On characters of p-adic reductive groups Cheng-Chiang Tsai

Let F be a non-archimedean local field, with residue field $k \cong \mathbb{F}_q$. For example F = k(t). Let \mathbb{G} be a connected reductive group over F. Let $G = \mathbb{G}(F)$. This is a totally disconnected locally compact Hausdorff topological group. We also write $\mathfrak{g} = (\operatorname{Lie} \mathbb{G})(F)$, $\mathfrak{g}^* = (\operatorname{Lie} \mathbb{G})^*(F)$.

The goal of this note is to discuss the phenomenon that

The Fourier transform of a local character of G is supported on the nilpotent cone. Specifically, we are referring to the Harish-Chandra–Howe local character expansion. Originally, the proof of Howe and Harish-Chandra in the 70's "works over F." In the 90's and 00's, Waldspurger, DeBacker and Adler-Korman gave a new proof and sometimes stronger results by "working over k." We discuss this latter approach. The new proof needs more hypotheses, and because of that we assume $p = \operatorname{char}(k) > 6 \cdot \operatorname{rank}_{\bar{F}} \mathbb{G}$ today.

1. Moy-Prasad theory

Let $\mathbb{S} \subset \mathbb{G}$ be a maximal split torus. In this section, for simplicity of exhibition we assume that $\mathbb{S} \subset \mathbb{G}/\mathbb{Z} \hookrightarrow \mathrm{GL}_n/\mathbb{Z}$ are split reductive over \mathbb{Z} , and that \mathbb{S} is mapped into the diagonal. We have a valuation map val : $F \to \mathbb{Z} \sqcup +\infty$. Let $\mathcal{A} := X_*(\mathbb{S}) \otimes \mathbb{R}$. Every entry in the $n \times n$ square gives a character $\alpha \in X^*(\mathbb{S})$. For any $x \in \mathcal{A}$ we define

For
$$r \in \mathbb{R}$$
, $\mathfrak{g}_{x,r} = \{X \in \mathfrak{g} \mid \text{the entry of } X \text{ at } \alpha \text{ has valuation } \geq r + \langle x, \alpha \rangle \}$
For $r \in \mathbb{R}$, $\mathfrak{g}_{x,r}^* = \{X \in \mathfrak{g}^* \mid \text{the entry of } X \text{ at } \alpha \text{ has valuation } \geq r + \langle x, \alpha \rangle \}$

For
$$r \in \mathbb{R}_{>0}$$
, $G_{x,r} = \{g \in G \mid \text{the entry of } g - \text{id at } \alpha \text{ has valuation } \geq r + \langle x, \alpha \rangle \}$

Note that $\mathfrak{g}_{x,r}$ and $\mathfrak{g}_{x,r}^*$ are lattices, and $G_{x,r}$ are open compact subgroups. In fact $G_{x,n}$ $(n \in \mathbb{Z}_{>0})$ forms a topological basis for any $x \in \mathcal{A}$. Write $G_{x,r+} := G_{x,r+\epsilon}$ for very small $\epsilon > 0$. It can be shown that $G_{x,r+} \lhd G_{x,r}$ is normal. We assume there is a "logarithm" map $\log : \bigcup_x G_{x,r} \to \bigcup_x \mathfrak{g}_{x,r}$ satisfying [DeB02, Hypothesis 3.2.1]. Then

$$G_{x,r}/G_{x,r+} \xrightarrow{\log} \mathfrak{g}_{x,r}/\mathfrak{g}_{x,r+} \cong \operatorname{Hom}_k(\mathfrak{g}_{x,-r}^*/\mathfrak{g}_{x,(-r)+}^*, k).$$

Let C be any field of characteristic 0, e.g. $C=\overline{\mathbb{Q}_\ell}$; all our functions and representations will be C-coefficient. Suppose we have a non-trivial homomorphism $\psi:(k,+)\to C^{\times}$. Consider any $\Gamma\in\mathfrak{g}_{x,-r}^*/\mathfrak{g}_{x,(-r)+}^*$ and

$$\psi_{\Gamma}: G_{x,r} \to G_{x,r}/G_{x,r+} \xrightarrow{\log} \mathfrak{g}_{x,r}/\mathfrak{g}_{x,r+} \cong \operatorname{Hom}_{k}(\mathfrak{g}_{x,-r}^{*}/\mathfrak{g}_{x,(-r)+}^{*}, k) \to C^{\times}$$

$$\phi \mapsto \psi(\phi(\Gamma))$$

¹I think under our assumption on p, Kazhdan-Varshavsky quasi-logarithm [BKV16, Appendix C] always exists and serves our purpose, but there are non-trivial things to verify and that's not done in the literature. The readers are encouraged to pretend it is some approximation to classical logarithm on matrices.

Definition 1. We say Γ and ψ_{Γ} are nilpotent² if $\Gamma + \mathfrak{g}_{x,(-r)+}^*$ contains a nilpotent element in \mathfrak{q}^* .

Definition 2. A smooth representation π is a vector space V over C and homomorphism $\pi: G \to \operatorname{Aut}(V)$ such that for any $v \in V$ we have $\operatorname{Stab}_G(v)$ open.

Theorem 3. (Moy-Prasad [MP94, Theorem 5.2]) Let π be an irreducible smooth representation. Then $\exists ! \ r(\pi) \in \mathbb{Q}_{>0}$ (typically called the **depth**) such that

- (i) For $0 < r < r(\pi)$, we have $\operatorname{Hom}_{G_{\tau,r}}(\psi_{\Gamma}, \pi) = 0$ for any $x \in \mathcal{A}$ and $\Gamma \in$ $\mathfrak{g}_{x,-r}^*/\mathfrak{g}_{x,(-r)+}^*$.

 (ii) For $0 < r = r(\pi)$, we have $\operatorname{Hom}_{G_{x,r}}(\psi_{\Gamma},\pi) = 0$ when Γ is nilpotent.
- (iii) For $r > r(\pi)$, we have $\operatorname{Hom}_{G_{r,r}}(\psi_{\Gamma}, \pi) = 0$ when Γ is non-nilpotent.

Sketch. The number $r(\pi)$ is defined as the infimum of r for which there exists $y \in \mathcal{A}$ such that the fixed subspace $\pi^{G_{y,r}} \neq 0$. We will only sketch (iii). Let $r > r(\pi)$. Fix $0 \neq v \in \pi^{G_{y,r}}$. Suppose $\operatorname{Hom}_{G_{x,r}}(\psi_{\Gamma}, \pi) \neq 0$. Since $G_{x,r}$ is compact we also have $\operatorname{Hom}_{G_{x,r}}(\pi,\psi_{\Gamma})\neq 0$. We have to prove that Γ is nilpotent. Let $0\neq\alpha\in$ $\operatorname{Hom}_{G_{x,r}}(\pi,\psi_{\Gamma})$. Since π is irreducible, there exists $g\in G$ such that $\alpha(g\cdot v)\neq 0$. Then

$$\forall h \in G_{y,r} \text{ and } {}^{g}h := ghg^{-1}, \ {}^{g}h \cdot \alpha(g \cdot v) = \alpha({}^{g}h \cdot g \cdot v) = \alpha(g \cdot h \cdot v) = \alpha(g \cdot v)$$

$$\implies \forall h \in G_{y,r} \cap (G_{x,r})^{g}, \ \psi_{\Gamma}(\alpha(g \cdot v)) = \psi_{\Gamma}({}^{g}h \cdot \alpha(g \cdot v)) = \psi(\langle \log({}^{g}h), \Gamma \rangle) \cdot \psi_{\Gamma}(\alpha(g \cdot v))$$

$$\implies \psi(\langle \log({}^{g}h), \Gamma \rangle) = 0, \ \forall {}^{g}h \in {}^{g}(G_{y,r}) \cap G_{x,r}$$

Since $\log(g(G_{u,r}) \cap G_{x,r}) = g(\mathfrak{g}_{u,r}) \cap \mathfrak{g}_{x,r}$, the above implies

$$\implies \Gamma \in \operatorname{im}(\mathfrak{g}_{x,-r}^* \cap {}^g(\mathfrak{g}_{y,(-r)+}^*) \to \mathfrak{g}_{x,-r}^*/\mathfrak{g}_{x,(-r)+}^*)$$

Coming from $\mathfrak{g}_{y,(-r)+}^*$, one can represent Γ by a matrix whose eigenvalues have valuations > -r. From that it is possible (after non-trivial Bruhtat-Tits theory) to show that Γ is nilpotent in Definition 1.

2. Invariant distributions

Definition 4. The space of test functions on G is

$$C_c^{\infty}(G) := \{ f: G \rightarrow C \mid f \text{ is locally constant and } \operatorname{supp}(f) \text{ is compact} \}.$$

Definition 5. An (G-)invariant distribution is a linear map $\Theta: C_c^{\infty}(G) \to C$ such that $\Theta(gf) = \Theta(f)$ for any $f \in C_c^{\infty}(G)$ and $g \in G$. Here $(gf)(h) := f(g^{-1}hg)$.

Test functions and (G_{-}) invariant distributions on \mathfrak{g} and \mathfrak{g}^{*} are defined similarly.

Example 6. It is a non-trivial fact that if π is an irreducible smooth representation, then

$$\pi(f): v \mapsto \int_G f(g)\pi(g)v \ dg$$

is a well-defined finite sum for any v and $\pi(f)$ has finite-dimensional image. If we choose a Haar measure on G (always possible) such that $|H| \in \mathbb{Q}_{>0}$ for any open compact subgroups $H \subset G$, then

$$f \mapsto \Theta_{\pi}(f) := \operatorname{Tr}(\pi(f)) \in C.$$

²They are called "degenerate" by Moy and Prasad.

is an invariant distribution, called the **character** of π .

Before we proceed, we have to define Fourier transforms. Denote again by ψ : $\mathcal{O}_F \to \mathcal{O}_F/\mathfrak{m}_F = k \xrightarrow{\psi} C^{\times}$. Assume we can extend ψ to $\tilde{\psi}: F \to C^{\times}$ as a homomorphism (always possible if either $\operatorname{char}(F) = p$, or $\operatorname{char}(F) = 0$ and C^{\times} has all p-power roots of unity). Fix one such $\tilde{\psi}$. Fix on \mathfrak{g} a Haar measure so that every lattice has measure in $\mathbb{Q}_{>0}$. For $f \in C_c^{\infty}(\mathfrak{g})$ we define the Fourier transform $\hat{f} \in C_c^{\infty}(\mathfrak{g}^*)$ by

$$\hat{f}(X) := \int_{Y \in \mathfrak{g}} f(Y) \tilde{\psi}(\langle X, Y \rangle) dY.$$

This is always a finite sum valued in C.

Let Θ be an invariant distribution on G and $r \in \mathbb{R}_{>0}$. We say Θ has depth < r iff the following property holds: For any $x \in \mathcal{A}$, $s \ge r$, $\Gamma \in \mathfrak{g}_{x,-s}^*/\mathfrak{g}_{x,(-s)+}^*$ non-nilpotent, and smooth $\rho \in \operatorname{Irr}(G_{x,r})$ satisfying $\operatorname{Hom}_{G_{x,s}}(\psi_{\Gamma}, \rho) \ne 0$, we have

$$\Theta(\theta_o) = 0$$

where $\theta_{\rho} \in C_c^{\infty}(G_{x,r})$ is the character of ρ viewed as a test function.

Theorem 7. (DeBacker, essentially [DeB02, Theorem 3.5.2]³) Suppose Θ has depth $\langle r \rangle$. Then

"supp $(\log^*(\Theta|_{G_r}))$ is contained in the nilpotent cone."

This means, there exists an invariant distribution J_{Θ} on \mathfrak{g}^* such that

- (1) J_{Θ} is supported on the nilpotent cone, i.e. if $f \in C_c^{\infty}(\mathfrak{g}^*)$ is such that supp(f) contains no nilpotent elements in \mathfrak{g}^* , then $J_{\Theta}(f) = 0$.
- (2) $\Theta(f) = J_{\pi}(\widehat{f} \circ \log)$ for any $x \in \mathcal{A}$ and $f \in C_c^{\infty}(G_{x,r})$.

Corollary 8. (Harish-Chandra-Howe local character expansion) Let π be an irreducible smooth representation and $r > r(\pi)$. Then the character Θ_{π} has depth < r and therefore

$$\operatorname{supp}(\log^*(\Theta_{\pi}|_{G_r}))$$
 is contained in the nilpotent cone.

Remark 9. Theorem 7 and Corollary 8 should be viewed as statements about the invariant distributions near id $\in G$. There are generalization for the invariant distributions near any semisimple $\gamma \in G$ by Adler-Korman [AK07, Theorem 12.1 and Corollary 12.9].

References

- [AK07] Jeffrey D. Adler and Jonathan Korman, The local character expansion near a tame, semisimple element, Amer. J. Math. 129 (2007), no. 2, 381–403. MR 2306039 (2008a:22020)
- [BKV16] Roman Bezrukavnikov, David Kazhdan, and Yakov Varshavsky, On the depth r Bernstein projector, Selecta Math. (N.S.) 22 (2016), no. 4, 2271–2311. MR 3573958
- [DeB02] Stephen DeBacker, Homogeneity results for invariant distributions of a reductive p-adic group, Ann. Sci. École Norm. Sup. (4) **35** (2002), no. 3, 391–422. MR 1914003 (2003i:22019)

³Technically, the proof is written for $C = \mathbb{C}$ and indirectly makes use of the calculus notion of absolute convergence. There are additional tricks to generalize to any characteristic zero field.

[MP94] Allen Moy and Gopal Prasad, Unrefined minimal K-types for p-adic groups, Invent. Math. $\bf 116~(1994), no.~1-3,~393-408.$ MR 1253198 (95f:22023)