Let (W, S) be a Coxeter system. We have a real vector space V with basis given by symbols $\{\alpha_s \mid s \in S\}$ equipped with the symmetric bilinear form $(\alpha_s, \alpha_t) = \cos(\pi - \frac{\pi}{m_{st}})$ where $m_{st} > 0$ is the minimal integer with $(st)^{m_{st}} = id$. On V for each $s \in S$ we have reflections given by $s.v = v - 2(\alpha_s, v)\alpha_s$. This gives an action of W on V. To prove this, it suffices to check that the action of $(st)^{m_{st}}$ is trivial which reduces to the case of the dihedral group $I_2(m_{st})$.

Let $R = \mathbb{R}[V]$, also known as the ring of polynomials on V^* . Consider the grading on R for which \mathbb{R} lives in degree 0 and any element in V has degree 2, so that R is a graded algebra $R = \bigoplus_{d \in \mathbb{Z}_{\geq 0}} R_d$. A graded R-module is an R-module M with grading $M = \bigoplus_{d \in \mathbb{Z}} M_d$

such that $x.m \in M_{d_1+d_2}$ whenever $x \in R_{d_1}$, $m \in M_{d_2}$. A (homo)morphism between graded *R*-module M, M' is a *R*-module morphism $\phi : M \to M'$ such that $\phi(M_d) \subset M'_d$. For any graded module M, we denote by M(k) the shift such that $M(k)_d := M_{k+d}$; whatever was in degree 0 in M will be shifted to degree -k in M(k).

We will also look at (graded) *R*-bimodules; at an abstract level it is nothing more than an (graded) $R \otimes R$ -module. But more importantly, if M, M' are (graded) *R*-bimodules, we can form the tensor product $M \otimes_R M'$ which is again a (graded) *R*-bimodule.

Our main playground is the abelian category of graded *R*-bimodules which are finitely generated both as left and right *R*-modules. We denote this category by *R*-gbim. One can verify that this is a monoidal category, i.e. tensor product preserves the finiteness condition. We will frequently denote the tensor product by \cdot or even omit the dot. So $M_1 \otimes_R M_2$ in *R*-gbim will be abbreviated as $M_1 \cdot M_2$ and eventually $M_1 M_2$.

The actual toy today is SBim, a full additive subcategory (not abelian!) of R-gbim. To define it we need some invariant theory on R. We have seen that W acts on V and thus $R = \mathbb{R}[V]$ and the action obviously preserves grading. For any subset $I \subset S$ we denote by $W_I \subset W$ the sub-Coxeter group generated by I. We say I is **finitary** if $|W_I| < \infty$. We have a classical theorem

Theorem 1. (Chevalley–Shephard–Todd theorem) Suppose I is finitary. Then the fixed subalgebra R^{W_I} is such that R is a finite free module over R^{W_I} with rank $|W_I|$.

We will also denote by R^s the fixed subalgebra for $s \in S$.

Example 2. Suppose $(W, S) = I_2(m), 2 \le m < \infty$. Let $\{x, y\}$ be an orthonormal basis of the Euclidean plane on which the dihedral group $I_2(m)$ acts; say one of the reflection is about the x-axis. Then $R \cong \mathbb{R}[x, y]$, and

$$R^W \cong \mathbb{R}[x^2 + y^2, \prod_{i=0}^{m-1} (\cos(\frac{2\pi i}{m})x + \sin(\frac{2\pi i}{m})y)].$$

Definition 3. For any $s \in S$, the associated Bott-Samelson bimodule is the graded Rbimodule $B_s := R \otimes_{R^s} R(1)$. In general, for any expression $\underline{w} = s_1 s_2 \dots s_k$ (not necessarily reduced) of (W, S), we put

$$BS(\underline{w}) = B_{s_1} \otimes_R B_{s_2} \otimes_R \dots \otimes_R B_{s_k}(k).$$

As said it will be abbreviated as $B_{s_1}B_{s_2}...B_{s_k}(k)$ in the future.

Let us analyze B_s as a graded left *R*-module, we have $R = \mathbb{R}[V] = \mathbb{R}[\langle \alpha_s \rangle \oplus \langle \alpha_s \rangle^{\perp}]$. Since *s* acts on $\langle \alpha_s \rangle \oplus \langle \alpha_s \rangle^{\perp}$ by sending α_s to $-\alpha_s$ and preserving the rest, we have $R^s =$ $\mathbb{R}[\alpha_s^2] \otimes_{\mathbb{R}} \mathbb{R}[\langle \alpha_s \rangle^{\perp}]$. In particular as a graded R^s -module R is generated by 1 and α_s and that gives $R \cong R^s \oplus R^s(-2)$ as a graded R^s -module. Consequently

$$BS(ss) := B_s B_s = R \otimes_{R^s} R \otimes_R R \otimes_R R \otimes_{R^s} R(2) = R \otimes_{R^s} R \otimes_{R^s} R(2)$$

= $R \otimes_{R^s} (R^s \oplus R^s(-2)) \otimes_{R^s} R(2) = R \otimes_{R^s} R(2) \oplus R \otimes_{R^s} R = B_s(1) \oplus B_s(-1).$

Recall that from (W, S) we define the Hecke algebra \mathcal{H} and Kazhdan-Lusztig basis. It has elements $b_s \in \mathcal{H}$ such that $b_s b_s = (v + v^{-1})b_s$. Let us highlight the two identities:

$$B_s B_s = B_s(1) \oplus B_s(-1), \ b_s b_s = (v + v^{-1})b_s.$$

Recall that in general Kazhdan-Lusztig basis b_w is "part" of products of b_{s_i} . This motivates us to define

Definition 4. The category of Soergel bimodule SBim is the full additive subcategory of R-gbim consists of direct sums of graded shifts of direct summands of $BS(\underline{w})$.

Example 5. The category SBim is not abelian. For example, when $S = \{s\}$, we have $R \cong \mathbb{R}[x], R^W = R^s \cong \mathbb{R}[x^2]$. Both $B_s(-1) = R \otimes_{R^s} R \cong \mathbb{R}[x, y]/(x^2 - y^2)$ and $B_e = R = \mathbb{R}[x, y]/(x - y)$ are indecomposable *R*-bimodules, and thus SBim is the category of direct sums of shifts of these two. It is a bit tedious to verify that in SBim the natural morphism $B_s(-1) \to B_e$ (as from $R \otimes_{R^s} R \to R$) has no kernel.

Lemma 6. Tensor products of Soergel bimodules are Soergel bimodules. Moreover, any Soergel bimodule is finite free as either a graded left-R-module or a graded right-R-module.

There is an obvious morphism $R \to \mathbb{R}$ by sending anything of higher degree to 0. For any *R*-bimodule *M* we can then consider $M \otimes_R \mathbb{R}$, which is a left *R*-module. Let *R*-Mod be the category of finitely generated graded (left) *R*-modules. We denote by SMod the strictly full subcategory of *R*-Mod consisting of direct sums of graded shifts of direct summands of $BS(\underline{w}) \otimes_R \mathbb{R}$; objects in SMod are called Soergel modules and in particular $BS(\underline{w}) \otimes_R \mathbb{R}$ the Bott-Samelson modules. By constructing we have a functor $\otimes_R \mathbb{R}$: SBim \to SMod. Objects in SMod are usually easier for direct computation. We need the following commutative algebra fact:

Proposition 7. The functor $\otimes_R \mathbb{R}$: SBim \rightarrow SMod sends indecomposables to indecomposables. Moreover, it sends non-isomorphic indecomposables to non-isomorphic indecomposables.

We have seen that objects in SBim are $R \otimes_{R^W} R$ -modules, and consequently objects in SMod are $R \otimes_{R^W} \mathbb{R}$ -modules. What is $R \otimes_{R^W} \mathbb{R}$? By definition $\mathbb{R} = R/R_+$ where R_+ is the ideal of strictly positive degree elements. So $R \otimes_{R^W} \mathbb{R} = R/I_W$ where $I_W := (R^W_+)$ is the ideal generated by $R^W_+ := R^W \cap R_+$. The quotient $C := R/I_W$ is called the coinvariant algebra of W and plays some important role.

Now consider the 2-generators case $W = I_2(m) = \langle s, t | s^2 = t^2 = (st)^m = e \rangle$. As in Example 2, one has $R \cong \mathbb{R}[x, y]$ and $I_W = (x^2 + y^2, Z)$ where $Z = \prod_{i=0}^{m-1} (\cos(\frac{2\pi i}{m})x + \sin(\frac{2\pi i}{m})y)$. The quotient R/I_W is an \mathbb{R} -algebra of graded dimension one at degree 0, two at degree 2, 4, ..., 2m - 2, one at degree 2m and zero elsewhere. In particular it has a unique element in degree 2m. This element can be represented by

$$\mathbb{L} := \prod_{i=0}^{m-1} (\cos(\frac{\pi i}{m})x + \sin(\frac{\pi i}{m})y).$$

It satisfies $s.\mathbb{L} = t.\mathbb{L} = -\mathbb{L}$ in R. Consider the so-called **BGG-Demazure operator** on R defined by

$$\partial_s x := \frac{x - s.x}{\alpha_s}, \ \forall s \in S$$

This operator induces an operator on $C = R/I_W$ which we still denote by ∂_s . In fact, because $\partial_s(xy) = \partial_s(x)y$ for any $x \in R$, $y \in I_W$, the action of ∂_s on R can be determined by the action on C. It is easy to see that $\partial_s^2 = 0$. More importantly it's easy to verify in C the braid relation

$$\partial_s \partial_t \partial_s \dots = \partial_t \partial_s \partial_t \dots$$

where both sides are compositions of m operators. One can then derive from C the same relation in R. This shows that, for any **reduced** expression $w = s_1...s_k \in W$, we can define $\partial_w := \partial_{s_1}...\partial_{s_k}$ on R. Thanks to Matsumoto's theorem, this in fact shows we have well-defined ∂_w on R for arbitrary Coxeter group.

Back to the $W = I_2(m)$ case, one can verify that $\{\partial_w \mathbb{L}\}_{w \in W}$ is a basis for C. Moreover, let $w_0 = sts... = tst...$ (*m* elements for both expressions) be the longest element in W. One shows that $(a, b) \mapsto \partial_{w_0}(ab)$ is a perfect pairing so that the dual basis of $\{\partial_w \mathbb{L}\}_{w \in W}$ under the pairing is still itself (though with some permutation). Using these, it is possible to show (note W is just our finite dihedral group):

Proposition 8. Every object in category SMod is isomorphic to a direct sum of graded shifts of $\langle \partial_w \mathbb{L} \rangle \subset C$.

The category SBim consists of direct sums of graded shifts of indecomposables B_w indexed by $w \in W$ for which $B_w \otimes_R \mathbb{R} \cong \langle \partial_w \mathbb{L} \rangle$. They satisfy

$$\begin{cases} B_s B_t = B_{st} \\ B_s B_w = B_{sw} \oplus B_{tw} \\ B_s B_w = B_w(1) \oplus B_w(-1) \\ &, \text{ if } \ell(sw) < \ell(w) \end{cases}$$

At the same time, the Kazhdan-Lusztig basis $\{b_w\}$ for a dihedral group satisfies

$$\left\{ \begin{array}{ll} b_s b_t = b_{st} \\ b_s b_w = b_{sw} + b_{tw} \\ b_s b_w = (v + v^{-1}) b_w \end{array} \right., \mbox{ if } \ell(sw) > \ell(w) > \ell(tw) > 0$$

Let $[SBim]_{\oplus}$ be the $\mathbb{Z}[v, v^{-1}]$ -algebra with generators [B] for Soergel bimodules B, multiplication rule [B][B'] := [BB'] and $[B(k)] = v^k[B]$, and relations $[B \oplus B'] = [B] + [B']$. Since in general \mathcal{H} is defined by the quadratic and braid relation that involves at most two reflections, the above comparison shows that (need to extend the above example if some $m_{st} = \infty$)

Proposition 9. For arbitrary Coxeter group there exists a $\mathbb{Z}[v, v^{-1}]$ -algebra morphism $c: \mathcal{H} \to [\mathbb{S}Bim]_{\oplus}$ satisfying $c(b_w) = [B_w]$ for any $w \in W_{s_1,s_2}$ for any $s_1, s_2 \in S$.

In general, it is possible to prove that for any $w \in W$ there is an indecomposable Soergel bimodule B_w with the following property: for any reduced expression \underline{w} of w it is the unique indecomposable that appears in $BS(\underline{w})$ but not (nor its graded shifts) in $BS(\underline{w}')$ for w' < w in the Bruhat order. And any indecomposable Soergel bimodule is isomorphic to some B_w . The big shots of the theory are

Theorem 10. (Soergel categorification theorem) SBim categorizes \mathcal{H} . That is, c is an isomorphism.

Theorem 11. (Soergel's Conjecture; theorem of Elias-Williamson) We have $c(b_w) = [B_w]$ for any b_w in the Kazhdan-Lusztig basis.

1. Geometric motivation

Here we explain the origin of Bott-Samelson bimodules. Suppose G is a complex semisimple Lie group with (W, S) its Weyl group; it has a Borel subgroup B and maximal torus Tsuch that $N_G(T) \cong W$ has generators S produced by simple roots with respect to B; that is, each simple root a_s corresponds to a parabolic $B \subset P_s \subset G$ such that $P_s/B \cong \mathbb{P}^1$ and $N_{P_s}(B) \subset N_G(B)$ is a group of order 2 which is then identified with $\langle s \rangle$.

In this case as W is finite, Chevalley–Shephard–Todd theorem applies and R is finite free over R^W . For all Bott-Samelson modules the left action of R^W is always the same with the right action of R^W . That is, our R-bimodules are the same as $R \otimes_{R^W} R$ -modules. One has the equivariant cohomology (with \mathbb{R} -coefficients)

$$H_T^*(pt) = \mathbb{R}[\mathfrak{h}^*] = R$$

where \mathfrak{h}^* is the dual of the Cartan algebra of the split real form, and

$$H^*_T(G/B) = R \otimes_{R^W} R$$

Now for any $\underline{w} = s_1...s_k$ the **Bott-Samelson variety** is the quotient $\mathcal{BS}(\underline{w}) := P_{s_1} \times ... \times P_{s_k}/B^k$ where the B^k acts by $(b_1,...,b_k).(p_1,...,p_k) = (p_1b_1^{-1},b_1p_2b_2^{-1},...,b_{k-1}p_kb_k^{-1})$. This is a compact complex manifold of dimension k. The highlight is then

$$H^*_T(\mathcal{BS}(\underline{w})) \cong R \otimes_{R^{s_1}} R \otimes_{R^{s_2}} \dots \otimes_{R^{s_k}} R = BS(\underline{w})(-k)$$

as a graded module over $H_T^*(G/B)$. The shift (k) is natural because in Poincaré-Verdier duality of a compact complex manifold of dimension k it is desirable to shift the degree by k so that the full cohomology group becomes self-dual.

The morphism $H_T^*(G/B) \to H^*(G/B)$ dropping the equivariant structure is exactly $R \otimes_{R^W} R \to R \otimes_{R^W} \mathbb{R} = R/(R^W_+)$; that is, the passage from Bott-Samelson (resp. Soergel) bimodules to Bott-Samelson (resp. Soergel) modules is given by dropping the equivariant structure.

By the standard machinery of sheaves, $H_T^*(\mathcal{BS}(\underline{w}))$ is also (shift of) the equivariant cohomology of the push-forward to G/B of the constant sheaf on $\mathcal{BS}(\underline{w})$. The machinery of perverse sheaves allows to further decompose these (complexes of) sheaves on G/B into the so-called simple perverse (equivariant) sheaves. The indecomposable Soergel bimodules inside $BS(\underline{w})$ are then the equivariant hypercohomology of these simple perverse sheaves. Historically these simple perverse sheaves were the only main tool to study Kazhdan-Lusztig basis until the purely algebraic theory of Soergel bimodules came in place.

2. Proof of Proposition 8

Recall that we are in the setting $(W, S) = I_2(m)$. We have to prove inductively that as $C := R/I_W$ -modules where $I_W := (R^W_+)$, we have

(2.1)
$$\begin{cases} R \otimes_{R^s} \langle \partial_t \mathbb{L} \rangle \cong \langle \partial_{st} \mathbb{L} \rangle \\ R \otimes_{R^s} \langle \partial_w \mathbb{L} \rangle \cong \langle \partial_{sw} \mathbb{L} \rangle \oplus \langle \partial_{tw} \mathbb{L} \rangle &, \text{ if } \ell(sw) > \ell(w) > \ell(tw) > 0 \\ Rx \otimes_{R^s} \langle \partial_w \mathbb{L} \rangle \cong \langle \partial_w \mathbb{L} \rangle(1) \oplus \langle \partial_w \mathbb{L} \rangle(-1) &, \text{ if } \ell(sw) < \ell(w) \end{cases}$$

We need a bit preparation about C and the basis.

Lemma 12. We have

- (1) The image of \mathbb{R}^s in C is \mathbb{C}^s the invariant subalgebra and we have $C \cong \mathbb{C}^s \oplus \alpha_s \mathbb{C}^s$ as graded \mathbb{C}^s -modules.
- (2) Suppose $x_1, x_2 \in \mathbb{R}^s$ are such that $x_1 + \alpha_s x_2 \in I_W$. Then $x_1, x_2 \in I_W$.
- (3) Denote by $s^{(k)}$ the element sts... with length k and $t^{(k)}$ likewise. Then for any $1 \le k \le m$ and $x \in \mathbb{R}^s$ we have $x\partial_{s^{(k)}}\mathbb{L} \in I_W \Leftrightarrow x\partial_{t^{(k-1)}}\mathbb{L} \in I_W \Leftrightarrow x\alpha_s\partial_{s^{(k)}}\mathbb{L}$.

The C-module $R \otimes_{R^s} \langle \partial_w \mathbb{L} \rangle$ can be generated by $1 \otimes \partial_w \mathbb{L}$ and $1 \otimes \alpha_s \partial_w \mathbb{L}$. When w = e or w = t we have $\alpha_s \partial_w \mathbb{L} \in I_W$ in which case we only need the former generator; this explains the first case of (2.1). Otherwise $\alpha_s \partial_w \mathbb{L} \notin I_W$ and the two generators are minimal. When $w = s^{(k)}$ with $1 \leq k \leq m$, we have that $\partial_w \mathbb{L}$ and $\alpha_s \partial_w \mathbb{L}$ have the same annihilator A' in C^s such that the annihilator of $\partial_w \mathbb{L}$ in C is $A' \oplus \alpha_s A'$. This proves the third case of (2.1).

When $w = t^{(k)}$, $2 \leq k \leq m$, the *C*-module $R \otimes_{R^s} \langle \partial_w \mathbb{L} \rangle$ can also be generated by $1 \otimes \partial_w \mathbb{L}$ and $1 \otimes \partial_{tw} \mathbb{L}$. The annihilator of $\partial_w \mathbb{L}$ in C^s is equal to that of $\partial_{sw} \mathbb{L}$. This explain the second case of (2.1).