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Preface 

This book on Representation Theory and Complex Geometry is an out
growth of a course given by the second author at the University of Chicago 
in 1993 and written up by the first author. 

We have tried to write a book on representation theory for graduate stu
dents and non-experts which conveys the beautiful and, we wish to empha
size, essentially simple underlying ideas of the subject. We aim to provide 
a fairly direct approach to the heart of the subject without presenting the 
often formidable technical foundations that can be discouraging. 

To achieve our goal, we felt obliged to adopt an informal and easily 
accessible style-admittedly at times at the loss of some mathematical 
precision-but sufficient to convey a sound intuitive grasp of the basic 
concepts and proofs. It is our belief that what is gained by way of access is 
worth this cost in mathematical rigor. The reader who gains entry into the 
subject by this means should be well positioned to solidify mathematical 
details by reference to the existing research literature in the field, including 
more formal expositions by experts. 

In particular, the background material we provide in algebraic geometry 
and algebraic topology should in no way be construed as a text on these 
subjects; rather the reader can get some basic impressions from our book, 
and then consult other references for details and precise treatments. We 
have made an earnest effort to remove actual inaccuracies and misprints, 
and apologize for any that have survived. 

We repeat that our hope is that the novice will benefit from this op
portunity to discover how interesting, rich, and fundamentally simple the 
underlying ideas of representation theory truly are. 
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2 0. Introduction 

Our exposition begins with basic concepts of symplectic geometry. These 
are then applied to the geometry associated with a complex semisimple Lie 
group, such as that of flag varieties, nilpotent conjugacy classes, Springer 
resolutions, etc. As far as we know, the approach adopted here has not 
been previously available in the literature. The key technical tool that we 
use is a convolution operation in homology and (equivariant) algebraic K
theory. This operation is part of the bivariant machinery, see [FM], that 
extends the familiar functor formalism of algebraic topology from the usual 
setup of continuous maps to a more general setup of correspondences. {The 
correspondences that we consider are typically quite far from being genuine 
maps, e.g., correspondences formed by pairs of flags in en in a fixed relative 
position.) We then proceed to the central theme of the book, a uniform 
geometric approach to the classification of finite-dimensional irreducible 
representations of three different objects: 

(1) Weyl groups (e.g., the symmetric group); 
(2) the Lie algebra sln(C); 
(3) affine Hecke algebras. 

A fourth object, quantum groups, should have been added to the list, 
but that rapidly developing subject deserves an exposition of its own (cf., 
[GVlj, [GV2], [GKV], [Nal],[Na2], [LulO]). 

Because of the large amount of mathematics covered here, and the 
amount that has been in the "public domain" for some time, it has been 
difficult to ascertain in every case the mathematicians responsible for the 
work listed. We have tried in this introduction to give an outline of the 
mathematics to be covered and the mathematicians whose contributions 
to the subject could not be overlooked. However we found that as we 
tried to make this outline more complete, we encountered a very rich 
history indeed: for each new name introduced, ten more were immediately 
suggested. Thus we must apologize beforehand to all those mathematicians 
we have undoubtedly omitted. 

We shall now describe the contents of the book in more detail and make 
some historical remarks. 

In Sections 1.1-1.4 we present some basic constructions of symplectic 
geometry. The reader is referred to the books [GSl], [GS2J and the survey 
[AGJ for excellent expositions of symplectic geometry from different points 
of view. The canonical symplectic structure on the cotangent bundle (Ex
ample 1.1.3) and the corresponding Poisson structure (Theorem 1.3.10) is 
the starting point of the Hamiltonian mechanics [AM] and has been known 
for a long time. The existence of a natural symplectic structure on coadjoint 
orbits (Proposition 1.1.5) was discovered in the early 1960s in the works of 
Kirillov, Kostant and Souriau. That structure plays a crucial role in geo-
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metric quantization (Ko2J,(Sou] and more specifically in the orbit method in 
representation theory (cf., !AuKo],[Ki]). The corresponding Poisson bracket 
(Example 1.3.3) is much older. It first appeared in the works of Sophus 
Lie at the beginning of the century and was subsequently rediscovered by 
a number of authors (see e~g., [Be]). Lemma 1.3.27, which is quite simple 
and very useful in applications, seems to be due to Kashiwara. Theorem 
1.3.28 is proved by Piasetsky [Pi]. The first definition of the moment map 
was given in full generality by Kostant [Ko4] and Souriau [Sou]; in special 
cases however it had been seen long before symplectic geometry came to 
life. Some examples go back to the works of Euler and Lagrange. 

Coisotropic subvarieties arise naturally in the Hamiltonian approach to 
mechanical systems with constraints. In particular, Proposition 1.5.1 was 
implicitly used in Dirac's work [Dir]. A proof of the Frobenius Integrability 
Theorem 1.5.4 can be found in [Ster]. Theorem 1.5.7 is taken from the 
appendix to [GilJ; it plays an important role in the geometric constructions 
of Part 3. 

Coisotropic subvarieties are especially important in quantum mechan
ics. Recall that the Heisenberg uncertainty principle says that it is im
possible to determine simultaneously the position and momentum of a 
quantum-mechanical particle. More generally, the smallest subsets of clas
sical phase space ( = symplectic manifold) in which the presence of a 
quantum-mechanical particle can be detected are its lagrangian subvari
eties. (For instance, one can determine exactly the position of a particle 
at the expense of remaining in total ignorance about its momentum). For 
this reason the lagrangian subvarieties of a symplectic manifold should be 
viewed as being its "quantum points." Further, the union of a collection 
of lagrangian subvarieties, i.e., of quantum points, is automatically a coiso
tropic subvariety and conversely, any coisotropic subvariety is the union 
of lagrangian subvarieties contained in it (this is a nonlinear version of 
Lemma 1.5.11). Thus, the uncertainty principle says that the only sub
sets of the classical phase space that make sense in quantum mechanics 
are those formed by "quantum points," that is, coisotropic subvarieties. 

The integrability of characteristics Theorem 1.5.17 is one of the deep
est results we know about almost-commutative rings. The theorem should 
be viewed as a concrete mathematical counterpart of the Heisenberg uncer
tainty principle in quantum physics. It says that any subvariety of classical 
phase space (= Specm gr A) that arises from a noncommutative system of 
equations (= an ideal in A) is necessarily coisotropic. It appeared first in 
the work of Guillemin-Quillen-Sternberg [GQS] on systems of partial differ
ential equations. The term "characteristic" stands in that context for the 
directions in the cotangent bundle in which the solutions to the system in 
question could possibly have singularities. The first proof of the theorem in 
the special case of rings of differential operators was given by Sato-Kawai-



4 0. Introduction 

Kashiwara [SKK] (see [Ma] for a very clear and considerably simplified 
exposition). The proof in [SKK] involved, however, sophisticated analytic 
tools of micro-local analysis. In its final, purely algebraic form presented 
here, the theorem is due to 0. Gabber [Ga]. 

In Section 1.6 we study general families of lagrangian cone-subvarieties 
of a symplectic cone-manifold. The standard example of such a family is the 
one formed by the fibers of a cotangent bundle. Theorem 1.6.6 says that, 
under mild assumptions, any family can be transformed to the standard 
one via an appropriate resolution. Put another way, we show that giving 
a lagrangian family parametrized by a variety X is the same as giving a 
coisotropic subvariety in r· X. The latter formulation fits into the above 
mentioned viewpoint of lagrangian subvarieties as "quantum points." This 
way, the variety X parametrizing the lagrangian family may be regarded as 
a variety of "quantum points", and the theorem associates to such data a 
coisotropic subvariety in the standard phase space ( = r• X) corresponding 
to the "configuration" space X of "quantum points." This approach is 
closely related to the ideas of Guillemin-Sternberg [GS3]. 

Chapter 2 is a collection of various unrelated results from algebra, 
geometry and differential topology that will be extensively used later in 
the book. The reader may skip this chapter and return to it whenever nec
essary. 

In Section 2.1 we prove a non-commutative version of Hilbert's Nullstel
lensatz. The nullstellensatz theorem has many different proofs (see [Lang]). 
The one presented below, due to Amitsur, seems to be the shortest among 
the proofs, provided we restrict ourselves to the complex ground field C. 
The second (strong) part of the theorem is formulated so as to make trans
parent the analogy with a similar result for Banach algebras, known as 
the Gelfand-Mazur theorem (cf., [Ru]). Corollary 2.1.4 was first proved by 
Quillen [Q3] using different methods. 

Section 2.2 is a very short digest of commutative algebra. We recall 
the fundamentals of the relationship between commutative algebra and 
algebraic geometry, cf., [Mum3], and then turn to some deeper properties of 
Cohen-Macaulay rings borrowed from [BeLu]. These results play a key role 
in the new simple proof of the Kostant theorem due to Bernstein-Lunts (see 
Section 6.7). 

The deformation to the normal bundle construction given in 2.3.15 
has a long history (see [Fu, end of Chapter 5]). Algebraic aspects of the 
construction were studied by Gerstenhaber [GerJ in the mid 1960's, while 
geometric aspects were worked out ten years later in the course of the proof 
of the Riemann-Roch theorem for singular varieties [BFMl]. (In fact Baum
Fulton-MacPherson use a slightly different construction involving blowups, 
which was motivated by the so-called Grassmannian-Graph construction). 
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The equivalence of various approaches mentioned above was established in 
[DV]. 

In Section 2.4 we describe the relationship between the structure of a 
projective variety with a C*-action and the corresponding fixed point set. 
These results as well as somewhat related results in Section 2.5 are nowa
days well-known due to numerous applications in topology and mathemat
ical physics {cf., for example [At], [Kirw]). A connection between circle ac
tions and Morse theory seems to have been first observed by Frankel [Fr]. 

In Section 2.4 we review various definitions and constructions involving 
Borel-Moore homology [BoMo), i.e., homology with locally closed supports. 
Everything here is standard (cf., [Bre]). Section 2.7 is devoted to convolu
tion in Borel-Moore homology. The definition of convolution is similar to 
and motivated by the bivariant technique developed by Fulton-MacPherson 
(FM]. The convolution operation incorporates, as we show in examples 
2.7.lO(i)-(iii), all the natural operations familiar in algebraic topology. 

The purpose of Part 3 is to study various geometric objects associated 
naturally to a complex semisimple group G. The most basic among them 
is the flag variety B whose importance was emphasized in the pioneering 
works of I. Gelfand and M. Naimark in the early 1950's. In Section 3.1 we 
prove the Bruhat decomposition {Theorem 3.1.9). The Bruhat decomposi
tion may be viewed as a purely algebraic statement about double-cosets in 
G and may be proved along those lines. We adopt, however, a more geo
metric viewpoint involving the flag variety. The proof we present, based on 
the Bialynicki-Birula decomposition (BiaBi) or, equivalently, on Morse the
ory, is neither the shortest nor the most elementary one, but we believe it is 
geometrically the most convincing. Similar remarks apply to the Chevalley 
restriction Theorem 3.1.38. Although the proof we present is certainly not 
new, it differs from the proof, exploiting characters of finite dimensional 
representations, that one usually finds in the literature (see e.g., [Di]). 

The Springer resolution of the nilpotent variety N (Corollary 3.2.3) was 
introduced by Grothendieck and Springer around 1970. It was known by 
that time (see [Kol], [Ko3]) that the variety N contains the unique open 
conjugacy class of regular elements and a unique conjugacy class 0 of codi
mension 2, the generic part of the singular locus of N. The singularity of N 
at 0 turns out to be a simple Kleinian singularity of the type correspond
ing to the type of Dynkin diagram of G. This remarkable observation was 
probably made first by Grothendieck and proved by Brieskorn {see [Bri], 
(Slol]). Grothendieck also introduced diagram 3.1.21 and its generalization 
given in Remark 3.2.6, known as Grothendieck's simultaneous resolution. 

Section 3.3 is devoted to the Steinberg variety Z, or the variety of triples. 
It was introduced in [St4J. The importance of the Steinberg variety is, to a 
large extent, due to Proposition 3.3.4 which was already implicit in [St4]. 
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There are two natural projections of the Steinberg variety, one to B x B, 
the "square" of the flag variety, the other to the Lie algebra g = Lie G. 
The interplay between the two projections ·is our major concern in this sec
tion {as well as in [St4]). The varieties considered in Theorem 3.3.6 were 
introduced slightly earlier by Joseph [Jol] (cf., also [Jo2J). The theorem 
itself, in its present form, is borrowed from [Gil]. The dimension identity 
for the Springer fiber Bz arising from the theorem (Corollary 3.3.24) was 
known earlier and is a quite nontrivial result with an interesting history. 
The inequality LHS $ RHS was first conjectured by Grothendieck. Stein
berg observed that the inequality is actually the equality that he proved in 
[St4]. His original proof was rather long and was based on the classification 
of nilpotent elements carried out in [BC]. Using [BC], Steinberg explicitly 
constructed in [St4] an irreducible component of Bz of the required dimen
sion. The essential ingredient of his construction was a theorem saying that 
any "distinguished" nilpotent element is "even." This result was originally 
proved in [BC) via a lengthy argument involving a case by case analysis 
(its short proof was subsequently found by Jantzen, see [Ca, v.2, p.165)). 
Later on, Spaltenstein proved in [Spal] that all the irreducible components 
of Bz have the same dimension, thus completing the proof of 3.3.24. Our 
approach, based on Theorem 3.3.5, seems to be more direct. 

In Section 3.4 we introduce a "Lagrangian construction" of the group 
algebra of the Weyl group as a convolution algebra formed by the top Borel
Moore homology of the Steinberg variety. This construction appeared in 
[KT] and independently in [Gil] . 

Sections 3.5-3.6 are devoted to what is now known as the theory of 
Springer representations. In the course of his work on characters of finite 
Chevalley groups, Springer discovered [Spr 1 J a natural Weyl group action 
on the etale cohomology of Springer fibers Bz· His construction was carried 
out in the framework of finite fields and was based on the Fourier transform 
of l-adic complexes of sheaves on a vector space, introduced by Deligne. 
Later Springer deduced ([Spr2J) similar results in the complex setup from 
the results of [Sprl]. However the crucial part of the construction involved 
the Artin-Schreier covering of the affine line (which is not simply con
nected.0 over an algebraic closure of a finite field, an object that has no 
complex counterpart whatsoever. 

Thus, Springer's approach remained mysterious from the viewpoint of 
complex geometry for almost 10 years until it was realized, following the 
works of Sato-Kawai-Kashiwara, Deligne and Brylinski-Malgrange-Verdier 
[BMV] that the concept underlying Springer's construction is that of the 
"geometric Fourier transform." A modern approach to the Springer rep
resentations from the point of view of the geometric Fourier transform is 
given in [Dry, Ch.llJ. Meanwhile, several alternative and more direct ap
proaches to the Springer representations were found. Let us mention the 
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"monodromy construction" of Slodowy [Slo] that can be interpreted in 
terms of nearby cycles [MacP], the "topological construction" of Kazhdan
Lusztig [KLl], and the "perverse sheaves construction" worked out by 
Borho-MacPherson [BM] following an earlier idea of Lusztig [Lu2]. The 
equivalence of all the above mentioned constructions was proved by Hotta 
[Ho]. Finally, the "lagrangian construction" used in the present work and 
based on Theorem 3.4.1 and on convolution in Borel-Moore homology is 
borrowed from (Gil]. 

In Section 3.7 we prove the Jacobson-Morozov theorem and some related 
results, such as a construction of standard transversal slices to conjugacy 
classes. The latter was used by Kostant [Kol] and Peterson in certain 
special cases, and defined in [Ko3] and [Slol] in general. For some additional 
results in that direction, we refer to [Kol]. 

Chapter 4 provides a geometric construction of the universal enveloping 
algebra of the Lie algebra sln(C) and of its finite dimensional representa
tions. Although the topic looks very "classical," most of the results of this 
part have never been published before (see announcement in [Gi4]). The 
basic ideas come, in fact from quantum groups (cf. [Drin], [Ji], [LulO]), a 
new and facinating part of representation theory with many unexpected 
applications (see e.g. [GKV],[Nal]). 

Sections 4.1 and 4.2 are the analogues of Sections 3.4 and 3.6 respec
tively, with the Weyl group now being replaced by the Lie algebra sln(C). In 
Section 4.1 we give a "lagrangian construction" of the universal enveloping 
algebra of sln(C). The construction was motivated by (and is a micro-local 
counterpart of) Beilinson-Lusztig-MacPherson's construction [BLM] of the 
quantized universal enveloping algebra. A simple new proof of the main 
Theorem 4.1.12 is presented in Section 4.3. Section 4.2 may be viewed as 
"Springer representations theory" for the Lie algebra sln(C): every finite 
dimensional irreducible sln{C)-module is realized in the top homology of an 
appropriate variety. The fundamental classes of the irreducible components 
of that variety naturally form a distinguished weight basis of the srn(C)
module. This basis is likely (cf. Remark 3.4.16) to coincide with Lusztig's 
canonical basis [Lu6] and also with special bases introduced much earlier by 
DeConcini-Kazhdan [DK] (as was pointed out to us by Lusztig, the unique
ness question had been not even raised at that time). The above mentioned 
results were announced in [Gi4]; they provide a geometric explanation of 
the classically known connection between combinatorics involved in the rep
resentation theory of the symmetric and general linear groups. 

The constructions of the two previous sections depend on an arbitrar
ily chosen positive integer d. The aim of Section 4.4 is to show that these 
constructions are, in a sense, independent of d. That "stabilization phe
nomenon" allows us to make a limit construction as d goes to infinity, 
an interesting example of infinite-dimensional geometry. The results of this 
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section were never published before. The crucial one, Theorem 3.10.16, is 
based on the miraculous computation of Lemma 4.4.2. It would be interest
ing to find a more conceptual proof of this theorem. 

Part 5 is an attempt to provide a reasonably self-contained introduction 
to equivariant algebraic K-theory. 

In the mid 1950's Grothendieck assigned to any algebraic variety X two 
groups, K 0(X) and K0(X), the Grothendieck groups of algebraic vector 
bundles and coherent sheaves on X, respectively. Twenty-five years later, 
after some earlier partial results by Bass and Milnor, Quillen defined in the 
seminal paper [Ql], for each i = 0, 1, 2, ... , the higher algebraic K-groups 
Ki(X) and Ki(X). These groups may be thought of (very roughly) as 
algebraic analogues of the cohomology and Borel-Moore homology groups 
in topology. Accordingly, the functor K' is contravariant in X and the 
group K•(X) has a ring structure, while the functor K, is covariant in X 
(with respect to proper morphisms) and the group K.(X) has the natural 
structure of a K•(X)-module. Furthermore, there is a Poincare duality 
analogue saying that, for smooth X, one has a canonical isomorphism 
K'(X) ~ K,(X). 

The equivariant algebraic K-theories K(; and K~ were first defined and 
studied by Thomason in [Thl], [Th2]. His treatment follows the lines of 
Quillen [Ql] on the one hand, and is modeled on the topological equivariant 
K-theory of Atiyah-Segal [AS} on the other. The approach of [Thl] was not 
fully satisfactory however, for it only provided a completed (in the sense of 
rings) version of the theory. The correct approach was later found in [Th3], 
so that it gives 

K~(pt) = representation ring of the group G, 

as expected, cf. 5.2.1. 
In principle, all the results of Part 5 can be derived from Thomason's 

work [Thl]-[Th4]. However our treatment is more elementary, whereas in 
[Thl]-[Th4] a lot of sophisticated background, e.g., the knowledge of ho
motopy limits, etale topology and etale descent is required. The simplicity 
of our approach is made possible for two reasons. First, we only use K?
theory and never K0-theory, just as our approach in the previous chapters 
was entirely based on Borel-Moore homology. Secondly, most of the vari
eties we encounter are of a very special kind: they have an algebraic cell 
decomposition by complex cells, e.g., the Bruhat decomposition of the flag 
manifold. In such cases, all the information we need is captured by the sin
gle K-group K~. The higher K-groups do not play an essential role in the 
book, though their existence is used a few times. These groups are "split 
off" by means of our main technical device, the cellular fibration Lemma 
5.5 which is also very useful in computations. 
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In Section 5.1 we begin with the standard definition of equivariant 
sheaves following Mumford [Muml]. We then proceed to show that equi
variant sheaves exist on any quasi-projective G-variety. Our exposition here 
is based on an elegant approach of [KKLV], [KKV], which yields, as a by
product, the equivariant projective imbedding Theorem 5.1.25, an impor
tant result proved by Sumihiro [Sul]. Then, using a routine argument due 
to Grothendieck, we construct a G-equivariant locally-free resolution of any 
G-equivariant sheaf. With locally free resolutions in hand, one defines var
ious standard functors such as direct and inverse images, tensor products, 
etc. In addition, we introduce a convolution operation in equivariant K
theory that incorporates, in a sense, all the above mentioned functors and 
plays a major role in the subsequent chapters. In Section 5.4 we recall the 
standard definition of a Koszul complex and prove the Thom isomorphism 
by reducing it to the projective bundle theorem. (The Thom isomorphism 
was referred to as the homotopy property in [Ql] and [Thl]; Quillen's proof 
does not work in our present equivariant setup). 

The Kunneth formula (Section 5.6) seems to be new, although some 
results involving similar ideas appeared earlier, e.g. in [ES]. In the same 
section we give a new proof, due to Beilinson, of the (equivariant) projec
tive bundle theorem. The proof is based on a canonical resolution of the 
structure sheaf of the diagonal in IPR x IPR constructed in [Be], and is much 
simpler than Quillen's original proof in [Ql]. In fact Beilinson invented his 
resolution while trying to understand Quillen 's argument. 

In Section 5.8 we assign to a coherent sheaf on a possibly singular vari
ety its Chern character class in Borel-Moore homology. Several equivalent 
constructions of such a class are known, though none is quite satisfactory. 
We follow the classical Chern-Weil approach, which is perhaps the best for 
the first reading. Unfortunately, it is badly suited for proofs, e.g., Theo
rem 5.8.6 (the multiplicative property of the Chern character) turns out 
to be a nontrivial result. Other, more technical definitions, which are bet
ter adapted for the proof of the singular Riemann-Roch theorem are given 
in (BFMl] and [Fu]. Recently, a very interesting definition was proposed 
by Quillen [Q2]; it may eventually lead to a bridge between the Chern
Weil approach and the one given in [Fu] based on the graph construction of 
Ma.cPherson. 

Most of the results of Section 5.9 are quite old and go back to the work 
of Grothendieck-Borel-Serre [BS) . Section 5.10 is devoted to the localization 
theorem that relates equivariant K-groups of a variety with those of a 
fixed point subvariety. We prove the theorem only in a special case that 
suffices for our purposes. The reader is referred to [Thl] for a proof of 
the general case, which is technically more involved. The essential role in 
our proof is played by Proposition 5.10.3. The importance of a topological 
counterpart of this proposition was emphasized by Atiyah and Bott in their 
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study of equivariant Poincare polynomials of moduli spaces (see (Kirw] and 
references therein). 

In Section 5.11 a K-theoretic version of the Lefschetz fixed point formula 
is proved (again in a special case; see [Th2] for the general case). We also 
prove a bivariant Riemann-Roch theorem (for correspondences instead of 
maps) which follows formally from the results of [BFMl] {cf., also [FM)). 

Part 6 is concerned with equivariant K-theory and homology of the 
flag variety, and closely related topics. The results of Section 6.1 are quite 
standard and completely analogous to their counterparts in topological K
theory (cf. [ASJ). We deduce a weak version of Borel-Weil theorem from 
the Lefschetz formula in equivariant K-theory. Then the Kiinneth theorem 
for flag varieties is established following the approach of [KL4]. The result 
was conjectured by Snaith [Sn] and proved by McCleod in [McCleo] and 
independently by Kazhdan and Lusztig in [KL4]. In Section 6.2 we show 
that various varieties, such as the flag variety, its cotangent bundle, the 
Steinberg variety, etc. are essentially built out of complex cells so that the 
machinery based on the cellular fibration applies. 

Sections 6.3-6.5 are devoted to harmonic polynomials. These polynomi
als were originally introduced and studied by Steinberg [St2] in connection 
with Harish-Chandra's work on harmonic analysis on a semisimple group. 
We are mainly concerned with the relationship between W-harmonic poly
nomials on a Cartan subalgebra and nilpotent conjugacy classes in the cor
responding semisimple Lie algebra. There are two totally different ways of 
establishing such a relationship. The first is based on the classical result of 
Borel given in Section 6.5. It establishes a natural isomorphism between the 
vector space 1-l of harmonic polynomials and H•(B), the total cohomology 
of the flag manifold. To a nilpotent conjugacy class 0, one associates in a 
natural way certain cohomology classes of the flag manifold, the Poincare 
duals of the fundamental classes of the so-called orbital varieties studied in 
Section 6.5. These classes give rise, via the Borel isomorphism, to a distin
guished collection of harmonic polynomials. 

The second method is based on the notion of an equivariant Hilbert 
polynomial (Section 6.3). Fix a maximal torus T and a Borel subalgebra 
b :::> LieT. Given a nilpotent conjugacy class 0, form the intersection Onb. 
Let A be an irreducible component of its closure and PA the T-equivariant 
Hilbert polynomial of the variety A. It turns out that PA is a harmonic 
polynomial on the Cartan subalgebra LieT, so that we get a collection 
of harmonic polynomials parametrized by the irreducible components of 
I{) n b. Theorem 7.4.1 says that the collections of harmonic polynomials 
arising via the first and second approaches coincide. Moreover, there is 
a natural bijection between the sets of orbital varieties and of irreducible 
components of 0 n & so that the corresponding objects give rise to the same 
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harmonic polynomial. A proof of this important result was first given by 
Borh~Brylinski-MacPherson in !BBM] using earlier results of Hotta !HaJ 
and Joseph [Jol],[Jo2]. (A more direct proof based on the technique of 
equivariant cohomology was found later by Vergne [Ve]). Our approach is 
similar to that of Vergne, with the equivariant cohomology being replaced 
by equivariant K-theory. 

Section 6.7 is devoted to a very important result due to Kostar1t [Ko3] 
describing the structure of the polynomial ring on a semisimple Lie alge
bra. This result is crucial in relating representations to V-modules, see 
[BeiBer]. In spite of its fundamental role in various matters, no entirely 
self-contained proof of the Kostant theorem was ever published. The orig
inal proof of Kostant relied on the rather sophisticated commutative al
gebra found in [Seid) involving some deep properties of Cohen-Macaulay 
rings. Those properties amount essentially to what nowadays is known as 
the "Serre normality criterion" [Se3]. 

We present in this section a new and complete proof of the Kostant 
theorem based on a totally different, much more elementary technique, 
due to Bernstein-Lunts, (see Section 2.2 and [BeLu]). We hope that the 
argument presented in §6. 7 will make not only the statement but also the 
proof of the Kostant theorem accessible to the nonexperts. 

In Chapter 7 we give a geometric interpretation of Weyl groups and 
Hecke algebras in terms of equivariant K-theory. This interpretation plays a 
crucial role in the representation theory of Hecke algebras studied in Chap
ter 8. Our first Theorem 7.2.2 establishes an isomorphism of the group alge
bra of the affine Weyl group with the convolution algebra arising from the 
G-equivariant K-group of the Steinberg variety Z. This result is entirely 
analogous to the lagrangian construction of Section 3.4. The proof, which 
seems to have never appeared before, is based on the same deformation ar
gument as the proof of Theorem 3.4.1. Historically, however, the relevance 
of equivariant K-theory to the subject was first discovered by G. Lusztig 
[Lu4]. In that crucial paper which paved the way for all subsequent devel
opments, Lusztig constructed a representation of the affine Hecke algebra 
in a G x C--equivariant K-group. What is especially amazing about [Lu4] 
is that Lusztig ingeniously recognized the presence and importance of a c· -
action while dealing with varieties without any C*-action at all. That action 
turned out, a posteriori, to be the natural c• -action on the Steinberg vari
ety, by dilations. Theorem 7.2.5, the main result of the chapter, says that 
the affine Hecke algebra H is isomorphic to the convolution algebra arising 
from the G x C*-equivariant K-group of the Steinberg variety Z. This is 
a natural q-analogue of Theorem 7.2.2. All the above can be summed up 
in the following commutative diagram of algebra homomorphisms; the top 
row of the diagram is formed by geometric objects and the bottom row by 
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their algebraic counterparts, moving from left to right leads to forgetting 
some amount of structure. 

(0.0.1) 

KGXC°(Z) 

117.2.5 

forgetting 

c·-action 

q ..... l 
H-----

K 0 (Z) 

117.2.2 

Z[Wa!!I 

4upport 
Hdim 1 z(Z) 

cycle 

,,3.4 

Z[WJ 

One might ask why we made Theorem 7.2.2 a separate result while it is 
directly obtained from Theorem 7.2.5 by specialization at q = 1. The rea
son is that the only known proof of Theorem 7.2.5 is rather artificial and 
is considerably more complicated than that of Theorem 7.2.2. The defor
mation approach for the proof of Theorem 7.2.2 provides in itself a natural 
explanation of the theorem. That approach fails in case of Theorem 7.2.5, 
for the deformation used in the argument can not be made C*-equivariant. 
Thus, Theorem 7.2.2 is not only much more elementary but is also a strong 
motivation for Theorem 7.2.5 which is still awaiting a natural explanation; 
an obstacle is, perhaps, the absence of an adequate definition of the affine 
Hecke algebra (cf. an attempt in [GKVlJ). A somewhat related problem 
should be perhaps mentioned at this point. The Hecke algebra of the fi
nite (not affine) Weyl group has no geometric construction whatsoever. 
Neither the "lagrangian" approach of Chapter 3 admits a q-deformation, 
nor is there a nice geometric way to locate the finite Hecke algebra inside 
its affine counterpart. For another proof of 7.2.5 see [Tal]. 

Theorem 7.2.5 was announced without proof in [Gi2] soon after the 
appearance of [Lu4]. A complete proof of a result which is slightly weaker 
than Theorem 7.2.5 was given by Kazhdan-Lusztig [KL4, Theorem 3.5]. 
(Some indications towards the proof of Theorem 7.2.5 in its present form 
appeared in [Gi3] at the same time as [KL4]. However, the presentation in 
[Gi3] was so sketchy and contained so many gaps and incorrect statements 
that it could not be regarded quite seriously.) Theorem 7.2.5 differs from 
the corresponding result of Kazhdan-Lusztig in two ways. First, Kazhdan 
and Lusztig work with topological K-theory while Theorem 7.2.5 is stated in 
terms of algebraic K-theory. This difference is just formal however, for it is 
known !Ta] that the two theories are actually isomorphic in the case under 
consideration, see Remark 5.5.6. The second difference is more essential. 
The result proved by Kazhdan-Lusztig says that (in the spirit of [KLl]) 
the equivariant K-group of the Steinberg variety has the structure of the 
two-sided regular representation of the affine Hecke algebra, while Theorem 
7.2.5 says that the K-group is isomorphic, as an algebra, to the affine 
Her.kc algebra itself (this implies, in particular, that it is isomorphic to its 
two-sided regular representation). The algebra structure as such Wll.8 not 
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explicitly presented in [KL4] and was not used in that paper. We give in 
Section 7.6 a complete proof of Theorem 7.2.5 following the strategy of 
Kazhdan-Lusztig [KL4, Sec. 3] with some minor simplifications. Thus, our 
proof is based, after all, on the formulas 7.2.13, discovered by Lusztig in 
[Lu4] and subsequently explained by Kato (see [KL4, p. 177]). 

Hecke algebras arise in mathematics not just as q-analogues of the group 
algebras of Weyl groups. Historically, they first appeared quite naturally as 
convolution algebras of bi-invariant functions on reductive groups over fi
nite or p-adic fields. More specifically, let p be a prime, Qp the correspond
ing p-adic field with ring of integers Zp and residue class field IFP. Let G(Qp) 
be the group of Qp-rational points of a split semisimple group G, and let 
G(Zp) and G(lFp) be the corresponding groups of Zp- and lFp-points. The 
diagram 

Qp ~ Zp-+> Zp/p · Zp = lFp 

induces natural group homomorphisms 

G(Qp) ~ G(Zp)-+> G(lFp}· 

Let I be an Iwahori subgroup of G(Qp) · (If G is simply connected I is 
defined to be the inverse image in G(Zp) of a split Borel subgroup of G(Fp) 
via the projection above. In general we set I:= 7r(i), where 7r : G-+> G is a 
simply connected cover of G and i is an I wahori subgroup in G). We now 
assume that G has no center, i.e., is of adjoint type, and let C[I\G(Qp)//] 
denote the vector space of all I-bi-invariant complex valued functions on 
G(Qp) with compact support. 

The space C[I\G(Qp)/I] has a natural algebra structure given by convo
lution on G. This double-coset algebra, called the Iwahori-Hecke algebra of 
G(Qp}, plays a significant role in the representation theory of G(Qp), since 
it was shown by Borel, Bernstein and Matsumoto that there is a natural 
bijection between finite dimensional representations of the double-coset al
gebra and smooth representations of G(Qp) generated by I-fixed vectors. 

Characteristic functions of the /-double cosets in G(QP) form a natu
ral basis of C[J\G(Qp)/ /]. An analogue of the Bruhat decomposition gives 
a natural parametrization of /-double cosets in G(Qp), hence of the basis, 
by elements of the (affine) Weyl group, Waif> of the group G(Qp). Fur
thermore, Iwahori and Matsumoto showed that the double-coset algebra 
is a q-analogue of the group algebra of the group Waif· Specifically, they 
constructed in (IM] an isomorphism between the lwahori-Hecke algebra of 
G(Qp) and the "abstract" Hecke algebra associated to the corresponding 
affine root system (with parameter q being specialized at the prime p). 

Later on, Bernstein found a totally different presentation of the same 
algebra in terms of an alternative set of generators and relations. Bern
stein's construction is a q-analogue of the presentation of the affine Weyl 
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group, Wat,, as a semi-direct product of the "finite" Weyl group, W, and 
a lattice of translations. Accordingly, the algebra H introduced by Bern
stein, which we call the affine Hecke algebra, contains a q-analogue of the 
group algebra of W, the "finite Hecke algebra," and a large complementary 
commutative subalgebra corresponding to "translation part." The results 
of lwahori-Matsumoto and Bernstein imply that the lwahori-Hecke algebra 
of G(Qp) is isomorphic to the affine Hecke algebra H. Combining with the 
isomorphism 7.2.5, we obtain an algebra isomorphism 

(0.0.2) Laxc• L C[I\G(Qp)/I]::::: K ( Z)1q=p1 

where L Z stands for the Steinberg variety associated with LG, the Lang
lands dual of G. The importance of this isomorphism is in establishing a 
link between the infinite dimensional representation theory of the p-a.dic 
group G(Qp) and the finite dimensional representation theory of an algebra 
defined in terms of complex geometry of the dual group. The only known 
proof of (0.0.2) relies on the chain of isomorphisms 

(0.0.3) 
C[I\G(Qp)/ I} ~ Hecke algebra of Waif ~ H '.:::: KLaxc· (L Z)/q=p· 

Here the first isomorphism is due to PM], and the third one is due to 
Theorem 7.2.5. The isomorphism in the middle; due to Bernstein, serves 
as a bridge between the LHS and the RHS. The typical feature of the 
theory is that, in general, algebras arising from a p-adic reductive group 
and the corresponding ones arising from the Langlands dual complex group 
are a priori described by different sets of generators and relations. It is 
then a nonobvious result-which is a concrete manifestation of so-called 
"Langlands duality" (cf. below)-that the two algebras turn out to be 
isomorphic. 

The isomorphism (0.0.2) above still presents a mystery. The puzzle is 
that although both algebras involved in (0.0.2) have a natural geomet
ric meaning, the isomorphism itself has no such meaning as yet. The 
only known proof of it is based on an ad hoc construction of a map 
H --+ KL axe• ( L Z). A conceptual construction of the restriction of this 
homomorphism to the "finite" Hecke algebra was found by Tanisaki [Tal] 
using perverse sheaves on the flag manifold of G. His construction uses a 
nontrivial map assigning to a perverse sheaf on a variety its characteristic 
cycle, see e.g., [Gil], [KS], in the algebraic K-theory of the cotangent bun
dle on the variety. This shows in particular the advantage of our approach 
via algebraic K-theory, the place where characteristic cycles naturally live, 
as opposed to the approach based on topological K-theory. 

Unfortunately, there seem to be some deep reasons preventing Tanisaki's 
construction to be extended to the affine Hecke algebra H. To find a con-
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ceptual construction of the map on the whole of H one might argue as 
follows. First of all the LHS of (0.0.2) should be modified to make the 
isomorphism hold for all q, the specialization being dropped. This can 
be achieved by replacing functions on I\G(Qp)/ I by sheaves {more pre
cisely, mixed l-adic perverse sheaves) on the affine flag variety B, cf., 
[KL5J, instead of the "finite" flag variety used by Tanisaki. Following the 
strategy of [Spr3J one introduces a category P(B) formed by certain per
verse sheaves, i.e., constructible complexes, on r3 so that K(P(B)), the cor
responding Grothendieck group, has a natural Z[q, q-1 ]-algebra structure 
whose specialization at q = p is isomorphic to C(I\G(Q,,)/ I]. Observe fur
ther that the RHS of (0.0.2) is, by definition, the Grothendieck group of 
Coh1..cxc•(LZ), the category of equivariant coherent sheaves on Lz. The 
isomorphism (0.0.2) can be "lifted" to a stronger isomorphism: 

(0.0.4) 

The latter isomorphism between the Grothendieck groups of the two cate
gories suggests that there might be a relation between the categories them
selves. Specifically, we conjecture that there is a natural functor P(B) --+ 

Coh1.ocxc• ( L Z) which induces the isomorphism (0.0.4). As a partial result 
towards proving the conjecture, we proposed in [GiKu, §4] a construction 
assigning to an object of P{B) an Ad(LG)-equivariant sheaf on the nilpo
tent variety in Lie (LG). What essentially remains to be done is to refine 
the construction in order to get a LG-equivariant sheaf on the Steinberg 
variety rather than a sheaf on the nilpotent variety. We hope that this can 
be achieved using an interpretation of P(B) in terms of quantum groups. 

Chapter 8 is devoted mostly to the classification of irreducible represen
tations of the affine Hecke algebra. 

Our approach is analogous to the classification of simple highest weight 
modules over a complex semisimple Lie algebra {cf., [Di]). Recall that the 
highest weight modules have natural "continuous" and "discrete" parame
ters. Continuous parameters correspond to the choice of a central charac
ter which has to be specified first. One then constructs a finite collection 
of Verma modules with a given central character. Though not irreducible, 
the Verma modules are much more manageable. Any Verma module has a 
natural "contravariant" bilinear form introduced by Jantzen. Moreover, the 
quotient of a Verma module modulo the radical of the contravariant form 
turns out to be simple, and each simple module is obtained in this way from 
a unique Verma module. In particular, Verma modules and simple modules 
have identical parameter sets. 

The classification of irreducible representations of the affine Hecke alge
bra proceeds in three steps similar to those above. One observes first that 
the center of the affine Hecke algebra acts via a !-dimensional character in 
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any irreducible representation, due to Schur's lemma. Giving such a "cen
tral character" amounts to specifying a semisimple element a = (s, t) E 
G x c• (tip to conjugacy), the "continuous" parameter of the classification. 
So, we may fix a = ( t, s) and restrict our attention to irreducible repre
sentations with the central character associated to a. We now apply the 
K-theoretic description of the affine Hecke algebra given in Part 7. It turns 
out that the quotient of the Hecke algebra modulo the kernel of the central 
character associated to a is canonically isomorphic to the convolution alge
bra given by the Borel-Moore homology of the a-fixed point subvariety of 
the Steinberg variety. This completes the first step. 

Next we produce a finite collection of "standard" modules over the con-· 
volution algebra, the counterparts of Verma modules. A standard module 
is defined via the general procedure of Section 2.7 to be the homology of 
the a-fixed point subset in a Springer fiber. The construction is analogous 
to the construction of Springer representations given in Section 3.5 with a 
single exception. Taking a-fixed points spoils the dimension identities (cf., 
3.3.25) that played an important role in Section 3.5. For this reason it is 
impossible now to define a module structure on the top homology alone, 
as we did in Section 3.6; we are now forced to take the total homology 
group. Therefore, standard modules are in general too large to be irre
ducible. Thus, the final step consists of locating the position of the sim
ple modules inside the standard ones. By analogy with the highest weight 
theory, we introduce a "contravariant" form on standard modules to be an 
appropriate intersection form on homology groups (Section 8.5). We show 
further that the· quotient of a standard module modulo the radical of the 
contravariant form is irreducible and that any irreducible module is ob
tained in this way. 

The first two steps of the above indicated approach are carried out in 
Section 8.1. In Section 8.2 we obtain, following IGi2] and IKL4, 5.2-5.3] a 
character formula for standard modules conjectured earlier by Lusztig in 
!Lu3]. The necessary background on the derived category of constructible 
complexes is collected in Section 8.3. In the next section we recall ba
sic facts about perverse sheaves and formulate the main result (Theorem 
8.1.16) of the chapter, the classification of simple modules over the affine 
Hecke algebra. Although the construction of simple modules itself is quite 
elementary, the proofs of both irreducibility and completeness of the clas
sification involve deep results from intersection cohomology. To that · end, 
we first give a sheaf-theoretic interpretation of the "contravariant form," 
introduced earlier in an elementary way. The proof of the classification the
orem along with a much more general, though equally important, result is 
completed in Section 8.6. 

The last Section 8.9 is devoted to the study of the machinery of Section 
8.6 in the extreme special case of "most favorable dimensions" that hold, 
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for instance, in the setup of Section 3.5 (see (3.3.25)). Thus we reprove 
all of the results on Springer representations in a much shorter, but less 
elementary way. The approach adopted here is a slight generalization of 
that used by Borho-MacPherson [BM]. 

A classification of irreducible representations of affine Hecke algebras 
(essentially equivalent to Theorem 8.1.16) was first obtained by Kazhdan
Lusztig in [KL4, thm. 7.12]. The approach to the classification used in the 
book is quite different from that of [KL4] and follows the lines of [Gi3]. Our 
approach seems to· be technically shorter and more general: the technique 
we are using here was applied verbatim in [GVl J to get a classification 
of irreducible finite dimensional representations of affine quantum groups 
and may be useful in other cases as well (cf. [GV2], [GRV]). Our technique 
yields also a multiplicity formula for standard modules in terms of intersec
tion cohomology. In the special case G = SLn(C) such a formula was sug
gested (without proof) by Zelevinsky [Z] (in the general case the formula 
was conjectured by Lusztig and later independently by Ginzburg [Gi2]). 
Zelevinsky called it a Jradic analogue of the Kazhdan-Lusztig conjecture 
(the latter is the famous conjecture in [KL2] concerning multiplicities of 
Verma modules, proved by Beilinson-Bernstein and Brylinski-Kashiwara). 

The main difference between the techniques used in [KL4] and that of 
[Gi3] is that Kazhdan and Lusztig work entirely in the framework of (topo
logical) equivariant K-homology, while our approach is based on intersec
tion cohomology methods. The above mentioned multiplicity formulas, be
ing almost immediate from our approach, seem to be inaccessible by the 
K-theoretic approach. It should be emphasized however, that although the 
intersection cohomology method yields explicit multiplicity formula, it can
not ensure that those multiplicities are actually nonzero. The essential ad
ditional result on the classification proved by Kazhdan and Lusztig (KL4, 
thm. 7.12] ensures that all the multiplicities that may arise a priori are ac
tually nonzero. This "non-vanishing result" of Kazhdan-Lusztig has to be 
proved separately. It was overlooked in [Gi3J making the main result of that 
paper incorrect as stated (as was pointed out in [KL4]). 

By a careful analysis of the Kazhdan-Lusztig proof of the "non-vanishing 
result," I. Grojnowski suggested (private communication) a geometric inter
pretation of their argument in terms of the intersection cohomology setup 
that makes the result even more transpBient. A new self-contained expo
sition of the non-vanishing result based on the (unpublished) ideas of I. 
Grojnowski combined with a theorem of M. Reeder [Re] is given in Section 
8.8 (cf. [Lu9] and [LulOJ for yet another proof of a generalization of the 
"non-vanishing result." The proof in loc. cit. is more complicated and less 
direct however). 

The role of the representation theory of affine Hecke algebras is mainly 
due to its close connection with the classification of infinite-dimensional ir-
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reducible representations of p-adic groups. The latter is one of the most 
important open problems of representation theory. It received a new impe
tus in early 70's when Langlands launched what is now known as "The 
Langlands Program," a fantastic generalization of the Artin-Hasse reci
procity law of the local class field theory. He conjectured [Langl J the ex
istence of a correspondence between the irreducible admissible infinite
dimensional representations of a p-adic reductive group G(Q,,) on the one 
hand and (roughly speaking) the conjugacy classes of group homomor
phisms Gal(Q,,/Q,,) - LG, where LG is the complex Langlands dual group, 
on the other (see the survey [Bo2] for details). 

Although the Galois group Gal(Q,,/Q,,) is rather complicated, it has a 
"tame" quotient, the group r on two generators F ( = Frobenius) and M 
(= monodromy) subject to the relation 

F· M · p-1 = M". 

According to a special case of the general Langlands conjecture, which was 
spelled out independently by Deligne and Langlands, the "tame" homomor
phisms 

i.e., the homomorphisms that factor through rand take M to a unipotent 
element, should correspond to those admissible, irreducible representations 
of G(Q,,) that contain an I-fixed vector, where I c G(Q,,) is an Iwahori 
subgroup. Now let p : G(Q,,) - End (V) be such a representation and V 1 C 
V the subspace of the I-fixed vectors. For any I-bi-invariant compactly 
supported function f on G(Q,,), the formula 

p(f): v,...... 1 f(g) · p(g)vdg, v E V 1 

G(Q,,) 

defines a C[I\G(Q,,)/J]-module structure on the vector space V1
• More

over, the space V1 turns out to be finite-dimensional and the assignment 
V ,...... V 1 sets up a bijection between the (equivalence classes of) admis
sible, irreducible G(Q,,)-modules containing nonzero /-fixed vectors and the 
(equivalence classes of) simple finite dimensional C[I\G(Q,,)/ /]-modules 
(sec e.g., (Carl) . In view of the above mentioned algebra isomorphism 
C[I\G(Q,,)/ /] '.:::::: H(LG), the Deligne-Langlands conjecture predicts a cor
rcspo11clmu:c 

co11j11g1Lc.y d11ss<!H Irreducible 
of ho111oi11orphiH11111 ... · ... G(Q11)-modules -

I' , 1.u wit.h I-fixed vectors 

simple 
H( LG)-modules. 

In tht! form pwH1!11lt'd nhovc tlw corrcHpomlc11cc h~ still not quite precit1e. 
Fir11l, Cllll ~ l11U1 t.u put. t• x l.rn c:c111clitio11H Oii the homomorphisms r - LG 
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requiring the image of the Frobenius to be semisimple and the image of 
the monodromy to be a unipotent element of LG. Second, to make the 
correspondence on the left bijective, one has to replace the leftmost set by 
the following enriched data: 

conjugacy classes 0 
of homomorphisms 

r-+ LG 
+ 

certain (§8.4) irreducible 
LG-equivariant 

local systems on 0 . 

In this final form the conjecture was made by Lusztig in [Lu3]. Observe 
now that giving a homomorphism 'Y : r -+ LG subject to the above 
mentioned restrictions amounts to giving a semisimple element s = 1(F) 
and a unipotent element u = -y(M) such that s · u · s-1 = u". One may 
write u = expx, where x is a nilpotent element of Lie(LG). Then the 
equation reads Ad s(x) = p · x; furthermore, giving an equivariant local 
system on a conjugacy class of such pairs (s, x) is equivalent to giving 
a representation of the finite group C(s, x), the component group of the 
simultaneous centralizer of both s and x in LG. It follows that the Deligne
Langlands-Lusztig conjecture in its final form reduces to the classification 
Theorem 8.1.16. Thus the results of Part 8 may be seen as a first step 
towards the general Langlands program. 




