Erratum to [Tsa20].
[Tsa20, Thm. 4.2] is wrong. Roughly speaking, it is wrong for the reason that a space (however nice) X and a discrete group A acting on it freely, we don't have $H^{*}(X / A)=H^{*}(X)^{A}$ when A is infinite. In ordinary topology, the identity fails for example when $A=\mathbb{Z}$ acting by translation on $X=\mathbb{R}$ with $X / A \cong S^{1}$.

The mistake does not affect the main theorems or the corollaries in $\S 8$. In fact it does not affect the rest of [Tsa20], because we only use the incorrect statement for the top degree $H^{2 d}$ when X is a d-dimensional ind-variety, in which case the statement is correct. Alternatively, one can replace every use of [Tsa20, Thm. 4.2] by the correct version it cites, which is the $\kappa=1$ case of [GKM04, Thm. 15.8]. In the end [Tsa20] is concerned with the components of the ind-variety X, and the A-orbits of components of X is the same as the components of X / A.

For more detail, the incorrect [Tsa20, Thm. 4.2] asserts an identity

$$
\begin{equation*}
I_{\gamma}^{s t}\left(1_{\mathfrak{g}_{x, \geq 0}}\right)=\frac{\left|G_{x, 0}\right|}{\left|T_{0}\right|} \cdot q^{\left(-v(D(\gamma))-\operatorname{dim} \mathbf{G}_{x, 0}+\operatorname{dim} \mathbf{T}_{0}\right) / 2} \cdot \operatorname{Tr}\left(\operatorname{Frob} ; H^{*}\left(\mathcal{X}_{\gamma} \times \operatorname{Spec} \bar{k}\right)^{\mathcal{T}}\right) \tag{0.1}
\end{equation*}
$$

where
(1) $\gamma \in \mathfrak{g}=(\operatorname{Lie} \mathbf{G})(k((t)))$ is regular semisimple.
(2) \mathcal{X}_{γ} is the affine Springer fiber.
(3) \mathcal{T} is the centralizer of γ in the loop group.
(4) $1_{\mathfrak{g}_{x, \geq 0}}$ is the characteristic function of some parahoric subalgebra.
(5) $I_{\gamma}^{s t}\left(1_{\mathfrak{g}_{x}, \geq 0}\right)$ is the stable orbital integral of the aforementioned function on the stable orbit of γ.
The group \mathcal{T} acts on \mathcal{X}_{γ} and the induced action on $H^{*}\left(\mathcal{X}_{\gamma} \times \operatorname{Spec} \bar{k}\right)$ factors through some quotient A, which is a discrete (smooth of dimension 0 , though not finite) group scheme over k that fits into an exact sequence of group schemes over k :

$$
1 \rightarrow \Lambda \rightarrow A \rightarrow B \rightarrow 1
$$

where Λ (this is the same Λ in [GKM04, §15]) is such that its base change to Spec \bar{k} is a constant group scheme corresponding to a free abelian group of finite rank, and B is a finite group scheme. The trouble is that in general $H^{*}\left(\left(\mathcal{X}_{\gamma} / A\right) \times \operatorname{Spec} \bar{k}\right)$ is NOT equal to $H^{*}\left(\mathcal{X}_{\gamma} \times \operatorname{Spec} \bar{k}\right)^{A}=H^{*}\left(\mathcal{X}_{\gamma} \times\right.$ $\operatorname{Spec} \bar{k})^{\mathcal{T}}$. The correct object that should appear in the RHS of (0.1), or rather [Tsa20, Thm. 4.2], is
$\operatorname{Tr}\left(\right.$ Frob $\left.; H^{*}\left(\left(\mathcal{X}_{\gamma} / A\right) \times \operatorname{Spec} \bar{k}\right)\right)=\operatorname{Tr}\left(\operatorname{Frob} ; H^{*}\left(\left(\mathcal{X}_{\gamma} / \Lambda\right) \times \operatorname{Spec} \bar{k}\right)^{B}=\operatorname{Tr}\left(\operatorname{Frob} ; H^{*}\left(\left(\mathcal{X}_{\gamma} / \Lambda\right) \times \operatorname{Spec} \bar{k}\right)^{\mathcal{T}}\right)\right.$ which is essentially the RHS of [GKM04, Thm. 15.8] for trivial κ. (I tried to avoid the need to define Λ in [Tsa20, Thm. 4.2]. Apparently I failed terribly.)

References

[GKM04] Mark Goresky, Robert Kottwitz, and Robert Macpherson, Homology of affine Springer fibers in the unramified case, Duke Math. J. 121 (2004), no. 3, 509-561. MR 2040285
[Tsa20] Cheng-Chiang Tsai, Components of affine Springer fibers, Int. Math. Res. Not. IMRN (2020), no. 6, 1882-1919. MR 4089436

