Setup: Let G be a connected complex reductive (or just semisimple) group. We denote by \mathfrak{g} its Lie algebra and $\mathcal{N} \subset \mathfrak{g}$ the closed subvariety of nilpotent elements. For a space X we denote by $H^{BM}_*(X)$ the Borel-Moore homology with \mathbb{C} -coefficients. All dim stands for complex dimension.

1. Geometry of Springer fibers and the Steinberg variety

Recall that nilpotent elements are defined by the following property:

Proposition 1. The following are equivalent for $x \in \mathfrak{g}$:

- (1) There exists a representation $\rho : G \to GL(N)$ that is either faithful or at least $\# \ker(\rho) < \infty$, such that $d\rho(x)$ is nilpotent.
- (2) For any representation $\rho: G \to GL(N)$, the image $d\rho(x)$ is nilpotent.
- (3) The analytic (equivalently, Zariski) closure of Ad(G)x contains 0.

For G semisimple we may take $\rho = \text{Ad}$, hence the definition in You-Hung's talk. We note that if $x \in \mathcal{N}$ is nilpotent and $c \in \mathbb{C}$, then from the definition cx is evidently nilpotent. For this reason \mathcal{N} is usually called the **nilpotent cone**.

There exist *G*-invariant non-degenerate symmetric bilinear forms $\langle \cdot, \cdot \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ (e.g. the Killing form, if *G* is semisimple). Any such a form gives a *G*-equivariant isomorphism (of vector spaces) $\mathfrak{g} \cong \mathfrak{g}^*$. Fix any such a form for now. For any Borel subgroup $B \subset G$ we will denote by $\mathfrak{b} \subset \mathfrak{g}$ its Lie algebra. We have the nilpotent radical of \mathfrak{b} is $\mathfrak{n}_{\mathfrak{b}} = \mathfrak{b} \cap \mathcal{N} = [\mathfrak{b}, \mathfrak{b}]$. They have the property that $\mathfrak{n}_{\mathfrak{b}}^{\perp} = \mathfrak{b}$ under the isomorphism $\mathfrak{g} \cong \mathfrak{g}^*$ (for any choice).

Let \mathcal{B} be the flag variety. Consider the variety

$$\tilde{\mathfrak{g}} = \{ (x, [B]) \in \mathfrak{g} \times \mathcal{B} \mid x \in \mathfrak{b} \}$$

This is a closed subvariety of $\mathfrak{g} \times \mathcal{B}$, and thus the first projection gives a proper map $\mu : \tilde{\mathfrak{g}} \to \mathfrak{g}$, called the **Grothendieck alternation** or **Grothendieck–Springer resolution**. A fiber $\mu^{-1}(x)$ of this map parameterizes Borel subalgebras that contains x. This is naturally a closed subvariety of \mathcal{B} and, as it has high importance in representation theory, we denote it by $\mathcal{B}_x \subset \mathcal{B}$. It is called a **Springer fiber**:

$$\mathcal{B}_x = \{ [B] \in \mathcal{B} \mid \mathfrak{b} \ni x \}.$$

We may also restrict μ to the fibers above $\mathcal{N} \subset \mathfrak{g}$:

$$\tilde{\mathcal{N}} = \{ (x, [B]) \in \mathcal{N} \times \mathcal{B} \mid x \in \mathfrak{b} \}$$

We have $\mu|_{\tilde{\mathcal{N}}}: \tilde{\mathcal{N}} \to \mathcal{N}$. Since $\mathfrak{n}_{\mathfrak{b}} = \mathfrak{b} \cap \mathcal{N}$ we also have

$$\mathcal{N} = \{ (x, [B]) \in \mathfrak{g} \times \mathcal{B} \mid x \in \mathfrak{n}_{\mathfrak{b}} \}$$

We note that there is also the second projection map $p : \tilde{\mathcal{N}} \to \mathcal{B}$. The fibers $p^{-1}([B])$ can be identified with $\mathfrak{n}_{\mathfrak{b}}$, making p a vector bundle.

This vector bundle has a natural interpretation: the tangent space $T_{[B]}(\mathcal{B})$ can be naturally identified with $\mathfrak{g}/\mathfrak{b}$ since \mathcal{B} is a homogeneous space under G and $N_G(B) = B$ is the stabilizer at $[B] \in \mathcal{B}$. Since $\mathfrak{b}^{\perp} = \mathfrak{n}_{\mathfrak{b}}$, we have that $\mathfrak{g}/\mathfrak{b}$ is dual to $\mathfrak{n}_{\mathfrak{b}}$. This (or rather a refinement of this argument for manifolds/varieties does) implies:

Proposition 2. (Lemma 1.4.9) Using a choice of G-equivariant self-adjoint isomorphism $\mathfrak{g} \cong \mathfrak{g}^*$, we have a natural isomorphism of vector bundles $\tilde{\mathcal{N}} \cong T^*(\mathcal{B})$.

Thanks to this proposition, the map $\mu : \tilde{\mathcal{N}} \to \mathcal{N}$ can also be realized as a map $T^*(\mathcal{B}) \to \mathcal{N}$, and we furthermore compose it with $\mathcal{N} \subset \mathfrak{g} \cong \mathfrak{g}^*$ and call the composition $m : T^*(\mathcal{B}) \to \mathfrak{g}^*$ (using $\langle \cdot, \cdot \rangle$). The highlight is

Proposition 3. (Prop. 1.4.10) The action of G on \mathcal{B} induces a Hamiltonian G-action on the symplectic manifold $T^*(\mathcal{B})$, so that the map $m : T^*(\mathcal{B}) \to \mathfrak{g}^*$ is exactly the moment map.

Corollary 4. The variety \mathcal{N} is irreducible.

Proof. Since \mathcal{B} is irreducible, so is the cotangent bundle $T^*(\mathcal{B})$ and $\tilde{\mathcal{N}}$. This implies that the image of the map $\mu : \tilde{\mathcal{N}} \to \mathcal{N}$ is irreducible. A basic fact about reductive/semisimple complex Lie algebra is that any element is contained in a Borel subalgebra, i.e. the map $T^*(\mathcal{B}) \to \mathcal{N}$ is surjective. Hence \mathcal{N} is irreducible. \Box

Corollary 5. There is a unique (Zariski) open dense G-orbit on \mathcal{N} . It consists of all regular elements in \mathcal{N} ; all other orbits have smaller dimension.

Proof. That there is a unique open dense orbit comes from algebraic geometry and that \mathcal{N} is irreducible. The dimension of this open orbit is $\dim T^*\mathcal{B} = 2\dim \mathcal{B} = \dim \mathfrak{g} - \dim \mathfrak{t}$ (where \mathfrak{t} is any Cartan subalgebra, and recall that all dim means complex dimension), i.e. the orbit consists of regular elements. All other orbits have smaller dimension. \Box

Consider next the variety

$$Z = \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} = \{ (x, [B], [B']) \in \mathcal{N} \times \mathcal{B} \times \mathcal{B} \mid x \in \mathfrak{n}_{\mathfrak{b}} \cap \mathfrak{n}_{\mathfrak{b}}' \}.$$

This is called the **Steinberg variety**. While $\tilde{\mathcal{N}}$ is a vector bundle over \mathcal{B} , the natural projection $p_Z : Z \to \mathcal{B} \times \mathcal{B}$ has its fiber above ([B], [B']) being $\mathfrak{n}_{\mathfrak{b}} \cap \mathfrak{n}'_{\mathfrak{b}}$ which has varying dimension. Recall that G acts on $\mathcal{B} \times \mathcal{B}$ giving various orbits Y_w indexed by $w \in \mathbb{W}$, the abstract Weyl group. The highlight is

Theorem 6. The restriction of p_Z to $p_Z^{-1}(Y_w) \to Y_w$ is a vector bundle and is isomorphic to the conormal bundle $N^*(Y_w)$ for $Y_w \subset \mathcal{B} \times \mathcal{B}$. In other words, we have a stratification

(1.1)
$$Z = \bigsqcup_{w \in \mathbb{W}} N^*(Y_w)$$

Proof. We have seen that the cotangent space to $([B], [B']) \in \mathcal{B} \times \mathcal{B}$ is $\mathfrak{n}_{\mathfrak{b}} \times \mathfrak{n}'_{\mathfrak{b}}$. The conormal space is the subspace of the cotangent space consisting of vectors that are perpendicular to all tangents in $T_{([B], [B'])}(Y_w)$. As Y_w is a *G*-orbit, these tangents are exactly given by vectors of the form $(X, X), X \in \mathfrak{g}$. Thus the conormal space consists of vectors of the form $(Y, -Y) \in \mathfrak{n}_{\mathfrak{b}} \times \mathfrak{n}'_{\mathfrak{b}}$. This gives the desired isomorphism $p_Z^{-1}(Y_w) \cong N^*(Y_w)$ by installing a sign on the second factor.

Corollary 7. The Steinberg variety Z has #W many irreducible components, all of dimension equal to $2\dim \mathcal{B} = \dim \mathcal{N} = \dim \mathfrak{g} - \dim \mathfrak{t}$. Each component is the closure of (a unique) $p_Z^{-1}(Y_w) \subset Z$.

Corollary 8. For any $x \in \mathcal{N}$, let $\mathcal{O} = \operatorname{Ad}(G)x \subset \mathcal{N}$. Then $\dim \mathcal{B}_x \leq \dim \mathcal{B} - \frac{\dim \mathcal{O}}{2}$.

Proof. For any other $y \in \mathcal{O}$, suppose $y = \operatorname{Ad}(g)x$. Then we have $\mathcal{B}_y = g.\mathcal{B}_x$ and in particular dim $\mathcal{B}_y = \dim \mathcal{B}_x$. This is to say that all fibers $\mu : \tilde{\mathcal{N}} \to \mathcal{N}$ above \mathcal{O} , namely $\mu^{-1}(\mathcal{O}) \to \mathcal{O}$, have the same dimension dim \mathcal{B}_x . Consider $Z_{\mathcal{O}} = \mu^{-1}(\mathcal{O}) \times_{\mathcal{O}} \mu^{-1}(\mathcal{O})$. We have dim $Z_{\mathcal{O}} = \dim \mathcal{O} + 2 \dim \mathcal{B}_x$. Hence

$$\dim \mathcal{B}_x = \frac{\dim Z_{\mathcal{O}} - \dim \mathcal{O}}{2} \le \frac{\dim Z - \dim \mathcal{O}}{2} = \dim \mathcal{B} - \frac{\dim \mathcal{O}}{2}$$

and we are done.

Corollary 9. For any $\operatorname{Ad}(G)$ -orbit $\mathcal{O} \subset \mathfrak{g}$ and Borel subalgebra \mathfrak{b} , we have that $\dim \mathcal{O} \cap \mathfrak{n}_{\mathfrak{b}} \leq \frac{\dim \mathcal{O}}{2}$.

Proof. The intersection dim $\mathcal{O} \cap \mathfrak{n}_{\mathfrak{b}}$ is exactly a fiber of $\mu^{-1}(\mathcal{O}) \to \mathcal{B}$; all fibers are isomorphic via *G*-action. In last corollary we see that dim $\mu^{-1}(\mathcal{O}) = \dim \mathcal{O} + \dim \mathcal{B}_x = \dim \mathcal{B} + \frac{\dim \mathcal{O}}{2}$. Hence the assertion.

Now comes the exciting part: Using a fixed choice of *G*-equivariant self-adjoint isomorphism we identify \mathcal{O} with its image $\mathcal{O}^* \subset \mathcal{N}^*$, a coadjoint orbit. The symplectic variety \mathcal{O}^* has a Hamiltonian *G*-action and a "universal moment map" $\mathcal{O}^* \to \mathfrak{g}^*$ given by the natural inclusion. Fix a Borel subgroup *B*. We may restrict this to a *B*-action and we have the resulting moment map $m_{\mathfrak{b}}: \mathcal{O}^* \to \mathfrak{b}^*$ is given by the natural projection $\mathfrak{g}^* \to \mathfrak{b}^*$. Using that *B* is solvable, the main theorem in Sheng-Fu's talk (Theorem 1.5.7) says that the fiber $m_{\mathfrak{b}}^{-1}(0)$ is coisotropic in \mathcal{O}^* . But since $(\mathfrak{b}^*)^{\perp} = \mathfrak{n}_{\mathfrak{b}}$, the fiber is $m_{\mathfrak{b}}^{-1}(0) = \mathcal{O}^* \cap \mathfrak{n}_{\mathfrak{b}}$. Combining Corollary 9 we have

Corollary 10. The closed subvariety $\mathcal{O}^* \cap \mathfrak{n}_{\mathfrak{b}} \subset \mathcal{O}$ is Lagrangian, so that the inequalities of dimension in Corollary 8 and 9 are both equalities. Moreover, all components of $\mathcal{O}^* \cap \mathfrak{n}_{\mathfrak{b}}$ have the same dimension, and the same for \mathcal{B}_x . In addition, all components of $Z_{\mathcal{O}}$ has dimension dim $\mathcal{O} + 2 \dim \mathcal{B}_x = \dim Z$.

A by-product is that we have a different proof for

Corollary 11. \mathcal{N} has finitely many nilpotent (Ad(G)-)orbits.

Proof. It is a fact in Lie theory that every element in \mathcal{G} is contained in some Borel subalgebra, i.e. \mathcal{B}_x is always non-empty. Hence for any nilpotent orbit \mathcal{O} , $Z_{\mathcal{O}}$ has a non-zero number of components of Z. Since different $Z_{\mathcal{O}}$ for disjoint \mathcal{O} are evidently disjoint, the number of such nilpotent orbits is finite.

Before we move on, we discuss the components of $Z_{\mathcal{O}}$ that will be useful later. Choose $x \in \mathcal{O}$ any representative. Then $\operatorname{Ad}(G)$ -action gives $\mathcal{O} \cong G/Z_G(x)$. The group $Z_G(x)$ also acts on \mathcal{B}_x (by restricting the action of G on \mathcal{B}). This gives $\mu^{-1}(\mathcal{O}) = G \times^{Z_G(x)} \mathcal{B}_x := (G \times \mathcal{B}_x)/Z_G(x)$. Consequently $Z_{\mathcal{O}} = \mu^{-1}(\mathcal{O}) \times_{\mathcal{O}} \mu^{-1}(\mathcal{O}) = (G \times \mathcal{B}_x \times \mathcal{B}_x)/Z_G(x)$. This shows that any component of $Z_{\mathcal{O}}$ is the image of $G \times X_\alpha \times X'_\alpha$ for some components $X_\alpha, X'_\alpha \subset \mathcal{B}_x$. The image of $G \times X_\alpha \times X'_\alpha$ and $G \times X_\beta \times X'_\beta$ have the same image if (X_α, X'_α) and (X_β, X'_β) are in the same $Z_G(x)$ -orbit. Write $C(x) := \pi_0(Z_G(x)) := Z_G(x)/Z_G(x)^\circ$. Then the action of $Z_G(x)$ on the components of \mathcal{B}_x factors through C(x), and we have

Proposition 12. For any $x \in \mathcal{O}$, the components of $Z_{\mathcal{O}}$ are indexed by C(x)-orbits of pairs of components of \mathcal{B}_x , given by image of $G \times X_\alpha \times X'_\alpha \to (G \times \mathcal{B}_x \times \mathcal{B}_x)/Z_G(x) = Z_{\mathcal{O}}$.

2. W-Action

Our next goal is to define a workable \mathbb{W} -action on $H^{BM}_*(\mathcal{B}_x)$ for any $x \in \mathcal{N}$. The basic strategy of Chriss-Ginzburg is to use the convolution algebra structure introduced in Adeel's talk. To be precise, we have $Z = \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} \subset \tilde{\mathcal{N}} \times \tilde{\mathcal{N}}$, the latter being a smooth manifold (it is isomorphic to $T^*(\mathcal{B}) \times T^*(\mathcal{B})$). Hence convolution gives a multiplication map

$$H_i^{BM}(Z) \times H_j^{BM}(Z) \to H_{i+j-2d}^{BM}(Z)$$

where Z has complex dimension d and thus real dimension 2d. For convenience we recall the definition of the map. Consider the diagram

$$\begin{split} \tilde{\mathcal{N}} \times \tilde{\mathcal{N}} \times \tilde{\mathcal{N}} \\ \subset & \supset \\ \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} \times \tilde{\mathcal{N}} & \supset & \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} & \subset & \tilde{\mathcal{N}} \times \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} \\ \downarrow^{pr_{12}} & & \downarrow^{pr_{13}} & & \downarrow^{pr_{23}} \\ Z = \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} & Z = \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} & Z = \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} \end{split}$$

Then one defines for $c_{12}, c_{23} \in H^{BM}_*(Z)$ that $c_{12} * c_{23} := (pr_{13})_*(pr_{12}^*c_{12} \cap pr_{23}^*c_{23}) \in$ $H^{BM}_{*}(Z)$. Namely, we pull any two class from respectively the bottom-left and bottomright Z's, intersect them in the ambient space so that the class lives in the middle space, i.e. in $H^{BM}_*(\tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}})$, and lastly push along the proper map pr_{13} . We remark that as $\tilde{\mathcal{N}} \to \mathcal{N}$ has positive dimensional fiber (exactly, the Springer fibers), the intersection is typically not transversal and thus highly non-trivial.

Anyhow, we have a shifted-graded associative algebra $H^{BM}_*(Z)$ where the "base degree" is at the top degree 2d. In particular, $H_{2d}^{BM}(Z)$ is a subalgebra and the rest $H_{\leq 2d}^{BM}(Z)$ belongs to the nilpotent radical. The main theorem is

Theorem 13. There is a canonical isomorphism $H_{2d}^{BM}(Z) \cong \mathbb{C}[\mathbb{W}]$.

To do the construction, let \mathfrak{h} be the abstract Cartan subalgebra of \mathfrak{g} . We have a commutative diagram

$$\begin{array}{c} \tilde{\mathfrak{g}} & \stackrel{\nu}{\longrightarrow} \mathfrak{h} \\ \downarrow^{\mu} & \downarrow \\ \mathfrak{g} & \longrightarrow \mathfrak{h} / \! / \mathbb{W} \end{array}$$

which can be "doubled" into

The fiber of ν^2 above (0,0) is exactly $Z = \tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}}$. On the other hand, we have a Zariski open dense $\mathfrak{h}^{reg} \subset \mathfrak{h}$ on which \mathbb{W} acts freely. Take any $h \in \mathfrak{h}^{reg}$ and $w \in \mathbb{W}$, consider the fiber

$$\Lambda^h_w := (\nu^2)^{-1}(w.h, h) = \{ (x, [B], [B']) \in \mathfrak{g} \times \mathcal{B} \times \mathcal{B} \mid x \in \mathfrak{b} \cap \mathfrak{b}', \ \nu(x, B) = w.h, \ \nu(x, B') = h \}.$$

The condition that $\nu(x, B') = h$ implies that $x \in \mathfrak{g}^{sr}$ is regular semisimple, so that x is contained in a unique Cartan subalgebra, and $\mathbb W$ acts on the set of Borel subalgebras containing the Cartan subalgebra. In this sense, that $\nu(x, B) = w h$ and $\nu(x, B') = h$ implies (x, B) = w.(x, B'), i.e. $(\nu^2)^{-1}(w.h, h)$ is in fact just the graph of $w: \nu^{-1}(h) \to 0$ $\nu^{-1}(w.h)$. Hence we have an equality for convolution of fundamental classes (all of degree d):

$$[\Lambda^{w.h}_{w'}] * [\Lambda^h_w] = [\Lambda^h_{w'w}].$$

Now we define a class using specialization (see 2.6.30):

$$[\Lambda^0_w] := \lim_{c \in \mathbb{C}, \ c \to 0} [\Lambda^{c.h}_w] \in H^{BM}_{2d}(Z).$$

(Notation warning: $[\Lambda_w^0]$ is **not** defined as the class of some subvariety.) It has to be proved that this specialization is independent of the choice of h. This is roughly because \mathfrak{h}^{reg} has complement codimension 2 and is thus connected; see Lemma 3.4.11 for the detail.

The fact that specialization and convolution commute (see 2.7.23) implies that we do have $[\Lambda_{w'}^{0}] * [\Lambda_{w}^{0}] = [\Lambda_{w'w}^{0}] \in H_{2d}^{BM}(Z)$. It remains to prove that $[\Lambda_{w}^{0}]$ for $w \in \mathbb{W}$ does form a \mathbb{C} -basis for $H_{2d}^{BM}(Z)$. On the other hand, $H_{2d}^{BM}(Z)$ has another basis given by (1.1); the fundamental classes $[N^{*}(Y_{w})] \in H_{2d}^{BM}(Z)$ for $w \in \mathbb{W}$ form a basis. We can thus always write

$$[\Lambda^0_w] = \sum_{w' \in \mathbb{W}} n_{w'w}[N^*(Y_w)]$$

for some $n_{w'w} \in \mathbb{Q}$ (the specialization, etc. can be done with \mathbb{Q} -coefficients, in fact over \mathbb{Z} also with extra work). We now claim the following lemma, which finishes the proof of our main Theorem 13.

Lemma 14. We have $n_{w'w} = 0$ unless $w' \leq w$, i.e. $Y_{w'} \subset \overline{Y_w}$. When w' = w, we have $n_{ww} = 1$.

Proof. We have a natural projection $\Lambda_w^h \to \mathcal{B} \times \mathcal{B}$ whose image is Y_w . This means that for the purpose of specialization, we can restrict ourselves from $\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}$ to $(\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}) \times_{\mathcal{B} \times \mathcal{B}} \overline{Y_w}$. Intersecting $(\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}) \times_{\mathcal{B} \times \mathcal{B}} \overline{Y_w}$ with $Z = (\nu^2)^{-1}(0,0)$ gives the union of $N^*(Y_{w'})$ for $w' \leq w$, hence the first claim of the lemma.

Let us pick a choice of Borel subgroup B_0 and a maximal torus T_0 so that we identify \mathfrak{h} with Lie T_0 and \mathbb{W} with $N_G(T_0)/T_0$. Then Y_w is the *G*-orbit of (wB_0w^{-1}, B_0) , giving $Y_w \cong G/(B_0 \cap wB_0w^{-1})$. We then have

$$\begin{array}{rcl} \Lambda^h_w &=& \{(x,[B],[B']) \in \mathfrak{g} \times Y_w \mid x \in \mathfrak{b} \cap \mathfrak{b}', \ \nu(x,B') = h\} \\ &=& (G \times (h + (\mathfrak{n}_{\mathfrak{b}_0} \cap \mathfrak{n}_{w\mathfrak{b}_0w^{-1}}))/(B_0 \cap wB_0w^{-1}). \end{array}$$

If we do the specialization within the "open part" $(\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}) \times_{\mathcal{B} \times \mathcal{B}} Y_w \subset (\tilde{\mathfrak{g}} \times_{\mathfrak{g}} \tilde{\mathfrak{g}}) \times_{\mathcal{B} \times \mathcal{B}} \overline{Y_w}$ then following the definition in 2.6.30 one can check that $[\Lambda^h_w]$ specializes to the fundamental class $[(G \times (\mathfrak{n}_{\mathfrak{b}_0} \cap \mathfrak{n}_{w\mathfrak{b}_0w^{-1}})/(B_0 \cap wB_0w^{-1})]$. This class is exactly $[N^*(T_w)]$ (or rather its restriction to the "open part"), proving the second assertion of the lemma. \Box

Example 15. When $G = GL_2(\mathbb{C})$ and $\mathbb{W} = \{e, w_0\}$. We have $[\Lambda_e^0] = [N^*(Y_e)]$ and $[\Lambda_{w_0}^0] = [N^*(Y_{w_0})] + n[N^*(Y_e)]$. It remains to determine n. To do it we use the composition law that $[\Lambda_e^0] * [\Lambda_e^0] = [\Lambda_{w_0}^0] * [\Lambda_{w_0}^0] = [\Lambda_e^0]$. We have

$$[\Lambda_e^0] * [\Lambda_e^0] = [\Lambda_e^0] \implies [N^*(Y_e)] * [N^*(Y_e)] = [N^*(Y_e)]$$

and

$$[N^*(Y_e)] * [N^*(Y_{w_0})] = [N^*(Y_{w_0})],$$

which can be routinely checked as the intersection appearing in the definition will be transversal. The most non-trivial part is

(2.1)
$$[N^*(Y_{w_0})] * [N^*(Y_{w_0})] = -2[N^*(Y_{w_0})].$$

Given the multiplication table, one readily checks that n = 1 is the only solution, i.e. $[\Lambda_{w_0}^0] = [N^*(Y_{w_0})] + [N^*(Y_e)]$. To prove (2.1), note that $N^*(Y_{w_0}) = Y_{w_0}$ has its closure being just $\mathcal{B} \times \mathcal{B}$; in our case $\mathcal{B} = \mathbb{P}^1$, and $[N^*(Y_{w_0})]$ is the class of $\mathbb{P}^1 \times \mathbb{P}^1$ in $\tilde{N} \times \tilde{N} = T^*(\mathbb{P}^1 \times \mathbb{P}^1)$. Following the definition for the convolution, we intersect $\mathbb{P}^1 \times \mathbb{P}^1 \times T^*(\mathbb{P}^1)$ and $T^*(\mathbb{P}^1) \times \mathbb{P}^1 \times \mathbb{P}^1$ within $T^*(\mathbb{P}^1) \times T^*(\mathbb{P}^1) \times T^*(\mathbb{P}^1)$. Essentially, this is intersecting \mathbb{P}^1 with itself within $T^*(\mathbb{P}^1)$. But this is the Chern number of the normal bundle, i.e. the bundle $T^*(\mathbb{P}^1)$, which is -2! Hence the number in (2.1).