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Due to their important role in the chemical and biological diversity of glycoconjugates, 

sialic acids mainly exist as terminal components of cell surface glycoproteins and glycolipids 
(1).  These biomolecules are highly glycosylated by complex carbohydrate chains terminated 
by one or several sialic acid residues.  Many significant biological events are associated with 
sialyl glycoconjugates.  For instance, changes in either amount, type or linkage of sialic 
acids in tumor cell glycoconjugates can affect tumor growth and metastasis (2,3).  Selectins, 
cell adhesion molecules implicated in the recruitment of leukocytes to lymphoid tissues and to 
sites of inflammation, require ligands possessing α2,3-sialic acids for proper recognition (4).  
The B cell-specific differentiation antigen CD22, which is involved in cell activation, binds to 
cellular lactosamine sequences containing α2,6-sialic acids (5,6).  Furthermore, striking 
differences have been found in the sialylation pattern of cells during development, activation, 
aging and oncogenesis (1).  Consequently, tremendous efforts have been dedicated to 
understand the chemical and biological significance of sialic acid containing glycoconjugates, 
as well as to study their structures, metabolism and immunological activities.  Since natural 
carbohydrates exist as diverse forms, it still remains a difficult challenge to obtain identical 
molecules in a reasonable amount for further investigations.  Synthetic methods provide an 
efficient approach for the synthesis of sialylated glycoforms in terms of quantity and 
molecular variety. 

Of all the reactions of glycosidic bond formation, addition of sialic acids is often 
considered to be the most laborious task due to problems of low reactivity, yield, and 
stereoselectivity (7,8).  Here we present a review how the glycosidic linkages of sialic acids 
are generated by enzymatic and chemical methods.  
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I. Enzymatic Approaches 

 
Enzymatic methods to incorporate sialic acid residues into glycoconjugates require the 

utilization of cytidine-5’-monophosphate-N-acetylneuraminic acid (CMP-sialic acid or 
CMP-NeuAc) synthetase and a specific sialyltransferase (Figure 1).  The former protein 
assists in the activation of sialic acid and catalyzes the reaction of sialic acid and 
cytidine-5’-triphosphate.  The latter transfers the sialic acid moiety to the non-reducing end 
of an acceptor carbohydrate.  Different types of sialyltransferases are required depending on 
various acceptors and glycosidic linkages of sialic acid.  Therefore, how to obtain both 
enzymes is a prerequisite to execute the enzymatic sialylation. 

 

Figure 1.   Reactions of CMP-NeuAc synthetase and sialyltransferase.
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 Although CMP-NeuAc is commercially available, its high cost (9) makes it 
advisable to use an efficient method of preparation.  Several chemical syntheses of 
CMP-NeuAc have been reported (10-12).  The number of reaction steps and tedious 
protection/deprotection procedures reflect the advantage of using CMP-NeuAc synthetase as a 
one-step enzymatic approach.  

CMP-NeuAc synthetase, isolated from several mammalian tissues, has been used in the 
synthesis of CMP-NeuAc (13).  The enzyme from E. coli was sequenced and cloned by Vann 
et al. (14-16) and further overexpressed by Shames et al. for large scale synthesis (17).  
Wong’s group improved the overexpression and investigated the substrate specificity (18).  
The results indicated that CMP-NeuAc synthetase can tolerate the modification at the C-9 
position of sialic acid without affecting the Km value (18-21).  Furthermore, sialic acid 
analogs, such as 9-deoxy, 7,9-dideoxy and 4,7,9-trideoxy-sialic acids were all accepted by the 
enzyme and converted to the corresponding CMP-NeuAc derivatives (22).  However, neither 
the oxidation of hydroxyl group to a ketone introduced at the C-4, 7, or 8 position, nor their 
respective dimethylacetals were recognized as substrates by CMP-NeuAc synthetase (23).   

 Several α2,6- and α2,3-sialyltransferases have been used for carbohydrate  
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synthesis (24-26).  These enzymes generally transfer N-acetylneuraminic acid to either the 6- 
or 3-position of terminal Gal or GalNAc residues.  The α2,8-sialyltransferase exhibits 
specificity for the synthesis of α2,8-linked polysialic acids (27). Nearly twenty different 
sialyltransferases are known to synthesize all known sialyl-oligosaccharide structures (28).  
Since these enzymes share the same sugar donor (CMP-NeuAc) and recognize similar 
acceptor substrates, it was expected that they would exhibit some sequence homology.  
Surprisingly, there are no significant amino acid sequence similarities among the cloned 
sialyltransferases, with the exception of two short consensus sequences called the sialyl 
motifs (29,30).  Several sialyltransferases have been successfully cloned on the basis of 
these sialyl motifs and PCR cloning strategy (31).  However, these enzymes are limited to 
carbohydrate synthesis because they are membrane bound proteins and mainly expressed in 
specific mammalian cell lines (31) in insufficient amount (in terms of synthetic purpose).  
Since enzymatic processes are useful and convenient to provide sialyl glycoconjugates to 
meet research need in glycobiology, both expressed and isolated sialyltransferases have been 
used to perform enzymatic sialylation.  We describe some representative examples below. 

  The pioneering work on sialyltransferases, including isolation, characterization, 
cloning and synthetic application, is due to Paulson et al.  As early as in the middle of 1980’s, 
his group reported the enzymatic synthesis of sialylated carbohydrates by using three purified 
mammalian sialyltransferases which accepted type 1 (Gal-β1,3-GlcNAc), type 2 
(Gal-β1,4-GlcNAc), or type 3 (Gal-β1,3-GalNAc) oligosaccharides as substrates (24).  In 
addition, linear and branched glycopeptides with multiple sialyl-N-acetyl lactosamine side 
chains (Scheme 1) were prepared using a combined chemical and enzymatic approach (32).  
After solid phase synthesis to incorporate β-GlcNAc-Asn and enzymatic galactosylation to 
add galactose, CMP-sialic acid and α2,6-sialyltransferase were employed to form the desired 
α2,6-sialyl linkage, as shown in Scheme 1 (32).  Calf alkaline phosphatase destroyed the 
inhibiting side product CMP (32). 

 

Scheme 1.   Paulson's synthsis of sialyl glycopeptides using α2,6-sialytransferase
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 The tetrasaccharide sialyl Lewis x (SLex) is the carbohydrate epitope at the terminus 
of glycolipids displayed on the surface of neutrophils (33).  SLex has been shown to be the 
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ligand recognized by E-selectins, which are expressed on the surface of endothelial cells 
during inflammation (33, 34).  The cell adhesion process of neutrophils and endothelial cells 
occurs through the interaction of E-selectin and SLex (34).  The SLex synthesis on a large 
scale (kg quantities) was carried out with glycosyltransferases by Wong et al. and was indeed 
a milestone in enzymatic catalysis (35).  Scheme 2 shows the consecutive glycosylation 
steps using galactosyl-, sialyl-, fucosyl-transferases and the corresponding sugar nucleotides.  

Furthermore, multivalent SLex can be prepared in an efficient way based on the 
enzymatic remodeling of naturally existing biomolecules (36,37).  For example, biantennary 
α2,6-sialyl N-acetyllactosamine has been obtained after complete delipidation and digestion 
of proteases (36), as shown in Scheme 3.  The subsequent treatment with neuraminidase and 
α2,3-sialyltransferase resulted in the desired α2,3-sialyl linkage.  The succeeding 
fucosylation with α1,3-fucosyltransferase gave the divalent SLex containing thirteen sugar 
units (36). 

 

Scheme 2.   Enzymatic synthesis of sialyl Lewis x developed by Wong et al.
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Scheme 3.   Enzymatic synthsis of dimeric SLex glycopeptide

Dimeric Sialyl Lewis x

 
 In addition of playing an important role in cell-cell recognition, sialic acid acts as 

molecular a mask or marker.  The release of sialic acids from sialo-glycoproteins of the 
erythrocyte membrane causes exposure of the Thomsen-Friedenreich (TF) antigen 
(Galβ1,3-GalNAcα1-OThr)(38).  Such consequence results in destruction of the red cell 
membrane followed by cell lysis (38).  The sialylated TF antigen was recently synthesized 
by Thiem et al using a combination of β-galactosidase from bovine testes and 
α2,3-sialyltransferase from porcine liver (Scheme 4)(39).  The former enzyme catalyzs the 
galactosylation in which p-nitrophenyl β-galactopyranoside (pNPβGal) functions as a donor.  
Despite the possibility of the reverse hydrolysis of the disaccharide intermediate, this reaction 
could be blocked by further sialylation leading to the final trisaccharide product.  



 

220

Scheme 4.   Enzymatic synthesis of the Thomsen-Friedenreich antigen
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The reverse reaction of glycosidases can be considered as an alternative method of 

enzymatic glycosylation (40) because most glycosidases, unlike glycosyltransferases, are 
prevalently abundant in nature.  This strategy has been introduced to the enzymatic 
sialylation.  Thiem’s group utilized p-nitrophenyl α-N-acetylneuraminic acid as the sialyl 
donor and neuraminidase from Vibrio cholerae to study trans-sialylation (Scheme 5)(41).  
Though various unusual di- and tri-saccharides can be prepared in this way and the rate of 
conversion can be measured based on the release of p-nitrophenol, an unsatisfactory low yield 
(14 to 20%) remained to be improved.  Moreover, a mixture of α2,3- and α2,6-isomers was 
obtained even in the excessive presence of sialyl acceptor (41).  

 

Scheme 5.   Enzymatic sialylation using neuraminidase
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Judging from the previous examples, silayltransferases are extremely powerful in terms 

of exclusive stereoselectivity and high efficiency (without protection and deprotection steps 
required in chemical synthesis).  The enzyme reactions are, nevertheless, restricted to 
analytical- and small-scale synthesis due to the high cost of CMP-sialic acid (or CTP if 
CMP-NeuAc synthetase is used).  The reactions also suffer from product inhibition caused 
by the released CMP.  The regeneration of CMP-NeuAc in situ from CMP developed by 
Wong et al. is a simple solution to solve these two obstacles (42, 43).  As shown in Scheme 
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6, nucleoside monophosphate kinase and pyruvate kinase are able to catalyze the 
transformation of CMP into CTP.  In the regeneration system, the ultimate donor of 
phosphorylation comes from phospho(enol)pyruvate.  As a matter of fact, Thiem’s 
enzymatic synthesis of TF antigen was coupled with such a cofactor regeneration (39).  
Several advantages are offered in the in situ cofactor regeneration.  First, the operating cost 
is reduced substantially since CMP-NeuAc or CTP is required in a catalytic amount.  Second, 
product inhibition of CMP is minimized because of its low concentration.  Finally, 
purification of the enzyme product is greatly improved without interfering CMP.  

CDP

CTPCMP-NeuAc

CMP

nucleoside
monophosphate

kinase

PEP

pyr

CMP-NeuAc
synthetase

α2,3-sialyltransferase pyruvate kinase (PK)

O

-O2C

O
HO

AcHN

HO OH
HO

O CO2
-

OH

HO
AcHN

HO OH
HO

O
OHHO

HO
OH

O
OH

O
HO

NHAc
OH

ATP ADP

PEPpyr

PK

O
OHHO

OH

O
OH

O
HO

NHAc
OH

PPi

Scheme 6.    In situ cofactor regeneration used in enzymatic sialylation  

 
II. Chemical Approaches 

 
Before the mid 80’s, most chemical sialylations were carried out based on the 

Koenigs-Knorr reaction using the per-acetylated 2-halo-NeuAc 1 as the glycosyl donor.  
Unfortunately, for the sialylation occurring at the site of hindered alcohols (7), low 
α-selectivity and low yield were often observed while the elimination product 2 occurred as 
the major product.  Recently, several new methods have been developed to obtain 
α-sialoglycosides as major isomers in high yields by the use of different sialyl donors, such as 
the 2-thioglycosides of sialic acid 3, NeuAc phosphites 4, S-glycosyl xanthates of NeuAc 5, 
and 3-substituted NeuAc derivatives 6 (Figure 2).  In the following, we discuss the 
sialylation reactions on the basis of glycosyl donors.   
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Figure 2.   Various sialic acid donors
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The first synthesis of thioglycosides was reported by Pivalova (44), and further 
investigated by Hasegawa et al (45-48).  α-Glycosides were obtained predominantly in high 
yields using the anomeric mixture of either methyl (3a) or phenyl (3b) 2-thioglycoside as the 
sialyl donor, and DMTST (dimethyl(methylthio)sulfonium triflate) or NIS 
(N-iodosuccinimide)-TfOH (p-trifluoromethanesulfonic acid) as the promoter.  As shown in 
Figure 3 and Table 1 (45-50), various sugar acceptors were studied in acetonitrile at –40 oC.  
It should be noted that the secondary hydroxyls were sialylated to give exclusively the 
α-configuration (40-50%) in the presence of DMTST, while an anomeric mixture was 
obtained for the primary hydroxyls. 

 

Donor Acceptor Promoter Yield (%)
α β Reference

3a 7 DMTST 27 23 45
3a 8 DMTST 36 12 45
3a 9 DMTST 61 0 46
3a 10 DMTST 70 0 46
3a

19 DMTST 40 0 47

11 DMTST 50 15 46

3a
18 NIS/TfOH 59 10 463a

12 NIS/TfOH 70 0 473a

14 DMTST 71 20 483a

16 DMTST 63 24 48

3a

15 DMTST 49 0 483a

17 DMTST 46 0 48

3a

13 NIS/TfOH 70 0 47

3a 20 NIS/TfOH 40 0 47
3b 21 NIS/TfOH 65 0 49
3c 9 NIS/TfOH 72 0 50
3c 21 NIS/TfOH 71 0 50
3c 22 NIS/TfOH 85 0 50

Table1.   Glycosylation using the 2-thiolglycosides of NeuAc

3a

Entry

1
2
3
4
5

11
12

6

8
7

9

13
14
15
16
17
18

10

 
 
Moreover, under the condition of NIS/TfOH in acetonitrile, the reaction yield increased, 

but undesired β-glycosides were then obtained in some examples.  Reducing the number of 
protecting groups in the acceptors improved yield and stereoselectivity.  Interestingly, 
acceptors 10 and 11 containing different protecting groups at C-3 resulted in different 
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α-selectivity at the C-6 glycosylation site (entries 4 and 5).  There are no systematic studies 
about the difference in activity between sialyl donors 3a and 3b (49).  Recently, it was 
discovered by Boons et al. that the 5-N-diacetyl neuraminic acid derivative 3c is significantly 
more reactive and does give higher yields in sialylation than the corresponding 
mono-N-acetylated derivative 3a (entries 16-18) (50). 

 

Figure 3.   Structures of acceptors for glycosylation reactions using
                  donors  3a-c.  Bold arrow indicates the glycosylation site.
                  (SE: trimethylsilylethyl)
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 As shown in Figure 4, the 5-N-modified-2-thiosialosides (23, 24) and deoxy sialic acid 
donors (25, 26) also show good α-selectivity (Table 2)(51-53).  In addition, the S-sialyl 
xanthates 28 and 29, first reported by Sinay et al. (54), showed comparable reactivity to that 
of the thiol analogs (23, 24) but with less α-selectivity (Table 3 and Figure 5).  The reaction 
conditions of these two classes of sialyl donors are similar except the promoters are different 
(54-61).  When benzoate was used to protect the hydroxyl groups of the acceptors, 
sialylation yield decreased (entries 8 and 9 in Table 3).  The xanthate donors, however, are 
not as popular as the thiol ones. 
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Donor Acceptor Promoter Yield (%)
α β

Reference

23 27 NIS/TfOH 50 13 51

26 9 NIS/TfOH 45 0 53

23 18 NIS/TfOH 55 0 51

24 21 NIS/TfOH 61 0 52
25 9 NIS/TfOH 45 0 53

Table 2.   Glycosylation using 2-thio NeuAc analogues

Entry

1
2
3
4
5  

 
 

Donor Acceptor Promoter Yield (%)
α β Reference

28 30 DMTST 48 16 54
28 31 DMTST 26 4 54
28 32 AgOTf/MeSBr 71 4 55
28 33 AgOTf/MeSBr 82 - 56
28 34 AgOTf/MeSBr 56 - 57
28 35 AgOTf/MeSBr 65 - 58
28 36 AgOTf/PhSCl 58 - 59

29 38 AgOTf/MeSBr 15 5 60

Table 3.   Glycosylation using the xanthates of NeuAc

29 39 AgOTf/MeSBr 18 5 60
29 40 AgOTf/MeSBr 41 18 61

Entry

1
2
3
4
5
6
7

9
10
11

29 37 AgOTf/MeSBr 39 9 608

 
 

Although the 2-thioglycosides of neuraminic acid have been applied for the addition of 
sialic acids, the requirement of at least two equivalents of thiophilic reagents is a disadvantage 
for this approach.  Wong (12) and Schmidt (64) independently reported the utilization of 
sialyl phosphites as the donors of sialylations. As shown in Figure 6 and Table 4, these 
phosphite donors showed good α-selectivity for secondary hydroxyl acceptors.  Nevertheless, 
as previously mentioned for most sialic acid donors, the obstacle still remains to obtain 
exclusive α-selectivity for sialylations occurring at primary hydroxyl groups.  In order to 
solve this challenging problem, the anchimeric assistance by introducing an auxiliary group at 
C-3 has been proposed.  As shown in Figures 7, 8, and Table 5 (67-73), the arylthio groups 
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present a good directing effect with excellent α-selectivity. 
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Figure 6.   Structures of acceptors for the sialyl phosphite donors.
                  (Bold arrow indicates the glycosylation site).
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Donor Acceptor Promoter
Yield (%)
α β Reference

Table 4.   Glycosylation using sialyl phosphites as donors

4a 41 TMSOTf 67 13 12
4a 42 TMSOTf 67 11 12
4a 43 TMSOTf 68 11 12
4a 44 TMSOTf 75 0 62
4a 18b TMSOTf 77 0 62
4a 45 TMSOTf 37 9 63
4b 41 TMSOTf 56 14 64
4b 46 TMSOTf 38 0 64
4b 47 TMSOTf 55 0 65
4b 48 TMSOTf 51 0 66
4b 49 TMSOTf 67 17 63

1
2
3
4
5
6
7
8
9

10
11

Entry
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Figure 7.   3-Substituent NeuAc analogues as sialyl donors

CO2Me

SePh
O

BnO

AcHN
BnO

OBn

BnO R

CO2Me

SPh
O

AcO

AcHN
AcO

OAc

AcO SR

52a R=Et

CO2Me

SPh

O

AcO

AcHN
AcO

OAc

AcO SMe

53

CO2Me

S

52b R=Me

O

BnO

AcHN
BnO

OBn

BnO SMe
CO2Me

SPh

54

51a R=F
51b R=Cl
51c R=Br

 
 

Figure 8.   Structures of sialylation acceptors 55-61 for using 
                  3-substituted NeuAc analogues (50-54) as sialyl donors
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Donor Acceptor Promoter Yield (%)
α β

Reference

50 56 AgOTf-SnCl2 72 -

51b 56 Hg(CN)2-HgBr2 71 0

50 55 AgOTf-SnCl2 46 -

50 47 AgOTf-SnCl2 20 -
51a 55 AgOTf-SnCl2 68 4

Table 5.   Glycosylation using 3-substituted NeuAc analogues

Entry

1
2
3
4
5

67
67
67

Hg(CN)2-HgBr2 85 -

53 18a PhSCl/AgOTf 78 0 71

51b 47 Hg(CN)2-HgBr2 64 -

52a 58 MSB/TfOH 67 -

52a 18a MSB/TfOH 71 0

6
7
8

10
11

68
69
70

68
68

51c 57

MSB/TfOH 77 - 7052a 59
70

52b 18a PhSCl/AgOTf 83 0
53 60 PhSCl/AgOTf 83 012

13
71
72

54 61 NIS/TfOH 85 014 73

9

 

 
The α-2,8-disialic acid, NeuAc-α(2-8)-NeuAc, is an essential component of some 

important glycoconjugates including gangliosides, oligo- and polysialic acids.  These 
molecules play indispensable roles in numerous biological phenomena; e.g., tumor- associated 
antigens and bacterial toxins.  As for the corresponding sialylations, the C-8 hydroxyl 
functionality as an acceptor exhibits low reactivity due to steric hindrance and intramolecular 
hydrogen bonding of 8-OH and 1-carboxylic ester (or 2-substituent)(74).  On the other hand, 
attempts to prepare the α(2-8)-linkage using traditional sialyl donors, such as thioglycosides 
or phosphites, gave a very low yield and/or undesired β-linkage (7,45,74).   

To solve such a problem, the auxiliary group at the C-3 position of sialyl donors was 
introduced for an efficient neighboring group participation.  As shown in Table 6 and Figure 
9 (74-80), dimeric sialic acid was formed as one isomer when the donor had the auxiliary 
group at C-3 (entries 7-9).  The results appeared different from the examples without the C-3 
auxiliary where α,β mixtures were obtained (entry 6).  Additionally, the acceptors of 
2,3-anhydroneuraminic acid derivatives, containing no hydrogen bonding as mentioned above, 
gave better yields of α, β mixtures when coupled with normal sialyl donors, e.g., 4b and 3c.  
Recently, Schmidt and coworkers reported that the phenoxythiocarbonyloxy group served as 
an excellent anchimeric group in terms of α-selectivity and yield (up to 83%) by using the 
phosphite as the leaving group. 
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Figure 9.   Sialic acid donors and acceptors for synthesis of NeuAcα(2-8)NeuAc
                 (Bold arrow indicates the glycosylation site).
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Being useful for establishing the NeuAc(2-3)Gal glycosidic linkage, the sialyl donor 3c 
was also studied to prepare α-2,8 and α-2,9 sialic acid dimers.  It demonstrated that the 
glycosyl acceptors of di-N-acetylated derivatives 74b and 76b generated significantly better 
results than those of mono-N-acetylated compounds 74a and 76a (entries 10, 11, 13, and 14 in 
Table 6).  It indicated the possibility that the nucleophilicity of 8-OH could well be enhanced 
by removing the hydrogen bonding between 8-OH and 5-NAc. 
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Donor Acceptor Promoter
Yield (%)
α β Reference

62 68 Hg(CN)2/HgBr2 55 28 75
63 69 AgOTf/Na2HPO4 26 8 76
63 70 AgOTf/Na2HPO4 42 21 76
51c 71 Hg(CN)2/HgBr2 64 - 77
4b 72 TMSOTf - 55 74
4b 73 Sn(OTf)2 14 54 74
64 73 AgOTf/DTBP 68 - 74
65 73 TMSOTf - 58 78

Table 6.   Synthesis of NeuAcα(2-8)NeuAc

66 73 TMSOTf 83 - 78
3c 74a NIS/TfOH 8 8 79
3c 74b NIS/TfOH 32 18 79
3c 75 NIS/TfOH 20 40 79
3c 76a NIS/TfOH 44 23 79
3c 76b NIS/TfOH 70 28 79
52a 77 AgOTf/MSB 28 - 70
67 78 AgOTf/SnCl2 49 - 80

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Entry

 

 
SUMMARY 

 
In conclusion, either enzymatic or chemical approaches have their unique features and 

unavoidable disadvantages.  Enzyme-catalyzed sialylations provide the desired 
sialo-glycosidic linkages in the two enzyme reactions (CMP-NeuAc synthetase and 
sialyltransferase) with exclusive stereoselectivity and high yield as long as the required 
sialyltransferase is available.  High substrate specificity of the two enzymes is a limitation so 
that many unnatural glycoconjugates cannot be prepared enzymatically.  As for chemical 
glycosylations of sialic acids, it is possible to introduce any modification in sialyl donor and 
acceptor, in addition to create special sugar linkages.  Nevertheless, reducing the number of 
reaction steps (for preparing both donors and acceptors of glycosylation), and enhancing 
stereoselectivity, as well as reaction yield are still problems to be overcome. 
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