Character Sheaves: Preliminaries 2

Cailan Li October 1st, 2024

1. Generalized Hecke Algebras

Let \mathcal{O} be a W-orbit in $\hat{X} = \hat{X}(T) = \mathbb{Z}_{(p)} \otimes_{\mathbb{Z}} X /_{1 \otimes_{\mathbb{Z}} X}$. Denote by $K_{\mathcal{O}}$ the free $\mathbb{Z}[t, t^{-1}]$ module with "standard" basis $\{e_{\xi, w}\}_{\xi \in \mathcal{O}, w \in W}$.

Theorem 1.1. $\mathcal{H}_{\mathcal{O},W}$ is the unique $\mathbb{Z}[t,t^{-1}]$ algebra on $K_{\mathcal{O}}$ s.t. for $\xi,\eta\in\mathcal{O},\ x,y\in W,\ s\in S$

(a)
$$e_{\xi,x}e_{\eta,y}=0$$
 if $\xi \neq y\eta$

(b)
$$1 = \sum_{\xi \in \mathcal{O}} e_{\xi,e}$$

$$(c) \ e_{y(\eta),s} e_{\eta,y} = \begin{cases} e_{\eta,sy} & \text{if } sy > y \text{ or } s \notin W_{y(\eta)} \\ (t^2 - 1)e_{\eta,y} + t^2 e_{\eta,sy} & \text{if } sy < y \text{ and } s \in W_{y(\eta)} \end{cases}$$

$$(d) \ e_{s(\xi),x} e_{\xi,s} = \begin{cases} e_{\xi,xs} & \text{if } xs > x \text{ or } s \notin W_{\xi} \\ (t^2 - 1)e_{\xi,x} + t^2 e_{\xi,xs} & \text{if } xs < x \text{ and } s \in W_{\xi} \end{cases}$$

(e)
$$e_{y(\eta),x}e_{\eta,y} = e_{\eta,xy} \text{ if } \ell(xy) = \ell(x) + \ell(y)$$

Remark. For $\mathcal{O} = \{0\}$, we recover the usual Hecke algebra (by setting $e_{0,w} = t^{\ell(w)} \delta_s$).

Lemma 1.2 (Bar Automorphism). There is a unique automorphism $\overline{(\cdot)}:\mathcal{H}_{\mathcal{O},W}\to\mathcal{H}_{\mathcal{O},W}$ sending $t\mapsto t^{-1}$ and

$$e_{x(\xi),x^{-1}}\overline{e_{\xi,x}}=e_{\xi,e}$$

Remark. This is not an involution in general, and for $\xi = \{0\}$ we get usual bar.

Lemma 1.3. Let W_{min}^{ξ} is the set of minimal length coset representatives of W_{ξ} . Then every element $w \in W$ has a unique decomposition

$$w = w^*w_1$$
 where $w^* \in W_{min}^{\xi}$ and $w_1 \in W_{\xi}$

Definition 1.4. Given $w \in W$, $\xi \in \hat{X}$, set $\ell_{\xi}(w) = \ell(w_1)$.

Proposition 1.5 (KL basis). Given $e_{\xi,x}$ there is a unique element $C_{\xi,x}$ in $\mathcal{H}_{\mathcal{O},W}$ s.t.

(i)
$$\overline{C_{\xi,x}} = C_{\xi,x}$$

(ii)
$$C_{\xi,x} = t^{-\ell_{\xi}(x)} \sum_{\substack{y \in xW_{\xi} \\ y \leq_{\xi}x}} P_{\xi,y,x}(t^2) e_{\xi,y} \text{ where } P_{\xi,y,x} \in \mathbb{Z}[t], P_{\xi,x,x} = 1, \deg P_{\xi,y,x} \leq \frac{1}{2} (\ell_{\xi}(x) - \ell_{\xi}(y) - 1).$$

 \not Example 1.

$$C_{\xi,e} = e_{\xi,e}$$
 $C_{\xi,s} = \begin{cases} e_{\xi,s} & \text{if } s \notin W_{\xi} \\ t^{-1}(e_{\xi,s} + e_{\xi,e}) & \text{if } s \in W_{\xi} \end{cases}$

Suppose $s \notin W_{\xi}$. By above, we have $C_{\xi,s} = e_{\xi,s}$ and $C_{s(\xi),s} = e_{s(\xi),s}$ as $W_{s(\xi)} = sW_{\xi}s^{-1}$. We then compute

$$C_{s(\xi),s}C_{\xi,s} = e_{s(\xi),s}e_{\xi,s} = e_{\xi,e} = C_{\xi,e}$$

Likewise we have that

$$C_{\xi,x}C_{\xi,s} = (t+t^{-1})C_{\xi,s}$$
 if $s \in W_{\xi}$ and $xs < x$

Proposition 1.6. (a) span_{$\mathbb{Z}[t^{\pm 1}]$} $\{e_{\xi,w}\}_{w\in W_{\xi}}$ forms a subalgebra isomorphic to $\mathcal{H}(W_{\xi})$.

(b) $\operatorname{span}_{\mathbb{Z}[t^{\pm 1}]} \{e_{\xi,w}\}_{w \in W'_{\xi}}$ forms a subalgebra. As a $\mathbb{Z}[t^{\pm 1}]$ -module it is isomorphic to $\mathcal{H}(W_{\xi}) \otimes \mathbb{Z}[W'_{\xi} \cap W^{\xi}_{min}]$.

Corollary 1.7. Let $x, y \in W$ s.t. $y \in xW_{\xi}$. Write $x = x^*x_1$, $y = y^*y_1$ where $x^*, y^* \in W_{min}^{\xi}$ and $x_1, y_1 \in W_{\xi}$. Then

$$C_{\xi,x} = e_{\xi,x^*}C_{\xi,x_1}$$
 and $P_{\xi,y,x} = P_{\xi,y_1,x_1} = P_{y_1,x_1}$

where P_{y_1,x_1} is the KL poly for $\mathcal{H}(W_{\xi})$.

2. Motivation for $A_{\xi,w}$

Theorem 2.1. Let π be an irreducible representation of $G(\mathbb{F}_q)$ in characteristic 0. Then either

(i) $\exists !$ Levi subgroup L contained in some proper parabolic P, where $P = L \ltimes U$ and a unique cuspidal representation ρ of $L(\mathbb{F}_q)$ s.t.

$$\operatorname{Hom}_{G(\mathbb{F}_q)}\left(\pi, \operatorname{Ind}_{P(\mathbb{F}_q)}^{G(\mathbb{F}_q)} \rho\right) \neq 0$$

(ii) π is cuspidal

Thus, to understand representations of $G(\mathbb{F}_q)$ we need to understand (i) irreducible constituents of $\operatorname{Ind}_{P(\mathbb{F}_q)}^{G(\mathbb{F}_q)}\rho$. In the special case P=B, then L=T, we want to understand $\operatorname{Ind}_{B(\mathbb{F}_q)}^{G(\mathbb{F}_q)}\rho$ where χ is a character of $T(\mathbb{F}_q)$ (these are the principal series representations of $G(\mathbb{F}_q)$). But recall

$$KLS(T)^F \cong Hom_{Grp}(T^F, E^*)$$

Furthermore given \mathcal{L}_{ξ} a Kummer local system on T, if $w \in W_{\xi}$, recall that

$$A_{\xi,\dot{w}}$$
 is equivariant for B^{ad}

In particular, $A_{\xi,\dot{e}} = I(B,G_{\xi,e})$ is B^{ad} equivariant for any ξ . If $\mathcal{L}_{\xi} \in \mathrm{KLS}(T)^F$, then $A_{\xi,\dot{e}}$ is our geometric incarnation of the $B(\mathbb{F}_q)$ representation χ . In talks to come, we will see how to realize $\mathrm{Ind}_{B(\mathbb{F}_q)}^{G(\mathbb{F}_q)}$ geometrically.

Remark. At the other extreme, notice that $A_{0,w} = I(G_w, \underline{E}) =: \mathbb{I}\mathbb{C}_w$. This has weight w(0) = 0 on the left and 0 on the right and thus $\mathbb{I}\mathbb{C}_w \in D^b_{B \times B}(G) \cong D^b_B(G/B)$ sending $\mathbb{I}\mathbb{C}_w$ to the usual $\mathrm{IC}_w \in D^b_B(G/B)$. Hence, we should think of $A_{\xi,w}$ as generalized IC complexes on flag varieties that now live on G.

3. Categorification

Theorem 1 (Geometric Hecke Category)

 \mathcal{H}_{W}^{geo} is the monoidal category

$$\mathcal{H}_W^{geo} := \langle \mathrm{IC}_w \mid w \in W \rangle_{\star,[1],\oplus} \subset D_B^b(G/B)$$

i.e. smallest subcategory containing $\{IC_w\}$ closed under convolution, homological shifts, and direct sums. We then have an isomorphism of algebras

$$K_{\oplus}\left(\mathcal{H}_{W}^{geo}\right)\cong\mathcal{H}_{W}$$

given by $h(IC_w) = C_w$ (the corresponding KL basis element) and extending $\mathbb{Z}[v^{\pm 1}]$ linearly.

Proposition 3.1. (i) For $x \in W$, $\mathcal{H}^{\bullet}(A_{\xi,w})|_{G_x}$ is locally constant.

(ii) $\mathcal{H}^{\bullet}(A_{\xi,\dot{w}})|_{G_x} \otimes G_{-\xi,\dot{w}}$ is a constant sheaf on G_x .

Proof. (i) Notice that if we restrict to the left U_x action on G_w , then $pr_w(a_{U_x}(u,g)) = pr_w(\pi_2(u,g))$. Thus $G_{\xi,\dot{w}} = pr_w^*(\mathcal{L}_{\xi,w})$ is automatically U_x equivariant. Since perverse extension preserves weights,

$$A_{\xi,\dot{w}}$$
 is U_x equivariant $\Longrightarrow S = \mathcal{H}^{\bullet}(A_{\xi,\dot{w}})|_{G_x}$ is U_x equivariant

as equivariant sheaves form an abelian category. $A_{\xi,\dot{w}}$ is perverse and so S is also constructible. Since $G_x = U_x \times B$, the U_x equivariance of S and constructibility implies that S is actually a local system. (ii) $A_{\xi,\dot{w}}$ has weight $-\xi$ for right B-action and thus $S \otimes G_{-\xi,\dot{w}}$ is a $U_x \times B$ - equivariant local system on $U_x \times B$ and therefore constant.

Definition 3.2. Let $n_{x,\xi,i} = \operatorname{rk}(\mathcal{H}^i(A_{\xi,w})|_{G_x})$. Set

$$F_{\xi,x,w}(t^2) = t^{\ell(x) + \dim B + \ell_{\xi}(w) - \ell_{\xi}(x)} \sum_{i \in \mathbb{Z}} n_{x,\xi,i} t^i$$

Remark. Note that the LHS above is a function of t^2 but the RHS is a function of t. The fact that only even powers of t show up on the RHS is a consequence of the fact that $A_{\xi,w}$ is parity.

Theorem 3.3. $F_{\xi,x,w}$ is the (generalized) KL-polynomial $P_{\xi,x,w}$.

Theorem 2 (Generalized Geometric Hecke Category)

Given \mathcal{O} a W-orbit in \hat{X} , $g\mathcal{H}_{\mathcal{O},W}^{geo}$ is the monoidal category

$$g\mathcal{H}_{\mathcal{O},W}^{geo} := \langle A_{\xi,w} | \xi \in \mathcal{O}, w \in W \rangle_{\star,[1],\oplus} \subset D_c^b(G)$$

We then have an isomorphism of algebras

$$K_{\oplus}\left(g\mathcal{H}_{\mathcal{O},W}^{geo}\right) \cong \mathcal{H}_{\mathcal{O},W}$$

given by $h(A_{\xi,w}) = C_{\xi,w}$ and extending $\mathbb{Z}[t^{\pm 1}]$ linearly.

Example 2. Compare calculations in Example 1 with our last big theorem from last week

If
$$s \notin W_{\xi}, A_{s(\xi),s} * A_{\xi,s} = A_{\xi,e}$$
, If $s \in W_{\xi}, A_{\xi,s} * A_{\xi,s} = A_{\xi,s}[1] \oplus A_{\xi,s}[-1]$