
1. Historical background

Soergel first proved Soergel’s conjecture for finite Weyl groups using results the results
of Kazhdan and Lusztig that identifies the Kazhdan-Lusztig polynomial as numerical data
derived from intersection complex on Schubert varieties. The Kazhdan-Lusztig work in turn
is built on the theory on perverse sheaves, in particular the Beilinson-Bernstein-Deligne-
Gabber Decomposition Theorem that was established around the same time. The BBDG
Decomposition theorem relies on the machinery of Weil II (Deligne’s second proof of the
Weil Conjecture) which is one of the most important results ever in algebraic and arithmetic
geometry. The BBDG proof was done by first doing it over a finite field, then over finitely
generated algebra over Z, and then pass to complex geometry if desired. Later Morihiko
Saito was able to work out related structure (“mixed Hodge structure”) over C and gave
an analytic proof of the Decomposition Theorem.

When Soergel worked on the algebraic approach, he couldn’t get around Soergel’s con-
jecture, and at least to Cheng-Chiang’s naive eyes it feels like the use of Decomposition
Theorem, the technical heart of the theory of perverse sheaves, was sort of an unavoidable
difficulty at the time. Yet around the same time, de Cataldo and Migliorini gave a more “el-
ementary” proof1 of the Decomposition Theorem by extending the classical Hodge theory.
It was this simplification of Decomposition Theorem that inspired Elias and Williamson in
their proof of the Soergel conjecture, which is our goal this and next week.

2. Start of proof

Fix (W,S) any Coxeter system. The presented result works in the characteristic 0 setting
for which we may assume our ground field k = R. We fix a Kac-Moody realization W y h
over R; when |W | is finite this is the usual one, and for generalW this is some construction of
Soergel that behaves similarly, see §5.6, 5.7. We write R = SymR(h∗) the ring of polynomial
functions on h.

Let H be the Hecke algebra associated to (W,S) over Z[v, v−1], [SBim]⊕ be the split
Grothendieck Z[v, v−1]-algebra of the additive graded category SBim of Soergel (R-)bimodules.
Recall that in Soergel categorification theorem we have two mutually inverse algebra homo-
morphisms c : H → [SBim]⊕ and ch : [SBim]⊕ → H. The former is defined by c(bs) = Bs.
The latter is defined by the assertion that for any Soergel bimodule B ∈ SBim we have a
R-bimodule filtration

0 = Bm ⊂ Bm−1 ⊂ ... ⊂ B0 = B

such that Bi/Bi−1 ∼= R
⊕hxi (B)
xi where xi 6> xj whenever i < j under Bruhat order. One

then puts ch(B) =
∑m−1

i=1 hxi(B)δxi . The theorem of Elias and Williamson is

Theorem 1. (Soergel’s conjecture) ch(Bx) = bx is the Kazhdan-Lusztig basis for any x ∈
W .

This immediately proves the Kazhdan-Lusztig positivity conjecture. Using Soergel hom
formula reviewed in the Appendix, we have the important consequence that

Corollary 2. rank Hom∗(Bx, By) = (bx, by) ∈ δxy + vZ[v] for x, y ∈W .

Inspired by the use of Decomposition Theorem, let us consider the following geome-
try background: Recall that for a compact complex manifold X we have Poincaré duality
H∗+n(X) ∼= H∗−n(X)∨. In the case when our W is a finite Weyl group and X = Y (x) is
a Bott-Samelson variety, the duality works in an equivariant setting (that Y (x) is equiv-

ariantly formal), resulting in the duality H
∗+`(x)
T (Y (x)) ∼= HomR(H

∗−`(x)
T (Y (x)), R); let us

1Technically, de Cataldo and Migliorini proved a more restrictive version of the Decomposition Theorem.
That version is nevertheless sufficient for Soergel’s use on Schubert varieties.
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discuss this in detail. From now on all R-bimodules are assumed to be graded and finite
free as a right R-module, and we will omit the adjectives. For any R-bimodule B , denote
by

D(B) := {φ : B → R | φ(br) = φ(b)r, ∀b ∈ B, r ∈ R}
equipped with the natural notion of degree and an R-bimodule structure that (r1.φ.r2)(b) =
φ(r1br2) (note: the one written in the book has typo). Note that we did not require maps
in D(B) to be left-R-equivariant. It is easy to see that as B is assumed finite free as a right
R-module, so is D(B). We now claim that

Lemma 3. (Exercise 18.12, 18.13) We have canonical isomorphism D(Bs) = Bs. More-
over, for any R-bimodule B we have D(B ⊗R Bs) = D(B)⊗R Bs.

The lemma gives us the general case of equivariant duality that we mentioned:

Corollary 4. For any Bott-Samelson bimodule BS(x) we have canonical isomorphism
D(BS(x)) = BS(x).

This consequently implies

Corollary 5. (Exercise 18.15) For any Soergel bimodule B we have D(B) ∼= B.

Proof. We have seen that any Soergel bimodule B is uniquely characterized by a unique
element x ∈ W in that for any reduced expression x of x, B appears in BS(x) but not in
BS(x′) for reduced expression x′ with x′ < x. Since all Soergel bimodules are finite free as
right R-modules, we have that D(B) also appears in D(BS(x)) but not in D(BS(x′)) with
x′ < x. But D(BS(x)) = BS(x), and thus D(B) ∼= B by its characterizing property. �

For our R-bimodules B we evidently have D(D(B)) = B canonically. Thus D induces
a ring involution on [SBim]⊕ that fixes Bs. Let us also note that we have immediately
by definition that D(B(1)) = B(−1). Hence D induces a ring involution on H that fixes
bs but sends v to v−1, i.e. D exactly induces the Kazhdan-Lusztig involution, and this
immediately proves that ch(Bx) is self-dual.

Remark 6. The contravariant equivalence (duality) of category D can also be viewed, in
the diagrammatic Hecke category, as the “upside-down functor.”

In the de Cataldo-Migliorini proof of the Decomposition Theorem, the semi-small case
is highlighted. However, the Bott-Samelson resolution in general is not semi-small; see
Example 7 below.

Example 7. Suppose W = S4 = 〈s1, s2, s3〉. We write b1 = bs1 , etc. We have b1b3b2b1b3 =
b13213 + (v + v−1)b13. This corresponds to the fact that the resolution from the Bott-
Samelson variety BS(13213) is not semismall above the strata Y (13); the fiber is CP1×CP1

of dimension 2, while 2 × 2 is one more than `(13213) − `(13) = 3, implying the degree 1
at the coefficient (v + v−1).

This will create some difficulty, and the way around it goes back to something basic in
the inductive calculation of the Kazhdan-Lusztig basis:

Lemma 8. (Theorem 3.27) Let x ∈W and s ∈ S be such that y := xs > x. We have

bxbs = bxs +
∑

y<x, ys<y

µ(y, x)by,

where µ(y, x) ∈ Z (in fact ∈ Z≥0) is the coefficient of v in the Kazhdan-Lusztig polynomial
hy,x.
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So if instead of using the whole Bott-Samelson bimodule, we work with ByBs inductively,
then philosophically we are in a “semi-small” setup which should be easier to work with.
Now we can vaguely describe the Elias-Williamson plan: we will prove Soergel’s conjecture
ch(Bx) = bx inductively in Bruhat order. Denote by S(x) the assertion ch(Bx) = bx. To
prove S(x) inductively, it suffices to prove for x with y = xs > x that

(2.1) BxBs = Bxs ⊕
∑

y<x, ys<y

B⊕µ(y,x)
y .

That is, it suffices to understand how By, y < xs can be embedded into BxBs. We remark
that even if we assume Soergel’s conjecture (and the Kazhdan-Lusztig positivity conjecture)
it is a priori not clear if (2.1) holds, but that was part of the geometric insight2.

Now naively one will expect that the number of times By(i) appears in BxBs is the

dimension of the space of degree i bimodule morphisms Homi(By, BxBs). Assuming this,
as well as S(< xs) (i.e. assertion S(y) for all y < xs), we have by the Soergel hom formula
that

rank Hom∗(By, BxBs) = (ch(By), ch(Bx) ch(Bs)) = (by, bxbs) ∈ µ(y, x) + vZ[v].

In particular, for any y < xs we have that By appears (without shift) in BxBs as many times
as µ(y, x) if y > ys and 0 times if y < ys, and By(−i) never appears in BxBs for i > 0. By
duality D, By(i) for i > 0 must also never occur (this is very similar to the decomposition
theorem computation). Hence we have proved (2.1) and Soergel’s conjecture.

Unfortunately, it is not for granted that the number of times By(i) appears in BxBs is

equal to dimR Homi(By, BxBs). Let us think about this question abstractly: suppose we
have an R-linear additive category with objects X and Y (typically X is indecomposable).
To say that X appears in Y m times is to find morphisms i1, ..., im : X → Y and p1, ..., pm :
Y → X such that pj ◦ ik = δjkidX ∈ End(X). Assume for the moment that End(X) ∼= R.
Then this is saying that the pairing

Hom(X,Y )×Hom(Y,X)→ End(X) ∼= R, (i, p) 7→ p ◦ i
has rank m. Now in our case X = By, and what is End(By)? We have seen the trick that

assuming S(y), we have End∗(By) = (ch(By), ch(By)) ∈ 1 + vZ[v] and thus End0(By) ∼= R.
For the non-zero degree case we have less control, but at least we know End∗(By) is a

graded algebra whose “completion” is a local algebra with maximal ideal End>0(By). One
may work out some non-commutative ring theory and get to that

Proposition 9. (Prop. 11.69, Cor. 11.71) Assume X and Y are two objects in a graded
additive category so that End(X) is graded local with graded maximal (Jacobson) ideal mX ,
so that End(X)/mX is a division algebra. Then X appears in Y as many times as the
graded rank of the pairing

Hom(X,Y )×Hom(Y,X)→ End(X) � End(X)/mX .

Thanks to Prop. 9, to inductively prove Soergel’s conjecture it suffices to prove that the
pairing

(2.2) Hom0(By, BxBs)×Hom0(BxBs, By)→ End0(By) ∼= R
has rank equal to dimR Hom0(By, BxBs), i.e. (2.2) is non-degenerate. This was realized by
Soergel, but he couldn’t prove it. Yet miraculously, similar non-degeneracy also appears at
the technical heart of the de Cataldo-Migliorini work via the local intersection form.

To turn a pairing into a form, we note that by duality we have Hom0(BxBs, By) =
Hom0(D(By),D(BxBs)) ∼= Hom0(By, BxBs). So (2.2) becomes a form on Hom0(Bz, BxBs)

2Actually Cheng-Chiang hasn’t worked out how to rigorously prove this geometrically when W is a finite
Weyl group, but I believe it’s not hard.
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- not yet! The isomorphism By ∼= D(By) is only unique up to (non-zero) scalar. So the
form we get is also only unique up to scalar. At this moment, it feels fine because the non-
degeneracy of the form is insensitive to the scalar. The question is: how do we proceed? It
turns out that the strategy of Elias-Williamson, inspired by that of de Cataldo-Migliorini,
is to prove that the form is (−1)`(xs)−`(y)-definite via Hodge theory.

A bit more preparation: while our Soergel bimodules originate from equivariant (hyper-
)cohomology, classical Hodge theory is applied to non-equivariant cohomology. That is,
instead of Soergel bimodules B we want to look at Soergel modules B̄ := B ⊗R R where
recall that the map R � R is given by R/R+ = R. Define for any left R-module B̄
(always assumed to be finite over R) that D(B̄) := HomR(B̄,R) as a left R-module. For
any R-bimodule B we have D(B ⊗R R) = D(B) ⊗R R. In particular, we have D(B̄) ∼= B̄
for any Soergel module B̄. We also note that there is yet another way to view the duality
functor; a R-bimodule morphism B → D(B) is a degree 0 bilinear form (·, ·) : B × B → R
such that (rb1, b2) = (b1, rb2) and (b1r, b2) = (b1, b2r) = (b1, b2)r; let us call such bilinear
forms invariant forms. The morphism is an isomorphisms iff the invariant form is non-
degenerate. An invariant form also induces an invariant form from B̄ × B̄ to R.

We remark that the canonical isomorphism D(BS(x)) = BS(x) gives us a canonical form

on BS(x) and on BS(x). In fact, we know such a form! It is the form (a, b) = Tr(ab) ∈ R,
the coefficient of ctop when ab is expressed in terms of 01-basis (with right R-multiplication),
defined in Definition 12.13. The form was called global intersection form for a reason
that was unclear, and the reason is that it matches with what de Cataldo-Migliorini called
global intersection form in their work! The trick of Elias-Williamson inspired by that of
de Cataldo-Migliorini is to embed the form on Hom0(By, BxBs) to the global intersection

form on a subspace of BxBs, and use that the latter is definite. In the next section we will
describe the Hodge-theory we want (thanks to de Cataldo-Migliorini) for BxBs.

3. Hodge theory: preparation and motivation

Fix V a finite-dimensional graded vector space over R.

Lemma 10. (Exercise 17.7, 17.11) Let e : H → H be a degree 2 operator. TFAE

(1) Its power ei : H−i → H i is an isomorphism for any i ≥ 0.
(2) It can be completed into an action of sl2(k) = 〈e, h, f〉 such that h.v = nv for any

v ∈ Hn.

In this case, the space P−i := H−i ∩ ker(ei+1|H−i : H−i → H i+2) is the lowest weight
subspace in H−i for any i ≥ 0.

The space P−i is called the primitive subspace. In Hodge theory, H should be the
shifted cohomology group of a compact Kähler manifold and e the cupping with a strictly
positive Kähler class (this is the so-called Hard Lefschetz Theorem) or its generalization.
The cohomology group has a Poincaré pairing, which motivates:

Definition 11. Suppose H is a finite-dimensional graded vector space over R equipped with
(·, ·) : H ×H → R a symmetric non-degenerate graded bilinear form. We say L : H → H
of degree 2 satisfies hard Lefschetz if it is self-adjoint and satisfies the condition for e in
Lemma 10.

The definition is motivated that L satisfies hard Lefschetz iff (·, ·)−iL : H−i ×H−i → R
defined by (a, b)−iL := (a, Lib) is non-degenerate. Now suppose furthermore m ∈ Z is the

minimal with Hm 6= 0 such that Hm+2j+1 = 0 for all j ≥ 0. (This is motivated when H is
the shifted cohomology of a dimension m Bott-Samelson variety or the shifted intersection
cohomology of a dimension m Schubert variety.) In this case we put
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Definition 12. The triple (H, (·, ·), L) is said to satisfies the Hodge-Riemann bilin-

ear relation at degree i if (·, ·)iL|P i is (−1)
i−m
2 -definite. It is said to satisfies the Hodge-

Riemann bilinear relation if it does so in all degrees.

Remark 13. Suppose (H, (·, ·), L) satisfies Hodge-Riemann, and V is the standard represen-
tation of sl2 with the standard invariant form on V ; in fact V ∼= Bs. Then (H⊗RV, (·, ·), L+
e) also satisfies Hodge-Riemann; it’s elementary to show so, but is not totally obvious and
is a good exercise. (As Shun-Jen remarked, this is also true if V is anything that satisfies
Hodge-Riemann.) In our case H = Bx, while we DON’t have that BxBs 6∼= Bx ⊗R Bs as
left R-module. However, the key will be that a limit certain family of operators on BxBs
will behave as L0 y Bx ⊗ Bs, thus giving the Hodge-Riemann bilinear relation on BxBs
that we will desire in Proposition 22.

If the triple satisfies the Hodge-Riemann bilinear relations, then L apparently satisfies
hard Lefschetz. This relation (or inequality) is the same as the Hodge-Riemann bilinear
relation for the cohomology of compact Kähler manifolds in the case when hp,q = 0 for
p 6= q; examples of such manifolds include flag varieties and Bott-Samelson varieties.

In our case, we want to look at the situation when H = BxBs and next H = Bxs, and
that (·, ·) is the invariant form coming from a choice of H ∼= D(H); we’ll later claim that
there is a natural choice of the isomorphism up to positive scalars, for sign is definitely
important here! We have yet to explain L. In the theory of Kac-Moody realization, we
have linearly independent coroots {α∨s ∈ h}s∈S (but not necessary independent roots) so
that there always exist ρ ∈ h∗ such that 〈α∨s , ρ〉 > 0 for all s ∈ S. We fix such a ρ once and
for all; this is the same as fixing an ample line bundle or a positive Kähler class on G/B if
W is a finite Weyl group for (G,B). Anyhow, denote by L0 the left multiplication by ρ on
any Soergel module. It is indeed self-adjoint as our form is an invariant form. This L0 will
be our Lefschetz operator L.

Remark 14. Let us remark in advance that the choice H = BS(x) will not satisfy the Hodge-
Riemann bilinear relation; in fact, our result will eventually show that for Bott-Samelson
modules, our L satisfies hard-Lefschetz iff “The Bott-Samelson resolution is semismall” in
the sense of Example 7 even if W is not a finite Weyl group. This gives another reason to
work with BxBs.

Let us inspect the minimal degree m for Bx:

Lemma 15. (Exercise 18.16) For x reduced and any decomposition of BS(x), the element
cbot ∈ BS(x) lives in the indecomposable summand Bx. Consequently, the minimal degree
in Bx and Bx is −`(x).

Proof. Since the element cbot is up to constant the unique element of degree −`(x) in BS(x),
it must lives inside some single indecomposable summand. On the other hand, cbot has non-
trivial projection to the twisted Q-bimodule Qx (this can be proved inductively on length).
Since all other summands comes from BS(y) with y < x and have trivial image in Qx, cbot
cannot live in any summand other than Bx, hence the result. We remark that once we
know in some decomposition cbot lives in Bx, the same result must hold for any embedding
Bx ↪→ BS(x) (not necessarily as a summand). �

Proposition 16. (Proposition 12.29) For x reduced and any embedding Bx ↪→ BS(x),

denote by (·, ·)x the restriction to Bx of the global intersection form on BS(x). Then
(Bx, (·, ·)x, L0) satisfies the Hodge-Riemann bilinear relation at the minimal degree −`(x).
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Proof. The assertion is that the coefficient of the ctop-term in ρ`(x)cbot under the 01-basis
is > 0. That in turn is an application of an inductive calculation using polynomial forcing,
which we refer to our textbook. �

If we assume S(x), then rank Hom∗(Bx,D(Bx)) = (bx, bx) ∈ 1+vZ[v] and dimR Hom0(Bx,D(Bx)) =
1, i.e. the dimension of invariant forms is 1-dimensional. Proposition 16 then tells us that
the restriction of the global intersection form to Bx all lie in a positive ray. Let us highlight
this result:

Proposition 17. Assuming S(x), the restriction of the global intersection form on BS(x)
to Bx is well-defined up to a strictly positive scalar, independent of the choice of x and the
choice of embedding Bx ↪→ BS(x).

We shall continue to denote this important invariant form by (·, ·)x : Bx ×Bx → R, un-
derstood to be well-defined up to a strictly positive scalar. This form gives an isomorphism
Bx

∼−→ D(Bx) unique up to positive scalar, and thus also BxBs
∼−→ D(BxBs). The last

isomorphism can also be read as an invariant form on BxBs which we denote by (·, ·)x,s.
This allows us to revisit (2.2): adjointness gives us an isomorphism

Hom0(BxBs, By) = Hom0(D(By),D(BxBs))
∼−→ Hom0(By, BxBs)

where for the latter arrow we used the isomorphisms given respectively by (·, ·)y and (·, ·)x,s,
assuming both S(y) and S(x). That is, we may turn (2.2) into a form

(·, ·)x,sy = Hom0(By, BxBs)×Hom0(By, BxBs)→ End0(By) = R
that is well-defined up to positive scalar. This is the local intersection form. We have
explained in (2.2) that the non-degeneracy of this form implies S(xs) and thus is good

for the inductive proof. The plan is to prove that (·, ·)x,sy is (−1)`(xs)−`(y)-definite and
thus automatically non-degenerate. Assume S(y), S(x) and x < xs. Consider a map

ι : Hom0(By, BxBs) → BxBs
−`(y)

given by ι(φ) = φ(cbot). Equipping BxBs with the form
(·, ·)x,s, we have

Proposition 18. The image of ι lies in kerL
`(y)+1
0 , the map ι is injective, and

(ι(φ1), ι(φ2))
−`(y)
L0

= (φ1, φ2)x,sy · (ρ`(y)cbot, cbot)y.

In particular, (·, ·)x,sy is (−1)`(xs)−`(y)-definite if (BxBs, (·, ·)x,s, L0) satisfies the Hodge-
Riemann bilinear relation.

Proof. The image of ι lies in kerL
`(y)+1
0 because ρ`(y)+1φ = 0 for any φ ∈ Hom0(By, BxBs)

as ρ`(y)+1 annihilates By. To prove the displayed identity, we argue as

(ι(φ1), ι(φ2))
−`(y))
L0

= (ρ`(y)φ1(cbot), φ2(cbot))x,s = (ρ`(y)φ∗2φ1(cbot), cbot)y

where φ∗2 ∈ Hom0(BxBs, By) is the adjoint, and the (·) can be dropped for degree reason.
But then by definition of (·, ·)x,sy , the last item is equal to

(ρ`(y)φ∗2φ1(cbot), cbot)y = (φ1, φ2)x,sy (ρ`(y)cbot, cbot)y.

Hence we have proved the displayed identity. The last sentence follows from Proposition
16 and the injectivity of ι. To prove the injectivity of ι, assume that φ ∈ Hom0(By, BxBs)

is such that φ(cbot) = 0. We may choose reduced expressions y and x, and view φ as a

composition φ : By
i
↪−→ BS(y) � By

φ−→ BxBs ↪→ BS(xs)
p−→→ BxBs. That is, we make it

factoring through a morphism φ̃ : BS(y) → BS(xs) so that φ = p ◦ φ̃ ◦ i and we have the

tool from diagrammatic Hecke category to study φ̃. We know φ̃ is an R-linear combination
of double leaves, of degree 0. Each of the double leaf factors through some z (i.e. BS(z))
for some z ≤ y. We claim that



7

Lemma 19. If a double leaf ϕ ∈ Hom∗(BS(y), BS(xs)) of degree ≤ 0 (resp. degree < 0)
factors through BS(z) with z < y (resp. z = y), then p ◦ ϕ ◦ i = 0.

Proof. The composition p ◦ ϕ ◦ i is itself a sum of compositions By → Bz′ → BxBs
of two graded morphisms for various z′ ≤ z. By Soergel hom formula and S(< xs),
Homi(By, Bz′) = 0 if z′ < y and i ≤ 0 and z′ < y, or if z′ = y and i = 0. Similarly

Homi(Bz′ , BxBs) = 0 if i < 0. This proves the lemma. �

With the lemma we may drop those double leaves that factor through z 6= y and we

are left with only double leaves of the form ϕfrf where ϕf = LLx̄s,f ◦ LLȳ,11...1 = LLx̄s,f

and rf ∈ R, i.e. φ̃ =
∑
ϕfrf where f ⊂ x̄s runs over subexpressions such that (x̄s)f = y.

Theorem 12.15 asserts that ϕf (cbot) for various f ⊂ x̄s is a subset of some right R-basis for

BS(xs). Thus φ(cbot) = 0 iff all rf lives in R+. But if deg(rf ) > 0 then Lemma 19 asserts
that p ◦ ϕf ◦ i = 0, so φ = 0 and this proves the injectivity of ι. �

4. Hodge theory: more to do

So far, we have reduced the inductive proof of Soergel’s conjecture to the assertion
that (BxBs, (·, ·)x,s, L0) satisfies the Hodge-Riemann bilinear relation, with the inductive
hypothesis heavily used at every step. The new assertion will again be proved inductively,
but we still need the Soergel’s conjecture at the same time! That is, the induction must be
done in a package and, in fact, this is also how de Cataldo and Migliorini did it - they put
Decomposition Theorem and Hodge theoretic properties into an inductive package. Let us
name the assertions:

(1) S(x): this is Soergel’s conjecture that ch(Bx) = bx.
(2) HR(x): this is the assertion that (Bx, (·, ·)x, L0) satisfies Hodge-Riemann bilinear

relation.
(3) HR(x, s): this is the assertion that when xs > x, (BxBs, (·, ·)x,s, L0) satisfies Hodge-

Riemann bilinear relation.

We emphasize that (·, ·)x and (·, ·)x,s are well-defined up to positive scalars (so Hodge-
Riemann makes sense) only thanks to S(x)! Now our inductive package is:

(A) Assuming S(< xs) and HR(< xs) , prove HR(x, s).
(B) With S(< xs) and HR(x, s) we can prove S(xs); this is what we have worked out

in the last few pages.
(C) Lastly, prove HR(xs), so that the induction can continue.

We almost had (C): we want to prove that L0 on Bxs satisfies Hodge-Riemann, that is
to show certain forms are positive/negative definite. In HR(x, s) we already know that L0

on BxBs satisfies Hodge-Riemann. Since a restriction of a positive/negative definite form
to a subspace is still positive/negative definite, HR(xs) is a consequence of the next lemma
(plus some verification of degree).

Lemma 20. Bxs is direct summand of BxBs.

It remains to prove (A). Mimicking de Cataldo-Migliorini, the proof of (A) consists of
three steps: (A1) Establish a “weak Lefschetz” via the technique of Rouquier complexes,
(A2) Prove some general case of hard Lefschetz, and (A3) Prove HR(x, s). (A1) is to be
done in Chun-Ju’s talk and (A2) is to be done in Ziqing’s ending talk. We will do the
simplest (A3) in the rest of our time.

Recall that we our operator L0 is left multiplication by ρ, for example on BxBs. Consider
another operator M : BxBs → BxBs given by a ⊗R b 7→ a ⊗R (ρb) = (aρ) ⊗R b. We also
write Lζ = L0 + ζM for any real ζ ≥ 0. Now the result to be proved (sketched?) in two
weeks is
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Theorem 21. (Theorem 20.15) (Hard Lefschetz) For any ζ ≥ 0, (BxBs, (·, ·)x,s, Lζ) satis-
fies hard Lefschetz.

To say L0 satisfies the Hodge-Riemann relation is to assert that a non-degenerate form
has a certain signature. When ζ increases, the form varies continuously but remain non-
degenerate and thus cannot have its signature. Hence if any of the form (·, ·)iLζ |P i induced

by Lζ for some ζ satisfies Hodge-Riemann, then it does for all ζ ≥ 0. It thus suffices to
prove it for ζ � 0.

Proposition 22. Suppose x ∈ W , s ∈ S and xs > x. If the triple (Bx, (·, ·)x, L0) satisfies
the Hodge-Riemann bilinear relation, then so does (BxBs, (·, ·)x,s, Lζ) for ζ � 0.

Proof. Let us recall some setup. On Bs we have cbot = 1 = 1⊗ 1 ∈ R⊗Rs R and ctop = cs.
Left multiplication works like ρ ·1 = 1 ·(s.ρ)+ctop ·(∂sρ). This shows that left multiplication

by ρ annihilates cs ∈ Bs, left multiplication by ρ2 is trivial on Bs and consequently M2

is trivial on BxBs. The form on Bs is the one given by (1, 1)s = 0, (1, cs) = (cs, 1) = 1,
(cs, cs) = αs. Consequently, the form (·, ·)x,s is built from (·, ·)x by (b1 ⊗ 1, b2 ⊗ 1) = 0,
(b1 ⊗ 1, b2 ⊗ cs)x,s = (b1 ⊗ cs, b2 ⊗ 1)x,s = (b1, b2)x and (b1 ⊗ cs, b2 ⊗ cs)x,s = (b1, b2)αs.

Fix i ≥ 0. Let u1, ... be part of a basis of Bx that lift a basis of Bx
−i−1

, and let v1, ... be

part of a basis of Bx that lift a basis of the primitive subspace of Bx
−i+1

under L0. Then
we have that

ρu1 ⊗ 1, ..., u1 ⊗ cs, ..., v1 ⊗ 1, ...

is a basis for BxBs
−i

. Because αs ∈ R maps to 0 ∈ R, we have

(Liζuj ⊗ cs, uk ⊗ cs)x,s = 0.

On the other hand, as ρivj has trivial projection to Bx we have

(uj ⊗ cs, Liζvk ⊗ 1)x,s = (Liζvk ⊗ 1, uj ⊗ cs)x,s = 0.

This says that the matrix for (Liζ ·, ·)x,s|BxBs−i is symmetric of the shape∗ ∗ ∗
∗ 0 0
∗ 0 Qζ


That is, this symmetric form has signature (dimBx

−i+1
,dimBx

−i+1
) plus whatever given

by the Qζ-part, namely the pairing

(4.1) (Liζvj ⊗ 1, vk ⊗ 1)x,s = (Li0vj ⊗ 1, vk ⊗ 1)x,s + iζ(Li−1
0 Mvj ⊗ 1, vk ⊗ 1)x,s

where we used that M2 acts trivially. Now thanks to that (1, 1)s = 0, the second term in
(4.1) is equal to

iζ(Li−1
0 Mvj ⊗ 1, vk ⊗ 1)x,s = iζ(∂sρ) · (Li−1

0 vj ⊗ cs, vk ⊗ 1)x,s

which is up to a positive scalar the definite form (Li−1
0 ·, ·)x|P−i+1 . Hence if we have ζ � 0,

then the signature of (Liζ ·, ·)x,s|BxBs−i is determined. It is then a routine to check that

this signature indeed satisfies Hodge-Riemann; see Remark 13 for a heuristic behind such
routine check. �

With the proposition, we have finished our inductive proof of Soergel’s conjecture, to-
gether with a Hodge-Riemann statement, modulo Theorem 21.
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Appendix A. Soergel hom formula

Recall that a ∆-filtration is for a R-bimodule B (again, all such are assumed to be finite
free as a right R-module) is an R-bimodule filtration

0 = Bm ⊂ Bm−1 ⊂ ... ⊂ B0 = B

such that Bi/Bi+1 ∼= R
⊕hxi (B)
xi for some xi ∈ W such that xi 6> xj under Bruhat order

whenever i < j. In this case we define ch∆(B) =
∑m−1

i=0 v`(xi)hxiδxi Likewise, a ∇-filtration
is

0 = B0 ⊂ B1 ⊂ ... ⊂ Bm = B

subject to the similar condition Bi/Bi−1 ∼= R
⊕hxi (B)
xi where xi 6> xj whenever i < j. And

we put ch∇(B) =
∑m

i=1 v
−`(xi)hxiδxi . Lastly, for a finite free right R-module M , denote by

rankM the graded dimension of M ⊗R R. With a slight abuse of language whenever we
write rankM = f for some f ∈ Z[v±1] we mean that M is finite free as a right R-module
with dim∗R(M ⊗R R) = f . Now the so-called Soergel hom formula is

Theorem 23. (Theorem 5.15 in [Soe07]) Let B,B′ be R-bimodules. Suppose that either
(i) B affords a ∆-filtration and B′ is a Soergel bimodule or (ii) B is a Soergel bimodule

and B′ affords a ∇-filtration. Then we have rank Hom∗(B,B′) = (ch∆(B), ch∇(B′)).

Some comments on the proof. We will only discuss case (i); case (ii) follows from case (i)
via D. In some sense, the statement has two parts: the assertion in the special case when
B = Rx, and that this special case implies the general case. Since both sides of the identity
is linear in B′ and the class of Bott-Samelson bimodules generate the split Grothendieck
group of the category of Soergel bimodules, we may assume B′ = BS(y) for some reduced
y = s1...sk. Now, the formula is also linear in B in the following sense: for x ∈ W denote
by Γ>xB the submodule of B within the filtration given by those xi > x, by Γ 6>xB the
quotient, so that we have 0→ Γ>xB → B → Γ6>xB → 0. The Soergel hom formula suggests
that

(A.1) 0→ Hom(Γ∆
6>xB,B

′)→ Hom(B,B′)→ Hom(Γ∆
>xB,B

′)→ 0

is exact, or essentially that Hom(B,B′) → Hom(Γ∆
>xB,B

′) is surjective. On the other
hand, if we can prove this exactness for B′ = BS(y), then we can reduce to the case when
B is also a Bott-Samelson bimodule, or when B = Rx. We note that the case when B is
a Bott-Samelson bimodule is equivalent to the big claim in diagrammatic that the functor
from the diagrammatic Hecke category to the Soergel bimodule category is full. �
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