Let (W, S) be a Coxeter system. We have a real vector space V with basis given by symbols $\left\{\alpha_{s} \mid s \in S\right\}$ equipped with the symmetric bilinear form $\left(\alpha_{s}, \alpha_{t}\right)=\cos \left(\pi-\frac{\pi}{m_{s t}}\right)$ where $m_{s t}>0$ is the minimal integer with $(s t)^{m_{s t}}=i d$. On V for each $s \in S$ we have reflections given by $s . v=v-2\left(\alpha_{s}, v\right) \alpha_{s}$. This gives an action of W on V. To prove this, it suffices to check that the action of $(s t)^{m_{s t}}$ is trivial which reduces to the case of the dihedral group $I_{2}\left(m_{s t}\right)$.

Let $R=\mathbb{R}[V]$, also known as the ring of polynomials on V^{*}. Consider the grading on R for which \mathbb{R} lives in degree 0 and any element in V has degree 2 , so that R is a graded algebra $R=\bigoplus_{d \in \mathbb{Z} \geq 0} R_{d}$. A graded R-module is an R-module M with grading $M=\bigoplus_{d \in \mathbb{Z}} M_{d}$ such that $x . m \in M_{d_{1}+d_{2}}$ whenever $x \in R_{d_{1}}, m \in M_{d_{2}}$. A (homo)morphism between graded R-module M, M^{\prime} is a R-module morphism $\phi: M \rightarrow M^{\prime}$ such that $\phi\left(M_{d}\right) \subset M_{d}^{\prime}$. For any graded module M, we denote by $M(k)$ the shift such that $M(k)_{d}:=M_{k+d}$; whatever was in degree 0 in M will be shifted to degree $-k$ in $M(k)$.

We will also look at (graded) R-bimodules; at an abstract level it is nothing more than an (graded) $R \otimes R$-module. But more importantly, if M, M^{\prime} are (graded) R-bimodules, we can form the tensor product $M \otimes_{R} M^{\prime}$ which is again a (graded) R-bimodule.

Our main playground is the abelian category of graded R-bimodules which are finitely generated both as left and right R-modules. We denote this category by R-gbim. One can verify that this is a monoidal category, i.e. tensor product preserves the finiteness condition. We will frequently denote the tensor product by • or even omit the dot. So $M_{1} \otimes_{R} M_{2}$ in R-gbim will be abbreviated as $M_{1} \cdot M_{2}$ and eventually $M_{1} M_{2}$.

The actual toy today is $\mathbb{S B i m}$, a full additive subcategory (not abelian!) of R-gbim. To define it we need some invariant theory on R. We have seen that W acts on V and thus $R=\mathbb{R}[V]$ and the action obviously preserves grading. For any subset $I \subset S$ we denote by $W_{I} \subset W$ the sub-Coxeter group generated by I. We say I is finitary if $\left|W_{I}\right|<\infty$. We have a classical theorem

Theorem 1. (Chevalley-Shephard-Todd theorem) Suppose I is finitary. Then the fixed subalgebra $R^{W_{I}}$ is such that R is a finite free module over $R^{W_{I}}$ with rank $\left|W_{I}\right|$.

We will also denote by R^{s} the fixed subalgebra for $s \in S$.
Example 2. Suppose $(W, S)=I_{2}(m), 2 \leq m<\infty$. Let $\{x, y\}$ be an orthonormal basis of the Euclidean plane on which the dihedral group $I_{2}(m)$ acts; say one of the reflection is about the x-axis. Then $R \cong \mathbb{R}[x, y]$, and

$$
R^{W} \cong \mathbb{R}\left[x^{2}+y^{2}, \prod_{i=0}^{m-1}\left(\cos \left(\frac{2 \pi i}{m}\right) x+\sin \left(\frac{2 \pi i}{m}\right) y\right)\right]
$$

Definition 3. For any $s \in S$, the associated Bott-Samelson bimodule is the graded R bimodule $B_{s}:=R \otimes_{R^{s}} R(1)$. In general, for any expression $\underline{w}=s_{1} s_{2} \ldots s_{k}$ (not necessarily reduced) of (W, S), we put

$$
B S(\underline{w})=B_{s_{1}} \otimes_{R} B_{s_{2}} \otimes_{R} \cdots \otimes_{R} B_{s_{k}}(k) .
$$

As said it will be abbreviated as $B_{s_{1}} B_{s_{2}} \ldots B_{s_{k}}(k)$ in the future.
Let us analyze B_{s} as a graded left R-module, we have $R=\mathbb{R}[V]=\mathbb{R}\left[\left\langle\alpha_{s}\right\rangle \oplus\left\langle\alpha_{s}\right\rangle^{\perp}\right]$. Since s acts on $\left\langle\alpha_{s}\right\rangle \oplus\left\langle\alpha_{s}\right\rangle^{\perp}$ by sending α_{s} to $-\alpha_{s}$ and preserving the rest, we have $R^{s}=$
$\mathbb{R}\left[\alpha_{s}^{2}\right] \otimes_{\mathbb{R}} \mathbb{R}\left[\left\langle\alpha_{s}\right\rangle^{\perp}\right]$. In particular as a graded R^{s}-module R is generated by 1 and α_{s} and that gives $R \cong R^{s} \oplus R^{s}(-2)$ as a graded R^{s}-module. Consequently

$$
\begin{aligned}
& B S(s s):=B_{s} B_{s}=R \otimes_{R^{s}} R \otimes_{R} R \otimes_{R^{s}} R(2)=R \otimes_{R^{s}} R \otimes_{R^{s}} R(2) \\
= & R \otimes_{R^{s}}\left(R^{s} \oplus R^{s}(-2)\right) \otimes_{R^{s}} R(2)=R \otimes_{R^{s}} R(2) \oplus R \otimes_{R^{s}} R=B_{s}(1) \oplus B_{s}(-1) .
\end{aligned}
$$

Recall that from (W, S) we define the Hecke algebra \mathcal{H} and Kazhdan-Lusztig basis. It has elements $b_{s} \in \mathcal{H}$ such that $b_{s} b_{s}=\left(v+v^{-1}\right) b_{s}$. Let us highlight the two identities:

$$
B_{s} B_{s}=B_{s}(1) \oplus B_{s}(-1), \quad b_{s} b_{s}=\left(v+v^{-1}\right) b_{s}
$$

Recall that in general Kazhdan-Lusztig basis b_{w} is "part" of products of $b_{s_{i}}$. This motivates us to define

Definition 4. The category of Soergel bimodule $\mathbb{S B i m}$ is the full additive subcategory of R-gbim consists of direct sums of graded shifts of direct summands of $B S(\underline{w})$.

Example 5. The category $\mathbb{S B i m}$ is not abelian. For example, when $S=\{s\}$, we have $R \cong \mathbb{R}[x], R^{W}=R^{s} \cong \mathbb{R}\left[x^{2}\right]$. Both $B_{s}(-1)=R \otimes_{R^{s}} R \cong \mathbb{R}[x, y] /\left(x^{2}-y^{2}\right)$ and $B_{e}=R=$ $\mathbb{R}[x, y] /(x-y)$ are indecomposable R-bimodules, and thus $\mathbb{S B i m}$ is the category of direct sums of shifts of these two. It is a bit tedious to verify that in $\mathbb{S B i m}$ the natural morphism $B_{s}(-1) \rightarrow B_{e}$ (as from $R \otimes_{R^{s}} R \rightarrow R$) has no kernel.

Lemma 6. Tensor products of Soergel bimodules are Soergel bimodules. Moreover, any Soergel bimodule is finite free as either a graded left- R-module or a graded right- R-module.

There is an obvious morphism $R \rightarrow \mathbb{R}$ by sending anything of higher degree to 0 . For any R-bimodule M we can then consider $M \otimes_{R} \mathbb{R}$, which is a left R-module. Let R-Mod be the category of finitely generated graded (left) R-modules. We denote by $\mathbb{S M o d}$ the strictly full subcategory of R-Mod consisting of direct sums of graded shifts of direct summands of $B S(\underline{w}) \otimes_{R} \mathbb{R}$; objects in $\mathbb{S M o d}$ are called Soergel modules and in particular $B S(\underline{w}) \otimes_{R} \mathbb{R}$ the Bott-Samelson modules. By constructing we have a functor $\otimes_{R} \mathbb{R}: \mathbb{S B i m} \rightarrow \mathbb{S M o d}$. Objects in $\mathbb{S M o d}$ are usually easier for direct computation. We need the following commutative algebra fact:

Proposition 7. The functor $\otimes_{R} \mathbb{R}: \mathbb{S B i m} \rightarrow \mathbb{S M o d}$ sends indecomposables to indecomposables. Moreover, it sends non-isomorphic indecomposables to non-isomorphic indecomposables.

We have seen that objects in $\mathbb{S B i m}$ are $R \otimes_{R^{W}} R$-modules, and consequently objects in SMod are $R \otimes_{R^{W}} \mathbb{R}$-modules. What is $R \otimes_{R^{W}} \mathbb{R}$? By definition $\mathbb{R}=R / R_{+}$where R_{+}is the ideal of strictly positive degree elements. So $R \otimes_{R^{W}} \mathbb{R}=R / I_{W}$ where $I_{W}:=\left(R_{+}^{W}\right)$ is the ideal generated by $R_{+}^{W}:=R^{W} \cap R_{+}$. The quotient $C:=R / I_{W}$ is called the coinvariant algebra of W and plays some important role.

Now consider the 2-generators case $W=I_{2}(m)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{m}=e\right\rangle$. As in Example 2, one has $R \cong \mathbb{R}[x, y]$ and $I_{W}=\left(x^{2}+y^{2}, Z\right)$ where $Z=\prod_{i=0}^{m-1}\left(\cos \left(\frac{2 \pi i}{m}\right) x+\right.$ $\left.\sin \left(\frac{2 \pi i}{m}\right) y\right)$. The quotient R / I_{W} is an \mathbb{R}-algebra of graded dimension one at degree 0 , two at degree $2,4, \ldots, 2 m-2$, one at degree $2 m$ and zero elsewhere. In particular it has a unique element in degree $2 m$. This element can be represented by

$$
\mathbb{L}:=\prod_{i=0}^{m-1}\left(\cos \left(\frac{\pi i}{m}\right) x+\sin \left(\frac{\pi i}{m}\right) y\right) .
$$

It satisfies $s . \mathbb{L}=t . \mathbb{L}=-\mathbb{L}$ in R. Consider the so-called BGG-Demazure operator on R defined by

$$
\partial_{s} x:=\frac{x-s \cdot x}{\alpha_{s}}, \quad \forall s \in S
$$

This operator induces an operator on $C=R / I_{W}$ which we still denote by ∂_{s}. In fact, because $\partial_{s}(x y)=\partial_{s}(x) y$ for any $x \in R, y \in I_{W}$, the action of ∂_{s} on R can be determined by the action on C. It is easy to see that $\partial_{s}^{2}=0$. More importantly it's easy to verify in C the braid relation

$$
\partial_{s} \partial_{t} \partial_{s} \ldots=\partial_{t} \partial_{s} \partial_{t} \ldots
$$

where both sides are compositions of m operators. One can then derive from C the same relation in R. This shows that, for any reduced expression $w=s_{1} \ldots s_{k} \in W$, we can define $\partial_{w}:=\partial_{s_{1}} \ldots \partial_{s_{k}}$ on R. Thanks to Matsumoto's theorem, this in fact shows we have well-defined ∂_{w} on R for arbitrary Coxeter group.

Back to the $W=I_{2}(m)$ case, one can verify that $\left\{\partial_{w} \mathbb{L}\right\}_{w \in W}$ is a basis for C. Moreover, let $w_{0}=s t s \ldots=t s t \ldots$ (m elements for both expressions) be the longest element in W. One shows that $(a, b) \mapsto \partial_{w_{0}}(a b)$ is a perfect pairing so that the dual basis of $\left\{\partial_{w} \mathbb{L}\right\}_{w \in W}$ under the pairing is still itself (though with some permutation). Using these, it is possible to show (note W is just our finite dihedral group):

Proposition 8. Every object in category $\mathbb{S M o d}$ is isomorphic to a direct sum of graded shifts of $\left\langle\partial_{w} \mathbb{L}\right\rangle \subset C$.

The category $\mathbb{S B i m}$ consists of direct sums of graded shifts of indecomposables B_{w} indexed by $w \in W$ for which $B_{w} \otimes_{R} \mathbb{R} \cong\left\langle\partial_{w} \mathbb{L}\right\rangle$. They satisfy

$$
\begin{cases}B_{s} B_{t}=B_{s t} & \text { if } \ell(s w)>\ell(w)>\ell(t w)>0 \\ B_{s} B_{w}=B_{s w} \oplus B_{t w} & \text {, } \ell(s) \\ B_{s} B_{w}=B_{w}(1) \oplus B_{w}(-1) & \text { if } \ell(s w)<\ell(w)\end{cases}
$$

At the same time, the Kazhdan-Lusztig basis $\left\{b_{w}\right\}$ for a dihedral group satisfies

$$
\begin{cases}b_{s} b_{t}=b_{s t} & \text { if } \ell(s w)>\ell(w)>\ell(t w)>0 \\ b_{s} b_{w}=b_{s w}+b_{t w} & , \text { if } \ell(s w)<\ell(w) \\ b_{s} b_{w}=\left(v+v^{-1}\right) b_{w} & \text {, } \ell(s w)\end{cases}
$$

Let $[\operatorname{SBim}]_{\oplus}$ be the $\mathbb{Z}\left[v, v^{-1}\right]$-algebra with generators $[B]$ for Soergel bimodules B, multiplication rule $[B]\left[B^{\prime}\right]:=\left[B B^{\prime}\right]$ and $[B(k)]=v^{k}[B]$, and relations $\left[B \oplus B^{\prime}\right]=[B]+\left[B^{\prime}\right]$. Since in general \mathcal{H} is defined by the quadratic and braid relation that involves at most two reflections, the above comparison shows that (need to extend the above example if some $m_{s t}=\infty$)

Proposition 9. For arbitrary Coxeter group there exists a $\mathbb{Z}\left[v, v^{-1}\right]$-algebra morphism $c: \mathcal{H} \rightarrow[\mathbb{S B i m}]_{\oplus}$ satisfying $c\left(b_{w}\right)=\left[B_{w}\right]$ for any $w \in W_{s_{1}, s_{2}}$ for any $s_{1}, s_{2} \in S$.

In general, it is possible to prove that for any $w \in W$ there is an indecomposable Soergel bimodule B_{w} with the following property: for any reduced expression \underline{w} of w it is the unique indecomposable that appears in $B S(\underline{w})$ but not (nor its graded shifts) in $B S\left(\underline{w}^{\prime}\right)$ for $w^{\prime}<w$ in the Bruhat order. And any indecomposable Soergel bimodule is isomorphic to some B_{w}. The big shots of the theory are

Theorem 10. (Soergel categorification theorem) $\mathbb{S B i m}$ categorizes \mathcal{H}. That is, c is an isomorphism.

Theorem 11. (Soergel's Conjecture; theorem of Elias-Williamson) We have $c\left(b_{w}\right)=\left[B_{w}\right]$ for any b_{w} in the Kazhdan-Lusztig basis.

1. Geometric motivation

Here we explain the origin of Bott-Samelson bimodules. Suppose G is a complex semisimple Lie group with (W, S) its Weyl group; it has a Borel subgroup B and maximal torus T such that $N_{G}(T) \cong W$ has generators S produced by simple roots with respect to B; that is, each simple root a_{s} corresponds to a parabolic $B \subset P_{s} \subset G$ such that $P_{s} / B \cong \mathbb{P}^{1}$ and $N_{P_{s}}(B) \subset N_{G}(B)$ is a group of order 2 which is then identified with $\langle s\rangle$.

In this case as W is finite, Chevalley-Shephard-Todd theorem applies and R is finite free over R^{W}. For all Bott-Samelson modules the left action of R^{W} is always the same with the right action of R^{W}. That is, our R-bimodules are the same as $R \otimes_{R^{W}} R$-modules. One has the equivariant cohomology (with \mathbb{R}-coefficients)

$$
H_{T}^{*}(p t)=\mathbb{R}\left[\mathfrak{h}^{*}\right]=R
$$

where \mathfrak{h}^{*} is the dual of the Cartan algebra of the split real form, and

$$
H_{T}^{*}(G / B)=R \otimes_{R^{W}} R
$$

Now for any $\underline{w}=s_{1} \ldots s_{k}$ the Bott-Samelson variety is the quotient $\mathcal{B S}(\underline{w}):=P_{s_{1}} \times \ldots \times$ $P_{s_{k}} / B^{k}$ where the B^{k} acts by $\left(b_{1}, \ldots, b_{k}\right) .\left(p_{1}, \ldots, p_{k}\right)=\left(p_{1} b_{1}^{-1}, b_{1} p_{2} b_{2}^{-1}, \ldots, b_{k-1} p_{k} b_{k}^{-1}\right)$. This is a compact complex manifold of dimension k. The highlight is then

$$
H_{T}^{*}(\mathcal{B S}(\underline{w})) \cong R \otimes_{R^{s_{1}}} R \otimes_{R^{s_{2}}} \ldots \otimes_{R^{s_{k}}} R=B S(\underline{w})(-k)
$$

as a graded module over $H_{T}^{*}(G / B)$. The shift (k) is natural because in Poincaré-Verdier duality of a compact complex manifold of dimension k it is desirable to shift the degree by k so that the full cohomology group becomes self-dual.

The morphism $H_{T}^{*}(G / B) \rightarrow H^{*}(G / B)$ dropping the equivariant structure is exactly $R \otimes_{R^{W}} R \rightarrow R \otimes_{R^{W}} \mathbb{R}=R /\left(R_{+}^{W}\right)$; that is, the passage from Bott-Samelson (resp. Soergel) bimodules to Bott-Samelson (resp. Soergel) modules is given by dropping the equivariant structure.

By the standard machinery of sheaves, $H_{T}^{*}(\mathcal{B S}(\underline{w}))$ is also (shift of) the equivariant cohomology of the push-forward to G / B of the constant sheaf on $\mathcal{B S}(\underline{w})$. The machinery of perverse sheaves allows to further decompose these (complexes of) sheaves on G / B into the so-called simple perverse (equivariant) sheaves. The indecomposable Soergel bimodules inside $B S(\underline{w})$ are then the equivariant hypercohomology of these simple perverse sheaves. Historically these simple perverse sheaves were the only main tool to study Kazhdan-Lusztig basis until the purely algebraic theory of Soergel bimodules came in place.

2. Proof of Proposition 8

Recall that we are in the setting $(W, S)=I_{2}(m)$. We have to prove inductively that as $C:=R / I_{W}$-modules where $I_{W}:=\left(R_{+}^{W}\right)$, we have

$$
\begin{cases}R \otimes_{R^{s}}\left\langle\partial_{t} \mathbb{L}\right\rangle \cong\left\langle\partial_{s t} \mathbb{L}\right\rangle & \tag{2.1}\\ R \otimes R^{s}\left\langle\partial_{w} \mathbb{L}\right\rangle \cong\left\langle\partial_{s w} \mathbb{L}\right\rangle \oplus\left\langle\partial_{t w} \mathbb{L}\right\rangle & , \text { if } \ell(s w)>\ell(w)>\ell(t w)>0 \\ R x \otimes_{R^{s}}\left\langle\partial_{w} \mathbb{L}\right\rangle \cong\left\langle\partial_{w} \mathbb{L}\right\rangle(1) \oplus\left\langle\partial_{w} \mathbb{L}\right\rangle(-1) & , \text { if } \ell(s w)<\ell(w)\end{cases}
$$

We need a bit preparation about C and the basis.
Lemma 12. We have
(1) The image of R^{s} in C is C^{s} the invariant subalgebra and we have $C \cong C^{s} \oplus \alpha_{s} C^{s}$ as graded C^{s}-modules.
(2) Suppose $x_{1}, x_{2} \in R^{s}$ are such that $x_{1}+\alpha_{s} x_{2} \in I_{W}$. Then $x_{1}, x_{2} \in I_{W}$.
(3) Denote by $s^{(k)}$ the element sts... with length k and $t^{(k)}$ likewise. Then for any $1 \leq k \leq m$ and $x \in R^{s}$ we have $x \partial_{s^{(k)}} \mathbb{L} \in I_{W} \Leftrightarrow x \partial_{t^{(k-1)}} \mathbb{L} \in I_{W} \Leftrightarrow x \alpha_{s} \partial_{s^{(k)}} \mathbb{L}$.
The C-module $R \otimes_{R^{s}}\left\langle\partial_{w} \mathbb{L}\right\rangle$ can be generated by $1 \otimes \partial_{w} \mathbb{L}$ and $1 \otimes \alpha_{s} \partial_{w} \mathbb{L}$. When $w=e$ or $w=t$ we have $\alpha_{s} \partial_{w} \mathbb{L} \in I_{W}$ in which case we only need the former generator; this explains the first case of (2.1). Otherwise $\alpha_{s} \partial_{w} \mathbb{L} \notin I_{W}$ and the two generators are minimal. When $w=s^{(k)}$ with $1 \leq k \leq m$, we have that $\partial_{w} \mathbb{L}$ and $\alpha_{s} \partial_{w} \mathbb{L}$ have the same annihilator A^{\prime} in C^{s} such that the annihilator of $\partial_{w} \mathbb{L}$ in C is $A^{\prime} \oplus \alpha_{s} A^{\prime}$. This proves the third case of (2.1).

When $w=t^{(k)}, 2 \leq k \leq m$, the C-module $R \otimes_{R^{s}}\left\langle\partial_{w} \mathbb{L}\right\rangle$ can also be generated by $1 \otimes \partial_{w} \mathbb{L}$ and $1 \otimes \partial_{t w} \mathbb{L}$. The annihilator of $\partial_{w} \mathbb{L}$ in C^{s} is equal to that of $\partial_{s w} \mathbb{L}$. This explain the second case of (2.1).

