Setup: Let G be a connected complex reductive (or just semisimple) group. We denote by \mathfrak{g} its Lie algebra and $\mathcal{N} \subset \mathfrak{g}$ the closed subvariety of nilpotent elements. For a space X we denote by $H_{*}^{B M}(X)$ the Borel-Moore homology with \mathbb{C}-coefficients. All dim stands for complex dimension.

1. Geometry of Springer fibers and the Steinberg variety

Recall that nilpotent elements are defined by the following property:
Proposition 1. The following are equivalent for $x \in \mathfrak{g}$:
(1) There exists a representation $\rho: G \rightarrow G L(N)$ that is either faithful or at least $\# \operatorname{ker}(\rho)<\infty$, such that $d \rho(x)$ is nilpotent.
(2) For any representation $\rho: G \rightarrow G L(N)$, the image $d \rho(x)$ is nilpotent.
(3) The analytic (equivalently, Zariski) closure of $\operatorname{Ad}(G) x$ contains 0 .

For G semisimple we may take $\rho=\mathrm{Ad}$, hence the definition in You-Hung's talk. We note that if $x \in \mathcal{N}$ is nilpotent and $c \in \mathbb{C}$, then from the definition $c x$ is evidently nilpotent. For this reason \mathcal{N} is usually called the nilpotent cone.

There exist G-invariant non-degenerate symmetric bilinear forms $\langle\cdot, \cdot\rangle: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ (e.g. the Killing form, if G is semisimple). Any such a form gives a G-equivariant isomorphism (of vector spaces) $\mathfrak{g} \cong \mathfrak{g}^{*}$. Fix any such a form for now. For any Borel subgroup $B \subset G$ we will denote by $\mathfrak{b} \subset \mathfrak{g}$ its Lie algebra. We have the nilpotent radical of \mathfrak{b} is $\mathfrak{n}_{\mathfrak{b}}=\mathfrak{b} \cap \mathcal{N}=[\mathfrak{b}, \mathfrak{b}]$. They have the property that $\mathfrak{n}_{\mathfrak{b}}^{\perp}=\mathfrak{b}$ under the isomorphism $\mathfrak{g} \cong \mathfrak{g}^{*}$ (for any choice).

Let \mathcal{B} be the flag variety. Consider the variety

$$
\tilde{\mathfrak{g}}=\{(x,[B]) \in \mathfrak{g} \times \mathcal{B} \mid x \in \mathfrak{b}\}
$$

This is a closed subvariety of $\mathfrak{g} \times \mathcal{B}$, and thus the first projection gives a proper map $\mu: \tilde{\mathfrak{g}} \rightarrow$ \mathfrak{g}, called the Grothendieck alternation or Grothendieck-Springer resolution. A fiber $\mu^{-1}(x)$ of this map parameterizes Borel subalgebras that contains x. This is naturally a closed subvariety of \mathcal{B} and, as it has high importance in representation theory, we denote it by $\mathcal{B}_{x} \subset \mathcal{B}$. It is called a Springer fiber:

$$
\mathcal{B}_{x}=\{[B] \in \mathcal{B} \mid \mathfrak{b} \ni x\} .
$$

We may also restrict μ to the fibers above $\mathcal{N} \subset \mathfrak{g}$:

$$
\tilde{\mathcal{N}}=\{(x,[B]) \in \mathcal{N} \times \mathcal{B} \mid x \in \mathfrak{b}\}
$$

We have $\left.\mu\right|_{\tilde{\mathcal{N}}}: \tilde{\mathcal{N}} \rightarrow \mathcal{N}$. Since $\mathfrak{n}_{\mathfrak{b}}=\mathfrak{b} \cap \mathcal{N}$ we also have

$$
\tilde{\mathcal{N}}=\left\{(x,[B]) \in \mathfrak{g} \times \mathcal{B} \mid x \in \mathfrak{n}_{\mathfrak{b}}\right\}
$$

We note that there is also the second projection map $p: \tilde{\mathcal{N}} \rightarrow \mathcal{B}$. The fibers $p^{-1}([B])$ can be identified with $\mathfrak{n}_{\mathfrak{b}}$, making p a vector bundle.

This vector bundle has a natural interpretation: the tangent space $T_{[B]}(\mathcal{B})$ can be naturally identified with $\mathfrak{g} / \mathfrak{b}$ since \mathcal{B} is a homogeneous space under G and $N_{G}(B)=B$ is the stabilizer at $[B] \in \mathcal{B}$. Since $\mathfrak{b}^{\perp}=\mathfrak{n}_{\mathfrak{b}}$, we have that $\mathfrak{g} / \mathfrak{b}$ is dual to $\mathfrak{n}_{\mathfrak{b}}$. This (or rather a refinement of this argument for manifolds/varieties does) implies:

Proposition 2. (Lemma 1.4.9) Using a choice of G-equivariant self-adjoint isomorphism $\mathfrak{g} \cong \mathfrak{g}^{*}$, we have a natural isomorphism of vector bundles $\tilde{\mathcal{N}} \cong T^{*}(\mathcal{B})$.

Thanks to this proposition, the map $\mu: \tilde{\mathcal{N}} \rightarrow \mathcal{N}$ can also be realized as a map $T^{*}(\mathcal{B}) \rightarrow$ \mathcal{N}, and we furthermore compose it with $\mathcal{N} \subset \mathfrak{g} \cong \mathfrak{g}^{*}$ and call the composition $m: T^{*}(\mathcal{B}) \rightarrow$ \mathfrak{g}^{*} (using $\langle\cdot, \cdot\rangle$). The highlight is

Proposition 3. (Prop. 1.4.10) The action of G on \mathcal{B} induces a Hamiltonian G-action on the symplectic manifold $T^{*}(\mathcal{B})$, so that the map $m: T^{*}(\mathcal{B}) \rightarrow \mathfrak{g}^{*}$ is exactly the moment map.

Corollary 4. The variety \mathcal{N} is irreducible.
Proof. Since \mathcal{B} is irreducible, so is the cotangent bundle $T^{*}(\mathcal{B})$ and $\tilde{\mathcal{N}}$. This implies that the image of the map $\mu: \tilde{\mathcal{N}} \rightarrow \mathcal{N}$ is irreducible. A basic fact about reductive/semisimple complex Lie algebra is that any element is contained in a Borel subalgebra, i.e. the map $T^{*}(\mathcal{B}) \rightarrow \mathcal{N}$ is surjective. Hence \mathcal{N} is irreducible.

Corollary 5. There is a unique (Zariski) open dense G-orbit on \mathcal{N}. It consists of all regular elements in \mathcal{N}; all other orbits have smaller dimension.

Proof. That there is a unique open dense orbit comes from algebraic geometry and that \mathcal{N} is irreducible. The dimension of this open orbit is $\operatorname{dim} T^{*} \mathcal{B}=2 \operatorname{dim} \mathcal{B}=\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{t}$ (where \mathfrak{t} is any Cartan subalgebra, and recall that all dim means complex dimension), i.e. the orbit consists of regular elements. All other orbits have smaller dimension.

Consider next the variety

$$
Z=\tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}}=\left\{\left(x,[B],\left[B^{\prime}\right]\right) \in \mathcal{N} \times \mathcal{B} \times \mathcal{B} \mid x \in \mathfrak{n}_{\mathfrak{b}} \cap \mathfrak{n}_{\mathfrak{b}}^{\prime}\right\}
$$

This is called the Steinberg variety. While $\tilde{\mathcal{N}}$ is a vector bundle over \mathcal{B}, the natural projection $p_{Z}: Z \rightarrow \mathcal{B} \times \mathcal{B}$ has its fiber above $\left([B],\left[B^{\prime}\right]\right)$ being $\mathfrak{n}_{\mathfrak{b}} \cap \mathfrak{n}_{\mathfrak{b}}^{\prime}$ which has varying dimension. Recall that G acts on $\mathcal{B} \times \mathcal{B}$ giving various orbits Y_{w} indexed by $w \in \mathbb{W}$, the abstract Weyl group. The highlight is
Theorem 6. The restriction of p_{Z} to $p_{Z}^{-1}\left(Y_{w}\right) \rightarrow Y_{w}$ is a vector bundle and is isomorphic to the conormal bundle $N^{*}\left(Y_{w}\right)$ for $Y_{w} \subset \mathcal{B} \times \mathcal{B}$. In other words, we have a stratification

$$
\begin{equation*}
Z=\bigsqcup_{w \in \mathbb{W}} N^{*}\left(Y_{w}\right) \tag{1.1}
\end{equation*}
$$

Proof. We have seen that the cotangent space to $\left([B],\left[B^{\prime}\right]\right) \in \mathcal{B} \times \mathcal{B}$ is $\mathfrak{n}_{\mathfrak{6}} \times \mathfrak{n}_{\mathfrak{b}}^{\prime}$. The conormal space is the subspace of the cotangent space consisting of vectors that are perpendicular to all tangents in $T_{\left([B],\left[B^{\prime}\right]\right)}\left(Y_{w}\right)$. As Y_{w} is a G-orbit, these tangents are exactly given by vectors of the form $(X, X), X \in \mathfrak{g}$. Thus the conormal space consists of vectors of the form $(Y,-Y) \in \mathfrak{n}_{\mathfrak{b}} \times \mathfrak{n}_{\mathfrak{b}}^{\prime}$. This gives the desired isomorphism $p_{Z}^{-1}\left(Y_{w}\right) \cong N^{*}\left(Y_{w}\right)$ by installing a sign on the second factor.

Corollary 7. The Steinberg variety Z has $\# W$ many irreducible components, all of dimension equal to $2 \operatorname{dim} \mathcal{B}=\operatorname{dim} \mathcal{N}=\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{t}$. Each component is the closure of (a unique) $p_{Z}^{-1}\left(Y_{w}\right) \subset Z$.

Corollary 8. For any $x \in \mathcal{N}$, let $\mathcal{O}=\operatorname{Ad}(G) x \subset \mathcal{N}$. Then $\operatorname{dim} \mathcal{B}_{x} \leq \operatorname{dim} \mathcal{B}-\frac{\operatorname{dim} \mathcal{O}}{2}$.
Proof. For any other $y \in \mathcal{O}$, suppose $y=\operatorname{Ad}(g) x$. Then we have $\mathcal{B}_{y}=g \cdot \mathcal{B}_{x}$ and in particular $\operatorname{dim} \mathcal{B}_{y}=\operatorname{dim} \mathcal{B}_{x}$. This is to say that all fibers $\mu: \tilde{\mathcal{N}} \rightarrow \mathcal{N}$ above \mathcal{O}, namely $\mu^{-1}(\mathcal{O}) \rightarrow \mathcal{O}$, have the same dimension $\operatorname{dim} \mathcal{B}_{x}$. Consider $Z_{\mathcal{O}}=\mu^{-1}(\mathcal{O}) \times_{\mathcal{O}} \mu^{-1}(\mathcal{O})$. We have $\operatorname{dim} Z_{\mathcal{O}}=\operatorname{dim} \mathcal{O}+2 \operatorname{dim} \mathcal{B}_{x}$. Hence

$$
\operatorname{dim} \mathcal{B}_{x}=\frac{\operatorname{dim} Z_{\mathcal{O}}-\operatorname{dim} \mathcal{O}}{2} \leq \frac{\operatorname{dim} Z-\operatorname{dim} \mathcal{O}}{2}=\operatorname{dim} \mathcal{B}-\frac{\operatorname{dim} \mathcal{O}}{2}
$$

and we are done.
Corollary 9. For any $\operatorname{Ad}(G)$-orbit $\mathcal{O} \subset \mathfrak{g}$ and Borel subalgebra \mathfrak{b}, we have that $\operatorname{dim} \mathcal{O} \cap \mathfrak{n}_{\mathfrak{b}} \leq$ $\frac{\operatorname{dim} \mathcal{O}}{2}$.

Proof. The intersection $\operatorname{dim} \mathcal{O} \cap \mathfrak{n}_{\mathfrak{b}}$ is exactly a fiber of $\mu^{-1}(\mathcal{O}) \rightarrow \mathcal{B}$; all fibers are isomorphic via G-action. In last corollary we see that $\operatorname{dim} \mu^{-1}(\mathcal{O})=\operatorname{dim} \mathcal{O}+\operatorname{dim} \mathcal{B}_{x}=\operatorname{dim} \mathcal{B}+\frac{\operatorname{dim} \mathcal{O}}{2}$. Hence the assertion.

Now comes the exciting part: Using a fixed choice of G-equivariant self-adjoint isomorphism we identify \mathcal{O} with its image $\mathcal{O}^{*} \subset \mathcal{N}^{*}$, a coadjoint orbit. The symplectic variety \mathcal{O}^{*} has a Hamiltonian G-action and a "universal moment map" $\mathcal{O}^{*} \rightarrow \mathfrak{g}^{*}$ given by the natural inclusion. Fix a Borel subgroup B. We may restrict this to a B-action and we have the resulting moment map $m_{\mathfrak{b}}: \mathcal{O}^{*} \rightarrow \mathfrak{b}^{*}$ is given by the natural projection $\mathfrak{g}^{*} \rightarrow \mathfrak{b}^{*}$. Using that B is solvable, the main theorem in Sheng-Fu's talk (Theorem 1.5.7) says that the fiber $m_{\mathfrak{b}}^{-1}(0)$ is coisotropic in \mathcal{O}^{*}. But since $\left(\mathfrak{b}^{*}\right)^{\perp}=\mathfrak{n}_{\mathfrak{b}}$, the fiber is $m_{\mathfrak{b}}^{-1}(0)=\mathcal{O}^{*} \cap \mathfrak{n}_{\mathfrak{b}}$. Combining Corollary 9 we have

Corollary 10. The closed subvariety $\mathcal{O}^{*} \cap \mathfrak{n}_{\mathfrak{b}} \subset \mathcal{O}$ is Lagrangian, so that the inequalities of dimension in Corollary 8 and 9 are both equalities. Moreover, all components of $\mathcal{O}^{*} \cap \mathfrak{n}_{\mathfrak{b}}$ have the same dimension, and the same for \mathcal{B}_{x}. In addition, all components of $Z_{\mathcal{O}}$ has dimension $\operatorname{dim} \mathcal{O}+2 \operatorname{dim} \mathcal{B}_{x}=\operatorname{dim} Z$.

A by-product is that we have a different proof for
Corollary 11. \mathcal{N} has finitely many nilpotent $(\operatorname{Ad}(G)$-)orbits.
Proof. It is a fact in Lie theory that every element in \mathcal{G} is contained in some Borel subalgebra, i.e. \mathcal{B}_{x} is always non-empty. Hence for any nilpotent orbit $\mathcal{O}, Z_{\mathcal{O}}$ has a non-zero number of components of Z. Since different $Z_{\mathcal{O}}$ for disjoint \mathcal{O} are evidently disjoint, the number of such nilpotent orbits is finite.

Before we move on, we discuss the components of $Z_{\mathcal{O}}$ that will be useful later. Choose $x \in \mathcal{O}$ any representative. Then $\operatorname{Ad}(G)$-action gives $\mathcal{O} \cong G / Z_{G}(x)$. The group $Z_{G}(x)$ also acts on \mathcal{B}_{x} (by restricting the action of G on \mathcal{B}). This gives $\mu^{-1}(\mathcal{O})=G \times{ }^{Z_{G}(x)} \mathcal{B}_{x}:=$ $\left(G \times \mathcal{B}_{x}\right) / Z_{G}(x)$. Consequently $Z_{\mathcal{O}}=\mu^{-1}(\mathcal{O}) \times{ }_{\mathcal{O}} \mu^{-1}(\mathcal{O})=\left(G \times \mathcal{B}_{x} \times \mathcal{B}_{x}\right) / Z_{G}(x)$. This shows that any component of $Z_{\mathcal{O}}$ is the image of $G \times X_{\alpha} \times X_{\alpha}^{\prime}$ for some components $X_{\alpha}, X_{\alpha}^{\prime} \subset \mathcal{B}_{x}$. The image of $G \times X_{\alpha} \times X_{\alpha}^{\prime}$ and $G \times X_{\beta} \times X_{\beta}^{\prime}$ have the same image if ($X_{\alpha}, X_{\alpha}^{\prime}$) and ($X_{\beta}, X_{\beta}^{\prime}$) are in the same $Z_{G}(x)$-orbit. Write $C(x):=\pi_{0}\left(Z_{G}(x)\right):=Z_{G}(x) / Z_{G}(x)^{\circ}$. Then the action of $Z_{G}(x)$ on the components of \mathcal{B}_{x} factors through $C(x)$, and we have

Proposition 12. For any $x \in \mathcal{O}$, the components of $Z_{\mathcal{O}}$ are indexed by $C(x)$-orbits of pairs of components of \mathcal{B}_{x}, given by image of $G \times X_{\alpha} \times X_{\alpha}^{\prime} \rightarrow\left(G \times \mathcal{B}_{x} \times \mathcal{B}_{x}\right) / Z_{G}(x)=Z_{\mathcal{O}}$.

2. W-ACTION

Our next goal is to define a workable \mathbb{W}-action on $H_{*}^{B M}\left(\mathcal{B}_{x}\right)$ for any $x \in \mathcal{N}$. The basic strategy of Chriss-Ginzburg is to use the convolution algebra structure introduced in Adeel's talk. To be precise, we have $Z=\tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} \subset \tilde{\mathcal{N}} \times \tilde{\mathcal{N}}$, the latter being a smooth manifold (it is isomorphic to $T^{*}(\mathcal{B}) \times T^{*}(\mathcal{B})$). Hence convolution gives a multiplication map

$$
H_{i}^{B M}(Z) \times H_{j}^{B M}(Z) \rightarrow H_{i+j-2 d}^{B M}(Z)
$$

where Z has complex dimension d and thus real dimension $2 d$. For convenience we recall the definition of the map. Consider the diagram

Then one defines for $c_{12}, c_{23} \in H_{*}^{B M}(Z)$ that $c_{12} * c_{23}:=\left(p r_{13}\right)_{*}\left(p r_{12}^{*} c_{12} \cap p r_{23}^{*} c_{23}\right) \in$ $H_{*}^{B M}(Z)$. Namely, we pull any two class from respectively the bottom-left and bottomright Z 's, intersect them in the ambient space so that the class lives in the middle space, i.e. in $H_{*}^{B M}\left(\tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}}\right)$, and lastly push along the proper map $p r_{13}$. We remark that as $\tilde{\mathcal{N}} \rightarrow \mathcal{N}$ has positive dimensional fiber (exactly, the Springer fibers), the intersection is typically not transversal and thus highly non-trivial.

Anyhow, we have a shifted-graded associative algebra $H_{*}^{B M}(Z)$ where the "base degree" is at the top degree $2 d$. In particular, $H_{2 d}^{B M}(Z)$ is a subalgebra and the rest $H_{<2 d}^{B M}(Z)$ belongs to the nilpotent radical. The main theorem is
Theorem 13. There is a canonical isomorphism $H_{2 d}^{B M}(Z) \cong \mathbb{C}[\mathbb{W}]$.
To do the construction, let \mathfrak{h} be the abstract Cartan subalgebra of \mathfrak{g}. We have a commutative diagram

which can be "doubled" into

The fiber of ν^{2} above $(0,0)$ is exactly $Z=\tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}}$. On the other hand, we have a Zariski open dense $\mathfrak{h}^{\text {reg }} \subset \mathfrak{h}$ on which \mathbb{W} acts freely. Take any $h \in \mathfrak{h}^{\text {reg }}$ and $w \in \mathbb{W}$, consider the fiber
$\Lambda_{w}^{h}:=\left(\nu^{2}\right)^{-1}(w . h, h)=\left\{\left(x,[B],\left[B^{\prime}\right]\right) \in \mathfrak{g} \times \mathcal{B} \times \mathcal{B} \mid x \in \mathfrak{b} \cap \mathfrak{b}^{\prime}, \nu(x, B)=w . h, \nu\left(x, B^{\prime}\right)=h\right\}$.
The condition that $\nu\left(x, B^{\prime}\right)=h$ implies that $x \in \mathfrak{g}^{s r}$ is regular semisimple, so that x is contained in a unique Cartan subalgebra, and \mathbb{W} acts on the set of Borel subalgebras containing the Cartan subalgebra. In this sense, that $\nu(x, B)=w \cdot h$ and $\nu\left(x, B^{\prime}\right)=h$ implies $(x, B)=w \cdot\left(x, B^{\prime}\right)$, i.e. $\left(\nu^{2}\right)^{-1}(w \cdot h, h)$ is in fact just the graph of $w: \nu^{-1}(h) \rightarrow$ $\nu^{-1}(w . h)$. Hence we have an equality for convolution of fundamental classes (all of degree d):

$$
\left[\Lambda_{w^{\prime}}^{w} h *\left[\Lambda_{w}^{h}\right]=\left[\Lambda_{w^{\prime} w}^{h}\right]\right.
$$

Now we define a class using specialization (see 2.6.30):

$$
\left[\Lambda_{w}^{0}\right]:=\lim _{c \in \mathbb{C}, c \rightarrow 0}\left[\Lambda_{w}^{c . h}\right] \in H_{2 d}^{B M}(Z)
$$

(Notation warning: $\left[\Lambda_{w}^{0}\right]$ is not defined as the class of some subvariety.) It has to be proved that this specialization is independent of the choice of h. This is roughly because $\mathfrak{h}^{\text {reg }}$ has complement codimension 2 and is thus connected; see Lemma 3.4.11 for the detail.

The fact that specialization and convolution commute (see 2.7.23) implies that we do have $\left[\Lambda_{w^{\prime}}^{0}\right] *\left[\Lambda_{w}^{0}\right]=\left[\Lambda_{w^{\prime} w}^{0}\right] \in H_{2 d}^{B M}(Z)$. It remains to prove that $\left[\Lambda_{w}^{0}\right]$ for $w \in \mathbb{W}$ does form a \mathbb{C}-basis for $H_{2 d}^{B M}(Z)$. On the other hand, $H_{2 d}^{B M}(Z)$ has another basis given by (1.1); the fundamental classes $\left[N^{*}\left(Y_{w}\right)\right] \in H_{2 d}^{B M}(Z)$ for $w \in \mathbb{W}$ form a basis. We can thus always write

$$
\left[\Lambda_{w}^{0}\right]=\sum_{w^{\prime} \in \mathbb{W}} n_{w^{\prime} w}\left[N^{*}\left(Y_{w}\right)\right]
$$

for some $n_{w^{\prime} w} \in \mathbb{Q}$ (the specialization, etc. can be done with \mathbb{Q}-coefficients, in fact over \mathbb{Z} also with extra work). We now claim the following lemma, which finishes the proof of our main Theorem 13.

Lemma 14. We have $n_{w^{\prime} w}=0$ unless $w^{\prime} \leq w$, i.e. $Y_{w^{\prime}} \subset \overline{Y_{w}}$. When $w^{\prime}=w$, we have $n_{w w}=1$.
Proof. We have a natural projection $\Lambda_{w}^{h} \rightarrow \mathcal{B} \times \mathcal{B}$ whose image is Y_{w}. This means that for the purpose of specialization, we can restrict ourselves from $\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}$ to $\left(\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}\right) \times_{\mathcal{B} \times \mathcal{B}} \overline{Y_{w}}$. Intersecting $\left(\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}\right) \times_{\mathcal{B} \times \mathcal{B}} \overline{Y_{w}}$ with $Z=\left(\nu^{2}\right)^{-1}(0,0)$ gives the union of $N^{*}\left(Y_{w^{\prime}}\right)$ for $w^{\prime} \leq w$, hence the first claim of the lemma.

Let us pick a choice of Borel subgroup B_{0} and a maximal torus T_{0} so that we identify \mathfrak{h} with Lie T_{0} and \mathbb{W} with $N_{G}\left(T_{0}\right) / T_{0}$. Then Y_{w} is the G-orbit of $\left(w B_{0} w^{-1}, B_{0}\right)$, giving $Y_{w} \cong G /\left(B_{0} \cap w B_{0} w^{-1}\right)$. We then have

$$
\begin{aligned}
\Lambda_{w}^{h} & =\left\{\left(x,[B],\left[B^{\prime}\right]\right) \in \mathfrak{g} \times Y_{w} \mid x \in \mathfrak{b} \cap \mathfrak{b}^{\prime}, \nu\left(x, B^{\prime}\right)=h\right\} \\
& =\left(G \times\left(h+\left(\mathfrak{n}_{\mathfrak{b}_{0}} \cap \mathfrak{n}_{w \mathfrak{b}_{0} w^{-1}}\right)\right) /\left(B_{0} \cap w B_{0} w^{-1}\right) .\right.
\end{aligned}
$$

If we do the specialization within the "open part" $\left(\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}\right) \times_{\mathcal{B} \times \mathcal{B}} Y_{w} \subset(\tilde{\mathfrak{g}} \times \mathfrak{g} \mathfrak{\mathfrak { g }}) \times_{\mathcal{B} \times \mathcal{B}} \overline{Y_{w}}$ then following the definition in 2.6 .30 one can check that $\left[\Lambda_{w}^{h}\right]$ specializes to the fundamental class $\left[\left(G \times\left(\mathfrak{n}_{\mathfrak{b}_{0}} \cap \mathfrak{n}_{w \mathfrak{b}_{0} w^{-1}}\right) /\left(B_{0} \cap w B_{0} w^{-1}\right)\right]\right.$. This class is exactly [$N^{*}\left(T_{w}\right)$] (or rather its restriction to the "open part"), proving the second assertion of the lemma.

Example 15. When $G=G L_{2}(\mathbb{C})$ and $\mathbb{W}=\left\{e, w_{0}\right\}$. We have $\left[\Lambda_{e}^{0}\right]=\left[N^{*}\left(Y_{e}\right)\right]$ and $\left[\Lambda_{w_{0}}^{0}\right]=$ $\left[N^{*}\left(Y_{w_{0}}\right)\right]+n\left[N^{*}\left(Y_{e}\right)\right]$. It remains to determine n. To do it we use the composition law that $\left[\Lambda_{e}^{0}\right] *\left[\Lambda_{e}^{0}\right]=\left[\Lambda_{w_{0}}^{0}\right] *\left[\Lambda_{w_{0}}^{0}\right]=\left[\Lambda_{e}^{0}\right]$. We have

$$
\left[\Lambda_{e}^{0}\right] *\left[\Lambda_{e}^{0}\right]=\left[\Lambda_{e}^{0}\right] \Longrightarrow\left[N^{*}\left(Y_{e}\right)\right] *\left[N^{*}\left(Y_{e}\right)\right]=\left[N^{*}\left(Y_{e}\right)\right]
$$

and

$$
\left[N^{*}\left(Y_{e}\right)\right] *\left[N^{*}\left(Y_{w_{0}}\right)\right]=\left[N^{*}\left(Y_{w_{0}}\right)\right],
$$

which can be routinely checked as the intersection appearing in the definition will be transversal. The most non-trivial part is

$$
\begin{equation*}
\left[N^{*}\left(Y_{w_{0}}\right)\right] *\left[N^{*}\left(Y_{w_{0}}\right)\right]=-2\left[N^{*}\left(Y_{w_{0}}\right)\right] . \tag{2.1}
\end{equation*}
$$

Given the multiplication table, one readily checks that $n=1$ is the only solution, i.e. $\left[\Lambda_{w_{0}}^{0}\right]=\left[N^{*}\left(Y_{w_{0}}\right)\right]+\left[N^{*}\left(Y_{e}\right)\right]$. To prove (2.1), note that $N^{*}\left(Y_{w_{0}}\right)=Y_{w_{0}}$ has its closure being just $\mathcal{B} \times \mathcal{B}$; in our case $\mathcal{B}=\mathbb{P}^{1}$, and $\left[N^{*}\left(Y_{w_{0}}\right)\right]$ is the class of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in $\tilde{N} \times \tilde{N}=$ $T^{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. Following the definition for the convolution, we intersect $\mathbb{P}^{1} \times \mathbb{P}^{1} \times T^{*}\left(\mathbb{P}^{1}\right)$ and $T^{*}\left(\mathbb{P}^{1}\right) \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ within $T^{*}\left(\mathbb{P}^{1}\right) \times T^{*}\left(\mathbb{P}^{1}\right) \times T^{*}\left(\mathbb{P}^{1}\right)$. Essentially, this is intersecting \mathbb{P}^{1} with itself within $T^{*}\left(\mathbb{P}^{1}\right)$. But this is the Chern number of the normal bundle, i.e. the bundle $T^{*}\left(\mathbb{P}^{1}\right)$, which is -2 ! Hence the number in (2.1).

