
Let (W,S) be a Coxeter system. We have a real vector space V with basis given by
symbols {αs | s ∈ S} equipped with the symmetric bilinear form (αs, αt) = cos(π − π

mst
)

where mst > 0 is the minimal integer with (st)mst = id. On V for each s ∈ S we have
reflections given by s.v = v− 2(αs, v)αs. This gives an action of W on V . To prove this, it
suffices to check that the action of (st)mst is trivial which reduces to the case of the dihedral
group I2(mst).

Let R = R[V ], also known as the ring of polynomials on V ∗. Consider the grading on
R for which R lives in degree 0 and any element in V has degree 2, so that R is a graded

algebra R =
⊕
d∈Z≥0

Rd. A graded R-module is an R-module M with grading M =
⊕
d∈Z

Md

such that x.m ∈Md1+d2 whenever x ∈ Rd1 , m ∈Md2 . A (homo)morphism between graded
R-module M,M ′ is a R-module morphism φ : M → M ′ such that φ(Md) ⊂ M ′d. For any
graded module M , we denote by M(k) the shift such that M(k)d := Mk+d; whatever was
in degree 0 in M will be shifted to degree −k in M(k).

We will also look at (graded) R-bimodules; at an abstract level it is nothing more than
an (graded) R⊗R-module. But more importantly, if M,M ′ are (graded) R-bimodules, we
can form the tensor product M ⊗RM ′ which is again a (graded) R-bimodule.

Our main playground is the abelian category of graded R-bimodules which are finitely
generated both as left and right R-modules. We denote this category by R-gbim. One can
verify that this is a monoidal category, i.e. tensor product preserves the finiteness condition.
We will frequently denote the tensor product by · or even omit the dot. So M1 ⊗RM2 in
R-gbim will be abbreviated as M1 ·M2 and eventually M1M2.

The actual toy today is SBim, a full additive subcategory (not abelian!) of R-gbim. To
define it we need some invariant theory on R. We have seen that W acts on V and thus
R = R[V ] and the action obviously preserves grading. For any subset I ⊂ S we denote by
WI ⊂ W the sub-Coxeter group generated by I. We say I is finitary if |WI | < ∞. We
have a classical theorem

Theorem 1. (Chevalley–Shephard–Todd theorem) Suppose I is finitary. Then the fixed
subalgebra RWI is such that R is a finite free module over RWI with rank |WI |.

We will also denote by Rs the fixed subalgebra for s ∈ S.

Example 2. Suppose (W,S) = I2(m), 2 ≤ m < ∞. Let {x, y} be an orthonormal basis of
the Euclidean plane on which the dihedral group I2(m) acts; say one of the reflection is
about the x-axis. Then R ∼= R[x, y], and

RW ∼= R[x2 + y2,
m−1∏
i=0

(cos(
2πi

m
)x+ sin(

2πi

m
)y)].

Definition 3. For any s ∈ S, the associated Bott-Samelson bimodule is the graded R-
bimodule Bs := R ⊗Rs R(1). In general, for any expression w = s1s2...sk (not necessarily
reduced) of (W,S), we put

BS(w) = Bs1 ⊗R Bs2 ⊗R ...⊗R Bsk(k).

As said it will be abbreviated as Bs1Bs2 ...Bsk(k) in the future.

Let us analyze Bs as a graded left R-module, we have R = R[V ] = R[〈αs〉 ⊕ 〈αs〉⊥].
Since s acts on 〈αs〉 ⊕ 〈αs〉⊥ by sending αs to −αs and preserving the rest, we have Rs =

1
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R[α2
s] ⊗R R[〈αs〉⊥]. In particular as a graded Rs-module R is generated by 1 and αs and

that gives R ∼= Rs ⊕Rs(−2) as a graded Rs-module. Consequently

BS(ss) := BsBs = R⊗Rs R⊗R R⊗Rs R(2) = R⊗Rs R⊗Rs R(2)
= R⊗Rs (Rs ⊕Rs(−2))⊗Rs R(2) = R⊗Rs R(2)⊕R⊗Rs R = Bs(1)⊕Bs(−1).

Recall that from (W,S) we define the Hecke algebra H and Kazhdan-Lusztig basis. It
has elements bs ∈ H such that bsbs = (v + v−1)bs. Let us highlight the two identities:

BsBs = Bs(1)⊕Bs(−1), bsbs = (v + v−1)bs.

Recall that in general Kazhdan-Lusztig basis bw is “part” of products of bsi . This motivates
us to define

Definition 4. The category of Soergel bimodule SBim is the full additive subcategory of
R−gbim consists of direct sums of graded shifts of direct summands of BS(w).

Example 5. The category SBim is not abelian. For example, when S = {s}, we have
R ∼= R[x], RW = Rs ∼= R[x2]. Both Bs(−1) = R ⊗Rs R ∼= R[x, y]/(x2 − y2) and Be = R =
R[x, y]/(x − y) are indecomposable R-bimodules, and thus SBim is the category of direct
sums of shifts of these two. It is a bit tedious to verify that in SBim the natural morphism
Bs(−1)→ Be (as from R⊗Rs R→ R) has no kernel.

Lemma 6. Tensor products of Soergel bimodules are Soergel bimodules. Moreover, any
Soergel bimodule is finite free as either a graded left-R-module or a graded right-R-module.

There is an obvious morphism R → R by sending anything of higher degree to 0. For
any R-bimodule M we can then consider M ⊗RR, which is a left R-module. Let R-Mod be
the category of finitely generated graded (left) R-modules. We denote by SMod the strictly
full subcategory of R-Mod consisting of direct sums of graded shifts of direct summands of
BS(w)⊗RR; objects in SMod are called Soergel modules and in particular BS(w)⊗RR the
Bott-Samelson modules. By constructing we have a functor ⊗RR : SBim→ SMod. Objects
in SMod are usually easier for direct computation. We need the following commutative
algebra fact:

Proposition 7. The functor ⊗RR : SBim→ SMod sends indecomposables to indecompos-
ables. Moreover, it sends non-isomorphic indecomposables to non-isomorphic indecompos-
ables.

We have seen that objects in SBim are R ⊗RW R-modules, and consequently objects in
SMod are R ⊗RW R-modules. What is R ⊗RW R? By definition R = R/R+ where R+ is
the ideal of strictly positive degree elements. So R ⊗RW R = R/IW where IW := (RW+ ) is

the ideal generated by RW+ := RW ∩R+. The quotient C := R/IW is called the coinvariant
algebra of W and plays some important role.

Now consider the 2-generators case W = I2(m) = 〈s, t | s2 = t2 = (st)m = e〉. As in

Example 2, one has R ∼= R[x, y] and IW = (x2 + y2, Z) where Z =
∏m−1
i=0 (cos(2πim )x +

sin(2πim )y). The quotient R/IW is an R-algebra of graded dimension one at degree 0, two at
degree 2, 4, ..., 2m− 2, one at degree 2m and zero elsewhere. In particular it has a unique
element in degree 2m. This element can be represented by

L :=

m−1∏
i=0

(cos(
πi

m
)x+ sin(

πi

m
)y).
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It satisfies s.L = t.L = −L in R. Consider the so-called BGG-Demazure operator on
R defined by

∂sx :=
x− s.x
αs

, ∀s ∈ S

This operator induces an operator on C = R/IW which we still denote by ∂s. In fact,
because ∂s(xy) = ∂s(x)y for any x ∈ R, y ∈ IW , the action of ∂s on R can be determined
by the action on C. It is easy to see that ∂2s = 0. More importantly it’s easy to verify in C
the braid relation

∂s∂t∂s... = ∂t∂s∂t...

where both sides are compositions of m operators. One can then derive from C the same
relation in R. This shows that, for any reduced expression w = s1...sk ∈ W , we can
define ∂w := ∂s1 ...∂sk on R. Thanks to Matsumoto’s theorem, this in fact shows we have
well-defined ∂w on R for arbitrary Coxeter group.

Back to the W = I2(m) case, one can verify that {∂wL}w∈W is a basis for C. Moreover,
let w0 = sts... = tst... (m elements for both expressions) be the longest element in W . One
shows that (a, b) 7→ ∂w0(ab) is a perfect pairing so that the dual basis of {∂wL}w∈W under
the pairing is still itself (though with some permutation). Using these, it is possible to show
(note W is just our finite dihedral group):

Proposition 8. Every object in category SMod is isomorphic to a direct sum of graded
shifts of 〈∂wL〉 ⊂ C.

The category SBim consists of direct sums of graded shifts of indecomposables Bw indexed
by w ∈W for which Bw ⊗R R ∼= 〈∂wL〉. They satisfy BsBt = Bst

BsBw = Bsw ⊕Btw , if `(sw) > `(w) > `(tw) > 0
BsBw = Bw(1)⊕Bw(−1) , if `(sw) < `(w)

At the same time, the Kazhdan-Lusztig basis {bw} for a dihedral group satisfies bsbt = bst
bsbw = bsw + btw , if `(sw) > `(w) > `(tw) > 0
bsbw = (v + v−1)bw , if `(sw) < `(w)

Let [SBim]⊕ be the Z[v, v−1]-algebra with generators [B] for Soergel bimodules B, multi-
plication rule [B][B′] := [BB′] and [B(k)] = vk[B], and relations [B ⊕ B′] = [B] + [B′].
Since in general H is defined by the quadratic and braid relation that involves at most two
reflections, the above comparison shows that (need to extend the above example if some
mst =∞)

Proposition 9. For arbitrary Coxeter group there exists a Z[v, v−1]-algebra morphism
c : H → [SBim]⊕ satisfying c(bw) = [Bw] for any w ∈Ws1,s2 for any s1, s2 ∈ S.

In general, it is possible to prove that for any w ∈W there is an indecomposable Soergel
bimodule Bw with the following property: for any reduced expression w of w it is the
unique indecomposable that appears in BS(w) but not (nor its graded shifts) in BS(w′)
for w′ < w in the Bruhat order. And any indecomposable Soergel bimodule is isomorphic
to some Bw. The big shots of the theory are

Theorem 10. (Soergel categorification theorem) SBim categorizes H. That is, c is an
isomorphism.
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Theorem 11. (Soergel’s Conjecture; theorem of Elias-Williamson) We have c(bw) = [Bw]
for any bw in the Kazhdan-Lusztig basis.

1. Geometric motivation

Here we explain the origin of Bott-Samelson bimodules. Suppose G is a complex semisim-
ple Lie group with (W,S) its Weyl group; it has a Borel subgroup B and maximal torus T
such that NG(T ) ∼= W has generators S produced by simple roots with respect to B; that
is, each simple root as corresponds to a parabolic B ⊂ Ps ⊂ G such that Ps/B ∼= P1 and
NPs(B) ⊂ NG(B) is a group of order 2 which is then identified with 〈s〉.

In this case as W is finite, Chevalley–Shephard–Todd theorem applies and R is finite free
over RW . For all Bott-Samelson modules the left action of RW is always the same with the
right action of RW . That is, our R-bimodules are the same as R⊗RW R-modules. One has
the equivariant cohomology (with R-coefficients)

H∗T (pt) = R[h∗] = R

where h∗ is the dual of the Cartan algebra of the split real form, and

H∗T (G/B) = R⊗RW R.

Now for any w = s1...sk the Bott-Samelson variety is the quotient BS(w) := Ps1 × ...×
Psk/B

k where the Bk acts by (b1, ..., bk).(p1, ..., pk) = (p1b
−1
1 , b1p2b

−1
2 , ..., bk−1pkb

−1
k ). This

is a compact complex manifold of dimension k. The highlight is then

H∗T (BS(w)) ∼= R⊗Rs1 R⊗Rs2 ...⊗Rsk R = BS(w)(−k)

as a graded module over H∗T (G/B). The shift (k) is natural because in Poincaré-Verdier
duality of a compact complex manifold of dimension k it is desirable to shift the degree by
k so that the full cohomology group becomes self-dual.

The morphism H∗T (G/B) → H∗(G/B) dropping the equivariant structure is exactly
R⊗RW R→ R⊗RW R = R/(RW+ ); that is, the passage from Bott-Samelson (resp. Soergel)
bimodules to Bott-Samelson (resp. Soergel) modules is given by dropping the equivariant
structure.

By the standard machinery of sheaves, H∗T (BS(w)) is also (shift of) the equivariant
cohomology of the push-forward to G/B of the constant sheaf on BS(w). The machinery
of perverse sheaves allows to further decompose these (complexes of) sheaves on G/B into
the so-called simple perverse (equivariant) sheaves. The indecomposable Soergel bimodules
inside BS(w) are then the equivariant hypercohomology of these simple perverse sheaves.
Historically these simple perverse sheaves were the only main tool to study Kazhdan-Lusztig
basis until the purely algebraic theory of Soergel bimodules came in place.

2. Proof of Proposition 8

Recall that we are in the setting (W,S) = I2(m). We have to prove inductively that as
C := R/IW -modules where IW := (RW+ ), we have

(2.1)

 R⊗Rs 〈∂tL〉 ∼= 〈∂stL〉
R⊗Rs 〈∂wL〉 ∼= 〈∂swL〉 ⊕ 〈∂twL〉 , if `(sw) > `(w) > `(tw) > 0
Rx⊗Rs 〈∂wL〉 ∼= 〈∂wL〉(1)⊕ 〈∂wL〉(−1) , if `(sw) < `(w)

We need a bit preparation about C and the basis.

Lemma 12. We have
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(1) The image of Rs in C is Cs the invariant subalgebra and we have C ∼= Cs ⊕ αsCs
as graded Cs-modules.

(2) Suppose x1, x2 ∈ Rs are such that x1 + αsx2 ∈ IW . Then x1, x2 ∈ IW .

(3) Denote by s(k) the element sts... with length k and t(k) likewise. Then for any
1 ≤ k ≤ m and x ∈ Rs we have x∂s(k)L ∈ IW ⇔ x∂t(k−1)L ∈ IW ⇔ xαs∂s(k)L.

The C-module R⊗Rs 〈∂wL〉 can be generated by 1⊗∂wL and 1⊗αs∂wL. When w = e or
w = t we have αs∂wL ∈ IW in which case we only need the former generator; this explains
the first case of (2.1). Otherwise αs∂wL 6∈ IW and the two generators are minimal. When

w = s(k) with 1 ≤ k ≤ m, we have that ∂wL and αs∂wL have the same annihilator A′ in
Cs such that the annihilator of ∂wL in C is A′ ⊕ αsA′. This proves the third case of (2.1).

When w = t(k), 2 ≤ k ≤ m, the C-module R⊗Rs 〈∂wL〉 can also be generated by 1⊗∂wL
and 1 ⊗ ∂twL. The annihilator of ∂wL in Cs is equal to that of ∂swL. This explain the
second case of (2.1).
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