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1. Kummer local systems

Let T be an algebraic torus over k = k, X = Hom(T,Gm), p ∗= chark (1 if chark = 0) , and E = Qℓ or
C (coefficient field). Let

X̂ = X̂(T ) = Z(p) ⊗Z X
/

1⊗Z X

Note that a/b⊗ α has b torsion and since p ̸ |b we see that X̂ has no p−torsion.

Definition 1.1. A rank 1 local system L on T is Kummer if ∃n ̸= 0 coprime to p s.t. L⊗n ∼= E.

Let (m, p) = 1, then we have the following SES of group schemes1

0→mT → T
(·)m

−−→ T → 0

where on R−points (·)m(R) : T (R) ∋ r 7→ rm and mT (R) = {r ∈ T (R)| rm = 1}. Fix isomorphism ψ

between roots of unity coprime to p in k with same thing in E 2. Given α ∈ X, define χα,m :mT (k)→ E∗

by
χm,α(k)(z) = ψ(α(z))

(·)m is an étale Galois covering and we have Gal((·)m) ∼=m T (k) as all deck transformations are of the
form t 7→ ζt where ζ ∈mT (k). Since πet

1 (T, e) ↠ Gal((·)m), χα,m gives an étale local system Lα,m on T .

Lemma 1.2. (i) Lnm,nα
∼= Lm,α

(ii) Lm,α
∼= Ln,β ⇐⇒ mβ − nα ∈ mnX

(iii) Lm,α is trivial ⇐⇒ α ∈ mX

Proof. (i) Since nα(t) = α(tn), the following diagram commutes

Gal((·)nm) Gm

Gal((·)m)
ζ 7→ζn

nα

α
(1)

The transition maps in πét
1 (T, e) are given as such. A map f : X → Y of Galois covers over S induces

the natural map Gal(X/S) → Gal(Y/S) by restriction to the fiber over s ∈ S, X(s) → Y (s) as
Gal(X/S) ∼= X(s). Apply this to

T T

T

(·)n

(·)nm (·)m

1In the étale topology
2via Hensel’s lemma
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Section 1.1 Cailan Li Kummer local systems

we find that the map to Gal((·)m) in Eq. (1) is the transition map and so in the inverse limit α, nα
gives us the same representation. ■

Dividing (ii) by mn, we see that Ln,α only depends on the class of ξ = m−1 ⊗ α ∈ X̂ so write
Lξ = Lm,α(= Lξ,T ).

Remark.
Lξ ⊗ Lη = Lξ+η (2)

Thus by (iii), Lξ is a Kummer local system.

φ : T → T ′ induces φ̂ :X̂(T ′)→ X̂(T ) by postcomposition.

7Lemma 1.3. For ξ ∈ X̂(T ′) we have φ∗Lξ,T ′ = Lφ̂(ξ),T

Theorem 1
ξ 7→ Lξ defines an isomorphism

X̂(T ) ∼−→ {Kummer local systems on T} /∼ =: KLS(T )

Proof. We just need to show surjectivity. (1) Because (·)m is Galois, constituents of (·)m
∗ (E) ←→

representations of Gal(·)m, which is abelian and thus

(·)m
∗ (E) =

⊕
ξ∈X̂, mξ=0

Lξ (3)

(2) Given L a Kummer local system, L is defined by a one dimensional representation ρ : π1(T, e)→ E×

s.t. im ρ lies in the group of m−th roots of unity, for some m prime to p. By the Galois correspondence,
this gives us a Galois cover π : M → T s.t. Gal(M/T ) = im ρ and L will be a constituent of π∗(E)
exactly as above. But im ρ is a subgroup of E× and thus cyclic of degree dividing m.

(2) T is normal, and Z is also normal, being finite over T and thus k(M)/k(T ) is Galois with Galois
group im ρ. By Kummer theory(for fields), it follows that k(M) = k(T )(a1/m) for some a ∈ k(M).
Consider the map k(M)→ k(T ) given by the m−th power map. π Galois =⇒ it’s unramified and so
we can extend the birational map T 99K M to an actual map? As k(T ) → k(M) is just inclusion it
follows that

T M T

(·)m

π

and thus all constituents of π∗(E) will be constituents of (·)m
∗ (E) so by Eq. (3) we are done. ■

Lemma 1.4. If ξ ̸= 0, then H∗(T,Lξ) = H∗
c (T,Lξ) = 0.

Proof. Taking cohomology of Eq. (3) we have that

H∗(T,E) = H∗(T,E)⊕
⊕

ξ ̸=0, mξ=0
H∗(T,Lξ)

■

Lemma 1.5. D(Lξ) ∼= L−ξ[2 dimT ].

Proof. Consider the analogous situation over C, and X a topological C manifold. Then for a local
system D(L) = L∨[dimX]. ■
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Section 3.2 Cailan Li Finite Ground Fields

1.1. Finite Ground Fields

Now assume k = Fq, F =(absolute)Frobenius. F ↷ X̂ and KLS(T ) by F×.

Proposition 2

KLS(T )F ∼= HomGrp(TF , E∗)

Proof. By Lemma 1.3 and Theorem 1 we have KLS(T )F ∼= (X̂)F . As F (α) = qα, it follows that any
(X̂)F must be generated by fixed elements of the form a

m
⊗ α. But then

a

m
⊗ qα = a

m
⊗ α ⇐⇒ (q − 1)a

m
∈ Z ⇐⇒ a

m
∈ 1
q − 1Z

and thus (X̂)F is generated by
{

α

q − 1

}
α∈X

∼= X/(F − 1)X. Fix an isomorphism X ∼= Zn. Then

X/(F − 1)X = Zn/(q − 1)Zn = (Z/(q − 1)Z)n. On the other hand as E is algebraically closed of
characteristic 0,

HomGrp(TF , E∗) = HomGrp(Gm(Fq)n, E∗) = (Z/(q − 1)Z)n

■

2. Algebraic Preliminaries

Now T is a maximal torus in G, a connected, reductive, affine algebraic group over k.

2.1. Stabilizer Subgroups

Let ξ = m−1 ⊗ α ∈ X̂, Q =root lattice
Definition 2.1.

Wξ = {w ∈W |wα− α ∈ mQ} ⊆W ′
ξ = {w ∈W |w(ξ) = ξ} = {w ∈W |wα− α ∈ mX}

Lemma 2.2. There is a homomorphism W ′
ξ

/
Wξ
→ Hom(Z(G)/Z(G)◦, E∗).

3. Perv(G)

3.1. Weights of Torus actions

Let Y be an algebraic variety with a left T−action a : T × Y → Y .
Definition 3.1. A perverse sheaf K has weight L (or ξ) if a∗K[dimT ] ∼= L[dimT ]⊠K (. . .Lξ[dimT ] . . .).
Remark. If L = E then this is the same as saying that K is G−equivariant.
Let G be a connected affine algebraic group and φ : G→ T and suppose Y has a G−action
Definition 3.2. A perverse sheaf K has weight L (relative to a and φ) if a∗K[dimG] ∼= φ∗L[dimG]⊠K
(. . .Lξ[dimG] . . .).
7Lemma 3.3. Assume that U is a locally closed, smooth, irreducible G−stable subvariety of Y . Let
L be a local system on U s.t. L[dimU ] on U has weight ξ ∈ X̂. Then the perverse extension I(U,L)
has weight ξ.
Proof. As k = k, it’s perfect and thus G is smooth and thus a is smooth so a∗ commutes with perverse
extension. ■
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3.2. Aξ,ẇ

For w ∈W , let ẇ ∈ NGT be a lift. For α ∈ R, let Uα be corresponding root subgroup.

Definition 3.4. Given w ∈W , let Uw =
〈
Uα|α ∈ R+,−w−1(α) ∈ R+

〉
Let Gw = BẇB. Gw is smooth and the map Uw × T × U → Gw sending (u, t, u′) 7→ uẇtu′ is an
isomorphism of varieties. Thus we can define prw : Gw → T by prw(uẇtu′) = t.

Definition 3.5. Given (ξ, w) ∈ X̂×W let Gξ,ẇ(Lξ,ẇ in notes) = pr∗
w(Lξ). Define Aξ,ẇ = I(Gw, Gξ,ẇ) ∈

Perv(G).

Lemma 3.6. (i) Aξ,ẇ has weight w(ξ) for left B−action and weight −ξ for right B−action.

(ii) If wξ = ξ then Aξ,ẇ is equivariant for the conjugation action of B

(iii) D(Aξ,w) = A−ξ,w

Proof. (i) (1) It suffices to prove Gξ,ẇ has the appropriate weights by Lemma 3.3.

(2) Consider the case w = e. Then Ge = B, φ = prw = π : B → T =⇒ Gξ,ẇ = π∗(Lξ) and a = m for
the left action. π is a group homomorphism so the following diagram commutes

B ×B B T

T × T

m

π×π

π

m

Thus
m∗(π∗(Lξ)) = (π × π)∗(m∗(Lξ)) AS prop=== (π × π)∗(Lξ ⊠ Lξ) = π∗(Lξ) ⊠ π∗(Lξ)

as desired. The right action is given by (b1, b2) 7→ b1b
−1
2 . Let ι : T → T be the inversion map t 7→ t−1.

Then m becomes m ◦ (id× ι) and ι∗(Lξ) = L−ξ =⇒ Gξ,ẇ has weight −ξ for right B−action.

(3) Now let w be general. Each Uα is an eigenspace for the adjoint action of T and thus for u ∈ Uα,
ut = tu′ for some u′ ∈ Uα. For the right action, given (g, b) = (uẇtu′, u(b)π(b)) ∈ Gw ×B, we have

(uẇtu′, b) a7−→ uẇtu′π(b)−1u(b)−1 = uẇtπ(b)−1u′′u(b)−1 prw7−−→= tπ(b) = prw(g)π(b)−1

Thus prw ◦ a = m ◦ (id× ι) ◦ (prw × π) =⇒ Gξ,ẇ has weight −ξ for right B−action. The right action
is similar except we pick up w(ξ) when commuting past ẇ. ■

Proposition 3.7. (i) H•(Aξ,ẇ)|Gx ⊗G−ξ,ẇ is a constant sheaf on Gx.

(ii) If H•(Aξ,ẇ)|Gx ̸= 0 then x(ξ) = w(ξ) and x ≤ w.

Proof. (i) Notice that if we restrict to the left Ux action on Gw, then prw(aUx(u, g)) = prw(π2(u, g)).
Thus Gξ,ẇ = pr∗

w(Lξ,w) is automatically Ux equivariant. By Lemma 3.3,

Aξ,ẇ is Ux equivariant =⇒ S = H•(Aξ,ẇ)|Gx is Ux equivariant

as equivariant sheaves form an abelian category. Aξ,ẇ is perverse and so S is also constructible. Since
Gx = Ux × B, the Ux equivariance of S and constructibility implies that S is actually a local system.
Aξ,ẇ has weight −ξ for right B−action and thus S ⊗ G−ξ,ẇ is a Ux × B− equivariant local system on
Ux ×B and therefore constant. ■
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Let G
B
×G be the quotient of B ↷ G×G via b(g, h) = (gb−1, bh). For V,Z left B−stable sets, V

B
×Z → G

is proper if V,Z are closed and thus π : G
B
× G → G is proper. Now recall the following equivariance

trick

Lemma 3.8. Let f : X → Y be a principal G−bundle. Then K ∈ Perv(X) is G−equivariant ⇐⇒
∃L ∈ Perv(Y ) s.t. K = f∗(L[dimG]).

Given ξ ∈ X̂, x, y ∈ W , by Lemma 3.6 we see that Aξ,ẋ ⊠ Ay−1(ξ),ẏ is a B−equivariant irreducible

perverse sheaf on G × G. Applying the above lemma to G × G p−→ G
B
× G, we obtain an irreducible

perverse sheaf Aξ,ẋ,ẏ on G
B
×G.

Definition 3.9.
Aξ,ẋ ∗Ay−1(ξ),ẏ = π∗(Aξ,ẋ,ẏ) ∈ Semi(G)

3.3. Convolution Formulas

Lemma 3.10. (a) Let X be a smooth irreducible variety of dimension d and let D1, . . . , Dr be smooth
divisors3 with normal crossings in X. Suppose L is a 1−dim local system on X \ ∪r

i=1Di which
factors through a finite quotient of π1(X \ ∪r

i=1Di) of order prime to chark. Then H i(I(X \
∪r

i=1Di,L)) = 0 if i ̸= −dimX.

(b) If J is the set of i ∈ [1, r] s.t. the local monodromy of L around Di is non-trivial and U =
X \ ∪i∈JDi then L can be extended to a local system L on U . Moreover, I(U,L) = ι0(L[d]).

Theorem 3
Let i0 be extension by 0.

(i) If s ∈ Wξ, Gξ,s extends to a local system Gξ,s on Gs and Aξ,s = ι0(Gξ,s[dimGs]). If s ̸∈ Wξ,
Aξ,s = ι0(Gξ,s[dimGs]).

(ii) If s ∈Wξ, Aξ,s ∗Aξ,s = Aξ,s[1]⊕Aξ,s[−1]. If s ̸∈Wξ, As(ξ),s ∗Aξ,s = Aξ,e.

Proof. (i) For Gs
f−→ Gs

g−→ G, we have

Aξ,s = (g ◦ f)!∗(Gξ,s) = g!∗(f!∗(Gξ,s))

Gs = Ge ⊔Gs = Ps is closed and so g!∗ = ι0. Ge = B is a smooth divisor in Gs which is smooth and so

f!∗(Gξ,s) =

Gξ,s[dimGs] if s ∈Wξ

ι0(Gξ,s[dimGs]) if s ̸∈Wξ

by applying part (b) of the lemma above.

(ii) For s ∈Wξ Since Aξ,s ∗ Aξ,s = π∗(Aξ,s,s) ∈ Semi(G) it suffices to compute the table of stalks to
compute the isomorphism class. (1) We claim that A := Aξ,s,s = ι0(Gξ,s,s[dimGs + 1]) where Gξ,s,s is

a local system on Gs

B
×Gs. By definition,

Aξ,s ⊠Aξ,s = p∗(A[dimB])
3As X is smooth, Weil=Cartier divisors.
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By part (i) the LHS is a local system in cohomological degree [2 dimGs] and by the equivalence of
categories ShB(G×G) ∼= Sh(G

B
×G), A must be a local system supported on Gs

B
×Gs in cohomological

degree [2 dimGs − dimB] = [dimGs + 1].

(2) Any fiber of π : Gs

B
× Gs → Gs is isomorphic to Gs/B = Ps/B = P1

k. Gξ,s,s|fiber is then a local
system (being the pullback of a local system). But P1(C) homeo≃ S2 and thus π1(P1(C)) = 0 and the
same will be true for πét

1 (P1
Fp

) and thus Gξ,s,s|fiber
∼= E. Thus for g ∈ Gs

H i(π∗(A))g
P BC== H i(π−1(g), Gξ,s,s[dimGs + 1]|fiber) = H i+dim Gs+1(P1

k, E)

Thus the table of stalks for π∗(A) is of the form on the left while TOS for Aξ,s = ι0(Gξ,s[dimGs]) is on
the right

−dimGs − 1 dimGs + 1
Gs k k

Ge k k

−dimGs

Gs k

Ge k

and we conclude π∗(A) = Aξ,s[1]⊕Aξ,s[−1].

For s ̸∈Wξ, As(ξ),s∗Aξ,s = π∗(As(ξ),s,s). Because Gs

B
×Gw is smooth, (Aξ,s,w)|

Gs

B
×Gw

= Gξ,s,w[dimGs+1]

for some local system Gξ,s,w as Aξ,s,w is perverse. We now need a generalization of Springer’s Lemma

Lemma 3.11. Let q : Gs

B
×Gw → G be the restriction of π. If sw < w, Gs

B
×Gw

q−→ Gw ⊔Gsw is an
isomorphism.

(a) If g ∈ Gsw then q−1(g) homeo≃ k and Gξ,s,w|q−1(g)
∼= E.

(b) If g ∈ Gw then q−1(g) homeo≃ k
∗ and Gξ,s,w|q−1(g)

∼= L where L is a nontrivial local system.

For U = Gs

B
×Gs, consider the fiber diagram

q−1(g) = π−1(g) ∩ U U

π−1(g) Gs

B
×Gs

h2

j2
j

h

By part (i), A = As(ξ),s,s = j!(Gs(ξ),s,s[dimGs + 1]). Let apt : π−1(g)→ pt. Then

H i(π∗(A))g
P BC== H i(π−1(g), A|fiber) = (apt)∗h

∗(j!(Gs(ξ),s,s[dimGs + 1])

= (apt)∗(j2)!h
∗
2(Gs(ξ),s,s[dimGs + 1]) apt proper=== (apt)!(j2)!h

∗
2(Gs(ξ),s,s[dimGs + 1])

= H i+dim Gs+1
c (q−1(g), Gs(ξ),s,s|q−1(g))

By Lemma 3.11 there are two cases: (a) g ∈ Ge, then we obtain

H i+dim Gs+1
c (k, E) =

k if i = −dimGs + 1 = dimGe(k“ = ”C = R2)
0 otherwise

(b)g ∈ Gs, then we obtain

H i+dim Gs+1
c (k∗,L) P V duality=== H−(i+dim Gs+1)(k∗,D(L))∨ k

∗ orient manifold=== H−(i+dim Gs+1)(k∗,L∨[1])∨
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We claim the RHS above is always 0. Recall that for local systems LT = (M,T ) on C×

H0(C×,LT ) = MT , H1(C×,LT ) = MT , H i(C×,LT ) = 0 i ̸= 0, 1

Because L∨ is a nontrivial 1−dimensional local system, MT = MT = 0 and thus the claim. Putting (a)
and (b) together, the TOS for π∗(A) is

−dimGe

Gs 0
Ge k

Part (i) tells us that Aξ,e = i0(Gξ,e[dimGe]) so the above is also the TOS for Aξ,e and thus π∗(A) =
Aξ,e. ■
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