
These notes roughly follow Sections 3.5 and 3.6 of [CG97]. Let G be a reductive group with derived subgroup

G1 “ rG,Gs, which is semisimple. We let NG denote the nilpotent cone of G; then, NG “ NG1 and WG “ WG1 , so

we may reduce to the case of a semisimple group G. We denote the top-dimensional Borel-Moore homology of an

equidimensional space X by HpXq. The Springer resolution is

µ : rN “ GˆB n » GˆB bK “ T˚pG{Bq Ñ N

where the isomorphism is by Killing form, and the Steinberg variety is Z “ rN ˆN rN “ rN ˆg
rN . Let x P O Ă N

be a choice of representative in a nilpotent orbit. Recall the strict semi-smallness equality

2 dimCpBxq ` dimCpOq “ dimCp rN q

which also includes the assertion that Bx is equidimensional.1 We let d “ dimCpN q “ dimCp rN q “ dimCpZq, and

dx “ dimCpBxq. Let ZGpxq Ă G be the stabilizer and CGpxq “ ZGpxq{ZGpxq
˝ its component group.

Choose a transverse slice Sx to O at x (e.g. the Slodowy slice), i.e. Sx Ă N such that there is a open Ux of

x P N such that there is a transversal slice SG to ZGpxq in G such that the the action map SG ˆ Sx » Ux. We

define rSx :“ µ´1pSxq and rUx “ µ´1pUxq; we have that U ˆ rSx Ñ rUx is a homeomorphism by base change. Note

that as an open subset rUx is smooth, thus rSx is smooth. Furthermore, we have the following.

Proposition 0.1. The strict semi-smallness equality2 dimension count

2 dimCpBxq ` dimCpOq “ dimCp rN q

is equivalent to the assertion that Bx Ă rSx is half-dimensional.

Exercise 1. Classify the nilpotent orbits in SL3 and compute transverse slices Sx. Compute the Springer fibers

Bx » P1
š

pt P1 and the rSx. There is always a unique nilpotent orbit whose closure contains every orbit except the

regular orbit; this is called the subregular orbit; in this case show it has dimension 4. Let x be subregular. Find a

transverse slice to x in N ; show that it is defined by an equation a3 ` bc “ 0.3 Show that the Springer resolution

over this transverse slice is the blow-up of the singularity. Observe that the dimensions of the Springer fiber are

equal to the dimensions of the irreducible representations of S3.

Let us recall some generalities on convolution. Let Xi Ñ Y be proper maps of smooth varieties (or manifolds).

Let Zij “ Xi ˆY Xj . Then, we have the diagram

Z12 ˆ Z23 ÐÝ Z123 “ X1 ˆY X2 ˆY X3 ÝÑ Z13.

This induces a map on Borel-Moore homology

HBM
d12 pZ12q bH

BM
d23 pZ23q ÝÑ Hd12`d23´dimpX2qpZ13q.

In particular, we are interested in the case where X :“ X1 “ X2 and Y0 :“ X3 Ă Y . We denote Z “ X ˆY X and

X0 :“ X ˆY Y0. Further assume that X Ñ Y is semi-small, so dimpZq “ dimpXq. Then, we see that HBM
d pZq acts

on HBM
i pX0q for every i.

Exercise 2. Explicitly compute the isomorphism kW » HpZq. Compute the action of HpZq on the Springer fibers

HpBxq for G “ SL2. Show that HpB0q is the sign representation, and HpBxq is the trivial representation for x ‰ 0.

We now state the main theorem. Note that the stabilizer ZGpxq acts on Bx and the component group CGpxq acts

on the set of irreducible components of Bx. These form a basis of HpBxq, thus CGpxq acts on HpBxq, compatibly

1I.e. its irreducible components have the same dimension.
2This is, in my view, a more intuitive way to think about this equality, and is closer to the kind of dimension counting used in

intersection cohomology arguments.
3This is the point singularity which arises from the quotient C2{C3 where C3 Ă SL2 are the cubic roots of unity in a torus.
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with the left and right actions of HpZq,4 thus for any irreducible representation ρ P IrrpCGpxqq, the ρ-isotypic

component HpBxqρ is still a HpZq » kW -module.

Theorem 0.2 (Global Springer). We have an isomorphism HpZq » kW . The isomorphism classes of the modules

HpBxqχ do not depend on the choice of x. For each orbit O, there is at least one non-zero HpBxqρ, and the set of

non-zero HpBxqρ are in bijection with IrrpW q.

Remark 0.3. One consequence of this formulation: the identification kW » HpZq provides kW with two bases: an

algebraic one (i.e. given by w P kW ) and a geometric one (i.e. given by irreducible components of Z). Furthermore,

we have canonical bases of representations of W via irreducible components of Springer fibers. There are formulas

for the action in terms of these bases in terms of geometry; see [BBP89].

Let us make a few immediate observations regarding this component group in type A.

� When G “ GLn, note that ZGpxq “ ty P Matn | xy ´ yx “ 0,detpyq ‰ 0u, and in particular is a complex

vector space minus a complex hypersurface. Such a space is always connected, thus CGpxq “ 1 is trivial. Thus

the component groups never come into play for G “ GLn.

� When G “ SLn, it is possible that CGpxq ‰ 0, e.g. for G “ SL2 and x “

ˆ

0 1

0 0

˙

. However, only the trivial

representation of CGpxq will arise, since WSLn “WGLn and NSLn “ NGLn .

� In particular, in type An one can ignore issues regarding component groups, and also one notes that there is

a bijection between nilpotent orbits (partitions of n` 1 into Jordan blocks) and irreducible representations of

Sn`1 (Young tableaux).

Thus in this special case we have a simpler statement.

Theorem 0.4 (Springer in type A). The isomorphism classes of the modules HpBxq do not depend on the choice

of x. There is a natural bijection

|N {G| IrrpW q.
xPO ÞÝÑHpBxq

Exercise 3. Show that the C2 group Sp4 has four nilpotent orbits (zero, “long root” or minimal, ”short root” or

subregular, and regular). Its Weyl group is the dihedral group D4; show that D4 has five irreducible representations.

Thus, there is exactly one nilpotent orbit O Q x such that HpBxq decomposes into two CSp4pxq representations.

Show that the Springer fiber over a minimal “long” nilpotent x` is PpTotP2pΩ1
P2p1qqq|P1 and the Springer fiber over

a subregular “short” nilpotent xs is P1
š

pt P1
š

pt P1. Thus, dimpHpBx`qq “ 1 and dimpHpBxsqq “ 3. Conclude

that the subregular Springer fiber gives rise to a two W -representations of dimension 1, 2.

As usual, the sign representation is the zero Springer fiber, and the trivial representation is the generic or regular

Springer fiber. Show that the 1-dimensional representation corresponding to the intermediate Springer fibers are

the non-trivial non-sign characters where the simple reflection corresponding to the given simple root acts by 1 (and

the other simple root by ´1).

The proof is somewhat formal, modulo the following claims.

1. We claim that HpZq is semisimple. This follows from the isomorphism HpZq » kW and standard finite group

representation theory.

2. We want to consider HpZOq as a subquotient5 of HpZq. Let ZO :“ Z ˆN O. We claim that under the

closure ordering of nilpotent orbits, the pushforward map HpZOq Ñ HpZq gives rise to a filtration of HpZq

by two-sided HpZq-ideals such that we have an algebra isomorphism

grOpHpZqq » HpZxqCGpxq

4Sketch argument: choose representations of CGpxq in G, and note that convolution commutes with action by g P G, i.e. everything
in sight is G-equivariant.

5Note that O Ă N is locally closed, i.e. in general neither open nor closed, and that closed subvarieties give subsets of Hp´q, and
open subschemes give quotients.
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for x P O a choice of representative.

3. Some general algebra: for any module M of a non-commutative k-algebra A, we may form its k-linear dual

M˚ :“ HompM,kq, an equivalence of categories between finite k-dimensional left and right modules. On

the other hand, if S : A Ñ A is an antipode map, then we can use it to exchange left and right modules

while leaving the underlying set the same, i.e. for a left module M we can define a right module M t :“ M

with algebra action m ¨ a “ Spaqm (and vice-versa). Thus, put together, an antipode allows us to define

the contragredient module M_ :“ pM˚qt “ pM tq˚. Furthermore, we say M is self-dual if MS » M˚, thus

M »M_ as A-modules.

Now, we claim that all W -representations are self-dual, a purely algebraic claim. Coming back to Springer

theory, we can write Bx “ txu ˆN rN “ rN ˆN txu. Thus the module HpBxq is a HpZq-bimodule, and we

denote by HpBxq` and HpBxqr the left and right modules respectively. We claim that HpBxq » pHpBxqrqS .

These two claims combine to give an identification

HpBxq` » pHpBxqrq_.

Proof of theorem modulo claims. Consider HpZq as a HpZq-bimodule. By claim 1 every filtration splits, so

HpZq » gr‚HpZq “
à

OĂN
grOHpZq.

By claim 2, this is equivalent to

à

OĂN
HpBx ˆ BxqCGpxq »

à

OĂN
pHpBxq` bHpBxqrqCGpxq.

By claim 3, this is equivalent to

à

OĂN
pHpBxq` b pHpBxq`q_qCGpxq »

à

OĂN
EndCGpxqpHpBxq

`q “
à

OĂN
ρPIrrpCGpxqq

HpBxqρ bHpBxq_ρ .

Now, every orbit appears since the Springer resolution is surjective. We already know kW » HpZq, and since the

above equivalence is as kW -bimodules, by Peter-Weyl the representations E b E_ P ReppW ˆW q appear with

multiplicity 1.

On to the claims. We’ve already done claim 1. The proof of claim 2 involves some geometry. Note we have:

ZO :“ Z ˆN O » GˆZGpxq pZxq, Zx :“ Bx ˆ Bx.

Let IrrpBxq denote the set of (top-dimensional) irreducible components of Bx. Recall that CGpxq acts on IrrpBxq.

Lemma 0.5. We have a bijection

IrrpZOq ÐÑ IrrpBxq ˆCGpxq IrrpBxq.

Thus,

HpZOq » HpZxqCGpxq.

Proof. For the first claim, consider the map G ˆ Zx Ñ ZO, which is a ZGpxq-torsor. The irreducible components

upstairs are in bijection with IrrpZxq “ IrrpBxq ˆ IrrpBxq since G is connected. The irreducible components

downstairs are given by ZGpxq-orbits of irreducible components, equivalently CGpxq-orbits, giving the claim. The

second claim follows from the first, since the set of irreducible components forms a basis for the top-dimensional

homology.

Proof of claim 2. Since each ZO is a union of irreducible components, the claim that HpZOq defines a filtration

is clear. It is also clear that these are two-sided ideals by the usual convolution formalism, i.e. since ZO “
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rN ˆN µ´1pOq “ µ´1pOq ˆN rN . There is a factorization

grOHpZq HpZOq HpZxq

HpZOq.

»

The second isomorphism follows by the lemma.

We now prove claim 3.

Proof of claim 3. The algebra kW has an antipode sending w ÞÑ w´1. For self-duality, it is a fact that if W is a

finite reflection group, then w P W is conjugate to w´1. This implies that they have the same character, proving

self-duality. This fact is apparently proven by case-by-case analysis for the classification of finite reflection groups.

For W “ Sn the claim is clear however: every g P Sn is conjugate to g´1 (same cycle decomposition), so V and V ˚

have the same character.

Next, we check that HpBxq`,S “ HpBxqr. The “algebraic” basis Λw P HpZq arises by a limiting procedure

applied to the graph of the W -action on the regular semisimple locus. This graph is

Γw “ tpx,wxq | x P rg
rsu “ tpw´1x, xq | x P rgrsu.

That is, the left w-action and right w´1-action have the same graph, which is the claim.

Remark 0.6. Having to use this fact about self-duality of W -representations is a bit unsatisfying. It would be

more satisfying to produce a non-degenerate pairing on the modules HpBxq directly using geometry. Note that by

our discussion above, Bx is half-dimensional inside rSx, and thus the intersection pairing on Bx considered inside rSx
induces a pairing on top-dimensional homology HpBxq. It turns out this pairing is non-degenerate, but to prove it

we need intersection cohomology methods.

Finally, let us note that Springer theory sheafifies over N . Let us also give this formulation. We define the

Springer sheaf S “ µ˚C
ĂN (where C

ĂN “ Q
ĂN rdimp rN qs).6

Theorem 0.7 (Localized Springer). The Springer sheaf is a semisimple perverse sheaf, with decomposition:

S “
à

O,L
EO,L b ICpO,Lq

where O Ă N is a nilpotent orbit and L is a irreducible G-equivariant perverse local system on O. We have an

isomorphism EndpSq » kW , and the coefficient spaces EO,L which are nonzero are in bijection with IrrpW q and

each orbit O has a nonzero EO,L.

Remark 0.8. The Springer sheaf S has a mixed structure, and using this one can recover some information

about the chararacters of unipotent principal series irreducible representations of GpFqq restricted to the nilpotent

cone.7[Sh88]

Remark 0.9 (Extracting global Springer theory from localized Springer theory). We outline how to pass from the

local story to the global story.

� The six functors package gives rise to an entirely formal equivalence:

Ext‚pSq » HBM
2d´‚pZq, EndpSq » HpZq.

6The shift makes it a perverse sheaf.
7For example: when G “ GL2, the two intersection cohomology complexes are the constant sheaf CN and the skyscraper sheaf k0

coming from H2pP1q, which has mixed weight 1. Thus, we see that the trivial representation of GpFqq has constant character 1, and
the Steinberg representation has character q at 1 (i.e. dimension q) and zero elsewhere on N . Note that in general the characters of IC
sheaves will not line up exactly with the characters of IrrpGpFqqq.
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� The equivalence kW » EndpSq follows by considering the Grothendieck-Springer resolution rgÑ g, which has

a corresponding Springer sheaf Sg. By a smallness argument, one can show that Sg “ ICpgrs, µ˚Crgrsq. Since

rg Ñ g is a covering space on the regular semisimple locus with W acting by deck transformations, µ˚Crgrs is

a local system with a W -action, inducing a W -action on Sg. Furthermore, we have EndpSgq » kW .

Now, there are two ways to pass from Sg to S (plus using the Killing form to identify duals). One is to observe

that S is the Fourier transform of Sg, which immediately gives EndpSq » kW since the Fourier transform is

an equivalence of categories. The second is to restrict to N . These two W actions differ by a twist by the

sign character, and using this one can also obtain an equivalence EndpSq » kW in the second setting.

� Note that G-equivariant irreducible local systems on O are in bijection with Irrpπ0pZGpxqqq “ IrrpCGpxqq. We

let Lρ denote the local system correpsonding to ρ P IrrpCGpxqq. Then, we have

EO,Lρ “ HpBxqρ.

To see this, let x P O and ix : txu ãÑ N . By base change on the left-hand side of the decomposition, the costalk

i!xS » HBM
d´‚ pBxq; note that ‚ “ dimpOq is the top dimension. On the right-hand side, note that the ICpO,Lq

arise via local systems L which are shifted into degree ´dimpOq, and that IC sheaves have the property that

ICpO,Lq|O » L (which is perverse, i.e. shifted into degree ´ dimpOq). Thus, i!xICpO,Lq “ krdimOs. On

the other hand, the IC sheaves coming from more special strata mush vanish when we restrict to O, while

the IC sheaves coming from more generic strata O1 satisfy a vanishing condition that puts them in degrees

ą ´ dimpOq. Thus, we see that H2dxpBxq » EO (i.e. sum over all ρ) and the lower-dimensional homologies

consist of “contributions” from more generic strata.8

� The proof that the EO,L are the irreducible W -representations is very simple and similar from the sheafy

perspective, once we have semisimplicity of the complex which follows by the BBD decomposition theorem

for semi-small maps. Namely, via the decomposition

S “
à

O,L
EO,L b ICpO,Lq

and using that the IC-sheaves are simple objects in perverse sheaves, we have EndpSq “
À

O,L EndpEO,Lq.,

and by Peter-Weyl the EO,L are the irreducible representations. Note that we use semi-smallness to deduce

that S lives in an abelian category rather than a derived category; without this assumption the algebra

Ext‚pSq has a radical which one can kill.
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