Character Sheaves: Preliminaries

Cailan Li September 24th, 2024

1. Kummer local systems

Let T be an algebraic torus over $\mathbb{k} = \overline{\mathbb{k}}$, $X = \operatorname{Hom}(T, \mathbb{G}_m)$, $p \stackrel{*}{=} \operatorname{char} \mathbb{k}$ (1 if $\operatorname{char} \mathbb{k} = 0$), and $E = \overline{\mathbb{Q}_{\ell}}$ or \mathbb{C} (coefficient field). Let

$$\hat{X} = \hat{X}(T) = \mathbb{Z}_{(p)} \otimes_{\mathbb{Z}} X /_{1 \otimes_{\mathbb{Z}} X}$$

Note that $a/b \otimes \alpha$ has b torsion and since $p \not| b$ we see that \hat{X} has no p-torsion.

Definition 1.1. A rank 1 local system \mathcal{L} on T is Kummer if $\exists n \neq 0$ coprime to p s.t. $\mathcal{L}^{\otimes n} \cong \underline{E}$.

Let (m, p) = 1, then we have the following SES of group schemes¹

$$0 \to_m T \to T \xrightarrow{(\cdot)^m} T \to 0$$

where on R-points $(\cdot)^m(R): T(R) \ni r \mapsto r^m$ and ${}_mT(R) = \{r \in T(R) | r^m = 1\}$. Fix isomorphism ψ between roots of unity coprime to p in \mathbbm{k} with same thing in E^2 . Given $\alpha \in X$, define $\chi_{\alpha,m}:_m T(\mathbbm{k}) \to E^*$ by

$$\chi_{m,\alpha}(\mathbb{k})(z) = \psi(\alpha(z))$$

 $(\cdot)^m$ is an étale Galois covering and we have $\operatorname{Gal}((\cdot)^m) \cong_m T(\Bbbk)$ as all deck transformations are of the form $t \mapsto \zeta t$ where $\zeta \in_m T(\Bbbk)$. Since $\pi_1^{et}(T,e) \twoheadrightarrow \operatorname{Gal}((\cdot)^m)$, $\chi_{\alpha,m}$ gives an étale local system $\mathcal{L}_{\alpha,m}$ on T.

Lemma 1.2. (i) $\mathcal{L}_{nm,n\alpha} \cong \mathcal{L}_{m,\alpha}$

- (ii) $\mathcal{L}_{m,\alpha} \cong \mathcal{L}_{n,\beta} \iff m\beta n\alpha \in mnX$
- (iii) $\mathcal{L}_{m,\alpha}$ is trivial $\iff \alpha \in mX$

Proof. (i) Since $n\alpha(t) = \alpha(t^n)$, the following diagram commutes

$$\operatorname{Gal}((\cdot)^{nm}) \xrightarrow{n\alpha} \mathbb{G}_m$$

$$\operatorname{Gal}((\cdot)^m)$$

$$(1)$$

The transition maps in $\pi_1^{\acute{e}t}(T,e)$ are given as such. A map $f:X\to Y$ of Galois covers over S induces the natural map $\mathrm{Gal}(X/S)\to\mathrm{Gal}(Y/S)$ by restriction to the fiber over $s\in S,\ X(s)\to Y(s)$ as $\mathrm{Gal}(X/S)\cong X(s)$. Apply this to

$$T \xrightarrow{(\cdot)^n} T$$

$$(\cdot)^{nm} \downarrow T$$

¹In the étale topology

 $^{^2 {\}rm via}$ Hensel's lemma

we find that the map to $Gal((\cdot)^m)$ in Eq. (1) is the transition map and so in the inverse limit $\alpha, n\alpha$ gives us the same representation.

Dividing (ii) by mn, we see that $\mathcal{L}_{n,\alpha}$ only depends on the class of $\xi = m^{-1} \otimes \alpha \in \hat{X}$ so write $\mathcal{L}_{\xi} = \mathcal{L}_{m,\alpha} (= \mathcal{L}_{\xi,T})$.

Remark.

$$\mathcal{L}_{\xi} \otimes \mathcal{L}_{\eta} = \mathcal{L}_{\xi + \eta} \tag{2}$$

Thus by (iii), \mathcal{L}_{ξ} is a Kummer local system.

 $\varphi: T \to T'$ induces $\hat{\varphi}: \hat{X}(T') \to \hat{X}(T)$ by postcomposition.

 $\not \approx$ Lemma 1.3. For $\xi \in \hat{X}(T')$ we have $\varphi^* \mathcal{L}_{\xi,T'} = \mathcal{L}_{\hat{\varphi}(\xi),T}$

Theorem 1

 $\xi \mapsto \mathcal{L}_{\xi}$ defines an isomorphism

 $\hat{X}(T) \xrightarrow{\sim} \left\{ \text{Kummer local systems on } T \right\} /_{\sim} =: \text{KLS}(T)$

Proof. We just need to show surjectivity. (1) Because $(\cdot)^m$ is Galois, constituents of $(\cdot)^m_*(\underline{E}) \longleftrightarrow$ representations of $\operatorname{Gal}(\cdot)^m$, which is abelian and thus

$$(\cdot)_*^m(\underline{E}) = \bigoplus_{\xi \in \hat{X}, \ m\xi = 0} \mathcal{L}_{\xi} \tag{3}$$

- (2) Given \mathcal{L} a Kummer local system, \mathcal{L} is defined by a one dimensional representation $\rho: \pi_1(T, e) \to E^{\times}$ s.t. im ρ lies in the group of m-th roots of unity, for some m prime to p. By the Galois correspondence, this gives us a Galois cover $\pi: M \to T$ s.t. $\operatorname{Gal}(M/T) = \operatorname{im} \rho$ and \mathcal{L} will be a constituent of $\pi_*(\underline{E})$ exactly as above. But im ρ is a subgroup of E^{\times} and thus cyclic of degree dividing m.
- (2) T is normal, and Z is also normal, being finite over T and thus k(M)/k(T) is Galois with Galois group im ρ . By Kummer theory(for fields), it follows that $k(M) = k(T)(a^{1/m})$ for some $a \in k(M)$. Consider the map $k(M) \to k(T)$ given by the m-th power map. π Galois \Longrightarrow it's unramified and so we can extend the birational map $T \dashrightarrow M$ to an actual map? As $k(T) \to k(M)$ is just inclusion it follows that

$$T \xrightarrow{(\cdot)^m} T$$

and thus all constituents of $\pi_*(\underline{E})$ will be constituents of $(\cdot)_*^m(\underline{E})$ so by Eq. (3) we are done.

Lemma 1.4. If $\xi \neq 0$, then $H^*(T, \mathcal{L}_{\xi}) = H_c^*(T, \mathcal{L}_{\xi}) = 0$.

Proof. Taking cohomology of Eq. (3) we have that

$$H^*(T,\underline{E}) = H^*(T,\underline{E}) \oplus \bigoplus_{\xi \neq 0, \ m\xi = 0} H^*(T,\mathcal{L}_{\xi})$$

Lemma 1.5. $\mathbb{D}(\mathcal{L}_{\xi}) \cong \mathcal{L}_{-\xi}[2 \dim T]$.

Proof. Consider the analogous situation over \mathbb{C} , and X a topological \mathbb{C} manifold. Then for a local system $\mathbb{D}(\mathcal{L}) = \mathcal{L}^{\vee}[\dim X]$.

1.1. Finite Ground Fields

Now assume $\mathbb{k} = \overline{\mathbb{F}_q}$, F = (absolute)Frobenius. $F \cap \widehat{X}$ and KLS(T) by F^{\times} .

Proposition 2

$$KLS(T)^F \cong Hom_{Grp}(T^F, E^*)$$

Proof. By Lemma 1.3 and Theorem 1 we have $KLS(T)^F \cong (\hat{X})^F$. As $F(\alpha) = q\alpha$, it follows that any $(\hat{X})^F$ must be generated by fixed elements of the form $\frac{a}{m} \otimes \alpha$. But then

$$\frac{a}{m} \otimes q\alpha = \frac{a}{m} \otimes \alpha \iff \frac{(q-1)a}{m} \in \mathbb{Z} \iff \frac{a}{m} \in \frac{1}{q-1}\mathbb{Z}$$

and thus $(\hat{X})^F$ is generated by $\left\{\frac{\alpha}{q-1}\right\}_{\alpha\in X}\cong X/(F-1)X$. Fix an isomorphism $X\cong \mathbb{Z}^n$. Then $X/(F-1)X=\mathbb{Z}^n/(q-1)\mathbb{Z}^n=(\mathbb{Z}/(q-1)\mathbb{Z})^n$. On the other hand as E is algebraically closed of characteristic 0,

$$\operatorname{Hom}_{\operatorname{Grp}}(T^F, E^*) = \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{G}_m(\mathbb{F}_q)^n, E^*) = (\mathbb{Z}/(q-1)\mathbb{Z})^n$$

2. Algebraic Preliminaries

Now T is a maximal torus in G, a connected, reductive, affine algebraic group over k.

2.1. Stabilizer Subgroups

Let $\xi = m^{-1} \otimes \alpha \in \widehat{X}$, Q = root lattice

Definition 2.1.

$$W_{\xi} = \{w \in W \mid w\alpha - \alpha \in mQ\} \subseteq W'_{\xi} = \{w \in W \mid w(\xi) = \xi\} = \{w \in W \mid w\alpha - \alpha \in mX\}$$

Lemma 2.2. There is a homomorphism $W'_{\xi}/W_{\xi} \to \operatorname{Hom}(Z(G)/Z(G)^{\circ}, E^{*}).$

3. Perv(G)

3.1. Weights of Torus actions

Let Y be an algebraic variety with a left T-action $a: T \times Y \to Y$.

Definition 3.1. A perverse sheaf K has weight \mathcal{L} (or ξ) if $a^*K[\dim T] \cong \mathcal{L}[\dim T] \boxtimes K$ (... $\mathcal{L}_{\xi}[\dim T]$...).

Remark. If $\mathcal{L} = \underline{E}$ then this is the same as saying that K is G-equivariant.

Let G be a connected affine algebraic group and $\varphi: G \to T$ and suppose Y has a G-action

Definition 3.2. A perverse sheaf K has weight \mathcal{L} (relative to a and φ) if $a^*K[\dim G] \cong \varphi^*\mathcal{L}[\dim G] \boxtimes K$ $(\dots \mathcal{L}_{\mathcal{E}}[\dim G]\dots)$.

 \not **Lemma 3.3.** Assume that U is a locally closed, smooth, irreducible G-stable subvariety of Y. Let \mathcal{L} be a local system on U s.t. $\mathcal{L}[\dim U]$ on U has weight $\xi \in \hat{X}$. Then the perverse extension $I(U, \mathcal{L})$ has weight ξ .

Proof. As $\mathbb{k} = \overline{\mathbb{k}}$, it's perfect and thus G is smooth and thus a is smooth so a^* commutes with perverse extension.

3.2. $\mathbf{A}_{\boldsymbol{\varepsilon},\dot{\mathbf{w}}}$

For $w \in W$, let $\dot{w} \in N_G T$ be a lift. For $\alpha \in R$, let U_{α} be corresponding root subgroup.

Definition 3.4. Given $w \in W$, let $U_w = \langle U_\alpha | \alpha \in \mathbb{R}^+, -w^{-1}(\alpha) \in \mathbb{R}^+ \rangle$

Let $G_w = B\dot{w}B$. G_w is smooth and the map $U_w \times T \times U \to G_w$ sending $(u, t, u') \mapsto u\dot{w}tu'$ is an isomorphism of varieties. Thus we can define $pr_w : G_w \to T$ by $pr_w(u\dot{w}tu') = t$.

Definition 3.5. Given $(\xi, w) \in \widehat{X} \times W$ let $G_{\xi, \dot{w}}(\mathcal{L}_{\xi, \dot{w}} \text{ in notes}) = pr_w^*(\mathcal{L}_{\xi})$. Define $A_{\xi, \dot{w}} = I(G_w, G_{\xi, \dot{w}}) \in Perv(G)$.

Lemma 3.6. (i) $A_{\xi,\dot{w}}$ has weight $w(\xi)$ for left B-action and weight $-\xi$ for right B-action.

- (ii) If $w\xi = \xi$ then $A_{\xi,\dot{w}}$ is equivariant for the conjugation action of B
- (iii) $\mathbb{D}(A_{\mathcal{E},w}) = A_{-\mathcal{E},w}$

Proof. (i) (1) It suffices to prove $G_{\xi,\dot{w}}$ has the appropriate weights by Lemma 3.3.

(2) Consider the case w = e. Then $G_e = B$, $\varphi = pr_w = \pi : B \to T \implies G_{\xi,\dot{w}} = \pi^*(\mathcal{L}_{\xi})$ and a = m for the left action. π is a group homomorphism so the following diagram commutes

Thus

$$m^*(\pi^*(\mathcal{L}_{\xi})) = (\pi \times \pi)^*(m^*(\mathcal{L}_{\xi})) \xrightarrow{AS \ prop} (\pi \times \pi)^*(\mathcal{L}_{\xi} \boxtimes \mathcal{L}_{\xi}) = \pi^*(\mathcal{L}_{\xi}) \boxtimes \pi^*(\mathcal{L}_{\xi})$$

as desired. The right action is given by $(b_1, b_2) \mapsto b_1 b_2^{-1}$. Let $\iota : T \to T$ be the inversion map $t \mapsto t^{-1}$. Then m becomes $m \circ (\mathrm{id} \times \iota)$ and $\iota^*(\mathcal{L}_{\xi}) = \mathcal{L}_{-\xi} \implies G_{\xi, \dot{w}}$ has weight $-\xi$ for right B-action.

(3) Now let w be general. Each U_{α} is an eigenspace for the adjoint action of T and thus for $u \in U_{\alpha}$, ut = tu' for some $u' \in U_{\alpha}$. For the right action, given $(g, b) = (u\dot{w}tu', u(b)\pi(b)) \in G_w \times B$, we have

$$(u\dot{w}tu',b) \stackrel{a}{\mapsto} u\dot{w}tu'\pi(b)^{-1}u(b)^{-1} = u\dot{w}t\pi(b)^{-1}u''u(b)^{-1} \stackrel{pr_w}{\longmapsto} = t\pi(b) = pr_w(g)\pi(b)^{-1}$$

Thus $pr_w \circ a = m \circ (\mathrm{id} \times \iota) \circ (pr_w \times \pi) \implies G_{\xi,\dot{w}}$ has weight $-\xi$ for right B-action. The right action is similar except we pick up $w(\xi)$ when commuting past \dot{w} .

Proposition 3.7. (i) $\mathcal{H}^{\bullet}(A_{\xi,\dot{w}})|_{G_x} \otimes G_{-\xi,\dot{w}}$ is a constant sheaf on G_x .

(ii) If $\mathcal{H}^{\bullet}(A_{\xi,w})|_{G_x} \neq 0$ then $x(\xi) = w(\xi)$ and $x \leq w$.

Proof. (i) Notice that if we restrict to the left U_x action on G_w , then $pr_w(a_{U_x}(u,g)) = pr_w(\pi_2(u,g))$. Thus $G_{\xi,\dot{w}} = pr_w^*(\mathcal{L}_{\xi,w})$ is automatically U_x equivariant. By Lemma 3.3,

$$A_{\xi,\dot{w}}$$
 is U_x equivariant $\Longrightarrow S = \mathcal{H}^{\bullet}(A_{\xi,\dot{w}})|_{G_x}$ is U_x equivariant

as equivariant sheaves form an abelian category. $A_{\xi,\dot{w}}$ is perverse and so S is also constructible. Since $G_x = U_x \times B$, the U_x equivariance of S and constructibility implies that S is actually a local system. $A_{\xi,\dot{w}}$ has weight $-\xi$ for right B-action and thus $S \otimes G_{-\xi,\dot{w}}$ is a $U_x \times B$ - equivariant local system on $U_x \times B$ and therefore constant.

Let $G \times^B G$ be the quotient of $B \curvearrowright G \times G$ via $b(g,h) = (gb^{-1},bh)$. For V,Z left B-stable sets, $V \times^B Z \to G$ is proper if V,Z are closed and thus $\pi: G \times^B G \to G$ is proper. Now recall the following equivariance trick

Lemma 3.8. Let $f: X \to Y$ be a principal G-bundle. Then $K \in Perv(X)$ is G-equivariant $\iff \exists L \in Perv(Y)$ s.t. $K = f^*(L[\dim G])$.

Given $\xi \in \hat{X}$, $x, y \in W$, by Lemma 3.6 we see that $A_{\xi, \dot{x}} \boxtimes A_{y^{-1}(\xi), \dot{y}}$ is a B-equivariant irreducible perverse sheaf on $G \times G$. Applying the above lemma to $G \times G \xrightarrow{p} G \times G$, we obtain an irreducible perverse sheaf $A_{\xi, \dot{x}, \dot{y}}$ on $G \times G$.

Definition 3.9.

$$A_{\xi,\dot{x}} * A_{y^{-1}(\xi),\dot{y}} = \pi_*(A_{\xi,\dot{x},\dot{y}}) \in \text{Semi}(G)$$

3.3. Convolution Formulas

- **Lemma 3.10.** (a) Let X be a smooth irreducible variety of dimension d and let D_1, \ldots, D_r be smooth divisors³ with normal crossings in X. Suppose \mathcal{L} is a 1-dim local system on $X \setminus \bigcup_{i=1}^r D_i$ which factors through a finite quotient of $\pi_1(X \setminus \bigcup_{i=1}^r D_i)$ of order prime to chark. Then $H^i(I(X \setminus \bigcup_{i=1}^r D_i, \mathcal{L})) = 0$ if $i \neq -\dim X$.
 - (b) If J is the set of $i \in [1,r]$ s.t. the local monodromy of \mathcal{L} around D_i is non-trivial and $U = X \setminus \bigcup_{i \in J} D_i$ then \mathcal{L} can be extended to a local system $\overline{\mathcal{L}}$ on U. Moreover, $I(U,\mathcal{L}) = \iota_0(\overline{\mathcal{L}}[d])$.

Theorem 3

Let i_0 be extension by 0.

- (i) If $s \in W_{\xi}$, $G_{\xi,s}$ extends to a local system $\overline{G_{\xi,s}}$ on $\overline{G_s}$ and $A_{\xi,s} = \iota_0(\overline{G_{\xi,s}}[\dim G_s])$. If $s \notin W_{\xi}$, $A_{\xi,s} = \iota_0(G_{\xi,s}[\dim G_s])$.
- (ii) If $s \in W_{\xi}$, $A_{\xi,s} * A_{\xi,s} = A_{\xi,s}[1] \oplus A_{\xi,s}[-1]$. If $s \notin W_{\xi}$, $A_{s(\xi),s} * A_{\xi,s} = A_{\xi,e}$.

Proof. (i) For $G_s \xrightarrow{f} \overline{G_s} \xrightarrow{g} G$, we have

$$A_{\xi,s} = (g \circ f)_{!*}(G_{\xi,s}) = g_{!*}(f_{!*}(G_{\xi,s}))$$

 $\overline{G_s} = G_e \sqcup G_s = P_s$ is closed and so $g_{!*} = \iota_0$. $G_e = B$ is a smooth divisor in $\overline{G_s}$ which is smooth and so

$$f_{!*}(G_{\xi,s}) = \begin{cases} \overline{G_{\xi,s}}[\dim G_s] & \text{if } s \in W_{\xi} \\ \iota_0(G_{\xi,s}[\dim G_s]) & \text{if } s \notin W_{\xi} \end{cases}$$

by applying part (b) of the lemma above.

(ii) For $s \in W_{\xi}$ Since $A_{\xi,s} * A_{\xi,s} = \pi_*(A_{\xi,s,s}) \in \text{Semi}(G)$ it suffices to compute the table of stalks to compute the isomorphism class. (1) We claim that $A := A_{\xi,s,s} = \iota_0(\overline{G_{\xi,s,s}}[\dim G_s + 1])$ where $\overline{G_{\xi,s,s}}$ is a local system on $\overline{G_s} \times^B \overline{G_s}$. By definition,

$$A_{\xi,s} \boxtimes A_{\xi,s} = p^*(A[\dim B])$$

 $^{^3{\}rm As}~X$ is smooth, Weil=Cartier divisors.

By part (i) the LHS is a local system in cohomological degree $[2 \dim G_s]$ and by the equivalence of categories $\operatorname{Sh}_B(G \times G) \cong \operatorname{Sh}(G \times G)$, A must be a local system supported on $\overline{G_s} \times^B \overline{G_s}$ in cohomological degree $[2 \dim G_s - \dim B] = [\dim G_s + 1]$.

(2) Any fiber of $\pi: \overline{G_s} \overset{B}{\times} \overline{G_s} \to \overline{G_s}$ is isomorphic to $\overline{G_s}/B = P_s/B = \mathbb{P}^1_{\mathbb{k}}$. $\overline{G_{\xi,s,s}}|_{fiber}$ is then a local system (being the pullback of a local system). But $\mathbb{P}^1(\mathbb{C}) \overset{homeo}{\simeq} S^2$ and thus $\pi_1(\mathbb{P}^1(\mathbb{C})) = 0$ and the same will be true for $\pi_1^{\acute{e}t}(\mathbb{P}^1_{\overline{\mathbb{F}_p}})$ and thus $\overline{G_{\xi,s,s}}|_{fiber} \cong \underline{E}$. Thus for $g \in \overline{G_s}$

$$H^i(\pi_*(A))_g \stackrel{PBC}{=} H^i(\pi^{-1}(g), \overline{G_{\xi,s,s}}[\dim G_s + 1]|_{fiber}) = H^{i+\dim G_s+1}(\mathbb{P}^1_{\mathbb{k}}, \underline{E})$$

Thus the table of stalks for $\pi_*(A)$ is of the form on the left while TOS for $A_{\xi,s} = \iota_0(G_{\xi,s}[\dim G_s])$ is on the right

and we conclude $\pi_*(A) = A_{\xi,s}[1] \oplus A_{\xi,s}[-1]$.

 $\underline{\text{For } s \notin W_{\xi}, A_{s(\xi),s} * A_{\xi,s} = \pi_*(A_{s(\xi),s,s}). \text{ Because } G_s \overset{B}{\times} G_w \text{ is smooth, } (A_{\xi,s,w})|_{G_s \overset{B}{\times} G_w} = G_{\xi,s,w}[\dim G_s + 1]$

for some local system $G_{\xi,s,w}$ as $A_{\xi,s,w}$ is perverse. We now need a generalization of Springer's Lemma

Lemma 3.11. Let $q: G_s \overset{B}{\times} G_w \to G$ be the restriction of π . If sw < w, $G_s \overset{B}{\times} G_w \xrightarrow{q} G_w \sqcup G_{sw}$ is an isomorphism.

- (a) If $g \in G_{sw}$ then $q^{-1}(g) \stackrel{homeo}{\simeq} \mathbb{k}$ and $G_{\xi,s,w}|_{q^{-1}(g)} \cong \underline{E}$.
- (b) If $g \in G_w$ then $q^{-1}(g) \stackrel{homeo}{\simeq} \mathbb{k}^*$ and $G_{\xi,s,w}|_{q^{-1}(g)} \cong \mathcal{L}$ where \mathcal{L} is a nontrivial local system.

For $U = G_s \overset{B}{\times} G_s$, consider the fiber diagram

$$q^{-1}(g) = \pi^{-1}(g) \cap U \xrightarrow{h_2} U$$

$$\downarrow^{j_2} \qquad \qquad \downarrow^{j}$$

$$\pi^{-1}(g) \xrightarrow{h} \overline{G_s} \overset{B}{\times} \overline{G_s}$$

By part (i), $A = A_{s(\xi),s,s} = j_!(G_{s(\xi),s,s}[\dim G_s + 1])$. Let $a_{pt} : \pi^{-1}(g) \to pt$. Then

$$\begin{split} H^{i}(\pi_{*}(A))_{g} & \stackrel{PBC}{=\!\!\!=} H^{i}(\pi^{-1}(g), A|_{fiber}) = (a_{pt})_{*}h^{*}(j_{!}(G_{s(\xi),s,s}[\dim G_{s}+1]) \\ & = (a_{pt})_{*}(j_{2})_{!}h_{2}^{*}(G_{s(\xi),s,s}[\dim G_{s}+1]) \stackrel{a_{pt} \ proper}{=\!\!\!=} (a_{pt})_{!}(j_{2})_{!}h_{2}^{*}(G_{s(\xi),s,s}[\dim G_{s}+1]) \\ & = H_{c}^{i+\dim G_{s}+1}(q^{-1}(g), G_{s(\xi),s,s}|_{q^{-1}(g)}) \end{split}$$

By Lemma 3.11 there are two cases: (a) $g \in G_e$, then we obtain

$$H_c^{i+\dim G_s+1}(\mathbb{k},\underline{E}) = \begin{cases} \mathbb{k} & \text{if } i = -\dim G_s + 1 = \dim G_e(\mathbb{k}^{"} = \mathbb{C}^2) \\ 0 & \text{otherwise} \end{cases}$$

 $(b)g \in G_s$, then we obtain

$$H_c^{i+\dim G_s+1}(\mathbb{k}^*,\mathcal{L}) \stackrel{PV duality}{=\!=\!=\!=} H^{-(i+\dim G_s+1)}(\mathbb{k}^*,\mathbb{D}(\mathcal{L}))^{\vee} \stackrel{\mathbb{k}^* \text{ orient manifold }}{=\!=\!=\!=} H^{-(i+\dim G_s+1)}(\mathbb{k}^*,\mathcal{L}^{\vee}[1])^{\vee}$$

We claim the RHS above is always 0. Recall that for local systems $\mathcal{L}_T = (M, T)$ on \mathbb{C}^{\times}

$$H^0(\mathbb{C}^{\times}, \mathcal{L}_T) = M^T, \qquad H^1(\mathbb{C}^{\times}, \mathcal{L}_T) = M_T, \qquad H^i(\mathbb{C}^{\times}, \mathcal{L}_T) = 0 \ i \neq 0, 1$$

Because \mathcal{L}^{\vee} is a nontrivial 1-dimensional local system, $M^T = M_T = 0$ and thus the claim. Putting (a) and (b) together, the TOS for $\pi_*(A)$ is

$$\begin{array}{c|c}
 & -\dim G_e \\
\hline
G_s & 0 \\
\hline
G_e & \mathbb{k}
\end{array}$$

Part (i) tells us that $A_{\xi,e} = i_0(G_{\xi,e}[\dim G_e])$ so the above is also the TOS for $A_{\xi,e}$ and thus $\pi_*(A) = A_{\xi,e}$.