it depends only on y. For y =0, we obtain that

he= qu —24+*4~YRE - RE) (CeT (V) (23.175)

(sum over all £ e Hom(C, F,) extending &,) is independent of C. We denote
it by A. We now borrow a part of the argument in [6, 9.2]. Let C, be the
subspace of V spanned by Rad V and by e, 3, e5,..; let C, be the sub-
space of V spanned by Rad V and by e,, e4,.... Then C;, C,€ T (V). Let
neX and let &,:C, > F,, &,:C,— F, be the restrictions of 5. From
(23.17.2) we see that (pc,¢, 2 Pc,e,) =2 Using now (23.17.2), we see that
either

(«) there are exactly two objects in G% %, & which appear in both
Pcues Poye, (they must appear with coefficient 1 in both pc ¢\, pc,e,) OF

(B) there is exactly one object (say A) in GA"g, # which appears in both
Pcies Py, (it must appear with coefficient 1 in one of them and with coef-
ficient 2 in the other).

Assume that (B) holds; we shall reach a contradiction as follows. If
¢5: C; — F, extends &, and is different from ¢, then (pc,¢, : Pc,) =0 by
(23.17.3) hence A4 doesn’t appear in pc,:, (see (23.17.2)), hence A appears
in h¢, (see (23.17.5)) with the same coefficient as in pc,;,. Similarly A4
appears in h., with the same coefficient as in p, . Since we have assumed
that (8) holds it follows that A, # h,, a contradiction.

Thus («) holds; we denote by 4,4, 4, ; the two objects in G 2, & defined
by (a). The previous argument shows that h= Enex(A,,,o+A,,l) is mul-
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tiplicity free. Moreover, any A e G‘@y must appear in it. Indeed, we have
(4 :Rf; )#0 for some ye V. Moreover, by (23.8.4), we have

(4 :R{;H)-—- —(4 :Rf;), (23.17.6)

hence (4 : RZ —Ri  )#0. Using (23.17.4), we see that (4 :pc,)#0 for
some Ce J (V) and some ¢ By (23.17.2), we then have (4 :p.;)>0 and
using (23.17.5) we have (4:h)>0, as claimed. Thus, we have h=3 A4
(sum over all 4€G% ;).

Now, let D= {5, n"} be a two element subset of X such that #"+7n" is
equal to the inner product with the standard basis element e, of V' and
n'(e;)=1"(e;)=0. As in the proof of 22.6, the collection of such subsets {for
fixed i) parametrizes (in a 1-2 fashion) certain character sheaves of the Levi
subgroup L; of a parabolic subgroup of G. Applying induction to those
character sheaves, and following this by truncation (=projection onto the
subspace of J,(G) spanned by Gﬁf,f) we obtain, as in the proof of 22.6,
some elements p p, jp € #5(G) which are linear combinations with integral,
20 coefficients of character sheaves in G% , and have the properties
(23.17.7)-(23.17.9) below.

(pp:pce)=(Pp:pce)=number of ne D such that 5 | C=¢
(for Ce 7(V), e Hom(C, F,) extending &) (23.17.7)

t*pp=7pp, 1¥pp=pp, Where z is the generator of Z;, (23.17.8)
Y(pp+Pp)=2"""H-RE+RE—RE+RE ) (23179)
D

(here D runs over all subsets of X as above, corresponding to a fixed ¢;).
We shall now explain (23.17.8) and (23.17.9), which did not appear in
22.6. The two character sheaves of L; parametrized by D are related to each
other by ¢¥ for z; an element in &,,— 2 . Since induction and truncation
are compatible with the operations 7*, we obtain (23.17.8). The left-hand
side of (23.17.9) is obtained by induction and truncation from an element
which plays for L, the same role as 4 (above) plays for G. That element can
be expressed in terms of R} as in (23.17.5), and hence the corresponding
induction and truncation can be computed from 15.7(a); we then obtain
the right-hand side of (23.17.9). Using (23.17.4) for y =0 and e; we see that
the right-hand side of (23.17.9) equals >, p where C is a fixed subspace
in (V) containing e; and ¢ runs over all elements in Hom(C, F,) which
extend &, and vanish on e,. The last sum 1s a partial sum of (23.17.5) hence
it is multiplicity free since 4 is so. Thus, the left-hand side of (23.17.9) 1s
multiplicity free. It follows that for each D in the sum, p,+ g, is mul-
tiplicity free. In particular, p, and §, are disjoint in the sense that no
character sheaf can appear in both of them. Combining this with (23.17.8),
we see that if A4 is a character sheaf appearing in p, or ., then t¥4 # A.
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Using (23.17.7) we see just as in [6, p.272] that if D= {n’,n"} is as
above, then both p, and §, are of the form 4,.;+ A4, ; for suitable i # j in
{0, 1}. Since pp, p, are disjoint, we may arrange notations so that

pD=A,",0+A,’"’0, ﬁD=A,’I’1 +A,'",l. (23.17.10)

Now 4,4, A, are characterized by the fact that they are the only charac-
ter sheaves which appear in both p. ., pc,e, Where & =n"|C,,
{2=n"| C,; moreover, by (17.17.3), both pc¢ ., pc,e, are t¥-invariant. It
follows that the 2-element set {A4,.o, 4, } is t¥-invariant. As we have seen,
A,oand A, are not fixed by ¢X. It follows that

t¥dyo=Ayy,  FAp=A,. (23.17.11)

These identities hold for any »’ which is contained in a D as above, hence
for all #' € X, except possibly for one. Using again (17.17.3) we deduce that
the identity

(Ao RE)=(4,,: RE, (23.17.12)

holds for all ye ¥ and for all 4 € X, except possibly for a single . Assume
now that there exists #,, yo which violate (23.17.12). Then #, is uniquely
determined, and from (23.17.4), (23.17.6) we see that there exists C, & such
that (A4,.0:pce) # (A1 - pce) But pe, is multiplicity free, since A is, (see
(23.17.5)). Hence one of the numbers (4,0 :pc¢), (A, i Pc,e) must be 0,
and the other must be 1. For any ne X, n#n, we have (4,0:pce)=
(A, :pce) It follows that (3, (A4, 0+ 4,,1):pce) is odd. On the other
hand, this equals (#:p..)=even, by (23. 17. 3). This contradiction shows
that (23.17.12) holds for all y € X and for all ye V.

We can therefore define a function [, y] on X x ¥ with values in F, by

(Ayo: RE)= (A, : RE) = —(— 1)1+
0 E, . E,

(The fact that (4:RZ)= £27“*%), for A€ G% 4, follows from (23.17.4)
and (23.17.6).) Here are three propertles of the function [#, y].

(23.17.13) For any CeZ (V) and any neX, the function C—F,,
(y— [y, ¥]) is Fy-linear.

(This follows from (23.17.4) and (23.17.6).)

(23.17.14) For any D= {n',n"} =X as above (with respect to e¢,) and
any ye V, we have

—_13y{7'.»1 Yyl 1y’ _1y1"(»
(=) +(-1) (=)™ +(=1)"
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(This follows from (23.17.10), (23.17.7), (23.17.4), and (23.17.6).)
Y (=)= (—1), (23.17.15)

neX neX
(This is proved as follows:
- X (—1)["-”-2—““"'*“=(Z (An,o+Aq,1):Rf,§;)=(h:R§;)

nex ne X
— d+d ~1 & L . p<s
=2 (R% - RZ:RZ)

% _2d+d’—1 lf y=0

2d+d‘-l lf y=v
0 if y#£0,v
=2 d+d—1) Z (—l)"”'),)
neXx

We now apply [6, 3.3] and deduce that [n, y]=n(y) for all ne X and
all ye V. Thus (23.17.1) is verified, except for the statement on the action
of t*, which is known (see (23.17.11)) for all # except possibly for a single
7 =1, defined by ny(e;) =1 for all i. (This y, is in X if and only if 4 is odd.)
To check this remaining case (for 4 odd), we first note that 4,., and 4, ,
are cuspidal. (Using 18.2, as in the proof of 19.3(a), this statement is
reduced to the statements (22.4.1), (22.5.2); the multiplicities of 4, o, 4,,,
in Rf; are already known.) Using 23.2(b) it now follows that ¥ does not
leave A, o or A, invariant. Hence it must interchange them. Thus
(23.17.1) is verfied. Hence (17.8.3), & is also verified in our case; we have at
the same time obtained a lower bound for the number of cuspidal character
sheaves in G% ,: this number is >2 if d is odd. In the case where & is as
in 23.4(ii), ie, W is of type C,_, (n=d*+d+1), and Q, is of order 2
we see in an entirely similar way that (17.8.3), 5 holds and that there are at
least 2 cuspidal character sheaves in G% 5.

The same method applies in the cases 2.14(a), (b), (c), (d). We thus
obtain that (17.8.3), 5 holds in each of these cases. (In the cases (a), (c) the
proof is simpler than in the other cases; it is along the same lines as the
proof in 22.6, 22.7.) We also obtain in each of these cases a lower bound
for the number of cuspidal character sheaves in G%, 5.

23.18. Now let G, 3, & be as in 23.14 (e,), (¢,), or (f) and let ¥ be
a cuspidal family in W',. (As we have seen in 23.16, % is automatically of
+ type.) We want to prove that (17.8.3), » holds. First, we consider the
case 23.14(e,). Thus G =Spin,,, m=2 (mod 4), m>10, and y: Z; - QF is
faithful. We assume that & is as in 23.14(e,)(i), in particular, W, is of type
D xD,xA,,2r+r +1=im),r=d24,r=4{d*+d)—122and Q4 is
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cyclic of order 4, with a fixed generator x corresponding under (11.8.1)
to x.

Let V' be the F,-vector space of all subsets of even cardinality of
{0,1,2,..,2d—1}. V has a natural symplectic form, a natural basis
€1, €24, and a natural subset ¥, as in 22.5. Let J(V) be the
corresponding family of maximal isotropic subspaces of V, defined as in
[6,9.1]. We now attach to each nonsingular (see 23.8) representation
EeZ a point in ¥xF, as follows. We can write W, =W!x W!'x W2,
where W' (resp. W?) is a Weyl group of type D, (resp. 4,.). The restriction
of Eto W can be written as E' X E' X E* where E' (resp. E?) is an
irreducible representation of W' (resp. W?).

Here E' is in the family % (with notations of 22.5) and E? is indepen-
dent of E (it has symbol [1, 3, 5,..., 2d' — 1], see [6, 4.4]). The action of the
generator xe Q4 on E is given by

e, ®e®e; »ale))®e; ® Pole,);

here B,: E* - E? is the involution defined as in 17.2(b) and «: E!' — E'
satisfies o= +1. If a>=1, then (E', ) is a representation of W,, the
semidirect product of W' with the cyclic group of order 2 acting on W, by
a nontrivial graph automorphism; it then corresponds as in 22.5 to a point
ye ¥ and we associate (y,0)e ¥ x F, to E. If x> = —1, then (E', \/— &) is
a representation of ¥, which again corresponds as in 22.5 to a point ye ¥
and we associate (y, 1)€ ¥ x F, to E. (Here, ./ —1 is a fixed square root of
—1 in Q,.) This gives a bijection E, i (p, i) between the set of non-
singular representations in # and the ‘set Vx F, Let {;: Rad V> F, be
the unique linear form #0. In our case, the statement (17.8.3), 5 which we
want to prove can be reformulated as follows. Let X=
{neHom(V, F,):n | Rad V=¢,}.

(23.18.1)  There exists a bijection G% 5 < X x {0, 1,2, 3} (4,,+> (1, /),
such that

( R‘Y)- . (d+l)( l)n(y)(/ )x

for all yeV, all neX, all ie{0,1} and all je{0,1,2,3} and such that
for any neX, t} (ze%;) act simply transitively on the set
{4,,17€{0,1,2,3}}.

The proof is similar to the proof of (23.17.1) (but slightly more
complicated). Let CeJ (V) and let & C—F, be a linear form
extending &,. Then  there exists wexW, such that
ZyEC( - l)c(y)(Ey,O VA 1 Ey,l) = —a,.

Applying 16.6(a) or rather its version discussed in 23.14, we see that
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(23.18.2) pC.¢=d°nyec(—1)5‘-"’+1(R;§‘0—,/—1 RY.) is a linear com-
bination of character sheaves in G% 5 with integral, >0 coefficients.

If (C", &) is another pair like (C, &), we have, using 14.13:

(23.183) (pce:peye)="four times the number of yeX such that
n|C=¢n|C'=¢.

Next we note that for any ye ¥ and any CeJ (V) containing y, we
have

(23.184) 2°Y(RZ, — R, — V-1 RE + J-1RZ, ) =
Y (1) g, sum over all ¢ e Hom(C, F,) extending &,. Here v is the
generator of Rad V. It follows that

he=Y pce (23.18.5)
¢

(sum over all £ e Hom(C, F,) extending &) is independent of C. We denote
it A Define C,,C,e7(V) as in 23.17. Let neX and let ¢,:C, > F,,
¢, Cy,— F, be the restrictions of n. We have (pc.¢ i pPce,)=4% by
(23.18.2). The argument in 23.17 shows that there are two possibilities:

(x) there are exactly four objects say 4, ,, je{0,1,2,3} in G% ,
which appear in both pc, ¢, P, (they must appear with coefficient 1 in
both) or

(B) there is exactly one object say 4, in G’@, ~ which appears in both
Pcues Poye, (it must appear with coefficient 2 in both).

(A priori there are also other possibilities but they can be excluded as in
23.17.) Thus, some 5 € X satisfy () and other » satisfy (f); this gives a par-
tition X=X, U X;. We have

h=3 (Aot A+ A,,+ 4,50+ Y 24, (23.18.6)

ne Xy neXg

and all 4¢€ Gkg,,y appear in this sum.

Now let D= {n’,n"} be a two element subset of X such that ' +#" is
equal to the inner product with ¢; and n'(e;)=#"(e;)=0. As in 23.17, to D
we can associate, using induction and truncation, four objects pl, p3, p3,
p$, which are linear combinations with >0 integral coefficients of character
sheaves in G% , which have properties analogous to (23.17.7)-(23.17.9).
Thus,

(23.18.7) (p): pce)=number of neD such that | C=¢ for any
CeJ (V) and £ e Hom(C, F,) extending &, and any j=1, 2, 3, 4.
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(23.18.8) t* (zeZ;) permute transitively the four objects pJ,
j=1,2734

Y ph=Y pce (23.18.9)
4

where D runs over all subsets of X as above, corresponding to a fixed e,
CeJ (V) contains e;, and £ runs over all elements in Hom(C, F,)
extending £, and vanishing on e,.

Since the right-hand side of (23.18.9) is a partial sum of (23.18.5) or
{23.18.6), it follows any A€ ég,,,, must appear in it with coefficient 0, 1 or
2. Hence any such 4 appears in pl + p3 + p3, + p$ with coefficient 0, 1 or 2.
Let ne Xg; from the definition of 4, and the invariance of pc ;. Pc,e,
under ¢F it follows that t*4 =4 for all ze Z;. Thus, if A=A4, (ne€X)
appears in p’, for some i then from (23.18.8) it follows that 4 appears in
each of p},, p%, p3, ph, hence it appears with coefficient >4 in pl, + p% +
P35+ p4, a contradiction. Thus each p’, involves only character sheaves of
form A4,; (n€ X,). As in 23.17, we then see that we can arrange notation so
that

ph=A, + Ay,  (j=1,234) (23.18.10)

and that #’, " € X,. Moreover, we see that

(23.18.11) t* (ze€ Z;) permute transitively the four objects {4, ;| j=
1,2,3,4}.

This holds for any ne X except possibly for a single # defined (when d is
odd) by nole;)=¢, for all I (All n (n##n,) are contained in some D as
above.) In particular, we see that X, is empty (if d is even) and it has at
most one element: 5, (if d is odd). From (23.18.11) we see that for any
ye ¥, any i, and any ne X, n#n,,

(4,; R% )isindependent of j (j=0, 1,2, 3). (23.18.12)

Moreover, this inner product is of the form +2~“*1(/—1), as follows
from (23.184) and (2383). We <can write in the form
— 2@+ yIn2I( /1), This defines a pairing [, y] with values in F,.
It is defined for all 7€ X, n+#1n, and for all ye V. We also define [1,, y]
(when d is odd) and ye ¥ by

_2—(d+1)(_ 1)['10»"]( / 1)i

_{(A,,O,O+A,,O,I+A"O,Z+Am3:Rf;i) if noeX,

= . 23.18.13
2(A,,: RE) if noeXs. ( )
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Then [#, y] satisfies properties like (23.17.13)-(23.17.15). Using again
[6, 3.3], we see that [, y]1=#(y) for all e X and all ye V.

We now show that when 4 is odd, #, must be of type «. Assume that
Mo€ Xg. By (23.18.13) we have (A,,O:Rf;i)= —2- @D _ 1)yl /1)
for all ye V and for i=0, 1. From this, we can show that 4, is cuspidal;
using 18.2, this is reduced to the statement (22.5.2) and the statement

below.

(23.18.14) Let E? be the irreducible representation of the Weyl group >
of type A 12ya2 + 4y 1 corresponding to the symbol [1, 3, 5,..., 2d" — 1] (see
[6,4.4]). Then the character of E? vanishes on all elements of W? which
have some eigenvalue — 1 on the reflection representation of W2 (See [23,
proof of 9.47.)

Thus A4, is cuspidal. By the results in 23.2(e), the orbit of any
complex in (Irr°G)* under t* (z e %) consists of four different objects. On
the other hand, as we have seen earlier in the proof, 4, is invariant under
all ¢* This is a contradiction. It follows that n,eX, hence
X=X, Hence 4, (i=0,1,2,3), are defined. We also see that
h=3%,cxocj<3 Ay

We now show that (23.18.12), which is known to hold for % # #,, holds
also for n =n,. Assume that this is not so. Using (23.18.4) and (23.8.3) we
see that there exists C, ¢ such that (4, ;:pc)#(A4,,;:pc:) for some
J, 7 €{0,1,2,3}. These multiplicities must be 0 or 1. (Indeed, A is mul-
tiplicity free, hence p . is also, since it is a partial sum of 4, see (23.18.5).)
Then, among the multiplicities (A4,,;: pce) (=0, 1,2, 3), at least one is 1
and all are 0 or 1. Hence Y o<, <3(A4,,, : pce) # 0 (mod 4). Since (23.18.12)
holds for n#n,, we have Y o¢;c3(4,,;:pc:)=0 (mod4) for n#n,. It
follows that 3, yo<;<3(A4,;:pc:) #0 (mod 4). On the other hand the
last sum equals (4 :p.) which is divisible by 4, by (23.18.3). This con-
tradiction shows that (23.18.12) holds for all neX. We can therefore
deduce from (23.18.13) that

(Ano,ﬁRf;',-): _2—(d+1)(_1)no(y)( /_1)1'

for all ye ¥, ie {0, 1}, je {0, 1,2, 3}. (Note that, as we have seen earlier,
we have [no, y]=1n0(»).)

Using this identity, together with (22.5.2) and (23.18.14), we see as above
that 4, ; is cuspidal for all je {0, 1,2, 3}. By the results in 23.2(e), the
orbit of any complex in Irr®(G)* under t* (z € %;) must consist of four dif-
ferent complexes; on the other hand, the set {4, ;},;=0,1,2,3} is
invariant under all ¢*. It follows that t* (ze€ %) permute transitively the
objects in this set. This completes the proof of (23.18.1). Hence (17.8.3), »
is also verified in our case; we have at the same time obtained a lower
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bound for the number of cuspidal character sheaves in G% . : this number
is >4, if dis odd.

In a similar (but somewhat simpler) way we see that (17.8.3), & holds
also when % is as in 23.14(e,)(ii) and also in the cases 23.14(e,), (f). We
also obtain in each of these cases a lower bound for the number of cuspidal
character sheaves in Glg, P

23.19. Let G, x be as in 23.12(a)—(f). In this subsection we shall
show that the set of cuspidal character sheaves in G* (which is contained in
Irr®(G)*, by 3.12)) coincides with Irr®(G)*. We denote by o the number of
cuspidal character sheaves in G% by &' the number of elements in Irr(G)%;
in the cases (e,), (e,), (f), we denote by o the number of cuspidal charac-
ter sheaves in G**. We have clearly a < o', and it is enough to show that
a=o'. We shall use the fact that 23.17, 23.18 provide a lower bound for a.
We consider each case separately.

(a) G=PSp,,(k) (n=1), xy=1. By 23.2(a), we may assume that n is

even.

Let 2’ be the set of all unordered pairs (N,, N,) of triangular numbers
such that n= N, + N, in which each pair with N, = N, is repeated twice.

Let & be the set of all ordered pairs (M,, M,) such that M, is an even
square, M, is twice a triangular number and n= M, + M,, in which the
pair with M, =0 is repeated twice.

By 23.2(a), we have o' =|%’| and by the method of 23.17, we see that
o= |Z|. We have a bijection 2 x %' defined by

(a2 b2 +b) > (Ma+b)a+b+1), Ya—b)a—b~1)). (23.19.1)

It follows that a>o', hence a =o',

(b) G=Sp,,(k) (n=1), y #1. By 23.2(b), we may assume that n is
odd.

Let 2’ be the set of all unordered pairs (N;, N,) of triangular numbers
such that n=N, + N,.

Let & be the set of all ordered paris (M, M,) such that M, is an odd
square, M, is twice a triangular number and n= M, + M,.

By 23.2(b), we have o’ =2 |2’'| and by 23.17 we see that a >2 |Z|. We
have a bijection & ~ 2’ defined by (23.19.1). It follows that a > o', hence
a=a

(c;) G=80,,,(k) (n=1), x=‘1. Let 2’ be the set of unordered
pairs (N,, N,) of squares such that 2n+ 1= N, + N,, in which each pair
(Ny, N,) with N, >0, N,>0 is repeated twice.

Let 2 be the set of ordered pairs (M,, M,) such that M,, M, are twice

triangular numbers and n= M, + M,.

607/61/2-3
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By 23.2(c), we have «'=|Z’'| and by the method of 23.17 we have
lx| = 1Z]. We have a bijection & = &’ defined by

(@®+a,b>+b)->((a+b+1)% (a—b)?).

It follows that > o', hence a =«'.

(c;) G=PS0,,(k) (n=2), y=1. By 23.2(c), we may assume that
n=0 (mod4). Let 2 be the set of unordered pairs (N,, N,) of even
squares such that 2n= N, + N, in which each pair (N, N;) with N, >0,
N,>0, Ny# N, is repeated twice and each pair (N,, N,) with N, =N, is
repeated four times.

Let & be the set of ordered pairs (M,, M,) of even squares with
n=M,+ M, in which each pair with M, =0 or M, =0 is repeated twice.

By 23.2(c), we have a’'=|2’| and by the method of 23.17 we have
la] = |Z|. We have a bijection & ~ 2’ defined by

(a% b%) = ((a+b)?, (a—b)?). (23.19.2)

It follows that a > a’, hence a =ao'.

(d) G=80,,(k)(n=2), y#1. By 23.2(d), we may assume that n=2
(mod 4). Let &' be the set of unordered pairs (N,;, N,) of even squares
such that 2n= N, + N,, in which each pair (N,, N,) with N, >0, N, >0 is
repeated twice.

Let & be the set of ordered pairs (M,, M,) of odd squares such that
n=M,+M,.

By 23.2(d), we have a'=2 |%’| and by the method of 23.17 we have
a=2|%|. We have a bijection & 5 %’ defined by (23.19.2). It follows that
a=o', hence o =a'.

(ey) G=Spin,, (k) (n=2), x#1.

Let 2 be the set of unordered pairs (N,, N,) of triangular numbers such
that 2n+1=N,+ N,.

Let & be the set of ordered pairs (M, M,) of triangular numbers such
that n=4M, + M,.

By 23.2(e), we have o' =2 |Z'| and by the method of 23.18 we have
at 22 |Z|. We have a bijection & = %’ defined by

(3@ +a), 4B+ b)) > (3Q2a+ b+ 1)2a+b+2), }(2a—b)(2a—b+1)).

It follows that a* > a'. Since &’ >a > a™*, we must have a=a* =a’.

(e;) G =Spin,, (k) (n=2), y faithful. Let 2’ be the set of unor-
dered pairs (N,, N,) of even triangular numbers such that 4n+2=
Ny +N,.

Let & be the set of ordered pairs (M,, M,) such that M, is an odd
square, M, is a triangular number and 2n+1=2M,+ M,.



SHEAVES, V 135

By 23.2(e), we have o' =4 |Z’| and by 23.18 we have a* >4 |Z|. We
have a bijection & ~x Z' defined by

(@3 452+ b)) > (32a+b)2a+b+1),42a—b)2a—b—1)). (23.19.3)

1t follows that a* > a’. Since o’ > a>a™, we must have a=a* =o',

() G=1iSpin,,(k) (n=3), x #1. Let Z’ be the set of unordered pairs
{N, N;) of even triangular numbers such that 4n= N, + N, and such that
a pair (N,, N,) with N, = N, is repeated twice.

Let & be the set of ordered pairs (M, M,) such that M, is an even
square, M, is a triangular number and 2n=2M+ M,, and such that a
pair (M,, M,) with M, =0 is repeated twice.

By 23.2(f), we have ' =2 |%’| and by the method of 23.18 we have
at >2|%|. We have a bijection & ~ %’ defined by (23.19.3).

It follows that «* > a'. Since o’ > a>a™*, we must have a=a* =o',

23.20. Let G, x be as in 23.12(e,), (), (f). We now prove that for
any 4 e G*, the parity condition ¢, = £ , is satisfied. If 4 is not cuspidal, this
follows from the inductive assumptions on G in 23.12. If 4 is cuspidal, then
we have necessarily A€ G+ (by the equality a =a™* proved in 23.19); for
such 4, the parity condition has already been noted in 23.14.

It follows that for any ¥ € £#(T) and any family & < W', we can con-
sider the statement (17.8.3), & just as in (23.14.2). (The restriction made in
(23.14.2) that & is of + type can now be dropped.) We now show that
(17.83), » bolds. As noted in 23.14, we may assume that £ is as in
23.14(¢)), (e,), (f). f & is of — type, then & is not a cuspidal family (see
23.16) so that the method of 23.15 applies and shows that (17.8.3), & holds.
If # is of + type we can assume, using 23.15, that % is cuspidal; in that
case (17.8.3), » holds by 23.18.

23.21. Proof of Theorem 23.1. When G = {e}, the theorem is
obvious. We now assume that dim G > 1 and that the theorem is already
proved when G is replaced by a group of dimension <dim G.

Using 17.10 and (23.8.2) we see that we may assume that G is semisim-
ple. Let G,, G,,.., G, be the set of almost simple, closed normal subgroups
#{e} of G. First, assume that r>2. Let G=G,;xG,x -~ xG, and let
n: G — G be the finite covering defined by (g;, g2,-» 8,) = g1 82" " &,- By
the induction hypothesis, (17.8.4) and (17.8.5) hold for each G, hence also
for G (see 17.11), and hence also for G, (see (17.16.3), (17.16.4)). Using the
induction hypothesis for each G, and 23.11, we see that (17.8.3), holds for
G, for any faithful character y: Z; - QF.

It remains to consider the case where G is almost simple.

When G is of type A4, the theorem holds by 18.5 and (23.13.1).
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When G is of type B, C, or D and p =2, the theorem holds by 22.6, 22.7.

Assume now that G is of type B,C, or D and p#2. To prove the
theorem we may assume in addition in 23.1(a) that 4 € G* and in 23.1(b)
that A elrr®G)%, with y faithful. (The case where y is not faithful, is
reduced to the case where y is faithful, by 23.9(a), (b), (c), by replacing G
by the quotient of G by the kernel of y.) Under this additional assumption,
the theorem holds for G, by 23.3-23.7, 23.17-23.20, using the inductive
hypothesis.

When G is of type Eg, the theorem holds by 21.2, 21.4(a), 21.12.

When G is of type F,, the theorem holds by 21.3, 21.4(a), 21.13.

When G is of type G,, then theorem holds by 20.6.

When G is adjoint of type E (resp. E,), the theorem holds by 20.3(a)
(resp. 20.3(c)).

Assume now that G is simply connected of type E4 (resp. E;). Then parts
(a) and (b) of the theorem as well as the statement (17.8.3) hold for G by
20.3(b) (resp. 20.5). Let y: Z; — QF be a nontrivial character. Using the
inductive hypothesis and the method of 23.15, we see that (17.83), »
(defined just as in (23.14.2)) holds for G, &, for any £ € ¥(T) and any
family & < W', except possibly when & is a cuspidal family. (The notion
of cuspidal family is defined as in 23.15.) The statement (17.8.3), 5 can be
deduced from (17.8.3) for G, provided that the following statement is
known.

(23.21.1) Forany A€ Glg,y- (defined in 23.0) with & cuspidal, and any
ze%;, z#e we have t¥A#A.

If G is of type E,, then % in (23.21.1) is uniquely determined (up to W-
action); it satisfies: W of type Eq, 2. of order 2 acting nontrivially on
W . Moreover, & is uniquely determined. In this case, (23.12.1) has been
already proved (see (20.5.5)).

If G is of type E;, then ¥ in (23.21.1) is again uniquely determined (up
to W-action); it satisfies: W, of type D,, 2 of order 3 acting nontrivially
on W,. Moreover, # is uniquely determined. From the description of
Irr°(G) in the proof of 20.3(b) we see that if 4 € G% is cuspidal and z € %,
z#e then A and t*4 have different supports, hence A #t*4. If Ac Gy, is
noncuspidal then it is a summand of a complex induced from a parabolic
subgroup of type A4, x A,. As in the proof of (20.5.5) we see again that A
and ¥4 have different supports, hence 4 #t}4. Thus (17.8.3), for G is
verified. This completes the proof of the theorem.
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24. LocAL INTERSECTION COHOMOLOGY
WITH TWISTED COEFFICIENTS OF THE
CLOSURE OF A UNIPOTENT CLASS

240. The purpose of this section is to compute the local intersec-
tion cohomology of the closure of a unipotent class C of G with coefficient
in an irreducible G-equivariant local system on C (in good characteristic),
thus extending the results of Shoji [28] and Beynon-Spaltenstein [20]. To
do so we shall borrow an idea of Shoji [28], which is to make use of the
orthogonality relations for Green functions. We shall use here the
orthogonality relations for the generalized Green functions (in Sections 9
and 10) and this will lead to stronger results. Throughout this section we
assume that G satisfies the restrictions (23.0.1).

24.1. Let I be the set of all pairs (C, &) where C is a unipotent
class in G and & is an irreducible §,-local system (given up to
isomorphism) on C which is G-equivariant for the conjugation action of G.
For each i€, we denote K;,=IC(C, &) [dim C] regarded as a perverse
sheaf on the unipotent variety G, of G, which is zero outside C.

The set I has a natural preorder: given i = (C, £), i’ =(C’, &) in I we say
that i’ <iif C'= C. We say that i~ i if C=C'. We say that i’ <iif C' g C.

We define J to be the set of triples (L, C;, &) up to G-conjugacy where
L is a Levi subgroup of a parabolic subgroup of G, C, is a unipotent class
of L, and &, is an irreducible L-equivariant local system on C, such that
(Z9xC,, 1 ® &) is a cuspidal pair for L in the sense of [4, 2.4]. (Here
1 & &, is the inverse image of & under pr,: 9 x C, - C,.) Given je J, we
consider the perverse sheaf K, on G defined in terms of
(L, Z9xC,,1 ® &) in the same way as K was defined in (8.1.2) in terms
of (L, X, &).

According to [4, 6.5] the restriction of X, to G, is a direct sum of com-
plexes of the form K, [dim Z9], where i=(C, )€ ; the various iel
which appear form a subset 7; of I and the subsets I; (jeJ) form a partition
of 1. Thus, we have a canonical surjective map 7:/—J defined by
t(i)=j<icl,.

Let i=(C, &)el and let j=1(i). Let A, be an irreducible perverse sheaf
on G which is a direct summand of K; and satisfies

A;| Gy=K, [dim Z9]. (24.1.1)
Then (24.1.1) characterizes 4; up to isomorphism and we have
& if a=a,
HHA)| C= 24.1.
(49| {0 if a#a,, (24.1.2)

where gy = —dim C —dimZ9.
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(24.1.3) Let i — i* (resp. j — j*) be the involution on 7 (resp. J) defined
by (C,&)—(C,6Y) (resp. (L, Cy, &) (L, Cy,8))) where &Y, &Y
denote the local systems dual to &, &. We have t(i*) = t(i)* for all ie [

24.2. From now until the end of 24.6, we assume that k is an
algebraic closure of the finite field F, and that G has a fixed F, rational
structure compatible with the group structure, with Frobenius map
F: G- G. Then F acts naturally on 7 and J by (C, &) - (F~!C, F*&),
(L, Cy, &) > (F'L, F7'C,, F*&); this action is compatible with 1: 7 — J.
Hence t induces a map I” — J* between the fixed point sets of F. Let je J*.
We shall represent (as we may) j by a triple (L, C, &) with L an F-stable
Levi subgroup of an F-stable parabolic subgroup P of G, with FC, = C,
and with F*& ~ &,. We shall choose an isomorphism ¢;: F*& 3 & which
induces a map of finite order on the stalk of &, at any F,-rational point of
C,. This induces an isomorphism F*(1 X &)1 X & over Z9C, and (as
in (8.3.1)) an isomorphism ¢: F*K; X K, where K is as in 24.1.

We now consider ie I” such that (/)= j. Then we have F*A4,~ A4, and
our next objective is to define a particular isomorphism ¢ ,: F*4, 3 A4,.

Let ¥, =Hom(4,, K;) be as in 10.1. It is an irreducible left .o/-module
(see 10.3) where o/ =End(K;). Let 6, (we W,= N(L)/L) be the canonical
basis of </ considered in the proof of 10.9; it satisfies the identities 6,8, =
6. and 1(8,) = 0 g1, where 1. o — .o/ is as in 10.4. From the definition of
simple reflections in #; (see [4, 9.2(a)]) and from the fact that FP= P, we
sec that F~': #;— #; maps the set of simple reflections into itself, hence it
is a Coxeter group automorphism of order, say, ¢, hence it defines a
semidirect product (Z/cZ)-#;. For any isomorphism ¢,:F*A4,~5 A, the
corresponding map ¢ ,,: V4 — V. (see 10.4) is i-semilinear and bijective.
Hence it is equal to a scalar { € O} times the map defining the action of the
standard generator of Z/cZ in the preferred extension (17.2) of ¥, to a
Z/cZ - #;-module. Replacing ¢ ,, by a scalar multiple, we may achieve that
{=1. This defines our choice of an isomorphism ¢ ,: F*4,~ A,. From the
definition of preferred extension, it follows that with this choice of ¢ , we
have

Tr(0,0,4, Va4)eZ and Tr((0,0,) ', V,)eZforallwe#;. (24.2.1)

Having defined ¢ ,,, we now define an isomorphism : F*& 3 & over C
(where i=(C, &)) by the requirement that:

(24.2.2) Under (24.1.2), g+ corresponds to the map defined
by @, F*#*(A;) - H#“(A;). (Here agy= —dim C—dim Z9 and r=
dim supp 4,).
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We now define, for § as in (24.2.2) a function Y,: GE, - Q, by

Tr(y,8,) if geC”
Y(g )—{ it gécCr (24.2.3)

We shall need the following property of y: F*& 3 & (in (24.2.2)).

(242.4) For any ge C¥, the map y: &, - &, is of finite order.

For the proof, we shall introduce the varieties

Z,,={xPeG/P|x 'gxeC U},
Z,,={xPeG/P|x 'gxeC,U,},

so that Z, ; is open dense in Z, ;. We also define the local system # on Z_
by the property that the inverse image of # under Z 0=
{xeG | x~ 'exeC,U,} > Z,; (x—xP), equals the inverse image of &
under Z ;= Cy (x> Ci-component of x~ 'gxe C,U,). From the descrip-
tion of K given in 2.2, we see that H(K))= H"(Zgj, D) where D is a cer-
tain complex defined in terms of IC(CI, &,); using 23.1 for L, we see that
IC(C\, 6) is & extended by 0 on C,—C, and it follows that D=%1[r]
extended by O on Z, ;— Z,; (r as in (24.2.2)). It follows that H*(Z
H«Z, ., #[r]) hence

8.J3

8J? )

H4(K)=He (2, ,, F). (242.5)

The chosen isomorphism F*& = &, induces an isomorphism §: F*# X
such that for any ze Z, ; with F"z =z, the map §": %, 3 %, has finite order.
From [4, 1.2(b)] we see that dim Z, ;< j(ay +r). It follows that é acts on
H=+(Z, , %) as g% times a map of finite order. Hence ¢ acts on
Jf“O(K ) as g®* V2 times a map of finite order. In the isomorphism (10.4.1)
the map ¢ on H# (K;) corresponds to the map ¢, ® 6, on K (4,)QV,,,
It follows that ¢ 4, acts on #'2(4,) as ¢“°*"’* times a map of Tinite order
and (24.2.4) follows.
An analogous proof gives the following statement.

(24.2.6) Let y': F*8° 5 &” be defined in terms of (L, Cy, £Y), ¢;:
F*&2 5 &% (=contragredient of ¢;: F*& X &, above) and (C, 6”) in the
same way as i was defined in terms of (L, C,, &), F*& &, and (C, &).
Then y’ is the contragredient of .

We shall also need the following statement.

(24.2.7) The functions Y, (ie I") (see 24.2.3) form a basis for the vector
space ¥~ of G*-invariant functions G£ — a.
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Let ge GL,, let C be its G-conjugacy class and let I'=Z(g)/Z°%(g). The
GF-orbits in CF are in 1-1 correspondence with the set I” modulo the
equivalence relation y ~y; 'yF(y,) (Vy, e I'). The G-equivariant irreducible
local systems & on C such that F*& ~ & are in 1-1 correspondence with the
irreducible representations E of I" for which there exists an isomorphism
ag: E—>FE with agoy=F(y)-ag for all yelI. Moreover, the matrix
(Tr(agoy, E)), indexed by (y, E) (where y are representatives for the ~
classes on I" and E are as above) is square and nonsingular. This implies
that the functions Y,, where ie I” are of form (C, &) with & variable, form
a basis of the vector space of G*-invariant functions C* — (,; the statement
(24.2.7) follows.
We now define for any i=(C, &)eI” a function X;e ¥ by

X{(8)=Y (—1)"* O Tr(d,, #zA)q "7, (24.2.8)

where a,, r are as in (24.2.2).
From (24.2.7) we see that we can write uniquely

Xi=) PY, (P;eQ) (24.2.9)

ielf
From (24.1.1), (24.1.2), (24.2.2), and (24.2.3) we have
P.,=0ifi €i orifl i'~ii#i (24.2.10)
P.;=1 (24.2.11)
Let ¢,:F*4.3A. be defined as g+ h~'ogt o F*(h) where
¢4, F*DA; 3 DA; is the contragredient of ¢,:F*4,3A;, h: A;. 3 DA, is

an isomorphism and F*(h): F*4,. 2’>I~"*D~A ; is defined by 4. Then & 4 18 NOt
necessarily equal to ¢ ,.. We define X,, Y,e ¥" by

X (=Y (- 1) Te(§,., HAx) g @+ (24.2.12)

~ Ty v,€) if geCr
Y. = g ot e
{g) {0 it gécr (24.2.13)
where ¥ is as in (24.2.2).
We can again write
X = Yy B, Y. (P.,e0)), (24.2.14)

where

B..=0ifi «i orif i'~i i'#i (24.2.15)
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and
BP,=1 by (24.2.6) and (24.1.2). (24.2.16)
24.3. Consider the nonsingular bilinear form
X X)= ) X(g)X(g)
geGly
on 7.
Let <
Ay =(Y; Yr). (24.3.1)
Then
A=0 unless i~1i'. (24.3.2)

Since (Y;) is a basis of ¥~ (24.2.7) and similarly (¥,) is a basis of ¥, we
see that

(24.3.3) the matrix (4,;)is)erxr 1S nonsingular for any equivalence
class R (for ~) in L '

Now let i, i’ € I¥ be such that ©(i)=1(') = j= (L, C;, &).

For each we %= N(L)/L, let L*=zLz™"' where z~'F(z) is a represen-
tative for w—! in N(L) and let

;=¥ ! Z Tr((owo-A;)_‘la V)
weWj

|G"|

XT1(0,,6 4,5 Va,) =5m
Ar T AT geOF

q—diqu—(ao+a[',)/2’ (2434)
where ay= —dim C—dim 9, ay= —dim C'—dim 29} and 0,, 6,4, 04
are as in 24.2. Using (24.2.1) we see that

W= is a rational number (24.3.5)

If i, i’ are such that (i) # 7(i") we set @, =0.
We can now write the orthogonality relations (10.9.1) in the form

X, X)=w, (el (24.3.6)

We note that the assumptions of (10.9.1) are satisfied, by Theorem 23.1.
We can now state the following result which extends resuits of Shoji
[28] and Beynon-Spaltenstein [20].

THEOREM 24.4. Recall that G is subject to the restriction (23.0.1).
(@) P,;=PB,,and A,;=A;; for all i, i.
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(b) (P, Ayy) is the unigue solution of the system of equations
Z Pii.ilPié,izl Vil,izélF

iLihelf

iy = Wiy
P,,=1 Viel”
P..=0 if i Kiorifi'~ii'#i

da=0 i P4

(24.4.1)

(c) P;;and A; are rational numbers for all i', i
(d)y P.;and A.; are zero if (i) ©(i).

Remark. We say that ie [ is uniform if ©(i) = (T, {e}, Q,) where T is a
maximal torus of G. In [28, 20] it is proved (assuming good characteristic)
that P, for i, i uniform are determined by equations like (24.4.1) and that
P, ,=0 if { is uniform and ¢ is not uniform. Note that in our theorem ', i
are not necessarily uniform and that the characteristic is only subject to
(23.0.1), in particular, for classical groups we allow p=2. Moreover, in
[28,20] the A, are assumed to be known in advance, while in our
approach they are determined automatically by (24.4.1).

Proof. From (24.3.6), (24.2.14), (24.2.9), (24.3.1) we have
z Pi'l,il ﬁié,iziii,i'zz @

iLie It

forall i,i,el”. (24.4.2)

i,i72

Consider for any integer & the following two statements.

(A;) If i'=(C,&)el", dimC'<6 and iel”, then P,,=P,, is a
rational number and it is zero unless (i) = t(i’).
(Bs) If '=(C,&")el", dimC'<é and iel, then i,,=4,; is a
rational number and it is zero unless (i) = t(i’).
It is clear that (A;), (B;) are true for  <0. We now show that

If 620 and (As_,), (By) are true, then (A;) is true.  (24.4.3)

Let i =(C, &)el", dim C'=6, ieI”. We may assume that i/ <i We
write Eq.{(24.4.2) for i,=a~ i, i,=i We may restrict the sum to those
i1, i5 for which i ~ i3, see (24.3.2). We get

Z i)ié,ila,é:wu,i_ Z Pii,uf)ié‘i’li;,ii' (24.44)
B~ ii<i‘

p~i

We also write Eq. (24.4.2) for i, =i, i,=a~1T"

Z Pié,i'lig,a =Wiq— Z Pi&,[Pi;,aiii,i'l' (24.4.5)
12 ~r ll ~1

h~4
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Using (A;_;), (Bs_,), and (24.3.5), we see that the right-hand sides of
(24.4.4) and (24.4.5) are the same. Hence the left-hand sides are also the
same. Using (B;) we see that

Z (Plzl ii.i) )'a,ié =0
12"'1
This holds for all a~i'.

Now, using (24.3.3) we see that P, = P, for all i ~ /"

Using {(A;_,), (B;s_,), and (24.3.5) we see that the right-hand side of
(24.4.5) is a rational number. Hence Z,ZN,P,Z,A,z,, is a rational number.
Using (24.3.3) and (B,) it foliows that Py, is a rational number for all
B~

Assume now that t(i) # 7(i’), and that a in (24.4.5) satisfies t(a) = 1(i').

From (A;_,), (B;_;), and the equality w,,=0, we sec that the right-
hand side of (24.4.5) is zero. According to (B;), the matrix (24.3.3) consists
of diagonal blocks according to the fibres of 7. Hence each of these
diagonal blocks is invertible. It follows that P;,=0 for all 4~/
7(i5) =1(i") and in particular that P, =0. Thus (24.4.3) is proved. We now
show that

If 620 and (As_,), (Bs_,) are true, then (B;) is true. (24.4.6)

Let i =(C,&)el", dim C'=6. iel', i' ~i.
We write Eq. (24.4.2) with i, =7, i, =i. We may restrict the sum to the
i, i5 such that i} ~ i}; see (24.3.2). We get

Avi=w;;— Z P,l bk g (24.4.7)
h<i

Using (As;_,), (Bs_,), and (24.3.5) we see that the right-hand side of
(24.4.7) is a rational number and is symmetric in i, 7'.

When 1(i') # (i), we see from (A;_;), (Bs_,), and the vanishing of w;;
that the right-hand side of (24.4.7) is zero. Thus (24.4.6) is proved.

From (24.4.3) and (24.4.6) we see by induction on é that (A;), (B;) are
true for all d. Thus (a), (¢}, (d) are proved.

The previous proof show also that (b) holds. This completes the proof.

245. We now fix i=(C, &)eI* and we consider the restriction of
#°(A,) to a unipotent class C’, C'= C. This a local system on C’ which
can be decomposed as @ ,-(E$ ® &’), where &’ runs over all irreducible G-
equivariant local systems on C’' and E2. are finite-dimensional Q vector
spaces. Let &’ be such that F*&'~ & and let y,.: F*& = &' be defined as
in (24.2.2). Then there is a unique 1somorph1sm gs . E% =~ E4 such that
G4 F*A;| C'x A, | C restricted to E5. ® &' is 6, @Y, . For each le Q*
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let E%* be the A-generalized eigenspace of o,. on E.. We then have for any
g € C'F the equality

Y (—1)***Tr(g,, HA;) g @M= N Ty, &) dim(ESH) - 4,
¢ PR
where a,, r are defined in terms of i/ as in (24.2.2). Hence

Pr=Y (=1)**®jg=t®+ "2 dim Ea?, (24.5.1)
a,A

where ' = (C’, &')eIf. By a general result on eigenvalues of Frobenius,
applied to ¢,q~ @+ F*IC(C, &) » IC(C, &) the numbers Ag~(@*""
must be algebraic integers. Hence P, is an algebraic integer. It is also a
rational number (24.4(c)). Hence

P, is an integer. (24.5.2)

PROPOSITION 24.6. Assume that the characteristic of k is good for G. Let
C be a unipotent class in G and let & be an irreducible G-equivariant local
system on C. Let ¢: F*& 3 & be an isomorphism which induces the identity
map on the stalk of & at some point of C*. Then for any geCF,
o H ZIC(C_’, &) is a-pure in the following sense: its eigenvalues are
algebraic numbers all of whose complex conjugates have absolute value q°”.

Proof. In the case where i=(C, &) is uniform (see the remark after
Theorem 24.4), this is equivalent to a result of Springer [32]. Our proof,
which is based on Deligne’s theory, is very close to the proof [21] of the
analogous statement for Schubert varieties. We shall replace G by its Lie
algebra g, C by the corresponding nilpotent orbit ¢, g by an element x e c*;
we shall regard & as a local system on ¢. As in [32], we use the following
result of Spaltenstein {307]: there exists a 1-parameter subgroup 1: k* - G
and a linear subspace 2 < g such that

Ad(A(#))x=1t""x with ¢>0

Ad (1) stabilizes 2 and its weights on X are of form &(t) =12, b=0.
dim 2 =dim Z;(x).

We may also assume that A, 2, and the weights in X2 are defined over F,.

Then S = x + X is a transversal slice in g to the G-orbit of x; hence S N ¢
is a transversal slice in € to the G-orbit of x. It is then enough to show that
¢: HIC(S N T, &) is a-pure for all a. For any x’ € (8 N ¢)*, x’' # x, the G-
orbit of x’ has strictly bigger dimension than the G-orbit of x and
HLIC(SN¢E, &)=H1IC(C, &), hence we may assume by induction that
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¢: H2IC(S &, &) is a-pure for all a. We may also assume that x¢c.
Consider the action g of k* on § defined by u(:)(y) =1 Ad(i(2)y). If we
regard S as a k-vector space (with origin at x) then the action  is linear
with weights 1 — t°*¢, b+ c¢>0. Moreover SN&, S nc are u-stable and
& | S nc is equivariant for this action of k*. Then the desired conclusion
follows from the following statement.

(24.6.1) Let Y, be a smooth irreducible locally closed F -subvariety of k"
invariant under the k*-action

(21505 24) > (4245, A™2,),  where a;>0,...,a,>0,

and let Y=Y,. Assume that 0¢ Y,. Let & be a local system on Y,
equivariant under this k*-action, defined over F, and pure of weight 0.
Assume that for all y'e Y —0, ¢,: #°IC(Y, £)O is a-pure.
Then ¢,: #IC(Y, )0 is a-pure.

When & = @, this is just [21, 4.5(b)], where it is deduced from the hard
Lefschetz theorem of Deligne. The same proof applies when & # 0,.

24.7. In this section, k is an arbitrary algebraically closed field.
Let i=(C &)el, i'=(C,&)el, and let j=1t(i)=(L,C,, &),
ag= —dim C—dim Z9, #;=N(L)/L, %, =Ilattice of l-parameter sub-
groups of Z9¢ (regarded as a #;-module).
We shall define 2,; € 0(q) (q an indeterminate), as follows.
If 7(i') # (i), we set Q,,=0.
If 7(i') = ©(i), we set

Qu=1%1"" ¥ Tr0;", V) Tr0,, V. )@~ 1) det(a —w, 2,) '

weW;
% Z ql(y)q(1/2)(dimC+dimC’—dimG—b+2dim:‘2’2)’

yew

where b=rank G and V4, V,,, 0, are as in 24.2.
It is clear that Q,, =, ,. We can now state the following result which
extends results of Shoji [28] and Beynon-Spaltenstein [20].

THEOREM 24.8. Assume that k is any algebraically closed field whose
characteristic is good for G.

(@) For any i=(C,&)el we have #°A;=0 if a % dimsupp 4;
(mod 2) and #°IC(C, £)=0 if a is odd.
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(b) The system of equations

Z Hi;_i,Hi;,izAi;,iz=-Qi,,i2, Vi, el
i<
iésiz
Ai;,z;: if i
II,;=1 (24.8.1)

7i=0 if i~Li'#i
with unknowns I, ; (' <i), A, (i’ ~ i) € Q(Q) has a unique solution. We have
=Y (6: 47 ™4,| C)q"

=Y (& #*ICC, &) C)q™ (24.8.2)

where i' = (C', '), i=(C, &).
(c) We have

M,,=0 and A, =0if1(i') #1(i).

(d) M, A;;, Q;; are polynomials in q.

Proof. By general principles, we may assume that k is the algebraic
closure of the finite field F,. We consider an F -rational structure on G
with Frobenius map F such that F acts trivially on I and such that there
exists a maximal torus of G which is F -split. We shall also consider for
each s=1, 2,.., the F -rational structure on G with Frobenius map F*. It is
clear that w;, defined in (24.3.4) with respect to F* is just the value of 2,
at ¢°. Hence the system of equations (24.4.1) (with respect to F*) is just the
system of equations obtained from (24.8.1) by specializing q=¢°. The
inductive method used to solve (24.4.1) can be also applied to (24.8.1) and
it leads to a set of solutions I7,,, A;; which are rational functions of q
without pole at g=¢° (s=1,2,..). Moreover, we automatically have
11, (¢°)= P, (with respect to F*) and A, (q") = 4, (with respect to F’). By
(245.2), I, (q°) is an integer for s=1,2,., hence II,; must be a
polynomial in q. By 24.4(c), ., (with respect to F*) is a rational number
and from the definition (24.3.1) it is an algebraic integer; hence it is an
integer. It follows that A, is a polynomial in q. From (24.8.1) it now
follows that £, ; are polynomials in q, hence (d).

We now prove (24.8.2). The second equality in (24.8.2) follows from
(24.1.1) hence it is enough to show that

Pilg)= Y (& 47"+ %4, C) g™,

mz1
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where i=(C, &), i' = (C', &'). (We write P, (g°) for P, with respect to F*.)
Let j=1(i)=(L, Cy, &), ¢4, F*A,3 4, be as in 24.2. From (24.1.1) we see
that #%A4,)=#¢"«IC(C,8) for any geC and any a, where
ay=—dim C—dim 9. From 24.6 it follows that there exists an
isomorphism @: F*IC(C, )% IC(C, &) such that &: #2-*IC(C, £)O) is
(a— ag)-pure (see 24.6) for all ge CF and all a.

Now by (24.1.1), ¢, defines also an isomorphism F*IC(C, &)
IC(C, &). By irreducibility of IC(C, &), there must exist e J, such that
$4,=a®: H2~%IC(C, £ for all ge C” and all a. Using (24.2.2) and
(24.24), we see that ad: H#OIC(C,E)D is (apg+r)pure (geCF,
r=dim supp 4,). Since #IC(C, £)+#0 for ge C* and @ is O-pure on it
we deduce that « is an algebraic number all of whose complex conjugates
have absolute value ¢@*"”2 It follows that

b4 H24 is (a+r)-pure for all geCF and all a.  (24.8.3)

Let us write the equality (24.5.1) for F* instead of F,
PoAq) =Y, (— 1)+ @psg= 6N a0+n) qim Eat, (24.8.4)

By (24.8.3), a in the sum is uniquely determined by A; hence there are no
cancellations in the right-hand side of (24.8.4). On the other hand, as we
have seen, P; {(q°) is a polynomial in ¢°. Since a, + r is even, it follows that
each 4 appearing in (24.8.4) must be an integral power of ¢ and in fact, by
(24.8.3), must be of form g“*""2 with a + r even. Thus, we have

Pi'.i(qs) — Z (éal . ”aAi | CI) q(s/2)(a +r)q~(s/2)(a0+ r)
asr(‘:nodZ)

and #'%(A4,)=0if a # r (mod 2). This completes the proof of (a) and (b).
Now (c) follows immediately from 24.4(d). The theorem is proved.

Remark 249. Solving the system of equation (24.8.1) is the same as
decomposing the symmetric matrix (£2,,) into a product of matrices
‘IT- A-II where II, A are block-matrices (with blocks defined by the
equivalence classes for ~ on /) and we want that: I7 has an identity matrix
in each diagonal block and 0 in each block below diagonal, 4 has 0 in each
off-diagonal block.

24.10. From 24.8 we see that the polynomials 7, ; and A4, can be
explicitly computed (by induction as in (24.4.5), (24.4.7)) as soon as the
polynomials €, ; are known. The polynomials Q. ; are completely deter-
mined as soon as the generalized Springer correspondence has been
explicitly determined. The generalized Springer correspondence has been
described explicitly in [7, 26, 27, 19, 29, 4, 25, 31] except for two small
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gaps. One gap occurs for type Eg in characteristic 2 which has in any case
been excluded by (23.0.1). The other gap occurs for G almost simple simply
connected of type E in characteristic #3 and j= (L, C,, &,) where L/Z¢ is
of type A, x A,, C, is the regular unipotent class of L and &, is one of the
two nontrivial L-equivariant local systems of rank 1 on C;.

We wish to fill the gap in this case, assuming that the characteristic is
#2, 3. (The case of characteristic 2 is excluded by (23.0.1).)

For our j, the set T~ '() consists of six elements of form (C, &) where &
is uniquely determined by C. We shall therefore designate these six
elements by the corresponding notation for C. They are (with the notation
of [31]): Eg, Eg(a,), AsA,, As,24,A4,, 24, (in decreasing order of dim C).
The group #;=N(L)/L is a Weyl group of type G,. The generalized
Springer correspondence attaches to each element of () an irreducible
representation of #;. According to Spaltenstein [31], to E, corresponds
the unit representation of #;, to 24, corresponds the sign representation of
#; and to E(a,), 24, A4, correspond the other 2 one-dimensional represen-
tations of #/ (the precise correspondence is given in [31]). Then 454, and
As must correspond to the 2 two-dimensional irreducible representations
p, p’ of #; (where p is the reflection representation) but the methods of
[31] are insufficient to decide which of 454,, A5 corresponds to p and
which one corresponds to p’. We can show that

As corresponds to p and A5 A, corresponds to p'. (24.10.1)

The method to prove this is as follows. Assume that the opposite is true: As
corresponds to p’ and As;A4; corresponds to p. We can then use the
algorithm (24.4.5), (24.4.7) to compute explicitly the polynomials 17, ;, 4, ;,
i'yiet™Yj). For i'=i=eclement denoted E;, we find that A, is a
polynomial in g whose value at q =g¢ does not agree with the value 4, ;
given by (24.3.1): the value of 4, is the number of F -rational points of C
(i=(C, &)), for G defined over F,, while 4, (q) is strictly bigger than this
number. This contradiction shows that (24.10.1) holds. We see in this way
that, in our case, the polynomials /7, ; are described by the entries in the
following table in which the rows (resp. columns) are indexed by the
elements ie 77 '(j) (resp. by # e 7 1())

E¢ Eg(a,) AsA, As 24,4, 24,
Eg 1 0 0 7 q° q°
Eq(a,} 1 q q 0 q°
AsA, 1 1 g 7°+q’
A, 1 pE P+q
24,4, 1 1

24, 1
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One can show that the gaps in the explicit determination of the
generalized Springer correspondence in the remaining cases (Eg, p=2) and
(Es, p=2) can be removed in the same way provided that 24.4 holds in
those cases.

COROLLARY 24.11. Assume that the characteristic of k is good for G.
Then for any character sheaf A of G, we have #°A=0 if a # dim supp 4
(mod 2).

Proof. Let K be as in (8.1.2); since 4 may be taken to be a direct sum-
mand of X, it is enough to show that for any gesupp K, #:K=0 if
a # dim supp K (mod 2). Using (8.8.5) (in which ¢ is even), for g=su
(Jordan decomposition) we are reduced to the analogous statement with G
replaced by Z%(s) and g replaced by u. Thus, we may assume that g is
unipotent. Then supp K contains some unipotent element hence the data
(8.1.1) defining XK must be L, 2, &, where 2= C,- Z9 and C, is a unipotent
class of L. Moreover, the restriction of K to the unipotent variety of
G depends only on the restriction of & to C,. Hence we may assume
that & is the inverse image under C, - Z9 — C, of a G-equivariant local
system on C,. In this case, K is a direct sum of character sheaves 4; (i€ )
as in 24.1 (with the same support as K) and the equality s#°K=0 for
a £ dim supp K (mod 2) follows from 24.8(a).

COROLLARY 24.12. Assume that the characteristic of k is good for G. Let
LeF(T)and let we W,. Then #°KZ =0 if a is odd.

Proof. We have KZ = @, "H'KZ[ —i] hence it is enough to show that
H°~(PH'K,)=0 if a is odd. Now PH'K,, is a direct sum of character
sheaves A such that dim supp A=i (mod 2) (by the parity condition
e,4=£,4; see 23.1) hence we are reduced to the statement that #*~(4)=0
if a is odd and dim supp 4 =i (mod 2). But this is just 24.11.

25. CrLAss FuncTions oN A REDUCTIVE GROUP OVER A FINITE FIELD

25.1. In this section, we assume that k = F,, that G is defined over
F, and that F: G- G is the corresponding Frobenius map. We shall
assume throughout this chapter that G satisfies the restriction (23.0.1). Let
G(F,) be the subset of G consisting of those character sheaves 4 for which
there exists an isomorphism F* A4 ~ 4. We shall select for each 4 € G(F ;) an
isomorphism ¢ ,: F*4~ A with the following property: for any ye Y, s,
(where supp A=Y 5, see 3.11) such that F'y=y, the eigenvalues of
¢%: H ;A > H ;94 (d=dim supp A) are of the form ¢"™E=92 times a
root of 1. (The existence of such ¢, follows from 14.2(a).)

607/61/2-4
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THEOREM 25.2. The characteristic functions ¥ 4,,: G* — O, defined by

Xas8)=2 (1) Tr(¢,, #54), geG", (25.2.1)

a

form a basis for the space of all class functions G — Q,.

25.3. For the proof, we shall need a lemma. Before stating it, we
recall some earlier notation. We denote by G, the set of unipotent
elements in G. Assume that we are given a Levi subgroup L of some
parabolic subgroup of G, a unipotent class C of L and an L-equivariant
irreducible local system & on C such that (Z9x C, 1 X #) is a cuspidal
pair for L in the sense of [4,2.4]. Assume that FL =L and that we are
given an isomorphism ¢,: F*# ~ % . Then the generalized Green function
Qrccw.e:G8 — 0, is well defined, see (8.3.1).

LemMma 254. The functions Q; .4, (for various L,C,F,¢, as in
25.3) span the space ¥~ of G'-invariant functions G5, — Q,.

Proof. Let C’ be a unipotent class in G such that FC'= (" and let &’ be
an irreducible G-equivariant local system on C’ such that F*& x&'. We
choose an isomorphism y: F*&' 3 &' and we define two functions f 4,
hee on GL by

Tr(y, &, if geC*
fC'.é"'(g)z{O (w g) lf iéC,F,
E(—l)“Tr(l//,f;IC(C',é"')) if geC'’
heo(8)= 0 if g¢CF

It is clear that these functions are in ¥7, that f. , (for various C’, &', as
above) span ¥ and that . s = +f¢ s + a linear combination of functions
fer.s- with C" g C'. By induction on dim C' we see that each f 4 is a
linear combination of functions of form A ... Hence the functions A. 4
also span ¥". Let i=(C", &')e I (see 24.1) for C’, &' as above, and let 4, be
as in (24.1.1). Then there exists ¢: F*4,3 A,. From (24.1.1) we see that the
restriction of x ., to GZ, is equal up to a scalar factor to A .. Hence the
functions y 4,4 | G5, (ieI”) span ¥". From (10.4.5) and (10.6.1) we see that
each such function y 4, | GZ, is a linear combination of generalized Green
functions. Hence the generalized Green functions span ¥7, as required.

25.5. Proof of Theorem 25.2. From the orthogonality relations
(10.8.1) we see that the functions (25.2.1) are linearly independent. (The
assumptions of 10.8 are verified by 23.1.) It remains to check that the
functions (25.2.1) span the space of all class functions on G*. First, we
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assume that G has simply connected derived group. We fix a semisimple
element s, e G”. Its centralizer Z(s,) is connected. Let L, be the Levi sub-
group of a parabolic subgroup of Z;(s,) such that FL,=L,. Let C, be a
unipotent class of L, such that FC, =C, and let & be an L,-equivariant
irreducible local system on C, with a given isomorphism ¢,: F*&, = &,.
Let L=Z(29)). This is the Levi subgroup of a parabolic subgroup of G

and FL=L. Let C be the unique conjugacy class of L containing s,C, and
let Z=29-C;then FC=C, FX =Z. Let & be an L-equivariant irreducible
local system on C such that the inverse image of & under C, > % (u > Solt)
is isomorphic to &,. Then é”l is unique up to isomorphism and there
is a unique isomorphism ¢,: F*& 5 & such that Tr(4,, ()
Tr(4, (61),,), for any u, € CL.

Let 0: 97 — O be a character. Then there exists a tame local system %°
of rank 1 on Z9 and an isomorphism % F*4°x%® such that
Tr(y®, 49) = 8(z) for all ze Z.

Let n: 29 x C - X be the map given by multiplication in L. We set £° =

7, (%9° X é”l) This is a local system on X which inherits from y° ® ¢, an
1somorph1sm Yo F*E° ~ &°.

Let K? be the perverse sheaf on G defined in terms of (L, X, £°) in the
same way as K was defined in (8.1.2) in terms of (L,Z,&); let
: F*K® x K® be the isomorphism defined in terms of ° in the same way
as ¢ was defined in (8.1.3) in terms of ¢,. Let I', = {z€ Z9 | zs, is L-con-
jugate to s,}; it is a subgroup of 9. We assume that 6 | I'"=1 and we
compute the characteristic function yx;:G”— 0, (using 8.5) at any
element sue G* where s is semisimple and u € Z,(s) is unipotent.

We then take the sum over all characters 6: 2% — Q* such that
0| rf=1 and we find

soul) -

Y xxog(su)
8

- |g(1)F| Q1,.zss00C180.0, (%) if s=s
0 if sis not G"-conjugate to s,

Let us define for any function f: {ve Z4(so)" | v unipotent} —»_Q_, which
is invariant under Z4(s) -conjugacy a class function f: G — (, by the
requirement that

f(su)={(j;(u) if s=us,

if sis not G*-conjugate to s,
(s semisimple in G¥, ue Z;(s)" unipotent). Then

|21y axoy =1, (25.5.1)
[}
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where

Sv)= QL],Z(;(S()),C|,6’1,¢1(U)' (25.5.2)

The left-hand side of (25.5.1) is clearly contained in the (Q,-vector space M
spanned by all functions (25.2.1), hence so is f. By 25.4 applied to Z(so),
the functions f in (25.5.2) span the space of all Zs(s,)"-invariant functions
on unipotent elements in Zg(s,)". Hence the corresponding functions f
span the space of all G*-invariant functions on G* which are supported on
elements with semisimple part conjugate to s,. It follows that all such
functions are in M. Since s, was arbitrary, we see that M is the space of all
class functions on G*.

We now drop the assumption that G has simply connected derived sub-
group. We can find a connected reductive group G’ over F,, with simply
connected derived subgroup, and a surjective homomorphism «: G’ - G
defined over F, whose kernel is a central torus T, <= G".

Then « deﬁnes a surjective homomorphism G’*— G*. Hence for any
class function f: G* - (, there exists a class function f”: G'* — @, which is
constant on the cosets of T¥ in G'*, and is such that

fley= Y f(g) forall geG~ (25.5.3)
e G'F
ag(g')G=g
By the earlier part of the proof, the function f” is a linear combination
f'=X 4 caxay, Where the functions y,.,4,: GF-0, (4 eG(F )), are
defined as in (25.2.1) for G’ instead of G. Using (25.5.3) we have

f9)=Yce X Xus (&)
A ag(';')c;l-‘g

It remains to show that for each 4’ € G'(F,), the function on G*

g—= X Xagd8) (25.5.4)

g’eG'F

aog)=g
is a linear combination of functions of form (25.2.1). Given A’ as above,
there exists a tame local system %, of rank 1 on T, and an isomorphism
Y: F* %, ~ &%, with the properties (a), (b), (c) below. Let §: T¥ — Q¥ be the
character defined by 6(¢)=Tr(y, (£),). Then

(@) x.u4,(18)=0(t) x44,(g") for all g'e G'* and all re TY.
(b) % =Q,if and only if 0= 1.

(c) If #~Q, then there exists a unique 4eG(F,) such that
A ' =a*A.
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First, assume that %, % @,. Then 8 # 1 and using (a), we see that the
function (25.5.4) is identically zero. Assume next that %, ~ 0, and let A be
as in (c). Then the function (25.5.4) is a multiple of x,4,: G*— (,. This
completes the proof.

THEOREM 25.6. Let AeG(F,), ¢,: F*A A be as in 25.1. Let ¢} :
F*DAX DA be the contragredient isomorphism, and let ¢'y=q*™~ %9,
(d=dim supp 4 = dim supp DA). Then

(@) x.a4,(8) is a cyclotomic integer for any ge G*.

(0 Xpas,(8)=X40.8) (g€ G*), where the bar denotes the
automorphism of the maximal cyclotomic subfield of Q, which maps each
root of 1 to its inverse.

Proof. 1t is known on general grounds that y,,,(g) is an algebraic
integer, hence in (a) it is enough to show that y, (g) belongs to some
cyclotomic field.

Let K, ¢ be defined in terms of (L, X, &, ¢¢) as in (8.1.3) such that ¢,
induces maps of finite order on the stalks of & at rational points of X let
K', ¢' be defined similarly in terms of (L, X, § ¥, ¢4 ). Using (10.4.5), we see
that (a), (b) would follow from the following statement:

(25.6.1) For any geG", xx4(g) belongs to a cyclotomic field and
Lk s(8) =Xk 4(8)-

(In (10.4.5), we may assume that , are chosen so that 6,04 induces
maps of finite order on the stalks of & at rational points of 2. In (10.4.4),
for ge Y7 ;, the map 0,04 on #', K corresponds to the map ¢,® (0,5 ,)
on H#(A)®V,. Hence 0,0,.:Vy—V, is ¢~ @™~ 9?2 times a map of
finite order.)

Now let (L, C, #, ¢;) be as in (8.3.1) and assume that ¢, induces a map
of finite order on the stalks of # at rational points of C. Using 8.5, we see
that (25.6.1) is a consequence of the following statement:

(25.6.2) Forany geGh, Q, ¢ #4,(8) belongs to a cyclotomic field and
QLcsv N (8)=0rcs.4(8)
Using now (10.4.2), we can express @, ¢ # 4,(g) in terms of the functions

X; (ielf) in (24.2.8) and we see that (25.6.2) is a consequence of the
following statement:

(25.6.3) For any ge GE and any ieI*, X(g) belongs to a cyclotomic
field, X¥(g) belongs to a cyclotomic field and X,(g) = X,(g).

(Here, X, is as in (24.2.12).) Now, using (24.2.9) and (24.2.14) we see
that (25.6.3) is a consequence of the following two statements:
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(25.6.4) For any geGF , and any iel”, Y,(g) belongs to a cyclotomic
field and Y, (g)= Y (g).

(25.6.5) For any i, ie I, P, ;= P, is a rational number.

Statement (25.6.4) is obvious from definitions (24.2.3), (24.2.13) of
Yi7 Ti'

Statement (25.6.5) is contained in 24.4(a) and (c). This completes the
proof of the theorem.

COROLLARY 25.7. Let A, A'€G(F,), ¢, F*AS A, ¢, F*A' 5 A’ be as
in 25.1. We have

|GF~! Z Xas &) Xap,(8)=

geGF

0 if A#A
1 if A=4".

(This should be understood as follows: we assume given a set of
representatives of the isomorphism classes of character sheaves A such that
F*4~ A and for each A4 in this set we assume given ¢, as in 25.1. Then
A, A’ in the corollary are assumed to be in this set. Hence we have 4 = A" if
and only if A=A' and then ¢,=¢,.)

Proof. This follows immediately from 10.8 and 25.6.
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