Character Sheaves: Preliminaries

Cailan Li
September 24th, 2024

1. Kummer local systems

Let T be an algebraic torus over k = k, X = Hom(T,G,,), p = chark (1 if chark = 0) , and E = Qg or
C (coefficient field). Let

X =X(T) =2y ®ZX/1®ZX
Note that ¢/b ® « has b torsion and since p fb we see that X has no p—torsion.
Definition 1.1. A rank 1 local system L on T is Kummer if In # 0 coprime to p s.t. LS = E.
Let (m,p) = 1, then we have the following SES of group schemes'

05,7795 750

where on R—points (-)"(R) : T(R) > r — " and ,T(R) = {r € T(R)|r™ = 1}. Fix isomorphism
between roots of unity coprime to p in k with same thing in E 2. Given a € X, define Xam mT(k) — E*
by

Xm,a(k)(2) = (a(z))

(-)™ is an étale Galois covering and we have Gal((-)™) =, T'(k) as all deck transformations are of the
form ¢ — (t where ¢ €, T(k). Since 7§/(T,e) — Gal((-)™), Xa.m gives an étale local system L, on 7.

Lemma 1.2. (i) Lymna = Lo
(11) Lo = Lyg <= mf —no € mnX
(111) Lo is trivial <= o€ mX

Proof. (i) Since na(t) = a(t"), the following diagram commutes

Gal((-)"™) “ Gm

c%\) / W

Gal((-)™)

The transition maps in 75 (T, e) are given as such. A map f: X — Y of Galois covers over S induces
the natural map Gal(X/S) — Gal(Y/S) by restriction to the fiber over s € 5, X(s) = Y(s) a
Gal(X/S) = X(s). Apply this to

T—>T

N Ao

'In the étale topology
2 . ,
via Hensel’s lemma
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Section 1.1 Cailan Li Kummer local systems

we find that the map to Gal((-)") in Eq. (1) is the transition map and so in the inverse limit o, na
gives us the same representation. |

A

Dividing (i) by mn, we see that L, , only depends on the class of { = m'®a e X so write
Le= Lma(=Ler),

Remark.
Le® Ly = Leiy (2)
Thus by (iii), L¢ is a Kummer local system.
@ : T — T induces ¢ :X (T") — X(T) by postcomposition.
¥ Lemma 1.3. For ¢ € X(T') we have ©*Le 1 = Lye)r

Theorem 1
§ > L¢ defines an isomorphism

A

X(T) > {Kummer local systems on T'} /~ =: KLS(T)

Proof. We just need to show surjectivity. (1) Because ()" is Galois, constituents of (-)7'(E) <—
representations of Gal(-)", which is abelian and thus

OME) = @ L (3)

§€X’, m&=0

(2) Given £ a Kummer local system, £ is defined by a one dimensional representation p : m1(T,e) — E*
s.t. im p lies in the group of m—th roots of unity, for some m prime to p. By the Galois correspondence,
this gives us a Galois cover 7 : M — T s.t. Gal(M/T) = imp and £ will be a constituent of m,(E)
exactly as above. But im p is a subgroup of E* and thus cyclic of degree dividing m.

(2) T is normal, and Z is also normal, being finite over 7" and thus k(M )/k(T) is Galois with Galois
group imp. By Kummer theory(for fields), it follows that k(M) = k(T)(a'/™) for some a € k(M).
Consider the map k(M) — k(T) given by the m—th power map. = Galois = it’s unramified and so
we can extend the birational map 7' --» M to an actual map? As k(T) — k(M) is just inclusion it
follows that

Ok

™

T M T

and thus all constituents of 7.(E) will be constituents of (-)}*(E) so by Eq. (3) we are done. [ |
Lemma 1.4. If{ # 0, then H (T, L¢) = HX (T, L¢) = 0.
Proof. Taking cohomology of Eq. (3) we have that

H*(T,E)=H*(T.E)® P H"(T,Le)
£#40, mE=0

Lemma 1.5. D(L¢) = L_¢[2dim T7.

Proof. Consider the analogous situation over C, and X a topological C manifold. Then for a local
system D(L£) = £Y[dim X]. [ ]

2 of 8



Section 3.2 Cailan Li Finite Ground Fields

1.1. Finite Ground Fields

Now assume k = F,, F' =(absolute)Frobenius. F' ~ X and KLS(T) by F*.

Proposition 2

KLS(T)" = Homg,, (TF, E¥)

Proof. By Lemma 1.3 and Theorem 1 we have KLS(T)F = (X)F. As F(a) = qa, it follows that any

(X)¥ must be generated by fixed elements of the form 2 . But then
m

-1 1
g®qa:3®oz = UEZ = gG—Z
m m m m q—1

and thus (X) is generated by {al} = X/(F —1)X. Fix an isomorphism X = Z". Then
q— acX

X/(F-1)X =Z"/(¢q—1)Z" = (Z/(q — 1)Z)". On the other hand as F is algebraically closed of

characteristic 0,

HomGrp(TF, E*) = HomGrp<Gm(]Fq)na E*) = (Z/<q - 1>Z>n

2. Algebraic Preliminaries

Now T is a maximal torus in GG, a connected, reductive, affine algebraic group over k.

2.1. Stabilizer Subgroups

LetéE=m'®ac )A(, @ =root lattice
Definition 2.1.
We={weW|wa—-aemQ} CW={weW|w’)=¢ ={weW|wa—acmX}

Lemma 2.2. There is a homomorphism W¢ /Wg — Hom(Z(G)/Z(G)°, E").

3. Perv(QG)

3.1. Weights of Torus actions

Let Y be an algebraic variety with a left T—actiona: T xY — Y.

Definition 3.1. A perverse sheaf K has weight £ (or§) if a* K[dimT] = L[dim T|XK (... L¢[dimT]...).
Remark. If £ = E then this is the same as saying that K is G—equivariant.

Let G be a connected affine algebraic group and ¢ : G — T and suppose Y has a G—action

Definition 3.2. A perverse sheaf K has weight L (relative to a and ¢) if a* K[dim G] = ¢*L[dim G]K K
(... Le[dim G .. ).

¥ Lemma 3.3. Assume that U is a locally closed, smooth, irreducible G—stable subvariety of Y. Let
L be a local system on U s.t. L[dim U] on U has weight &€ € X. Then the perverse extension I(U, L)
has weight &.

Proof. As k = k, it’s perfect and thus G is smooth and thus a is smooth so a* commutes with perverse
extension. |
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Section 3.2 Cailan Li Acw

3.2. Agy

For w € W, let w € NgT be a lift. For a € R, let U, be corresponding root subgroup.
Definition 3.4. Given w € W, let U, = <Ua| a€RY, —wHa) e R+>

Let Gy = BwB. G, is smooth and the map U, x T x U — G, sending (u,t,u’) — witu’ is an
isomorphism of varieties. Thus we can define pry, : Gy, — T by pry,(witu’) = t.

Definition 3.5. Given (&, w) € X xW let Ge.iy(Le in notes) = pry, (Le). Define Ag yy = I(Gw, Ge i) €
Perv(G).

Lemma 3.6. (i) A¢y has weight w(§) for left B—action and weight —& for right B—action.
(i) If w& = £ then Ag .y is equivariant for the conjugation action of B
(1it) D(A¢w) = A_gw

Proof. (i) (1) It suffices to prove G¢ y has the appropriate weights by Lemma 3.3.

(2) Consider the case w =e. Then Ge = B, p =pry, =7: B =T = G¢y = 1" (Le) and a = m for
the left action. 7 is a group homomorphism so the following diagram commutes

BxB-™+B - ",T
7r><7rl /
TxT

Thus
AS prop

m*(7*(Le)) = (m x m)* (m*(Le)) (mx ) (Le R Le) =" (Le) W™ (Le)

as desired. The right action is given by (b1, b2) — b1by ! Let v: T — T be the inversion map t — t L.
Then m becomes m o (id x ¢) and *(L¢) = L_¢ = G has weight —¢ for right B—action.

(3) Now let w be general. Each U, is an eigenspace for the adjoint action of 7" and thus for u € U,,
ut = tu’ for some v’ € U,. For the right action, given (g,b) = (witu, u(b)m(b)) € Gy, x B, we have

(witu, b) & witu/m(b) " u(b) ™! = witw(b) T u(b) T E = tw(b) = pro(9)m(b) !

Thus pry, 0oa =mo (id x ¢) o (pry x ) = Ge.y has weight —¢ for right B—action. The right action
is similar except we pick up w(§) when commuting past w. |

Proposition 3.7. (i) H*(A¢w)|la, ® G_¢w s a constant sheaf on G.
(1t) If H*(A¢w)la, # 0 then x(§) = w(§) and x < w.

Proof. (i) Notice that if we restrict to the left U, action on G, then pry(ay, (u,g)) = prw(m(u,g)).
Thus G¢ . = pry,(Lew) is automatically U, equivariant. By Lemma 3.3,

Ag¢ qy is U, equivariant = S = H*(A¢.w)|q, is Uy equivariant

as equivariant sheaves form an abelian category. A, is perverse and so S is also constructible. Since
G, = U, x B, the U, equivariance of S and constructibility implies that S is actually a local system.
Ag i has weight —¢ for right B—action and thus S ® G_¢ ; is a U, X B— equivariant local system on
U, x B and therefore constant. [
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Section 3.3 Cailan Li Convolution Formulas

B B
Let G'X G be the quotient of B ~ G'x G via b(g, h) = (gb~,bh). For V, Z left B—stable sets, VX Z — G

is proper if V, Z are closed and thus 7 : G Xx G — G is proper. Now recall the following equivariance
trick

Lemma 3.8. Let f : X — Y be a principal G—bundle. Then K € Perv(X) is G—equivariant <=
L € Perv(Y) s.t. K = f*(L[dim G]).

Given £ € X, z,y € W, by Lemma 3.6 we see that Agi XAy -1(¢),y is a B—equivariant irreducible

B
perverse sheaf on G x G. Applying the above lemma to G x G & G x G, we obtain an irreducible

perverse sheaf A¢ ;5 on G x G.

Definition 3.9.
A£7j3 * Ayfl(g)y = W*(Ag’g'm)) c Seml(G)

3.3. Convolution Formulas

Lemma 3.10. (a) Let X be a smooth irreducible variety of dimension d and let D1, ..., D, be smooth
divisors® with normal crossings in X. Suppose L is a 1—dim local system on X \ Ui_, D; which
factors through a finite quotient of m1(X \ U;_1D;) of order prime to chark. Then H'(I(X \

U, D;, L)) =0 if i # —dim X.

(b) If J is the set of i € [1,r] s.t. the local monodromy of L around D; is non-trivial and U =
X \ UiesD; then L can be extended to a local system L on U. Moreover, I(U, L) = 1o(L[d)).

Theorem 3
Let iy be extension by 0.

(i) If s € We, Ge s extends to a local system Ge s on Gs and Ag s = 10(Ge 5[dim G)). If s & W,
A¢ s = 10(Ge s[dim Gi)).

(ll) If s € Wg, Aé,s * Aé,s = A&s[l] D A&S[—l]. If s¢ Wg, As(f),s * A&S = A{,e-
\ J

Proof. (i) For G, EN G, % G, we have

A£,8 = (9 ° f)!*(Gé,S) = g!*(f!*(Gi,s»

Gy, =G, UG, = P, is closed and so g1, = tg. G, = B is a smooth divisor in G, which is smooth and so

G s[dim Gy if s € We

f!*(Gg,s) = {LO(Gg,s[dim Gs]) ifs¢ We

by applying part (b) of the lemma above.
(77) For s € We Since Ag s Ag s = mi(Ags,s) € Semi(G) it suffices to compute the table of stalks to

compute the isomorphism class. (1) We claim that A := A¢ ;o = 10(Ge s s[dim G + 1]) where G¢ ;¢ is

__B__
a local system on G5 X G5. By definition,

A&s X A{,s = p*(A[dlm B])

3As X is smooth, Weil=Cartier divisors.
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Section 3.3 Cailan Li Convolution Formulas

By part (i) the LHS is a local system in cohomological degree [2dim Gs] and by the equivalence of

B __B__
categories Shp(G x G) = Sh(G x G), A must be a local system supported on G5 X G5 in cohomological
degree [2dim G5 — dim B] = [dim G, + 1].

__B___ _ _
(2) Any fiber of 7 : G, x Gy — G, is isomorphic to G,/B = P,/B = Pi. Gl s.5| fiver is then a local

system (being the pullback of a local system). But P!(C) M 62 and thus 71(PY(C)) = 0 and the
same will be true for Wft(IP’IIF—) and thus Gg s s| fiper = E. Thus for g € G5
p

i PBC rri_— YaPuET i+dim G
H (W*(A))g = H (7I' 1(g)aG§,s,s[d1mGs+1]|fiber) :H+d “ —H(PI%UE)

Thus the table of stalks for m,(A) is of the form on the left while TOS for A¢ ¢ = 19(Ge s[dim G,]) is on
the right

—dimGs—1 | dimGg+1 —dim G
G, k k Gy k
Ge k k Ge k

and we conclude m,(A) = A¢ ([1] ® A¢ o[—1].

B
For s & We, Ag(e)s%Ae,s = Tx(Ag(e),5,5). Because Gs x Gy, is smooth, (A§7S’w)|G B = Gesw[dimGs+1]

s XGw

for some local system G¢ ;. as Ag s is perverse. We now need a generalization of Springer’s Lemma

B B
Lemma 3.11. Let g : Gs X Gy — G be the restriction of w. If sw < w, G X Gy L G UGy s an

isomorphism.
— h ~Y
(a) If g € G then g~ (g) ="k and Geswlg1(g) = E-
homeo

(b) If g € Gy then ¢ 1 (g) "~ k* and Geswlg-1(g) = £ where L is a nontrivial local system.

For U = G 5 G, consider the fiber diagram
¢ Hg)=n"NU —>—U
| !
T g) ——— G,
By part (i), A = Ayg)s.s = J1(Gs(e),s,5[dim Gs + 1]). Let ape : 7' (g) — pt. Then

i PBC 1,5, — /- .
H'(m.(A))g = H'(77(9), Al piver) = (apt)«h* (j1(Gs(e).s,s|dim G + 1))

— (gt 225Gyl Gy 11) "2 (), ()15 (Groe o ofcinn G + 1]
= Hé+d1m Gott (q_l (g)v Gs(f),s,s |q*1 (g))

By Lemma 3.11 there are two cases: (a) g € G, then we obtain

k if i = —dim G, + 1 = dim G, (k“ = "C = R?)

Hi+dimGs+1(]k E) —
¢ T 0 otherwise

(b)g € G, then we obtain

H(z;—l—dimGs—&—l(]k*’ E) PV duality H—(i—i—dimGs-l—l) (ﬂ{*,D(ﬁ))v k* orient manifold H—(i—i—dimGs-l—l) (E{*7£v[1])v
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We claim the RHS above is always 0. Recall that for local systems L7 = (M, T) on C*
HY(CX,Lp)=MT,  HYC* Lp)= My,  HY{(C*,Lr)=0i%#0,1

Because £V is a nontrivial 1—dimensional local system, MT = My = 0 and thus the claim. Putting (a)
and (b) together, the TOS for 7, (A) is

—dim G,
Gs 0
Ge k
Part (i) tells us that Ag. = ig(Ge[dim G.]) so the above is also the TOS for A¢ . and thus m,(A4) =
Age. [ |
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