Setup: Let G be a connected complex reductive (or just semisimple) group. We denote
by g its Lie algebra and N C g the closed subvariety of nilpotent elements. For a space X
we denote by HPM (X)) the Borel-Moore homology with C-coefficients. All dim stands for
complex dimension.

1. GEOMETRY OF SPRINGER FIBERS AND THE STEINBERG VARIETY
Recall that nilpotent elements are defined by the following property:

Proposition 1. The following are equivalent for x € g:
(1) There exists a representation p : G — GL(N) that is either faithful or at least
#ker(p) < oo, such that dp(zx) is nilpotent.
(2) For any representation p : G — GL(N), the image dp(z) is nilpotent.
(3) The analytic (equivalently, Zariski) closure of Ad(G)z contains 0.

For G semisimple we may take p = Ad, hence the definition in You-Hung’s talk. We note
that if z € N is nilpotent and ¢ € C, then from the definition cz is evidently nilpotent. For
this reason A is usually called the nilpotent cone.

There exist G-invariant non-degenerate symmetric bilinear forms (-,-) : g x g — C (e.g.
the Killing form, if G is semisimple). Any such a form gives a G-equivariant isomorphism
(of vector spaces) g = g*. Fix any such a form for now. For any Borel subgroup B C G we
will denote by b C g its Lie algebra. We have the nilpotent radical of b is np = bNN = [b, b].
They have the property that nbL = b under the isomorphism g = g* (for any choice).

Let B be the flag variety. Consider the variety
g={(z,[B]) egxB|zeb}

This is a closed subvariety of g x B, and thus the first projection gives a proper map p : g —
g, called the Grothendieck alternation or Grothendieck—Springer resolution. A
fiber 1! (x) of this map parameterizes Borel subalgebras that contains z. This is naturally
a closed subvariety of B and, as it has high importance in representation theory, we denote
it by By C B. It is called a Springer fiber:

B, ={[B]€B|b>z}.
We may also restrict p to the fibers above N C g:
N ={(z,[B]) e N xB|zeb}
We have | N — N. Since n, = bN A we also have
N ={(z,[B]) € gx B|x €ny}

We note that there is also the second projection map p : N'— B. The fibers p~'([B]) can
be identified with ny, making p a vector bundle.

This vector bundle has a natural interpretation: the tangent space Tip)(B) can be natu-
rally identified with g/b since B is a homogeneous space under G and Ng(B) = B is the
stabilizer at [B] € B. Since bt = ny, we have that g/b is dual to n,. This (or rather a
refinement of this argument for manifolds/varieties does) implies:

Proposition 2. (Lemma 1.4.9) Using a choice of G—equiqam’ant self-adjoint isomorphism
g = g*, we have a natural isomorphism of vector bundles N = T*(B).

Thanks to this proposition, the map u : N = N can also be realized as a map T* (B) —
N, and we furthermore compose it with N' C g = g* and call the composition m : T*(B) —
g* (using (-,-)). The highlight is
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Proposition 3. (Prop. 1.4.10) The action of G on B induces a Hamiltonian G-action on
the symplectic manifold T*(B), so that the map m : T*(B) — g* is exactly the moment
map.

Corollary 4. The variety N is irreducible.

Proof. Since B is irreducible, so is the cotangent bundle 7 (5) and N. This implies that
the image of the map p : N'— N is irreducible. A basic fact about reductive/semisimple

complex Lie algebra is that any element is contained in a Borel subalgebra, i.e. the map
T*(B) — N is surjective. Hence N is irreducible. O

Corollary 5. There is a unique (Zariski) open dense G-orbit on N. It consists of all
reqular elements in N'; all other orbits have smaller dimension.

Proof. That there is a unique open dense orbit comes from algebraic geometry and that
N is irreducible. The dimension of this open orbit is dim7*B = 2dim B = dimg — dim t
(where t is any Cartan subalgebra, and recall that all dim means complex dimension), i.e.
the orbit consists of regular elements. All other orbits have smaller dimension. O

Consider next the variety
Z =N xyN={(,B],[B]) e N x BxB|zen,Nnp}.

This is called the Steinberg variety. While N is a vector bundle over B, the natural
projection py : Z — B x B has its fiber above ([B],[B’]) being n, N nj which has varying
dimension. Recall that G acts on B x B giving various orbits Y,, indexed by w € W, the
abstract Weyl group. The highlight is

Theorem 6. The restriction of py to p}l(Yw) — Yy s a vector bundle and is isomorphic
to the conormal bundle N*(Y,,) for Yy, C B x B. In other words, we have a stratification

(1.1) Z= || N*"(Ya)
weW

Proof. We have seen that the cotangent space to ([B], [B]) € Bx B is ny xnj. The conormal
space is the subspace of the cotangent space consisting of vectors that are perpendicular
to all tangents in T([B],[B'])(Yw)- As Y, is a G-orbit, these tangents are exactly given by
vectors of the form (X, X), X € g. Thus the conormal space consists of vectors of the form
(Y,-Y) € ny x nf,. This gives the desired isomorphism p,*(Y,) = N*(Y,,) by installing a
sign on the second factor. O

Corollary 7. The Steinberg variety Z has #W many irreducible components, all of di-
mension equal to 2dim B = dim N = dimg — dimt. Fach component is the closure of (a
unique) p,' (V) C Z.

Corollary 8. For any x € N, let O = Ad(G)x C N. Then dim B, < dim B — LI;O,

Proof. For any other y € O, suppose y = Ad(g)z. Then we have B, = ¢.B, and in
particular dim B, = dim B,. This is to say that all fibers p : N — N above O, namely
p~1(O) — O, have the same dimension dim 3,. Consider Zp = p~1(O) xp p=1(0). We
have dim Z» = dim O + 2dim B,. Hence

dim Zp — dim O < dim Z — dim O — dimB — dim O

2 2 2

and we are done. O

dim B, =

Corollary 9. For any Ad(G)-orbit O C g and Borel subalgebra b, we have that dim ONny <
dim O
=
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Proof. The intersection dim ONny, is exactly a fiber of 4~ (0O) — B; all fibers are isomorphic
via G-action. In last corollary we see that dim 4 ~1(0) = dim O + dim B, = dim B + 42,
Hence the assertion. O

Now comes the exciting part: Using a fixed choice of G-equivariant self-adjoint isomor-
phism we identify O with its image O* C N*, a coadjoint orbit. The symplectic variety
O* has a Hamiltonian G-action and a “universal moment map” O* — g* given by the
natural inclusion. Fix a Borel subgroup B. We may restrict this to a B-action and we
have the resulting moment map my : O* — b* is given by the natural projection g* — b*.
Using that B is solvable, the main theorem in Sheng-Fu’s talk (Theorem 1.5.7) says that
the fiber m;l(O) is coisotropic in O*. But since (b*)* = ny, the fiber is mgl(O) = O* Nny.
Combining Corollary 9 we have

Corollary 10. The closed subvariety O* Nny C O is Lagrangian, so that the inequalities
of dimension in Corollary 8 and 9 are both equalities. Moreover, all components of O* Nny
have the same dimension, and the same for B,. In addition, all components of Zo has
dimension dim O + 2dim B, = dim Z.

A by-product is that we have a different proof for
Corollary 11. N has finitely many nilpotent (Ad(G)-)orbits.

Proof. 1t is a fact in Lie theory that every element in G is contained in some Borel subal-
gebra, i.e. B, is always non-empty. Hence for any nilpotent orbit O, Z» has a non-zero
number of components of Z. Since different Zp for disjoint O are evidently disjoint, the
number of such nilpotent orbits is finite. Il

Before we move on, we discuss the components of Zp that will be useful later. Choose
x € O any representative. Then Ad(G)-action gives O = G/Zg(x). The group Zg(z)
also acts on B, (by restricting the action of G on B). This gives u~1(0) = G x%¢(®) B, .=
(GxB.)/Zg(z). Consequently Zo = 1 (O)xou~H(O) = (Gx By xBz)/Za(x). This shows
that any component of Zp is the image of G x X, x X/, for some components X, X/, C B,.
The image of G x X, x X|, and G x X x Xj have the same image if (Xa, X,) and (X, Xj)
are in the same Zg(z)-orbit. Write C(x) := mo(Zg(z)) := Za(x)/Za(x)°. Then the action
of Zg(x) on the components of B, factors through C(x), and we have

Proposition 12. For any x € O, the components of Zo are indexed by C(x)-orbits of pairs
of components of By, given by image of G x Xo X X, — (G X By x By)/Za(x) = Zo.
2. W-ACTION

Our next goal is to define a workable W-action on HPM(B,) for any # € N. The basic
strategy of Chriss-Ginzburg is to use the convolution algebra structure introduced in Adeel’s
talk. To be precise, we have Z = N xy N C N x N, the latter being a smooth manifold
(it is isomorphic to T*(B) x T*(B)). Hence convolution gives a multiplication map

HIM(Z) < HPM(Z) — HES 54(2)

where Z has complex dimension d and thus real dimension 2d. For convenience we recall
the definition of the map. Consider the diagram

N XN xN
C o)
./\7><N./\7><./\~/' D NXNNXNN C NXNXNN
lme lpﬂs l}”’%

Z=NxyN Z=NxyN Z=NxyN
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Then one defines for ci2,c23 € HBM(Z) that cio * cag = (priz)«(priycia N Priscas) €
HEM (7). Namely, we pull any two class from respectively the bottom-left and bottom-
right Z’s, intersect them in the ambient space so that the class lives in the middle space,
i.e. in HEM(/V ><N/\7 XN /\7), and lastly push along the proper map priz. We remark that
as N — N has positive dimensional fiber (exactly, the Springer fibers), the intersection is
typically not transversal and thus highly non-trivial.

Anyhow, we have a shifted-graded associative algebra HPM (Z) where the “base degree”
is at the top degree 2d. In particular, HZM(Z) is a subalgebra and the rest HZM(Z)
belongs to the nilpotent radical. The main theorem is

Theorem 13. There is a canonical isomorphism HZM (Z) = C[W].

To do the construction, let h be the abstract Cartan subalgebra of g. We have a com-
mutative diagram

which can be “doubled” into

~ ~ 1/2
gXg8 —— Xy wh

| I

g ——— b//W

The fiber of 2 above (0,0) is exactly Z = N x N. On the other hand, we have a Zariski
open dense h™9 C h on which W acts freely. Take any h € h™9 and w € W, consider the
fiber

A" = )7 (w.h,h) = {(z,[B],[B]) € gxBxB |z € bnb/, v(z, B) = w.h, v(z, B') = h}.

The condition that v(z, B’) = h implies that = € g°" is regular semisimple, so that z
is contained in a unique Cartan subalgebra, and W acts on the set of Borel subalgebras
containing the Cartan subalgebra. In this sense, that v(z, B) = w.h and v(z,B’) = h
implies (x, B) = w.(z, B"), i.e. (v*)"}(w.h,h) is in fact just the graph of w : v=1(h) —
v~!(w.h). Hence we have an equality for convolution of fundamental classes (all of degree
d):
A" (ML) = [Ad]-
Now we define a class using specialization (see 2.6.30):

Y] == lim [ASM] e HEM(Z).
ceC, c—0
(Notation warning: [A?] is not defined as the class of some subvariety.) It has to be proved
that this specialization is independent of the choice of h. This is roughly because h™®Y has
complement codimension 2 and is thus connected; see Lemma 3.4.11 for the detail.

The fact that specialization and convolution commute (see 2.7.23) implies that we do
have [A%,]  [A%] = [AS, ] € HBM(Z). It remains to prove that [A}] for w € W does form
a C-basis for HPM(Z). On the other hand, HPM(Z) has another basis given by (1.1); the
fundamental classes [N*(Y,)] € HBM(Z) for w € W form a basis. We can thus always
write

[Ag;] = Z N [N (Yo )]

w'eW
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for some ny,, € Q (the specialization, etc. can be done with Q-coefficients, in fact over Z
also with extra work). We now claim the following lemma, which finishes the proof of our
main Theorem 13.

Lemma 14. We have ny, = 0 unless w' < w, i.e. Yy C Y,. When w' = w, we have
Nww = 1.

Proof. We have a natural projection A — B x B whose image is Y,,. This means that for
the purpose of specialization, we can restrict ourselves from g x4 g to (g X4 8) XBxB Y.
Intersecting (g X4 §) X5x8 Yw With Z = (1%)71(0,0) gives the union of N*(Y,,) for v’ < w,
hence the first claim of the lemma.

Let us pick a choice of Borel subgroup By and a maximal torus Tj so that we identify
h with LieTy and W with Ng(Ty)/Tp. Then Y, is the G-orbit of (wBow™!, By), giving
Y, & G/(By NwBow™!). We then have

AP = {(2,[B],[B)) €gxYy|zecbnt, v(z,B) = h}
= (G x (h+ (Mg N yggp1))/ (Bo N wByw™).

If we do the specialization within the “open part” (§ X4 8) X5x8 Yw C (8 X¢8) XBx5 Yu then
following the definition in 2.6.30 one can check that [A”] specializes to the fundamental
class [(G x (Mg, N Nypo-1)/(Bo NwBow™1)]. This class is exactly [N*(T,,)] (or rather its
restriction to the “open part”), proving the second assertion of the lemma. [

Ezample 15. When G = GLy(C) and W = {e,wo}. We have [AY] = [N*(Ye)] and [A), ] =
[N*(Yuo)] + n[N*(Ye)]. It remains to determine n. To do it we use the composition law
that [AY] x [AQ] = [AQ, ]« [AD, ] = [A2]. We have

[AL] + [AY] = [AY] = [N*(Ye)] * [N*(Ye)] = [N*(Ye)]
and

[N*(Ye)] # [N (Y )] = [N* (Yo )],

which can be routinely checked as the intersection appearing in the definition will be
transversal. The most non-trivial part is

(2.1) [N (Y )] 5 [N" (Y )] = —2[N" (Y )]-

Given the multiplication table, one readily checks that n = 1 is the only solution, i.e.
[AD,] = [N*(Yuo)] + [N*(Ye)]. To prove (2.1), note that N*(Yy,) = Y, has its closure
being just B x B; in our case B = P!, and [N*(Yy,)] is the class of P! x P! in N x N =
T*(P! x P!). Following the definition for the convolution, we intersect P! x P! x T*(P!) and
T*(PY) x P! x P! within T*(P!) x T*(P!) x T*(P!). Essentially, this is intersecting P! with
itself within 7*(P!). But this is the Chern number of the normal bundle, i.e. the bundle
T*(P1), which is —2! Hence the number in (2.1).



	1. Geometry of Springer fibers and the Steinberg variety
	2. W-action

