
Setup: Let G be a connected complex reductive (or just semisimple) group. We denote
by g its Lie algebra and N ⊂ g the closed subvariety of nilpotent elements. For a space X
we denote by HBM

∗ (X) the Borel-Moore homology with C-coefficients. All dim stands for
complex dimension.

1. Geometry of Springer fibers and the Steinberg variety

Recall that nilpotent elements are defined by the following property:

Proposition 1. The following are equivalent for x ∈ g:

(1) There exists a representation ρ : G → GL(N) that is either faithful or at least
# ker(ρ) <∞, such that dρ(x) is nilpotent.

(2) For any representation ρ : G→ GL(N), the image dρ(x) is nilpotent.
(3) The analytic (equivalently, Zariski) closure of Ad(G)x contains 0.

For G semisimple we may take ρ = Ad, hence the definition in You-Hung’s talk. We note
that if x ∈ N is nilpotent and c ∈ C, then from the definition cx is evidently nilpotent. For
this reason N is usually called the nilpotent cone.

There exist G-invariant non-degenerate symmetric bilinear forms 〈·, ·〉 : g× g → C (e.g.
the Killing form, if G is semisimple). Any such a form gives a G-equivariant isomorphism
(of vector spaces) g ∼= g∗. Fix any such a form for now. For any Borel subgroup B ⊂ G we
will denote by b ⊂ g its Lie algebra. We have the nilpotent radical of b is nb = b∩N = [b, b].
They have the property that n⊥b = b under the isomorphism g ∼= g∗ (for any choice).

Let B be the flag variety. Consider the variety

g̃ = {(x, [B]) ∈ g× B | x ∈ b}

This is a closed subvariety of g×B, and thus the first projection gives a proper map µ : g̃→
g, called the Grothendieck alternation or Grothendieck–Springer resolution. A
fiber µ−1(x) of this map parameterizes Borel subalgebras that contains x. This is naturally
a closed subvariety of B and, as it has high importance in representation theory, we denote
it by Bx ⊂ B. It is called a Springer fiber:

Bx = {[B] ∈ B | b 3 x}.

We may also restrict µ to the fibers above N ⊂ g:

Ñ = {(x, [B]) ∈ N × B | x ∈ b}

We have µ|Ñ : Ñ → N . Since nb = b ∩N we also have

Ñ = {(x, [B]) ∈ g× B | x ∈ nb}

We note that there is also the second projection map p : Ñ → B. The fibers p−1([B]) can
be identified with nb, making p a vector bundle.

This vector bundle has a natural interpretation: the tangent space T[B](B) can be natu-
rally identified with g/b since B is a homogeneous space under G and NG(B) = B is the
stabilizer at [B] ∈ B. Since b⊥ = nb, we have that g/b is dual to nb. This (or rather a
refinement of this argument for manifolds/varieties does) implies:

Proposition 2. (Lemma 1.4.9) Using a choice of G-equivariant self-adjoint isomorphism

g ∼= g∗, we have a natural isomorphism of vector bundles Ñ ∼= T ∗(B).

Thanks to this proposition, the map µ : Ñ → N can also be realized as a map T ∗(B)→
N , and we furthermore compose it with N ⊂ g ∼= g∗ and call the composition m : T ∗(B)→
g∗ (using 〈·, ·〉). The highlight is
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Proposition 3. (Prop. 1.4.10) The action of G on B induces a Hamiltonian G-action on
the symplectic manifold T ∗(B), so that the map m : T ∗(B) → g∗ is exactly the moment
map.

Corollary 4. The variety N is irreducible.

Proof. Since B is irreducible, so is the cotangent bundle T ∗(B) and Ñ . This implies that

the image of the map µ : Ñ → N is irreducible. A basic fact about reductive/semisimple
complex Lie algebra is that any element is contained in a Borel subalgebra, i.e. the map
T ∗(B)→ N is surjective. Hence N is irreducible. �

Corollary 5. There is a unique (Zariski) open dense G-orbit on N . It consists of all
regular elements in N ; all other orbits have smaller dimension.

Proof. That there is a unique open dense orbit comes from algebraic geometry and that
N is irreducible. The dimension of this open orbit is dimT ∗B = 2 dimB = dim g − dim t
(where t is any Cartan subalgebra, and recall that all dim means complex dimension), i.e.
the orbit consists of regular elements. All other orbits have smaller dimension. �

Consider next the variety

Z = Ñ ×N Ñ = {(x, [B], [B′]) ∈ N × B × B | x ∈ nb ∩ n′b}.

This is called the Steinberg variety. While Ñ is a vector bundle over B, the natural
projection pZ : Z → B × B has its fiber above ([B], [B′]) being nb ∩ n′b which has varying
dimension. Recall that G acts on B × B giving various orbits Yw indexed by w ∈ W, the
abstract Weyl group. The highlight is

Theorem 6. The restriction of pZ to p−1Z (Yw)→ Yw is a vector bundle and is isomorphic
to the conormal bundle N∗(Yw) for Yw ⊂ B × B. In other words, we have a stratification

(1.1) Z =
⊔
w∈W

N∗(Yw)

Proof. We have seen that the cotangent space to ([B], [B′]) ∈ B×B is nb×n′b. The conormal
space is the subspace of the cotangent space consisting of vectors that are perpendicular
to all tangents in T([B],[B′])(Yw). As Yw is a G-orbit, these tangents are exactly given by
vectors of the form (X,X), X ∈ g. Thus the conormal space consists of vectors of the form
(Y,−Y ) ∈ nb × n′b. This gives the desired isomorphism p−1Z (Yw) ∼= N∗(Yw) by installing a
sign on the second factor. �

Corollary 7. The Steinberg variety Z has #W many irreducible components, all of di-
mension equal to 2 dimB = dimN = dim g − dim t. Each component is the closure of (a
unique) p−1Z (Yw) ⊂ Z.

Corollary 8. For any x ∈ N , let O = Ad(G)x ⊂ N . Then dimBx ≤ dimB − dimO
2 .

Proof. For any other y ∈ O, suppose y = Ad(g)x. Then we have By = g.Bx and in

particular dimBy = dimBx. This is to say that all fibers µ : Ñ → N above O, namely
µ−1(O) → O, have the same dimension dimBx. Consider ZO = µ−1(O) ×O µ−1(O). We
have dimZO = dimO + 2 dimBx. Hence

dimBx =
dimZO − dimO

2
≤ dimZ − dimO

2
= dimB − dimO

2

and we are done. �

Corollary 9. For any Ad(G)-orbit O ⊂ g and Borel subalgebra b, we have that dimO∩nb ≤
dimO

2 .
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Proof. The intersection dimO∩nb is exactly a fiber of µ−1(O)→ B; all fibers are isomorphic
via G-action. In last corollary we see that dimµ−1(O) = dimO+ dimBx = dimB + dimO

2 .
Hence the assertion. �

Now comes the exciting part: Using a fixed choice of G-equivariant self-adjoint isomor-
phism we identify O with its image O∗ ⊂ N ∗, a coadjoint orbit. The symplectic variety
O∗ has a Hamiltonian G-action and a “universal moment map” O∗ → g∗ given by the
natural inclusion. Fix a Borel subgroup B. We may restrict this to a B-action and we
have the resulting moment map mb : O∗ → b∗ is given by the natural projection g∗ → b∗.
Using that B is solvable, the main theorem in Sheng-Fu’s talk (Theorem 1.5.7) says that
the fiber m−1b (0) is coisotropic in O∗. But since (b∗)⊥ = nb, the fiber is m−1b (0) = O∗ ∩ nb.
Combining Corollary 9 we have

Corollary 10. The closed subvariety O∗ ∩ nb ⊂ O is Lagrangian, so that the inequalities
of dimension in Corollary 8 and 9 are both equalities. Moreover, all components of O∗ ∩ nb
have the same dimension, and the same for Bx. In addition, all components of ZO has
dimension dimO + 2 dimBx = dimZ.

A by-product is that we have a different proof for

Corollary 11. N has finitely many nilpotent (Ad(G)-)orbits.

Proof. It is a fact in Lie theory that every element in G is contained in some Borel subal-
gebra, i.e. Bx is always non-empty. Hence for any nilpotent orbit O, ZO has a non-zero
number of components of Z. Since different ZO for disjoint O are evidently disjoint, the
number of such nilpotent orbits is finite. �

Before we move on, we discuss the components of ZO that will be useful later. Choose
x ∈ O any representative. Then Ad(G)-action gives O ∼= G/ZG(x). The group ZG(x)

also acts on Bx (by restricting the action of G on B). This gives µ−1(O) = G×ZG(x) Bx :=
(G×Bx)/ZG(x). Consequently ZO = µ−1(O)×Oµ−1(O) = (G×Bx×Bx)/ZG(x). This shows
that any component of ZO is the image of G×Xα×X ′α for some components Xα, X

′
α ⊂ Bx.

The image of G×Xα×X ′α and G×Xβ×X ′β have the same image if (Xα, X
′
α) and (Xβ, X

′
β)

are in the same ZG(x)-orbit. Write C(x) := π0(ZG(x)) := ZG(x)/ZG(x)◦. Then the action
of ZG(x) on the components of Bx factors through C(x), and we have

Proposition 12. For any x ∈ O, the components of ZO are indexed by C(x)-orbits of pairs
of components of Bx, given by image of G×Xα ×X ′α → (G× Bx × Bx)/ZG(x) = ZO.

2. W-action

Our next goal is to define a workable W-action on HBM
∗ (Bx) for any x ∈ N . The basic

strategy of Chriss-Ginzburg is to use the convolution algebra structure introduced in Adeel’s
talk. To be precise, we have Z = Ñ ×N Ñ ⊂ Ñ × Ñ , the latter being a smooth manifold
(it is isomorphic to T ∗(B)× T ∗(B)). Hence convolution gives a multiplication map

HBM
i (Z)×HBM

j (Z)→ HBM
i+j−2d(Z)

where Z has complex dimension d and thus real dimension 2d. For convenience we recall
the definition of the map. Consider the diagram

Ñ × Ñ × Ñ

Ñ ×N Ñ × Ñ Ñ ×N Ñ ×N Ñ Ñ × Ñ ×N Ñ

Z = Ñ ×N Ñ Z = Ñ ×N Ñ Z = Ñ ×N Ñ

⊂

pr12

⊂ ⊂
pr13

⊂

pr23
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Then one defines for c12, c23 ∈ HBM
∗ (Z) that c12 ∗ c23 := (pr13)∗(pr

∗
12c12 ∩ pr∗23c23) ∈

HBM
∗ (Z). Namely, we pull any two class from respectively the bottom-left and bottom-

right Z’s, intersect them in the ambient space so that the class lives in the middle space,
i.e. in HBM

∗ (Ñ ×N Ñ ×N Ñ ), and lastly push along the proper map pr13. We remark that

as Ñ → N has positive dimensional fiber (exactly, the Springer fibers), the intersection is
typically not transversal and thus highly non-trivial.

Anyhow, we have a shifted-graded associative algebra HBM
∗ (Z) where the “base degree”

is at the top degree 2d. In particular, HBM
2d (Z) is a subalgebra and the rest HBM

<2d (Z)
belongs to the nilpotent radical. The main theorem is

Theorem 13. There is a canonical isomorphism HBM
2d (Z) ∼= C[W].

To do the construction, let h be the abstract Cartan subalgebra of g. We have a com-
mutative diagram

g̃ h

g h//W

ν

µ

which can be “doubled” into

g̃×g g̃ h×h//W h

g h//W

ν2

π

The fiber of ν2 above (0, 0) is exactly Z = Ñ ×N Ñ . On the other hand, we have a Zariski
open dense hreg ⊂ h on which W acts freely. Take any h ∈ hreg and w ∈ W, consider the
fiber

Λhw := (ν2)−1(w.h, h) = {(x, [B], [B′]) ∈ g×B×B | x ∈ b∩b′, ν(x,B) = w.h, ν(x,B′) = h}.

The condition that ν(x,B′) = h implies that x ∈ gsr is regular semisimple, so that x
is contained in a unique Cartan subalgebra, and W acts on the set of Borel subalgebras
containing the Cartan subalgebra. In this sense, that ν(x,B) = w.h and ν(x,B′) = h
implies (x,B) = w.(x,B′), i.e. (ν2)−1(w.h, h) is in fact just the graph of w : ν−1(h) →
ν−1(w.h). Hence we have an equality for convolution of fundamental classes (all of degree
d):

[Λw.hw′ ] ∗ [Λhw] = [Λhw′w].

Now we define a class using specialization (see 2.6.30):

[Λ0
w] := lim

c∈C, c→0
[Λc.hw ] ∈ HBM

2d (Z).

(Notation warning: [Λ0
w] is not defined as the class of some subvariety.) It has to be proved

that this specialization is independent of the choice of h. This is roughly because hreg has
complement codimension 2 and is thus connected; see Lemma 3.4.11 for the detail.

The fact that specialization and convolution commute (see 2.7.23) implies that we do
have [Λ0

w′ ] ∗ [Λ0
w] = [Λ0

w′w] ∈ HBM
2d (Z). It remains to prove that [Λ0

w] for w ∈W does form

a C-basis for HBM
2d (Z). On the other hand, HBM

2d (Z) has another basis given by (1.1); the

fundamental classes [N∗(Yw)] ∈ HBM
2d (Z) for w ∈ W form a basis. We can thus always

write

[Λ0
w] =

∑
w′∈W

nw′w[N∗(Yw)]
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for some nw′w ∈ Q (the specialization, etc. can be done with Q-coefficients, in fact over Z
also with extra work). We now claim the following lemma, which finishes the proof of our
main Theorem 13.

Lemma 14. We have nw′w = 0 unless w′ ≤ w, i.e. Yw′ ⊂ Yw. When w′ = w, we have
nww = 1.

Proof. We have a natural projection Λhw → B ×B whose image is Yw. This means that for
the purpose of specialization, we can restrict ourselves from g̃ ×g g̃ to (g̃ ×g g̃) ×B×B Yw.

Intersecting (g̃×g g̃)×B×B Yw with Z = (ν2)−1(0, 0) gives the union of N∗(Yw′) for w′ ≤ w,
hence the first claim of the lemma.

Let us pick a choice of Borel subgroup B0 and a maximal torus T0 so that we identify
h with LieT0 and W with NG(T0)/T0. Then Yw is the G-orbit of (wB0w

−1, B0), giving
Yw ∼= G/(B0 ∩ wB0w

−1). We then have

Λhw = {(x, [B], [B′]) ∈ g× Yw | x ∈ b ∩ b′, ν(x,B′) = h}
= (G× (h+ (nb0 ∩ nwb0w−1))/(B0 ∩ wB0w

−1).

If we do the specialization within the “open part” (g̃×g g̃)×B×B Yw ⊂ (g̃×g g̃)×B×B Yw then
following the definition in 2.6.30 one can check that [Λhw] specializes to the fundamental
class [(G × (nb0 ∩ nwb0w−1)/(B0 ∩ wB0w

−1)]. This class is exactly [N∗(Tw)] (or rather its
restriction to the “open part”), proving the second assertion of the lemma. �

Example 15. When G = GL2(C) and W = {e, w0}. We have [Λ0
e] = [N∗(Ye)] and [Λ0

w0
] =

[N∗(Yw0)] + n[N∗(Ye)]. It remains to determine n. To do it we use the composition law
that [Λ0

e] ∗ [Λ0
e] = [Λ0

w0
] ∗ [Λ0

w0
] = [Λ0

e]. We have

[Λ0
e] ∗ [Λ0

e] = [Λ0
e] =⇒ [N∗(Ye)] ∗ [N∗(Ye)] = [N∗(Ye)]

and
[N∗(Ye)] ∗ [N∗(Yw0)] = [N∗(Yw0)],

which can be routinely checked as the intersection appearing in the definition will be
transversal. The most non-trivial part is

(2.1) [N∗(Yw0)] ∗ [N∗(Yw0)] = −2[N∗(Yw0)].

Given the multiplication table, one readily checks that n = 1 is the only solution, i.e.
[Λ0
w0

] = [N∗(Yw0)] + [N∗(Ye)]. To prove (2.1), note that N∗(Yw0) = Yw0 has its closure

being just B × B; in our case B = P1, and [N∗(Yw0)] is the class of P1 × P1 in Ñ × Ñ =
T ∗(P1×P1). Following the definition for the convolution, we intersect P1×P1×T ∗(P1) and
T ∗(P1)×P1×P1 within T ∗(P1)× T ∗(P1)× T ∗(P1). Essentially, this is intersecting P1 with
itself within T ∗(P1). But this is the Chern number of the normal bundle, i.e. the bundle
T ∗(P1), which is −2! Hence the number in (2.1).
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