These notes roughly follow Sections 3.5 and 3.6 of [CG97]. Let G be a reductive group with derived subgroup G' = [G, G], which is semisimple. We let \mathcal{N}_G denote the nilpotent cone of G; then, $\mathcal{N}_G = \mathcal{N}_{G'}$ and $W_G = W_{G'}$, so we may reduce to the case of a semisimple group G. We denote the top-dimensional Borel-Moore homology of an equidimensional space X by H(X). The Springer resolution is

$$\mu: \widetilde{\mathcal{N}} = G \times^B \mathfrak{n} \simeq G \times^B \mathfrak{b}^\perp = T^*(G/B) \to \mathcal{N}$$

where the isomorphism is by Killing form, and the Steinberg variety is $\mathcal{Z} = \widetilde{\mathcal{N}} \times_{\mathcal{N}} \widetilde{\mathcal{N}} = \widetilde{\mathcal{N}} \times_{\mathfrak{g}} \widetilde{\mathcal{N}}$. Let $x \in \mathcal{O} \subset \mathcal{N}$ be a choice of representative in a nilpotent orbit. Recall the strict semi-smallness equality

$$2\dim_{\mathbb{C}}(\mathcal{B}_x) + \dim_{\mathbb{C}}(\mathcal{O}) = \dim_{\mathbb{C}}(\tilde{\mathcal{N}})$$

which also includes the assertion that \mathcal{B}_x is equidimensional.¹ We let $d = \dim_{\mathbb{C}}(\mathcal{N}) = \dim_{\mathbb{C}}(\widetilde{\mathcal{N}}) = \dim_{\mathbb{C}}(\mathcal{Z})$, and $d_x = \dim_{\mathbb{C}}(\mathcal{B}_x)$. Let $Z_G(x) \subset G$ be the stabilizer and $C_G(x) = Z_G(x)/Z_G(x)^\circ$ its component group.

Choose a transverse slice S_x to \mathcal{O} at x (e.g. the Slodowy slice), i.e. $S_x \subset \mathcal{N}$ such that there is a open U_x of $x \in \mathcal{N}$ such that there is a transversal slice S_G to $Z_G(x)$ in G such that the the action map $S_G \times S_x \simeq U_x$. We define $\tilde{S}_x := \mu^{-1}(S_x)$ and $\tilde{U}_x = \mu^{-1}(U_x)$; we have that $U \times \tilde{S}_x \to \tilde{U}_x$ is a homeomorphism by base change. Note that as an open subset \tilde{U}_x is smooth, thus \tilde{S}_x is smooth. Furthermore, we have the following.

Proposition 0.1. The strict semi-smallness equality² dimension count

$$2\dim_{\mathbb{C}}(\mathcal{B}_x) + \dim_{\mathbb{C}}(\mathcal{O}) = \dim_{\mathbb{C}}(\mathcal{N})$$

is equivalent to the assertion that $\mathcal{B}_x \subset \widetilde{S}_x$ is half-dimensional.

Exercise 1. Classify the nilpotent orbits in SL_3 and compute transverse slices S_x . Compute the Springer fibers $\mathcal{B}_x \simeq \mathbb{P}^1 \coprod_{pt} \mathbb{P}^1$ and the \tilde{S}_x . There is always a unique nilpotent orbit whose closure contains every orbit except the regular orbit; this is called the *subregular* orbit; in this case show it has dimension 4. Let x be subregular. Find a transverse slice to x in \mathcal{N} ; show that it is defined by an equation $a^3 + bc = 0.3$ Show that the Springer resolution over this transverse slice is the blow-up of the singularity. Observe that the dimensions of the Springer fiber are equal to the dimensions of the irreducible representations of S_3 .

Let us recall some generalities on convolution. Let $X_i \to Y$ be proper maps of smooth varieties (or manifolds). Let $Z_{ij} = X_i \times_Y X_j$. Then, we have the diagram

$$Z_{12} \times Z_{23} \longleftarrow Z_{123} = X_1 \times_Y X_2 \times_Y X_3 \longrightarrow Z_{13}.$$

This induces a map on Borel-Moore homology

$$H_{d_{12}}^{BM}(Z_{12}) \otimes H_{d_{23}}^{BM}(Z_{23}) \longrightarrow H_{d_{12}+d_{23}-\dim(X_2)}(Z_{13}).$$

In particular, we are interested in the case where $X := X_1 = X_2$ and $Y_0 := X_3 \subset Y$. We denote $Z = X \times_Y X$ and $X_0 := X \times_Y Y_0$. Further assume that $X \to Y$ is semi-small, so $\dim(Z) = \dim(X)$. Then, we see that $H_d^{BM}(Z)$ acts on $H_i^{BM}(X_0)$ for every *i*.

Exercise 2. Explicitly compute the isomorphism $kW \simeq H(\mathcal{Z})$. Compute the action of $H(\mathcal{Z})$ on the Springer fibers $H(\mathcal{B}_x)$ for $G = SL_2$. Show that $H(\mathcal{B}_0)$ is the sign representation, and $H(\mathcal{B}_x)$ is the trivial representation for $x \neq 0$.

We now state the main theorem. Note that the stabilizer $Z_G(x)$ acts on \mathcal{B}_x and the component group $C_G(x)$ acts on the set of irreducible components of \mathcal{B}_x . These form a basis of $H(\mathcal{B}_x)$, thus $C_G(x)$ acts on $H(\mathcal{B}_x)$, compatibly

¹I.e. its irreducible components have the same dimension.

 $^{^{2}}$ This is, in my view, a more intuitive way to think about this equality, and is closer to the kind of dimension counting used in intersection cohomology arguments.

³This is the point singularity which arises from the quotient \mathbb{C}^2/C_3 where $C_3 \subset SL_2$ are the cubic roots of unity in a torus.

with the left and right actions of $H(\mathcal{Z})$,⁴ thus for any irreducible representation $\rho \in \operatorname{Irr}(C_G(x))$, the ρ -isotypic component $H(\mathcal{B}_x)_{\rho}$ is still a $H(\mathcal{Z}) \simeq kW$ -module.

Theorem 0.2 (Global Springer). We have an isomorphism $H(\mathcal{Z}) \simeq kW$. The isomorphism classes of the modules $H(\mathcal{B}_x)_{\chi}$ do not depend on the choice of x. For each orbit \mathcal{O} , there is at least one non-zero $H(\mathcal{B}_x)_{\rho}$, and the set of non-zero $H(\mathcal{B}_x)_{\rho}$ are in bijection with Irr(W).

Remark 0.3. One consequence of this formulation: the identification $kW \simeq H(Z)$ provides kW with two bases: an algebraic one (i.e. given by $w \in kW$) and a geometric one (i.e. given by irreducible components of Z). Furthermore, we have canonical bases of representations of W via irreducible components of Springer fibers. There are formulas for the action in terms of these bases in terms of geometry; see [BBP89].

Let us make a few immediate observations regarding this component group in type A.

- When $G = GL_n$, note that $Z_G(x) = \{y \in Mat_n \mid xy yx = 0, det(y) \neq 0\}$, and in particular is a complex vector space minus a complex hypersurface. Such a space is always connected, thus $C_G(x) = 1$ is trivial. Thus the component groups never come into play for $G = GL_n$.
- When $G = SL_n$, it is possible that $C_G(x) \neq 0$, e.g. for $G = SL_2$ and $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. However, only the trivial representation of $C_G(x)$ will arise, since $W_{SL_n} = W_{GL_n}$ and $\mathcal{N}_{SL_n} = \mathcal{N}_{GL_n}$.
- In particular, in type A_n one can ignore issues regarding component groups, and also one notes that there is a bijection between nilpotent orbits (partitions of n + 1 into Jordan blocks) and irreducible representations of S_{n+1} (Young tableaux).

Thus in this special case we have a simpler statement.

Theorem 0.4 (Springer in type A). The isomorphism classes of the modules $H(\mathcal{B}_x)$ do not depend on the choice of x. There is a natural bijection

$$|\mathcal{N}/G| \xrightarrow{x \in \mathcal{O} \longmapsto H(\mathcal{B}_x)} \operatorname{Irr}(W).$$

Exercise 3. Show that the C_2 group Sp_4 has four nilpotent orbits (zero, "long root" or minimal, "short root" or subregular, and regular). Its Weyl group is the dihedral group D_4 ; show that D_4 has five irreducible representations. Thus, there is exactly one nilpotent orbit $\mathcal{O} \ni x$ such that $H(\mathcal{B}_x)$ decomposes into two $C_{Sp_4}(x)$ representations. Show that the Springer fiber over a minimal "long" nilpotent x_ℓ is $\mathbb{P}(\operatorname{Tot}_{\mathbb{P}^2}(\Omega^1_{\mathbb{P}^2}(1)))|_{\mathbb{P}^1}$ and the Springer fiber over a subregular "short" nilpotent x_s is $\mathbb{P}^1 \coprod_{pt} \mathbb{P}^1 \coprod_{pt} \mathbb{P}^1$. Thus, dim $(H(\mathcal{B}_{x_\ell})) = 1$ and dim $(H(\mathcal{B}_{x_s})) = 3$. Conclude that the subregular Springer fiber gives rise to a two W-representations of dimension 1, 2.

As usual, the sign representation is the zero Springer fiber, and the trivial representation is the generic or regular Springer fiber. Show that the 1-dimensional representation corresponding to the intermediate Springer fibers are the non-trivial non-sign characters where the simple reflection corresponding to the given simple root acts by 1 (and the other simple root by -1).

The proof is somewhat formal, modulo the following claims.

- 1. We claim that H(Z) is semisimple. This follows from the isomorphism $H(Z) \simeq kW$ and standard finite group representation theory.
- 2. We want to consider $H(\mathcal{Z}_{\mathcal{O}})$ as a subquotient⁵ of $H(\mathcal{Z})$. Let $\mathcal{Z}_{\overline{\mathcal{O}}} := \mathcal{Z} \times_{\mathcal{N}} \overline{\mathcal{O}}$. We claim that under the closure ordering of nilpotent orbits, the pushforward map $H(\mathcal{Z}_{\overline{\mathcal{O}}}) \to H(\mathcal{Z})$ gives rise to a filtration of H(Z) by two-sided H(Z)-ideals such that we have an algebra isomorphism

$$\operatorname{gr}_{\mathcal{O}}(H(Z)) \simeq H(\mathcal{Z}_x)^{C_G(x)}$$

⁴Sketch argument: choose representations of $C_G(x)$ in G, and note that convolution commutes with action by $g \in G$, i.e. everything in sight is G-equivariant.

⁵Note that $\mathcal{O} \subset \mathcal{N}$ is locally closed, i.e. in general neither open nor closed, and that closed subvarieties give subsets of H(-), and open subschemes give quotients.

for $x \in \mathcal{O}$ a choice of representative.

3. Some general algebra: for any module M of a non-commutative k-algebra A, we may form its k-linear dual $M^* := \operatorname{Hom}(M, k)$, an equivalence of categories between finite k-dimensional left and right modules. On the other hand, if $S : A \to A$ is an antipode map, then we can use it to exchange left and right modules while leaving the underlying set the same, i.e. for a left module M we can define a right module $M^t := M$ with algebra action $m \cdot a = S(a)m$ (and vice-versa). Thus, put together, an antipode allows us to define the contragredient module $M^{\vee} := (M^*)^t = (M^t)^*$. Furthermore, we say M is self-dual if $M^S \simeq M^*$, thus $M \simeq M^{\vee}$ as A-modules.

Now, we claim that all *W*-representations are self-dual, a purely algebraic claim. Coming back to Springer theory, we can write $\mathcal{B}_x = \{x\} \times_{\mathcal{N}} \widetilde{\mathcal{N}} = \widetilde{\mathcal{N}} \times_{\mathcal{N}} \{x\}$. Thus the module $H(\mathcal{B}_x)$ is a $H(\mathcal{Z})$ -bimodule, and we denote by $H(\mathcal{B}_x)^\ell$ and $H(\mathcal{B}_x)^r$ the left and right modules respectively. We claim that $H(\mathcal{B}_x) \simeq (H(\mathcal{B}_x)^r)^S$. These two claims combine to give an identification

$$H(\mathcal{B}_x)^\ell \simeq (H(\mathcal{B}_x)^r)^{\vee}.$$

Proof of theorem modulo claims. Consider $H(\mathcal{Z})$ as a $H(\mathcal{Z})$ -bimodule. By claim 1 every filtration splits, so

$$H(\mathcal{Z})\simeq \operatorname{gr}_{\bullet} H(\mathcal{Z}) = \bigoplus_{\mathcal{O}\subset \mathcal{N}} \operatorname{gr}_{\mathcal{O}} H(\mathcal{Z}).$$

By claim 2, this is equivalent to

$$\bigoplus_{\mathcal{O}\subset\mathcal{N}} H(\mathcal{B}_x\times\mathcal{B}_x)^{C_G(x)} \simeq \bigoplus_{\mathcal{O}\subset\mathcal{N}} (H(\mathcal{B}_x)^\ell\otimes H(\mathcal{B}_x)^r)^{C_G(x)}.$$

By claim 3, this is equivalent to

$$\bigoplus_{\mathcal{O}\subset\mathcal{N}} (H(\mathcal{B}_x)^\ell \otimes (H(\mathcal{B}_x)^\ell)^{\vee})^{C_G(x)} \simeq \bigoplus_{\mathcal{O}\subset\mathcal{N}} \operatorname{End}_{C_G(x)}(H(\mathcal{B}_x)^\ell) = \bigoplus_{\substack{\mathcal{O}\subset\mathcal{N}\\\rho\in\operatorname{Irr}(C_G(x))}} H(\mathcal{B}_x)_{\rho} \boxtimes H(\mathcal{B}_x)_{\rho}^{\vee}$$

Now, every orbit appears since the Springer resolution is surjective. We already know $kW \simeq H(Z)$, and since the above equivalence is as kW-bimodules, by Peter-Weyl the representations $E \boxtimes E^{\vee} \in \operatorname{Rep}(W \times W)$ appear with multiplicity 1.

On to the claims. We've already done claim 1. The proof of claim 2 involves some geometry. Note we have:

$$\mathcal{Z}_{\mathcal{O}} := \mathcal{Z} \times_{\mathcal{N}} \mathcal{O} \simeq G \times^{Z_G(x)} (\mathcal{Z}_x), \qquad \mathcal{Z}_x := \mathcal{B}_x \times \mathcal{B}_x.$$

Let $\operatorname{Irr}(\mathcal{B}_x)$ denote the set of (top-dimensional) irreducible components of \mathcal{B}_x . Recall that $C_G(x)$ acts on $\operatorname{Irr}(\mathcal{B}_x)$.

Lemma 0.5. We have a bijection

$$\operatorname{Irr}(\mathcal{Z}_{\mathcal{O}}) \longleftrightarrow \operatorname{Irr}(\mathcal{B}_x) \times^{C_G(x)} \operatorname{Irr}(\mathcal{B}_x).$$

Thus,

$$H(\mathcal{Z}_{\mathcal{O}}) \simeq H(\mathcal{Z}_x)^{C_G(x)}.$$

Proof. For the first claim, consider the map $G \times \mathcal{Z}_x \to \mathcal{Z}_O$, which is a $Z_G(x)$ -torsor. The irreducible components upstairs are in bijection with $\operatorname{Irr}(\mathcal{Z}_x) = \operatorname{Irr}(\mathcal{B}_x) \times \operatorname{Irr}(\mathcal{B}_x)$ since G is connected. The irreducible components downstairs are given by $Z_G(x)$ -orbits of irreducible components, equivalently $C_G(x)$ -orbits, giving the claim. The second claim follows from the first, since the set of irreducible components forms a basis for the top-dimensional homology.

Proof of claim 2. Since each $Z_{\overline{\mathcal{O}}}$ is a union of irreducible components, the claim that $H(Z_{\overline{\mathcal{O}}})$ defines a filtration is clear. It is also clear that these are two-sided ideals by the usual convolution formalism, i.e. since $Z_{\overline{\mathcal{O}}}$ =

 $\widetilde{\mathcal{N}} \times_{\mathcal{N}} \mu^{-1}(\overline{\mathcal{O}}) = \mu^{-1}(\overline{\mathcal{O}}) \times_{\mathcal{N}} \widetilde{\mathcal{N}}$. There is a factorization

The second isomorphism follows by the lemma.

We now prove claim 3.

Proof of claim 3. The algebra kW has an antipode sending $w \mapsto w^{-1}$. For self-duality, it is a fact that if W is a finite reflection group, then $w \in W$ is conjugate to w^{-1} . This implies that they have the same character, proving self-duality. This fact is apparently proven by case-by-case analysis for the classification of finite reflection groups. For $W = S_n$ the claim is clear however: every $g \in S_n$ is conjugate to g^{-1} (same cycle decomposition), so V and V^* have the same character.

Next, we check that $H(\mathcal{B}_x)^{\ell,S} = H(\mathcal{B}_x)^r$. The "algebraic" basis $\Lambda_w \in H(Z)$ arises by a limiting procedure applied to the graph of the W-action on the regular semisimple locus. This graph is

$$\Gamma_w = \{ (x, wx) \mid x \in \widetilde{\mathfrak{g}}^{rs} \} = \{ (w^{-1}x, x) \mid x \in \widetilde{\mathfrak{g}}^{rs} \}.$$

That is, the left w-action and right w^{-1} -action have the same graph, which is the claim.

Remark 0.6. Having to use this fact about self-duality of *W*-representations is a bit unsatisfying. It would be more satisfying to produce a non-degenerate pairing on the modules $H(\mathcal{B}_x)$ directly using geometry. Note that by our discussion above, \mathcal{B}_x is half-dimensional inside \tilde{S}_x , and thus the intersection pairing on \mathcal{B}_x considered inside \tilde{S}_x induces a pairing on top-dimensional homology $H(\mathcal{B}_x)$. It turns out this pairing is non-degenerate, but to prove it we need intersection cohomology methods.

Finally, let us note that Springer theory sheafifies over \mathcal{N} . Let us also give this formulation. We define the Springer sheaf $\mathcal{S} = \mu_* \mathcal{C}_{\widetilde{\mathcal{N}}}$ (where $\mathcal{C}_{\widetilde{\mathcal{N}}} = \mathbb{Q}_{\widetilde{\mathcal{N}}}[\dim(\widetilde{\mathcal{N}})]$).⁶

Theorem 0.7 (Localized Springer). The Springer sheaf is a semisimple perverse sheaf, with decomposition:

$$\mathcal{S} = \bigoplus_{\mathcal{O}, \mathcal{L}} E_{\mathcal{O}, \mathcal{L}} \otimes IC(\mathcal{O}, \mathcal{L})$$

where $\mathcal{O} \subset \mathcal{N}$ is a nilpotent orbit and \mathcal{L} is a irreducible *G*-equivariant perverse local system on \mathcal{O} . We have an isomorphism $\operatorname{End}(\mathcal{S}) \simeq kW$, and the coefficient spaces $E_{\mathcal{O},\mathcal{L}}$ which are nonzero are in bijection with $\operatorname{Irr}(W)$ and each orbit \mathcal{O} has a nonzero $E_{\mathcal{O},\mathcal{L}}$.

Remark 0.8. The Springer sheaf S has a *mixed* structure, and using this one can recover some information about the characters of unipotent principal series irreducible representations of $G(\mathbb{F}_q)$ restricted to the nilpotent cone.⁷[Sh88]

Remark 0.9 (Extracting global Springer theory from localized Springer theory). We outline how to pass from the local story to the global story.

• The six functors package gives rise to an entirely formal equivalence:

$$\operatorname{Ext}^{\bullet}(\mathcal{S}) \simeq H^{BM}_{2d-\bullet}(\mathcal{Z}), \qquad \operatorname{End}(\mathcal{S}) \simeq H(Z).$$

⁶The shift makes it a perverse sheaf.

⁷For example: when $G = GL_2$, the two intersection cohomology complexes are the constant sheaf $\mathbb{C}_{\mathcal{N}}$ and the skyscraper sheaf k_0 coming from $H^2(\mathbb{P}^1)$, which has mixed weight 1. Thus, we see that the trivial representation of $G(\mathbb{F}_q)$ has constant character 1, and the Steinberg representation has character q at 1 (i.e. dimension q) and zero elsewhere on \mathcal{N} . Note that in general the characters of IC sheaves will not line up exactly with the characters of $Ir(G(\mathbb{F}_q))$.

• The equivalence $kW \simeq \operatorname{End}(S)$ follows by considering the Grothendieck-Springer resolution $\tilde{\mathfrak{g}} \to \mathfrak{g}$, which has a corresponding Springer sheaf $S_{\mathfrak{g}}$. By a smallness argument, one can show that $S_{\mathfrak{g}} = IC(\mathfrak{g}^{rs}, \mu_* C_{\tilde{\mathfrak{g}}^{rs}})$. Since $\tilde{\mathfrak{g}} \to \mathfrak{g}$ is a covering space on the regular semisimple locus with W acting by deck transformations, $\mu_* C_{\tilde{\mathfrak{g}}^{rs}}$ is a local system with a W-action, inducing a W-action on $S_{\mathfrak{g}}$. Furthermore, we have $\operatorname{End}(S_{\mathfrak{g}}) \simeq kW$.

Now, there are two ways to pass from $S_{\mathfrak{g}}$ to S (plus using the Killing form to identify duals). One is to observe that S is the Fourier transform of $S_{\mathfrak{g}}$, which immediately gives $\operatorname{End}(S) \simeq kW$ since the Fourier transform is an equivalence of categories. The second is to restrict to \mathcal{N} . These two W actions differ by a twist by the sign character, and using this one can also obtain an equivalence $\operatorname{End}(S) \simeq kW$ in the second setting.

• Note that G-equivariant irreducible local systems on \mathcal{O} are in bijection with $\operatorname{Irr}(\pi_0(Z_G(x))) = \operatorname{Irr}(C_G(x))$. We let \mathcal{L}_{ρ} denote the local system corresponding to $\rho \in \operatorname{Irr}(C_G(x))$. Then, we have

$$E_{\mathcal{O},\mathcal{L}_{\rho}} = H(\mathcal{B}_x)_{\rho}.$$

To see this, let $x \in \mathcal{O}$ and $i_x : \{x\} \hookrightarrow \mathcal{N}$. By base change on the left-hand side of the decomposition, the costalk $i_x^! S \simeq H_{d-\bullet}^{BM}(\mathcal{B}_x)$; note that $\bullet = \dim(\mathcal{O})$ is the top dimension. On the right-hand side, note that the $IC(\mathcal{O}, \mathcal{L})$ arise via local systems \mathcal{L} which are shifted into degree $-\dim(\mathcal{O})$, and that IC sheaves have the property that $IC(\mathcal{O}, \mathcal{L})|_{\mathcal{O}} \simeq \mathcal{L}$ (which is perverse, i.e. shifted into degree $-\dim(\mathcal{O})$). Thus, $i_x^! IC(\mathcal{O}, \mathcal{L}) = k[\dim \mathcal{O}]$. On the other hand, the IC sheaves coming from more special strata mush vanish when we restrict to \mathcal{O} , while the IC sheaves coming from more generic strata \mathcal{O}' satisfy a vanishing condition that puts them in degrees $> -\dim(\mathcal{O})$. Thus, we see that $H_{2d_x}(\mathcal{B}_x) \simeq E_{\mathcal{O}}$ (i.e. sum over all ρ) and the lower-dimensional homologies consist of "contributions" from more generic strata.⁸

• The proof that the $E_{\mathcal{O},\mathcal{L}}$ are the irreducible *W*-representations is very simple and similar from the sheafy perspective, once we have semisimplicity of the complex which follows by the BBD decomposition theorem for semi-small maps. Namely, via the decomposition

$$\mathcal{S} = \bigoplus_{\mathcal{O}, \mathcal{L}} E_{\mathcal{O}, \mathcal{L}} \otimes IC(\mathcal{O}, \mathcal{L})$$

and using that the *IC*-sheaves are simple objects in perverse sheaves, we have $\operatorname{End}(S) = \bigoplus_{\mathcal{O},\mathcal{L}} \operatorname{End}(E_{\mathcal{O},\mathcal{L}})$, and by Peter-Weyl the $E_{\mathcal{O},\mathcal{L}}$ are the irreducible representations. Note that we use semi-smallness to deduce that S lives in an abelian category rather than a derived category; without this assumption the algebra $\operatorname{Ext}^{\bullet}(S)$ has a radical which one can kill.

References

- [BBP89] Walter Borho, Jean-Luc Brylinski and Robert MacPherson, Nilpotent Orbits, Primitive Ideals, and Characterstic Classes, Birkhaüser (1989).
- [CG97] Neil Chriss and Victor Ginzburg, Representation Theory and Complex Geometry, Birkhaüser (1997).
- [Sh88] Toshiaki Shoji, Geometry of orbits and Springer correspondence, Astérisque 168 (1988), 61-140.

⁸In particular, taking $i: \mathcal{O} = \{0\} \hookrightarrow \mathcal{N}$, we obtain $H_{\bullet}(G/B)$, whose top-dimensional homology is isomorphic to the sign representation and whose 0-dimensional homology is the trivial representation. Observe via the Bruhat decomposition that dim $H_{\bullet}(G/B) = |W|$; it turns out that $H_{\bullet}(G/B)$ is in fact isomorphic to the regular W-representation in a compatible way; in particular, we can conclude that there is a (non-graded) equivalence $E_{\mathcal{O},\mathcal{L}} \simeq H^{\bullet}(i^{!}IC(\mathcal{O},\mathcal{L}))$.