Appendix A

Results from Algebraic Geometry

We collect some results from algebraic geometry that are frequently used in the
book. The standard references are [Hartshome—77], [Mumford-88], [Safarevi¢—
94]. We do not state the results in their full generality, but we state whatever is
required for their applications in the book.

In this appendix k is an arbitrary algebraically closed field (of any character-
istic). By a variety X, we always mean a quasiprojective (reduced) variety over k
as defined in [Safarevic-94, Chapter I, §4.1], i.e., an open subset of a closed, not
necessarily irreducible, subset of a projective space over k. Its structure sheaf is
denoted by Oy and its coordinate ring, i.e., the ring of global regular functions
on X is denoted by k[X]. By the dimension dim X of a variety X, we mean
the maximum of the dimensions of its u‘reduc1ble components. By a point of a
variety, we mean a closed point.

A.1 Theorem. ([§afarevic‘.—94, Chap. 1, §6, Theorem 51.) Let X be anirreducible
projective variety and let F be a nonzero form on X, i.e., F is the restriction of
a homogeneous polynomial on an ambient projective space P* for some (closed)
embedding of X in P". Then each irreducible component of the zero set X r has
dimension equal to dim X — 1.

A.2 Theorem. ([Safarevit-94, Chap. I, §5, Theorem 2).) The image of a pro-
Jective variety under a morphism is closed.

A.3 Definition. Let X be a variety and x € X. The Zariski tangent space T,(X)
of X at x is, by definition, the vector space over & :

€)) T (X) := Homy (m, /m?2, k)

where m, is the maximal ideal of the local ring O, x.
Any morphism f : X — Y of varieties induces a canonical map (for any
x e X)

2 @f)e: To(X) = T (Y),
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called the derivative of f atx.
By [Mumford-88, Chap. III, §4, Proposition 2], for an irreducible variety X
of dimension £ and any point x € X,

(3) dim T, (X) > £.
Moreover,
)] x € X is a smooth point < dim 7,(X) = £.

A.4 Definition. For any local ring R with maximal ideal m, define the graded
R /m-algebra

4)) grR = Zm"/m""'l.

n>0

Let X be a variety over k and let x € X be a point. Then the tangent cone
Cy(X) of X at x is, by definition, Spec(gr O, x), where (as above) O, x is the
local ring of X at x. By [Mumford—88, Corollary on pg. 226], if X is an irreducible
variety of dimension £, then

2 dim C,(X) = £.

In fact, each irreducible component of the scheme C, (X) is of dimension £. By
[Mumford—88, Chapter 3, §4], x € X is a smooth point iff the tangent cone is
linear, i.e., gr O, x is graded isomorphic with the polynomial ring k{1, ... , #]
withdegt; =1 foralli.

Letx € U C X bean affine neighborhood of x in X. Then, there is a canonical
graded algebra isomorphism (cf. [Mumford-88, Chapter 3, §31):

@) 3 m U /(U > @Oy,

nz0

where m, (U) is the maximal ideal of the coordinate ring k[U/] consisting of the
functions vanishing at x.

Observe that the k-algebra gr O, x has nilpotents in general. Let A be the
ideal of gr O, x consisting of all the nilpotent elements. Then the k-algebra
(gr Oy x)/N is of course reduced. Define the reduced tangent cone Cff“ (X) as
Spec (gr O, x /N).

A.5 Definition. Let X be an irreducible variety. Then a point x € X is said to
be a normal point of X or X is said to be normal at x, if the local ring O, x is
integrally closed in its quotient field. The variety X itself is called normal if itis
normal at every point.
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For example, a smooth irreducible variety is normal. It is well known (cf.
[Mumford-88, III.8, Proposition 1]) that the codimension of the (closed) set of
singular points £(X) of a normal variety X is at least 2, i.e., each irreducible
component of £ (X) is of codimension at least 2 in X,

A normalization of an irreducible variety X is a normal (irreducible) variety X
together with a finite morphism 7 : X — X which is a birational isomorphism.

The following result can be found in [Mumford-88, ITI.8, Theorems 3,4] and
[Safarevié-94, Chap. II, §5, Theorem 4].

A.6 Proposition. An irreducible variety X admits a normalization 7 : X — X.
Moreover, it is unique, in the sense that if &' : X' — X is another normalization,
then there exists an isomorphism f : X — X' making the following diagram
commutative:

X——-—-» X/
\ /r/

The normalization of an ( irreducible) aﬁine, resp. projective, variety is affine,
resp. projective.

The normalization satisfies the following universal property (cf. [Hartshorne—
77, Chap. II, Exercise 3.8]):

A.7 Proposition. With the notation as is the above proposition, let f : Y — X
be a dominant morphism, i.e., f(Y) is dense in X, such that Y is a normal
(irreducible) variety. Then there exists a unigque lift f : Y — X such that

mof=f

Let f : X — Y be a morphism of varieties. For any Oy-module S, resp. Oy-
module 7, recall the definition of the direct image Oy-module f.S, resp. the
inverse image Ox-module f*T, from [Hartshorne-77, Chap. II, §5]. Then, by
loc. cit., f, and f* are adjoint functors. More specifically,

A.8 Lemma. Homo, (f*7T,S) =~ Homo, (T, f.S).

A proof of the following Zariski's connectedness theorem (also known as
the Zariski's main theorem) can be found, e.g., in [Hartshorne-77, Chap. III,
Corollary 11.4 and its proof].

A9 Theorem. Let f : X — Y be a birational projective morphism between
irreducible varieties. Assume further that Y is normal. Then, for any y €
Y, f~1(y) is connected. Moreover,

(1) fiOx =Oy.
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(Observe that, for projective varieties X, Y, any morphism f : X — Y isa
projective morphism.)

A subset Y of a topological space X is called locally closed if Y is open in the
closure ¥ of Y, or equivalently, if ¥ is the intersection of an open subset with a
closed subset of X. A constructible subset of X is, by definition, a finite union
of locally closed subsets of X.

We recall the following result due to Chevalley (cf. [Borel-91, Chap. AG,
Corollary 10.2]).

A.10 Theorem. Let f : X — Y be a morphism of varieties. Then the image
of any constructible subset of X is constructible in Y. In particular, by Exercise
A.E.3, f(X) contains a dense open subset of f(X).

A.11 Theorem. Assume char. k = 0. Let f : X — Y be a bijective morphism
between irreducible varieties. Assume further that Y is normal. Then f is a
biregular isomorphism.

Proof. Use [Springer-98, Theorems 5.1.6(iii) and 5.2.8] together with the fact
that any field extension in char. 0 is separable. O

The following proposition is taken from [Kumar—Narasimhan—-Ramanathan—
94].

A.12 Proposition. Assume char. k = 0. Let f : X — Y be a surjective
morphism between irreducible varieties over k. Assume that Y is normal and let
E — Y be an algebraic vector bundle over Y.

Then any set theoretic section o of the vector bundle £ is regular if and only if
the induced section f*(o) of the induced bundle f*(£) is regular. In particular,
asetmapa Y — kisregulariffo o f: X — kis regular.

Proof. The “only if” part is of course trivially true. So we come to the “if” part.
Since the question is local (in Y), we can assume that Y is affine and, moreover,
the vector bundle £ is trivial, i.e., it suffices to show that any (set theoretic) map
o : Y — kis regular, provided & := o o f : X — k is regular (under the
assumption that ¥ = Spec R is irreducible normal and affine):

Since the map f is surjective (in particular, dominant), the ring R is canoni-
cally embedded in ['(X) := H°(X, Oy). Let R[5] denote the subring of ['(X)
generated by R and & € I"(X). Then R[o]is a (finitely generated) domain (as X
is irreducible by assumption), and we get a dominant morphism f : Z — Spec
R, where Z := Spec (R[5]). Consider the commutative diagram:

2N,

Z —vy,
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where @ is the dominant morphism induced from the inclusion R[g] — I'(X)
{cf. [Hartshome~77, Chap. I, Proposition 3.5]). In particular, Im & contains a
nonempty Zariski open subset U of Z (cf. Theorem A.10). Let x;, x> € X be
(closed) points such that f(x;) = f(x2). Then r(x;) = r(xy) forall r € R, and
also &(x|) = & (x2). This forces 6(x;) = 6(xy); in particular, f,u is injective on
the closed points of U.

Since f is dominant, by cutting down U if necessary, we can assume that
ﬁu U — V is a bijection, for some open subset V C Y. Now, since Y is (by
assumption) normal and Z is irreducible, by Theorem A.11, f,u U— Visan
isomorphism, and hence ¢ is regularon V.

Assume, if possible, that g, does not extend to a regular function on the
whole of Y. Then, by [Borel-91, Lemma 18.3, Chapter AG], there exists a point
Yo € Y and a regular function h on a Zariski neighborhood W of y, in Y such
that h(y,) = 0and ho = 1 on WN V. But then hé =1lon flwn V),where
h:=ho f,and hence. & being regular on the whole of X, k& = 1 on f~1(W).
Taking 7, € f~'(y,) (f is, by assumption, surjective), we get 2(7,)5 (5,) = 0.
This contradiction shows that g}, does extend to a regular function (say o’) on the
whole of Y. Hence & = &’ on the whole of X in particular, by the surjectivity
of f, o = &'. This proves the proposition. [

A.13 Definition. A morphism f : X — ¥ of varieties is called affine if there is
an open affine cover {V;} of Y such that f~!(V;) is affine for each i.

By [Hartshorne—77, Chap. II, Exercise 5.17(a)], for an affine morphism f and
any affine open subset V C ¥, f~!(V) is affine.

A.14 Definition, Recall [Hartshorne-77, Chap. III, §10] that a morphism f :
X — Y of varieties is called smooth of relative dimension n if the following three
conditions are satisfied:

(1) f is flat,

(2)if X’ € X and ¥’ C Y are irreducible components such that f(X’) C ¥/,
then dim X’ = dim ¥’ 4 n, and

(3) the sheaf of relative differentials Q Xy is a locally free sheaf of rank n.

Clearly, an open embedding is smooth of relative dimension 0.

Smooth morphisms have the base change property, i.e.,if f: X — Yisa
smooth morphism of relative dimension 7 and g : ¥/ — Y is a morphism, then
the morphism f’ : X’ — Y’ obtained by base change is also smooth of relative
dimension n.

Moreover, the composition of two smooth morphisms is smooth. More specif-
ically, if f : X — Y is smooth of relative dimensionm and g : Y — Z is smooth
of relative dimension n , then g o f : X — Z is smooth of relative dimension
m -+ n. By [Hartshome--77,Chap. III, Exercise 9.1], a smooth morphism is open,
i.e., sends open sets to open sets.
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A locally iso-trivial fibration of varieties with smooth fiber of dimension n
is a smooth morphism of relative dimension n (cf. [Altman-Kleiman-70] or
[Hartshorne—77, Chapter 111, Theorem 10.2]).

A.15 Definition. Let X be an irreducible variety over k. Let { = Hy be the
collection of all the codimension-one closed irreducible subvarieties of X. By
div X, we meanthe free Z-module generated by the elements of H. Any element
D of div X is called a divisor. So D canbe written as D =}, , ky H, where
ky € Z and all but finitely many kg are 0. Often we omit in the above sum those
H for which kg = 0.

If each ky = 0, we write D = 0. If each ki > 0 and some ky > 0, we write
D > 0. Ifeach kg = 0, D is said to be effective. If ky = O for all but one H, and
kg, = 1,then D is called a prime divisor. The support of D, denoted supp D, is
defined to be the subvariety of X:

supp D := U H.
k70

For any closed (reduced) subvariety Y of pure codimension-one of X (i.e., each ir-
reducible component of Y is of codimension-one) with irreducible decomposition
Y = U;Y;, we define the divisor associated to Y, denoted [Y], by

(Y] :=Z Y.

If X is smooth (and irreducible), then any divisor D gives rise to a line bundle
denoted Ox (D) on X (cf. [Safarevi®-94, Chap. VI, §1.4; and Chap. III, §1.1-
1.2]). (Inloc. cit. Ox (D) isdenoted by Ep.) For any closed subvariety ¥ C X of
pure codimension-one, we often abbreviate Oy ([Y]) by Ox(Y). Then, there is a
sheaf exact sequence of Ox-modules (cf. [Hartshome-77, Chap. I, Proposition
6.18]):

0)) 0 > Ox([~Y]) > Ox = iL(Oy) — 0,

where i : Y C X denotes the inclusion,
For D, D, € div X, we have

(2) Ox(D, + Dy) 2= Ox (D)) ® Ox (D7)
3 Ox(—Dy) = Ox(Dy)*
4 Ox(0) ~ ¢y,

where e}\, is the trivial line bundle on X. Also, recall from [Safarevit~94, Chap.
II1, §1.2] that, for any morphism of smooth irreducible varieties f : X — Y and
a divisor D in Y such that

(5) f(X) & supp D,



Appendix A. Results from Algebraic Geometry 517

one defines the pullback (or the inverse image ) f*D € div X of the divisor D.
Further, for a morphism f : X — Y of smooth irreducible varieties and a
divisor D on Y satisfying (5), by [Safarevic—94, Chap. VI, §1.4],

6 f*(Or(D)) = Ox(f*D).

A.16 Lemma. Let f : X — Y be a surjective smooth morphism of smooth
irreducible varieties, and let D € divY be a prime divisor. Then f*(D) =
2 e, kull, where ky = 1 if H is an irreducible component of the closed
subvariety f~'(supp D), and ky = 0 otherwise.

Proof By the base change property (cf. A.14), the scheme theoretic inverse
image f~!(supp D) is smooth over supp D. But then supp D being reduced, so
is f~t(supp D). Thus the lemma follows from the definition of f*(D). O

A.17 Lemma. Let Z be a smooth irreducible variety and let Y, H be smooth
irreducible closed subvarieties of Z such that H is of codimension-one. Assume
further that Y intersects H transversally (cf. [S‘afarevié—94, Chap. I, §2.1]).
Then

Oy ®o, Oz(H) ~ Oy(Y N H),

as line bundles on Y, where Y N H is thought of as a closed (reduced) subvariety
of Y. (Observe that, because of the transversality assumptton, Y N H is reduced
and is of pure codimension-one in Y.)

Proof. By the transversality assumption, for any p € Y N H, there exist
local equations fi for H in Z and {f2,.... fk} for ¥ in Z at p such that
{fiv-- s fis fr41s -+ 5 fu} is a local parameter for Z at p, for some regular
functions fi41, ..., f. defined on a neighborhood of p in Z. Thus f;, provides
a local equation for Y N H in Y at p. This proves the lemma. [

Recall that the degree of a line bundle £ on P! is the number which gives the
first Chern class c; (C) under the canonical identification H2(P!, Z) ~ Z
A proof of the following lemma can be found in [Ramanathan—85, Lemma 3].

A.18 Lemma. Let f : X — Y be a Zariski locally trivial P'-fibration between
smooth irreducible varieties, and let o : Y — X be an algebraic section of f.
Let D := o(Y) be the codimension-one closed subvariety of X. (By Exercise
A.E.1, D is indeed closed in X.) Then

(1 Kx =~ f*Ky ® Ox(D)"%® (0 0 f)*(Ox (D)),

where K x is the canonical bundle of X.
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Moreover, if L is any line bundle on X whose degree along the fibers of f is
1, then the relative canonical bundle Ky;y := Kx @ f*(Ky Yy is given by

2) Kx;y =0x(D)' @ L7 ® (0 0 f)*L.

A.19 Definition. Recall that a line bundle £ on a variety X is called very ample if
there exists an embedding ¢ : X — P" (i.e., ¢ is an isomorphism onto a locally
closed subset of some ) such that ¢*(O(1)) =~ L, where O(1) is the dual of
the tautological line bundle on P (cf. Example 4.2.7(c)). A line bundle £ on X
is called ample if some positive power L™ is very ample.

A.20 Lemma. Let X be a projective variety with an ample line bundle L. Then,

for any non-zero o € HY(X, L), the open subvariety X° := X\Z (o) is affine,
where Z(c) 1= {x € X : o(x) = 0} is the zero set of . Moreover, for any
f € k[X?], there exists some n > 0 (depending upon f) such that the section
f o™ of L, extends to an element of H(X, L").

[xo

Proof. The first part follows by taking sufficiently high power L™, embedding X
in a projective space P¥ via H%(X, £™), and observing that

X° = X\Z(o) = X\Z(e™) = X N (P*\H),

where H is a hyperplane in PV,
A more general statement than the second part of the lemma is proved in
[Hartshorne-77, Chap. II, Lemma 5.14(b)]. [

A.21 Lemma. ([Hartshorne-77, Chap. 1, Lemma 2.10].) If f : Y —> X isa
closed embedding of varieties, then H? (Y, f.8) =~ H?(X, &), forany p = Q.

The following result is known as the projection formula (cf. [Hartshorne-77,
Chap. III, Exercise 8.3]).

A.22 Theorem. Let f : X — Y be a morphism of varieties, let F be an Ox-
module, and let £ be a locally free Oy-module of finite rank. Then

8)) R fU(F® f*'E) = RPf(F) @&, forany p > 0.
In particular, taking p = 0in (1), we get
@ HFR O~ ((F)®E.
A proof of the following Leray spectral sequence (1) can be found, e.g., in

[Godement-58, Chap. II, Theorem 4.17.1]. For (2), see [Hartshorne—77, Chap.
II1, Exercise 8.2].
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A.23 Theorem. Let f : X — Y be a continuous map of topolegical spaces. Let
F be a sheaf of abelian groups on X. Then there is a convergent cohomology
spectral sequence with

(1) EJ? = HP(Y, R f.(F))

which converges to the sheaf cohomology H?+9 (X, F).
In particular, let f : X — Y be an affine morphism of varieties (cf. A.13).
Then, for any quasi-coherent sheaf F of Ox-modules on X,

) H?(X,F) ~ HP(Y, f.F), forany p > 0.

A.24 Definition. Let f : X — Y be a morphism of varieties. Following Kempf
[Kempf-76, page 567], f is called trivial if the induced map Oy — f,Oyx is
surjective and the direct images R’ f,Ox vanish fori > Q.

Assume char. k¥ = 0, A trivial morphism f : X — Y is called a rational
resolution if X is smooth, X and ¥ are both irreducible projective varieties and
f is birational.

(Inchar. p > 0, one also adds the assumption that R' f,Ky = 0, foralli > 0.
By a result of [Grauert-Riemenschneider-70b], this is automatically satisfied in
char, 0.)

It is known that, for a given irreducible projective variety Y, if there exists one
rational resolution then any other smooth resolution is automatically trivial (cf.
[Kempf-Knudsen—-Mumford—-Saint-Donat-73, pp.50-511).

A25Lemma. Let f : X — Y beatrivial morphism between varieties such that
Oy = f.Ox. Then, for any locally free sheaf Son Y,

HY(Y,S8) =% H'(X, f*S),  foralli > 0.

Proof. For any (quasi-coherent) sheaf F on X, the Leray spectral sequence
Theorem A.23 has its E,-terms:

EP? = HP(Y, RO f,.7F),

and it converges to H?*9(X, F). Further, when 7 = f*(S) for some locally
free sheaf S on Y, then, by the projection formula (A.22.1),

RUf(f*S)~ (R f.0x)®S.

Thus the lemma follows from the assumption that f is trivial with f,Ox = Oy.
a

A proof of the following result of Serre can be found in [Hartshorne—77, Chap.
III, Theorem 5.2 and Proposition 5.3; and Chap. II, Theorem 7.6 and Definition
on page 153].
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A.26 Theorem. Let X be a projective variety over k and let F be a coherent
sheafon X. Then,

(a) forany p > 0,
H? (X, F) is afinite-dimensional vector space over k.

(b) Let L be an ample line bundle on X. Then there exists a positive integer
nx (depending on F) such that, for any p > 0,

HP (X, FRL"Y =0, forn>nx.

Moreover, for all n > nx, the sheaf F @ L" is generated as an Ox-module by (a
Jinite number of) its global sections.

A proof of the following (a) and (b) parts can be found in [Hartshorne-77,
Chap. III, Corollary 8.6 and Theorem 8.8(b)], and for the (c) part, see, e.g.,
[Mathieu—88, Lemme 19]. For generalities on H-equivariant sheaves, see, e.g.,
[Thomason-87].

A.27 Theorem. (a)Let f : X —> Y be a morphism between varieties. Then, for
any quasi-coherent sheaf F on X, the sheaves R? f.(F) are quasi-coherent on
Y forany p > 0.

(b) If in (a) we assume, in addition, that f is a projective morphism and F is
a coherent sheaf on X, then, for any p > 0, R? f.(F) is a coherent sheafon Y.

(c) Let H be an algebraic group which acts on the varieties X and Y and
let f : X — Y be an H-equivariant separated morphism. Then, for any H -
equivariant quasi-coherent sheaf F on X, R? f.(F) are naturally H-equivariant
(quasi-coherent) sheaves on Y (for any p > 0).

A proof of the following Serre vanishing can be found in [Hartshorne—77,
Chap. III, Theorem 3.7].

A.28 Theorem. Let X be an affine variety and let F be a quasi-coherent sheaf
on X. Then, forany p > 0,
H?(X,F)=0.
A proof of the following semicontinuity theorem due to Grauert and Grothen-
dieck can be found in [Hartshorne—77, Chap. III, Corollary 12.9].

A.29 Theorem. Let f : X — Y be a projective morphism between varieties,
where Y is assumed to be irreducible. Let F be a coherent sheaf on X, flat over
Y. Fixany p > O and assume thatdim H? (X ,, F,) is constant for y € Y, where
X, is the scheme theoretic fiber of f over y. Then, R? f.(F) is a locally free
sheafon Y and, for every y € Y, the natural map

R’ f(F) @ k(y) = H?(X,, Fy)
is an isomorphism, where k(y) is the residue field of y € Y.
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A.30 Proposition. ([Hartshorme-77, Chap. III, Exercise 5.7(d)].) Let f : X —
Y be a finite and surjective morphism between projective varieties and let L be a
line bundle on Y. Then L is an ample line bundle on Y iff f*L is an ample line
bundle on X.

We recall the following lemma due to Kempf (cf. [Demazure-74, §5, Propo-
sition 2]).

A.31 Lemma. Let f : X — Y be a morphism between projective varieties.
Assume that fi,Ox = Oy and, moreover, there exists an ample line bundle L on
Y such that H' (X, f*(L")) =0, forall i > 0 and all sufficiently large n. Then

R’f.((’)x) =0, foralli > 0.

A32 Lemma. Let f : X — Y be a surjective morphism between projective
varieties. Assume that there is an ample line bundle L on Y such that the canonical
map HO(Y, £*) — H%(X, f*L") is an isomorphism for all n > n,, where n, is
some fixed positive integer. Then f,Ox = Oy.

Proof. Consider the sheaf exact sequence on Y:
O%Oy—)f*olx—* Q—0,

where Q, by definition, is the quotient sheaf f,Oy/Oy. Tensoring this sequence
over Oy with the locally free sheaf £" and taking cohomology (and using the
projection formula (A.22.2)), we get

0> HYY, LY - H(X, f*L") —» H°(Y, Q@ L") » H'\(Y, LY - - ..

But £ being ample, by Theorem A.26(b), there exists n, > 0 such that
HY(Y, £") = 0,foralln > 7,. Inparticular, by the assumption, H(Y, Q®L") =
0, for all n > max(n,’ n,). Now by Theorem A.27(b), f,Ox, and hence Q, isa
coherent sheaf on Y. But then, £ being ample, we conclude that Q itself is 0 by
Theorem A.26(b), i.e., Oy = f,Ox, proving the lemma. [J

The following result is due to [Graueri-Riemenschneider-70a].
A.33 Theorem. Assume char. k = 0. Let X be a smooth irreducible projective
variety aver k, and L a line bundle on X such that there is an integer N > 0

and a birational morphism ¢ : X — Y C PN onto a variety Y such that
¢*(O(1)) = LN. Then

1) HP(X, L) =0, forany0<p<dimX.
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A.34 Definition. A local noetherian ring A is said to be Cohen—-Macaulay if
depth A = dim A. A variety itself is said to be Cohen—~Macaulay if all of its local
rings are Cohen-Macaulay.

A projective variety X C P” is said to be projectively Cohen-Macaulay,
resp. projectively normal, also called arithmetically Cohen-Macaulay, resp.
arithmetically normal, with respect to the given embedding inside P” if the cone
over X (in A"*!) is Cohen—Macaulay, resp. normal.

We remark that both of these properties depend upon the choice of the embed-
ding of X inP"; in particular, these are not intrinsic properties (cf. [Hartshorne—77,
Chap. 1, Exercise 3.18(c))).

Recall the following from [Hartshome~77, Chap. II, Theorem 8.21 Al.

A.35 Theorem. Let A be a(local noetherian) Cohen-Macaulay ring with max-
imal ideal m. Then, we have the following:

(a) A set of elements x,... ,x, € m forms a regular sequence for A iff
dimA/{x,... ,x)=dimA —r.

(b) Assume that xy, ... ,x, € mis a regular sequence for A. Then the map
Jrom the polynomial ring

A

Tl g A= @nsol"/1"F, taking t; > x;mod I € 1717,
is an isomorphism, where I := (x|, ... , x;).

A.36 Theorem. ([Hartshorne—77, Chap. III, Theorem 7.6 and its proof].) Let Y
be an equidimensional projective variety of dimension m (i.e., all the irreducible
components of Y have the same dimension m). Then, Y is Cohen—Macaulay iff

1) H?(Y, L") =0, forallp <mandn >0,
where L, is any (fixed) very ample line bundle on Y.

A proof of the following Serre duality can be found, e.g., in [Hartshorne-77,
Chap. 111, Corollary 7.7].

A.37 Theorem. Let X be aprojective Cohen-Macaulay equidimensional variety
of dimension n over k. Then, for any locally free Ox-module F, there is a natural
isomorphism for any p > O:

H?(X,F)~ H"P(X,F¥ @ wx)*,
where F denotes the dual sheaf Homep, (F, Ox), wx denotes the dualizing
sheaf of X (c¢f. [Hartshorne—77, Chap. III, §7]) and , for any k-vector space V,
V* denotes its dual.

Recall that, in the case of smooth X, wy is the canonical bundle of X (cf.
[Hartshorne-77, Chap. 111, Corollary 7.12]).

The following lemma is taken from [Ramanathan-85, Proposition 4].
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A.38 Lemma. Assume char k =0. Let f : X — Y be a rational resolution of
an irreducible projective variety Y (cf. A.24). Then Y is Cohen—-Macaulay. In
fact, in this case, for any ample line bundle L on Y,

n HP (Y, LT =0, forall p <dimY and n > 0.
Proof. Since f is a trivial morphism, by Lemma A.25, forall p > Qand n € Z,
@ HP(Y,L7") ~ HP(X, f*(L)™").

Observe that f,0y = Oy since f is a trivial morphism and it is surjective (being
a proper birational map). Since £ is ample, there exists N > 0 and an embedding
@ : Y — P (for some N,) such that L¥ = ¢*(O(1)). Thus, by Theorem A.33,

3) HP (X, f*0)™H =0, forall p < dim X and n > 0.

Combining (2)—<3), we get (1) for n = 1. But a line bundle £ on Y is ample
iff £" is ample for any n > O (cf. [Hartshorne-77, Chap. II, Proposition 7.5]).
Hence replacing £ by £", (1) follows. Thus Y is Cohen-Macaulay by Theorem
A_36. This proves the lemma. [l

A.39 Proposition. ([Hartshomne-77, Chap. II, Exercise 5.14 (d)].) Let X C P*
be a closed irreducible subvariety. Then X is projectively normal iff it is normal
and, for each k > 0, the restriction map

H'(®", O(k)) = H(X, O(k)x)

is surjective, where O(k) := O(1)®* and (as earlier) O(1) is the dual of the
tautological line bundle on P*.

Recall the following from [Borel-91, Chap. I, Corollary 1.4(a)].

A.40 Theorem. Let f : G — H be an algebraic group morphism between
algebraic groups over k. Then f(G) is a closed subgroup of H.

For the following see [Serre-58].

A.41 Definition. Let H be an algebraic group. By a principal H-bundle on a
variety Y, we mean a variety X on which H acts algebraically from the right and
an H-equivariant morphism i : X — Y (whereH acts trivially on Y), such that
m is locally isotrivial, i.e., there exists an open cover {U;); of ¥ and an étale cover
fi : Vi = U; such thai the pullback bundle f;*(X) is a trivial H-bundle for each

I.
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Let H act algebraically on a variety Z from the left. We can then form the
associated bundle with fiber Z, denoted X x 5 Z, suchthat : X xZ - X xyZ
is a principal H-bundle under the right action of H on X x Z via

(e, f) - g=(eg.g ' f), forge Hiec X, and f € Z.

Then the projection 7y : X x Z — X descends to give alocally isotrivial fibration
7z : X xy Z — Y with fiber Z.

If Z is a finite-dimensional H -module, then the associated bundle X x i Z with
fiber Z acquires a canonical (algebraic) vector bundle structure denoted L (Z).

With this notation, we have the following:

A.42 Lemma. Let M be a H-equivariant vector bundle on a left H-variety Z
(cf Definition 4.2.6) and let 7 : X — Y be a principal H-bundle as above.
Then the H- equivariant vector bundle &}, ® M on X x Z descends uniquely to
a vector bundle M, on X E Z, i.e., there exists a unique vector bundle M, on

X %y Z such that
) A (M) el M,

as H-equivariant vector bundles, under the canonical H-equivariant vector
bundle structure on i* (M ). Recall that £, is the trivial line bundle X xk — X
as in Example 4.2.7(a), €% ® M is the external tensor product as in Example
4.2.7(e) and, moreover, H acts on X x k via

(x,2) g =(x8,2), forge H,x € X, andz e k.

Assume, in addition, that Z is projective. Then, there is a canonical isomor-
phism of Oy-modules:

@ Rizz,(My) =~ L. (H(Z, M)), foralli >0.

Proof Recall that the map =* : Vect ¥ — Vecty X,V — x*V, is a bijection,
where VectY, resp. Vecty X, denotes the set of isomorphism classes of vector
bundles on Y, resp. H-equivariant vector bundles on X (cf. [Kraft-91, Proposi-
tion 6.4]). Applying this to the principal H-bundle 7 : X x Z — X xy Z, we
get the bijection 7* : Vect(X x g Z) = Vecty (X x Z). Thus the first part of the
lemma follows by taking M := (#*)~! (e} ® M).

We now prove (2). By the semicontinuity Theorem A.29, Rimz,(M,) is
a locally free sheaf on Y. Further, since cohomology commutes with flat base
extension (cf. [Hartshorne-77, Chapter I, Proposition 9.3]), there is a canonical
(H -equivariant) isomorphism

T*(Rinz,(Mz)) = Rimy (e R M),



Appendix A. Resulis from Algebraic Geometry 525

where m; : X x Z — X is the projection on the first factor. It is easy to see that
Rimy (e} ® M) is the H-equivariant vector bundle X x H'(Z, M) — X. Thus
(2) follows by using the isomorphism z*. [

A.E EXERCISES

(DLet f : X — Y be a surjective morphism of varietiesandlet o : ¥ — X
be an algebraic section of f, i.e., o is a morphism and f o o is the identity map
of Y. Then prove that Im ¢ is a closed subset of X.

Hint. Show that (¢ o f)(e (Y)) = o' (¥) and also clearly (¢ o f)(o(¥)) = o (¥).

(2) Let ¢ : G — G’ be a bijective morphism of algebraic groups over an
algebraically closed field of char. 0. Then prove that ¢ is an isomorphism.
(This exercise is taken from [Springer-98, Exercise 5.3.5.11.)

(3) Show that a dense constructible subset of a variety X contains a dense open
subset of X,






Appendix B

Local Cohomology

We recall the definition of local cohomology and some of its basic properties used
in the book. For more detailed treatment, see [Grothendieck—67], [Hartshorne—
66], [Kempf-78].

B.1 Definition. Let X be a topological space together with closed subspaces
Z C Y, and let S be a sheaf of abelian groups (for short, an abelian sheaf) on X.
For any open subset I/ C X, the space of global sections of Sy is denoted by
I'(U, S). Aglobalsectiony € I'(X, S) is said to have supportin Y if yjx\y = 0.
The space of sections y € I'(X, §) with support in Y is denoted by I'y (X, S).
Thus, by definition, there is a short exact sequence:

(1) 0> I'y(X.S) —» I'(X,S) =» T'(X\Y, S).

Clearly,

2 M'x(X,8) =T(X,S), and Ie(X,S)=0.
Furthermore, define

3 Ty/z(X,8) :==Ty(X,85)/Tz(X, S),

giving rise to the exact sequence

4) 00 I2(X,8) > I'v(X,8) = I'y;z(X,8) = 0.
Clearly,
5) Cyp(X,S) =Ty(X,S), and

(6) Ty/r(X,S) =0.
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For closed subspaces Y’ D Z’ of X suchthatY C Y', Z C Z’, there exists a
canonical homomorphism

@) Cy;z(X,8) - Tyyz (X, S).

Noether’s isomorphism gives rise to the following short exact sequence for
any sequence of closed subspaces X3 C X, C X; C X:

¢ 0 Tyyx, (X, 8) = Ty yx, (X, 8) — Ty 5, (X, 8) = 0.

Let Z C Y beclosed subspaces of X. ThenT'y,z(X, —) isan additive covariant
functor from the (abelian) category 2b(X) to the category b, where 2Ab(X)
is the category of sheaves of abelian groups on X and b is the category of
abelian groups. By [Hartshorne—77, Chap. III, Corollary 2.3], 2b6(X) has enough
injectives. Let H{,/Z(X, S) be the i-th right derived functor of I'y,z (X, S), for
any i > 0 (cf. [Hartshorne—-66, Chap. I, Corollary 5.3], see also [Hartshorne—
77, Chap. III, Theorem 1.1.A]). The groups H;}/Z(X, S) are called the local
cohomology groups, also called the cohomology with supports.

Take an injective resolution of S in the category 2Ab(X):

) 0->S—->Ig—>Ii—> ---.
Applying the functor T'y,z(X, —) to the sequence (9), we get the complex
10) Ty;z(X,Lo) = Tyjz2(X, 1)) = Tyyz(X, 12) > --- .

Recall that H ;, / z(X, 8) is, by definition, the i-th cohomology of the above com-
plex (10). By a basic fact from homological algebra, the group H; 1z(X, S)
does not depend (up to a canonical isomorphism) on the choice of the injective
resolution of & in the category Ab(X) (cf. loc. cit.).

From general properties of derived functors (cf. loc. cit.), for any short exact
sequence of abelian sheaves on X:

0585 >S5 -0,

there is a natural long exact cohomology sequence:
an
0 — Hy/z(X,81) = Hp7(X,8) = Hy,7(X,80) ~ Hy, (X, 8) — ...

Observe that, in general, I'y,z(X, =) is not a left exact functor, and hence
Hg/z(X, S) is not always isomorphic with I"y,z(X, S). However, T'y/s(X, —) =
'y (X, —) is indeed a left exact functor (as is easy to see); hence, by loc. cit.,

(12) HY 5(X,8) =~Ty(X, S).
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Abbreviate Hj 5(X, S) by Hy(X, S). By (2),
(13) Hy(X,8) = H'(X,S) and Hj(X,S) =0.

The canonical homomorphism of (7) (forclosed subspaces Z C Yand Z’ C ¥’
of X suchthat ¥ C ¥’ and Z C Z') gives rise to the canonical homomorphism

(14) H{;7(X,8) —> H}, 7(X,S).

Further, for any sequence of closed subspaces X3 C X, C X; C X, the short
exact sequence (8) gives rise to the long exact sequence

(15) 0 — HY, y,(X,8) = HY, 5 (X,8) > HY 5, (X,5) >
Hy (X, 8) —> ...,

wherethemap$ : Hy ,y. (X, S) — Hy'!/y (X, S)isreferred to as the connecting
homomorphism for the triple X5 C X; C X;.

Moreover, we have the following lemma showing the functeriality of (15). (A
proof of the lemma can be found in [Kempf-78, Lemma 11.3].)

B.2 Lemma. Let X and Y be topological spaces with a sequence of closed
subspaces XsC XoCc Xy C XandYacYacYiCY,andlet f : X — Y bea
continuous map such that X, D f~Y(Y,) for p = 1, 2,3. Then, for any abelian
sheaves S on X and T on Y together with a sheaf morphism ¢ : T — f,S, there
exists a natural homomorphism

(1) Hy )y, (¥, T) > Hy x.(X,S), foralli>0.

Further, these homomorphisms give a homomorphism of the (exact) cochain
complex (B.1.15) for the triple Ys C Y, C Y to the cochain complex for the
triple X3 C X; C X;.

B.3 Lemma (Excision). For closed subsets Z C Y of X and open subset U of
X containing Y, we have a natural isomorphism

(1) Hy,7(X,8) = Hy;z(U, Sw),

for any abelian sheaf S on X. The isomorphism (1) is induced by the canonical
restriction map

Fy;z(X, =) = Ty/z(U, —v).
Proof. For any abelian sheaf 7 on X, the canonical restriction map

y:Ty(X,T) = I'y(U, Ty)
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is an isomorphism:

The injectivity of y is clear. To prove the surjectivity of y, takeo € 'y (U, i)
and let & € T'(X, T) be the element such that 6y = o and &x\y = 0.

The isomorphism y gives rise to the isomorphism (again denoted by)

Y ry/z(X, T) > FY/Z(Uy TTU)

This gives rise to the isomorphism (1) since, for an injective sheaf 7', 7 is again
injective (cf. [Bredon—97, Chap. II, Proposition 3.4]). |

B.4Lemma. Forclosedsubspaces Z C Y of X, thereis a canonical isomorphism
Hy 7(X,8) > H}, 7(X\Z,S).

Proof. By [Hartshorne-77, Chap. III, Lemma 2.4], any injective sheaf 7 €
2Ab(X) is flasque. (Recall from [Hartshorne~77, Chap. II, Exercise 1.16] that
a sheaf 7 on X is called flasque if for any open subsets U C V of X, the
restriction map '(V,T) — T'(U,I) is surjective.) Next, observe that for any
flasque sheaf Z, the canonical restriction map I'y;2(X,I) — I'n\z(X\Z, 1) is
an isomorphism. From this the lemma follows since Zx\z is again an injective
sheaf. |

B.5 Corollary. For any closed subset Y C X, there is a natural exact sequence
(forU := X\Y)

(1) 0-— HXX,S - H'X,S) - H'W,Sy) = HYX,S) > -

Proof. The exact sequence (B.1.15) reduces to (1) if we take X; = X, X, =Y,
X3 = 0 and use Lemma B.4 and (B.1.13). O

B.6 Lemma. Let Y, Z be two closed subsets of X. Then there is a natural long
exact Mayer—Vietoris sequence

() 0= HY (X, 8) > HY(X,S) ® HY(X, S) > H,»(X,S) -
Hinz(X,8) = -

Proof. For any abelian sheaf 7, we have the exact sequence:
@ 0— I'(X,T) > (X, D) ®T(X.T) 5 (X, T) - 0,

where i(0) = 0 @ o and m(0 B 0') = o — o’. If, moreover, T is flasque (in
particular, for injective T), (2) gives rise to the exact sequence on restriction:

(3)  0- Tynz(X,T) = Ty(X, T) ® T2(X, T) 5 Tyuz(X,T) — O;
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to prove the surjectivity of n’, take o € I'yuz(X, T) and define
o’ e T(X\(YNZ),I) by ojx,7 =0, 05,y =0px\v.
Now, since Z is flasque, we can extend o' to &’ € T'(X, ). Then
s:=(@~&,-d)YelyX, D) ®Tz(X,Dand n'(s) = 0.
Taking an injective resolution 0 - & —» Iy —» I; — ---, we get the
following short exact sequence of cochain complexes by virtue of (3):
0 — T'ynz(X,Z,) - Tv(X,1,) ®Tz(X, 1) = Tyuz(X,1.,) > 0.

The corresponding cohomology long exact sequence gives (1). O

B.7 Grothendieck—Cousin Complex. Let X be a topological space with a
filtration by closed subspaces X = Xg D X; D X3 D -+, and let S be an
abelian sheaf on X. Consider the sequence

1)
0> HOX,8) 5 HY x (X, 5 HY (X, 95 HE g, (X, 8) > -+,
where ¢ is the restriction map

HO(X,8) - H(X\X1,S) ~ HY /5, (X, S),
andd' : H ;'(’, XX, 8) = H ,",:11 /X, (X, S) is the connecting homomorphism
for the triple X;42 C Xiy1 € X; (cf. B.1).

B.8 Proposition. [Kempf-78,Lemma7.8]. The above sequence (1) isacomplex,
i.e., composite of any two successive maps is zero.

This complex is known as the global Cousin complex of S with respect to the
decreasing filtration (X;)i»q of X.

We recall the following result due to Kempf [Kempf-78, Theorem 10.9]. In
fact, we only state a weaker version of his theorem, which is sufficient for our
purposes.

B.9 Theorem. Let X be a Cohen—Macaulay irreducible variety (over an alge-
braically closed field) together with a filtration by closed subvarieties X = X¢ DO

X1 D X,D -+, andlet S be alocally free sheaf of Ox-modules on X. Assume
Sfurther that

(a) X:\X ;11 are affine varieties (under the locally closed subvariety structure)
and X \X; 1 — X are affine morphisms forall i > 0, and

(b) the codimension of X; in X is at least i forall i > 1.

Then, the global Cousin complex of S with respect to the filtration (X;) of X
is exact ifand only if H"(X,8) = 0, foralln > 1.
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B.10 Lemma. (a) Let K be a (finite-dimensional) affine algebraic group over C
with Lie algebra t, let X be a K-variety over C, and let S be a K -equivariant
vector bundle on X. Then, for closed subspaces Y O Z of X, the local co-
homology H{f 1z(X, S) for any p > 0 admits a natural structure of a t-module
such that, for any closed subspace W C Z, the connecting homomorphism
HY,,(X,S) - Hgfvt,(X ,S) is a -module map. Further, it is functorial in the
Jollowing sense:

Let X' be another K -variety over C with closed subspaces Y' O Z', and a
K-morphism f : X' — X suchthatY' O f~Y(Y)and Z' D f~'(Z). Then, the
induced map H}{’/Z(X, S) = Hy (X', f*(S)) (¢f. (B.2.1)) is a ¥-module map.

Observe that, by Lemma A.8, there is a canonical sheaf morphism S —

S FH(S).

(b) Ifwe assume in addition (in the first paragraph of (a)) that Y and Z are both
K -stable, then the €-module structure on H} /z(X, S) integrates to give a locally
finite algebraic K-module structure. In particular, in this case, the ¥-module
structure on Hy, (X, S) is locally finite as well.

Even though not stated exactly in this form, a proof of the above lemma can be
found in [Kempf-78, Sect. 11]. (Actually [Kempf-78, Sect. 11] contains more
general results.)

B.11 Lemma. Let A¢ be the affine space of diimd over afield k. Then
(a) H(A?, Op0) =0, for p #d, and
b) H{‘f»(Ad , Oad) is “canonically” isomorphic with ol’cx;" ceoxy? as
My Jig <

k-vector spaces, where 0 is the origin of A% and (xy, ... ,xy) are the
coordinate functions on A®. Moreover, if A% is a T-module (for a torus
T)suchthatx,, ..., x4 are T-eigenfunctions, then the isomorphism (b)
is T-equivariant.

For a proof of the above see, e.g., [Kempf-78, Proposition 11.9].

B.12 Lemma. Let f : X — Y be a continuous map of topological spaces and
let Y' be a closed subspace of Y. Then, for any abelian sheaf S on X, there is a
spectral sequence with

E}% = H{.(Y, R f.(S)) = Hp(X,S),
where X' := f~1(Y").

In particular, if R f,(S) = 0 for all g > 1, then the above spectral sequence
degenerates at E* and

H(X,8) ~ HL (Y, £.5).

For a proof of the above see [Grothendieck—67, Proposition 5.5).
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Results from Topology

We recall the following Universal Coefficient Theorem in singular homology (cf.
[Spanier—66, Chap. 5, §5, Theorem 3 and Corollary 4]).

C.1 Theorem. For a topological pair (X, A), i.e., X is a topological space and
A is any subspace, there is a split short exact sequence

0 — Extz(H, (X, A), Z) - HY(X, A) - Homz(H,(X, A),Z) — 0,
where H,(X, A), resp. H9(X, A), denotes the q-th singular homology, resp.
singular cohomology, of the pair (X, A) with integral coefficients.

C.2 Corollary. If (X, A) is a topological pair such that H,(X, A) is a finitely
generated Z-module for each q. Then H9(X, A)’s are finitely generated. More-
over, for each g, the ranks of H9(X, A) and H,(X, A) are the same and the
torsion submodules of H9(X, A) and H,_{(X, A) are isomorphic, where the
rank means the rank of any maximal free Z-submodule.

Let X be a topological space with subspaces A, A, such that A; and A, are
both open in A| U A,. Recall the definition of the cup product from [Spanier—66,
Chap. 5, §6]:

HP(X, A1) ® HY(X, A;) > HPY(X,A|UA2), u®vir>uUu,
and also the cap product from loc. cit.:

HP (X, A)) @ Hi(X, Ay U A)) > Hp (X, A2), u®arrufa.

We have the following result from [Spanier-66, Chap. 5, § 6, 16,18].
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C3Lemma. (a)let f : X — Y be a continuous map between topological
spaces. Let Ay, A,, resp. By, By, be subsets of X, resp. Y, such that Ay, A
are both open in A U A, resp. By, B, are both open in B, U By. Assume that
fA) CBi,1 i <2 Let fi : (X, Ay) > (¥, B)), 2: (X,42) > (Y, By)
and f : (X, A U A2) — (Y, By U By) be maps induced by f. Then, for
ue H?(Y, By)and z € H,(X, A, U A3), we have

1) L (flunz) =unf,z, aselementsof H,_ ,(Y, B).
(b) Let X be atopological space with three subsets Ay, Ay, Ajsuchthat Ay, Az, A;

are all openin Ay U Ay U As. Then, foru € H?(X, Ay),v € Hi(X, A,) and
z€ Hy(X, A1 U A3 U Aj), we have

) uN(wNz) = @Uv)Nz, aselementsof H,_p_4(X, A3).

C.4 Definition. A fiber bundle pair with base space B consists of a fotal pair

(E, E), a fiber pair (F, F),and a projection p : £ — B such that there exists
an open cover {Vy}, of B and, for each V,, a homeomorphism ¢, making the
following diagram commutative:

Va x (F F) Va), Va) ﬂE)

DN

Va,
where 7, is the projection on the first factor.
By a cohomology extension of fiber (of a fiber bundle pair), we mean a graded

Z-module homomorphism 6 : H*(F, F ) > H*(E, E ) of degree 0 such that, for
each b € B, the composite

_ H*(F,F) 5> H*(E,E) % H*(Ey, Ey)
is an isomorphism, where (Ep, E,,) (p7'd), p i) N E) and i, is induced
by the inclusion iy, : (£, E,,) — (E, E)

Clearly, a necessary condition for the existence of a cohomology extension of
fiber 0 is that H*(F, F) is a graded Z-submodule of H*(E, E). In particular, 6
does not exist in general.

Assume that B is path-connected. Then, by [Spanier—66, Chap. 5, Exercise
E(2)], a graded Z-module map 8 : H*(F, if) -» H*(E, E) is a cohomology
extension of fiber iff i} o @ is an isomorphism for some b € B.

We recall the following important result due to Leray-Hirsch (cf. [Spanier—66,
Chap. 5, §7, Theorem 9]).
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C.5 Theorem. Let (E, E) be the total pair of a fiber bundle pair with base
B, fiber pair (F, F) and the projection p : E — B. Assume that the total

homology H,(F, F)is free and finitely generated as a Z-module, and that there
is a cohomology extension of fiber 8. Then the maps

(1) @: Hy(E, E) > H.(B)® Hi(F, F), ®(c)=)_ p.(8(m})Nc) @ m,,

and
) & :H*(B)® H*(F, F) - H*(E, E), P Uv)=p*WUo(),
are both graded Z-module isomorphisms, where {m;); is any graded Z-basis of
H,(F, F)and {m}} is the corresponding dual basis of H*(F, F).

‘We recall the basic definitions and properties of equivariant cchomology (we
need). We refer to [Borel-60], [Allday-Puppe~93] for details.

C.6 Definition and Elementary Properties. Let X be a real Lie group and let
m : E(K) - B(K) be the universal principal KX -bundle (cf. [Husemoller—94,
Chap. 4]).

For a topological space X with a continuous action of K (we call such a space
a K -space), consider the associated bundle with fiber X:

my : E(K) xx X - B(K).

We abbreviate E(K) xx X by Xyg. Following Borel, the K-equivariant
cohomology of X with integer coefficients Hg (X) is defined to be the singular
cohomology:

1) Hg(X) := H*(Xg, Z).
Clearly, Hg (X) is a graded Z-algebra. Moreover, the Z-algebra homomorphism
€)) my : H*(B(K)) = H*(Xg)

induces a graded H*(B(K))-algebra structure on Hy (X).

A continuous K -equivariant map ¢ : X — ¥ between K-spaces canonically
induces a (continuous) map ¢gx : Xx — Yy, making the following diagram
commutative:

x—’Yx

ANIPA

B(K) .
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In particular, ¢x induces a graded H*(B(K))-algebra homomorphism
3 ex + Hp(Y) > Hy(X).

When the reference to K is clear from the context, we sometimes write @y just
as @*.

Fixing any base point ¢ € E(K), we get the inclusion i, : X — Xk, x +>
le, x], where [e, x] is the K -orbit of (e, x). The inclusion i, induces the graded
Z-algebra homomorphism (called the evaluation map)

@ n=1i : Hg(X) - H*(X).

For a different ¢’ € E(K), i, is homotopic to i,; in particular,  does not depend
on the choice of the base point in E(K).

Fora K-space X and a K -stable subspace Y, we get the following long exact
cohomology sequence from the pair (X, Yk):

&) 0— HYX,Y) > HYUX) - HY(Y) - HL(X,Y) = .-,

where Hj (X, Y) := H' (X, Yk).

Assume that X is a connected Lie group, and X a K-space. Then the Leray-
Serre spectral sequence corresponding to the fibration 7y (cf. Theorem E.11)
has

©) EFY = HP(B(K), HY(X)) = Hy(X).

(Observe that, since K is connected by assumption, B(KX) is simply-connected.)

C.7 Lemma. For a topological space X with the trivial action of K, X is
homeomorphic with B(K) x X. In particular, if H*(B(K)) is torsion free (e.g.,
if K is a compact or a complex torus), by the Kunneth Theorem (cf. {Spanier-66,
Theorem 1, §6, Chap. 5]),

Hy(X)~ H*(B(K)) ®z H*(X)

as graded H*(B(K))-algebras, where H*(B(K)) acts on the right side via mul-
tiplication on the first factor.

We recall a special case of the Borel-Atiyah—Segal Localization Theorem (cf.
[Allday-Puppe—93, Theorem 3.2.6]) which is sufficient for our purposes:
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C.8 Theorem. Let T be a compact (connected) torus and let X be a compact
Hausdorff T-space. Then the restriction map induces an isomorphism

Q @y Hr(X) —> Q ®uaprn HF(XT) of Q-algebras,
where () is the quotient field of the integral domain H*(B(T')) and I;(; (X) is the
Cech cohomology of the space X with integral coefficients (cf. [Spanier-66, §7,
Chap. 6]).

Observe that, for any paracompact Hausdorff space Y which is locally con-
tractible,

(1) H*(Y) ~ H*(Y)

(cf. [Spanier—66, Corollary 5, §9, Chap. 6]). In particular, for a T -space Y with
Y a CW—complex,

2) HA(Y) = HE(Y).






Appendix D

Relative Homological Algebra

Basic references for this appendix are [Cartan—Eilenberg—56] and [Hochschild—
56].

In this appendix we take R to be a (not necessarily commutative) ring with
identity element 1 and § a subring containing 1. All the R-modules M are
assumed to be unitary in the sense that 1 acts as the identity operator on M. Of
course, an R-module M is an S-module under restriction. We will have occasion
to consider both the left and right R-modules. When we just say R-module, we
will mean a left R-module.

The aim of this appendix is to define the relative Tor and Ext functors and
establish their basic properties. We also define the Koszul resolution.

D.1 Definition. An exact sequence of R-modules and R-module homomorphisms
o)) o M D M >

is called (R, S)-exact if, for all i, Ker #; is a direct S-module summand of M;.
(The sequence is allowed to terminate in either of the directions.)
There is a similar notion of (R, S)-exact sequence

i+l

(2) s> M — M-

An R-module M is called (R, 5)-injective, if for every (R, §)-exact sequence

3) 0> M L5 My Lo M3 >0

and every R-module map f : M|, — M, there is an R-module mapf: M— M
extending f.

Dually, an R-module M is called (R, S)-projective if for any (R, S)-exact
sequence (3) and R-module map f : M — M;, there is an R-module lift of f to
My, ie., an R-module map f : M — M, such that fyo f = f.
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Clearly an R-injective, resp. R-projective, module is (R, S)-injective, resp.
(R, S)-projective.

It is easy to see that for an (R, S)-exact sequence (1) and any (R, S)-injective
module M, the induced sequence

B HOmR(M,', M)(——HOIIIR(M;_l, M) L 2R

is exact, where Homg (M;, M) is the abelian group of all the R-module homo-
morpisms from M; to M.

Dually, for any (R, S)-exact sequence (1) and any (R, S)-projective module
M, the induced sequence

-+ — Homg (M, M;) - Homg(M, M;_1) —> -+
is exact.

Also, forany (R, S)-exactsequence (1) and any right (R, S)-projective module
M, the induced sequence

o> MM > Mg My — -

is exact.
Let M be an S-module; then the abelian group Homg(R, M), where R is an
S-module under the left multiplication, is made into an R-module under
(r- Y= fU'ry,for r,r' € Rand f € Homs(R, M).

D.2Lemma. Forany S-module M, the R-module Homgs(R, M) is (R, S)-injective.

Dually, the R-module R @5 M is (R, S)-projective, where S acts on R via the
right mitiplication and R acts on R @5 M via its left multiplication on the first
Jactor,

Proof. We have shown in Lemma 3.1.7 that R ®5 M is (R, S)-projective. The
(R, S)-injectivity of Homg(R, M) is proved similarly by using the following
isomorphism instead of the isomorphism (3.1.7.1):

For any S-moduie M and R-module N,

¢ : Homg(N, Homg(R, M)) >~ Homs(N, M), ¢(f)(n) = f(n)(1),
for f € Homgz (N, Homg(R, M)) and n € N. |
D.3 Definition. By an (R, S)-projective resolution of an R-module M, we mean
an (R, S)-exact sequence
R oo Ny VRN )

in which each C; is an (R, S)-projective module.
Similarly, an (R, S)-exact sequence

il t 2
0>ML B 458 5.

is called an (R, S)-injective resolution if each B; is an (R, S)-injective module.
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D.4 Lemma. Any R-module M admits an (R, S)-projective (as well as (R, §)-
injective) resolution.

Proaf. We prove the existence of an (R, S)-projective resolution; the proof of
the existence of an (R, §)-injective resolution is similar. Consider the surjective
R-module map

eM . RIsM > M,r@mi—>rm, forre Randme M.

Set Py = R®s5 M, 8 = €y, and let Py = R ®5 Ker €); with the map 4§, :
Py — Pq defined as eger ¢, Now define P, = R ®s Ker 81 and continue in this
manner. Thus, we get an exact sequence of R-modules (and R-module maps

between them):

RN LN NNy V)

To prove that the above sequence is (R, §)-exact, use the S-module map 8y :
N — R®s N,n > 1@n (for any S-module N). By LemmaD.2,each R@s M
is (R, §)-projective, thus the lemma follows. []

D.5 Definition. The (R, S)-projective resolution of M constructed in the above
proof is called the standard (R, S)-projective resolution of M. Similarly, for any
R-module M, the R-module injective map

M <> Homg(R, M), i(m)r = r.m,

gives rise to an (R, S)-injective resolution (called the standard (R, S)-injective
resolution) of M:
O- M>>I — - -

]

where Iy :== Homg(R, M), I := Homg(R, I3/ M), and so on.
Now we come to the following basic result of relative homological algebra.

D.6 Theorem. Let
—-32—>C1—J—|-)Co-i>M—>0

be a chain complex (i.e., the composition of any two successive maps is zero) of
R-module maps, where each C; is (R, S)-projective, and let

NREL N ) PN, LNy ' N |
bea (R, S)-resolution of an R-module N. (We do not assume that D;s are (R, S)-

projective.) Assume further that there is given an R-module map f : M — N.
Then, there exists an R-module map of chain complexes f, . C, -> D, covering
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[, ie, we have R-module maps f; : C; — D; (for each i > Q) making the
Sollowing diagram commutative:

(1) e O A Co M — 0
flJ fol fl
iy Lty

o— Dy ——Dg—N —— 0.

Moreover, ifg. : Co — D, is another R-module map of chain complexes covering
[, then there exists an R-module homotopy connecting them, i.e., there exists a
sequence of R-module maps h; : C; — D,y such that

) fi— g =tiy10hi+hi10s;, foralli >0 (whereh_; :=0).

Proof. The existence of f, making the rightmost rectangle commutative fol-
lows since Cy is (R, S)-projective. Assume, by induction, that R-module maps
Jo. .-, f; have been constructed so that all the rectangles to the right of (and
including) the arrow f; in diagram (1) are commutative. We now define fi4,
making the next rectangle commutative: Consider the (R, S)-exact sequence

3
0— Kers;,y > Dy ALY Im¢ty, = Kert; —» 0.

By the induction hypothesis, the map f; o si4+) has image contained in Ker ;.
Thus, the existence of f;,; making the corresponding rectangle commutative
follows since C;4 is (R, S)-projective. This completes the induction, thereby
proving the existence of f,.

For two chain maps f, and g., the existence of homotopy h, follows by a
similar argument. Since #p o (fo — go) = 0 and Cyp is (R, S)-projective, the
existence of hy : Cp — D, satisfying (2p) follows. Assume now, by induction,
that R-module maps kg, - - - , h; satisfying (2p), ... , (2;) have been constructed.
From the commutativity of diagram (1) and identity (2;), we get

L (fis1 — & —hiosiy) = (fi — 8)sisr — (fi — gi)siy1 = 0.

From the above identity, we see that Im (f;;| — gi41 — hj 0 5;41) C Kersiy, =
Im ;45 Thus, Ciy1 being (R, S)-projective, we can construct h;,y : Cipq1 —
D, > satisfying (2;,). This completes the induction and hence the theorem is
proved. [

D.7 Definition. For any right R-module M and (left) R-module N, define the
abelian group Torl®$)(M, N) (for any n > 0), called the relative Tor functor, as
follows:
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Take the standard (R, S)-projective resolution of the left R-module N:
o> P> P> N—0,
and consider the chain complex of abelian groups:
> M@r P> M@z Py— 0.

The n-th homology of this chain complex is denoted by Tor!®5)(M, N) or simply
by Tor, (M, N) when the reference to (R, S) is clear.

Similarly, for two (left) R-modules N and Q, we define the abelian group
Ext’('Rl 5 (N, Q) (called the relative Ext functor) as the n-th cohomology of the
cochain complex

0 — Homg(N, Iy) — Homg(N, ;) - ---,

where
O->Q@->0Lh—->05L—>---

is the standard (R, S)-injective resolution of Q. Again, we abbreviate
Extg 5(N, @) by Ext"(N, Q) when the reference to (R, S) is clear. Then

Ext! (¥, Q) is isomorphic with the group of equivalence classes of the S-trivial
extensions of @ by N (cf. [Hochschild-56, §2]).

D.8 Proposition. Let M be a right R-module and let N be a (left) R-module.
Take any right (R, S)-projective resolution of M:

> C) = Co = M — 0,
and a (left) (R, S)-projective resolution of N :

oo Dy 5 Dy -2 N — 0.
Then there are canonical isomorphisms of abelian groups:
¢y H,(C. ®r N) = H,(M ® D.) = Tor,(M, N),
where C, @ N denotes the chain complex

o> CIOr N—->Cy® N—> 0.
Similarly, let Q be a (left) R-module and let

0> Q—>By— By— ---
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be an (R, S)-injective resolution of Q. Then there is a canonical isomorphism
of abelian groups:

@) H"(Homg(D,, Q)) >~ H"(Homg(N, B,)) =~ Ext"(N, Q),
where Homg (D,, Q) is the cochain complex
0 — Homg (Dg, Q) ~ Homgz(Dy, Q) — --- .

Proof. We first prove that H,(M ®x D,) =~ Tor,(M, N): By Theorem D.6,
there exists a chain map f, : D, — P, covering Iy, where P, is the standard
(R, S)-projective resolution of N. This gives rise to the chain map Iy ® f, :
M ®g D, > M ®z P,. Moreover, for a different choice of the chain map
g ' D, — P, covering Iy, the chain map Iy ® g, induces the same map in
homology H;(M ®g D,) — H;(M @z P,) (by virtue of (2;) of (D.6)). Similarly,
we get a unique map H.(M @z P,) - H.(M ®p D,). From this the canonical
isomorphism

3) H,(M ®r D,) = Tor,(M, N)

follows.

To prove the other part of the isomorphism (1), consider the double complex
(Ce® Du)pyg :=Cp®r Dy (p,g = 0) withs, ® Ip, and I, ® ¢, as the two
differentials. Of course, this gives rise to the associated single complex (which

we denote by [Ce ® D,]):[Ce @ D], := GB Cp ® D, with the differential
p+q=n

dx®y)=s5,x@y+(-1)’x® 1y, forx e C,and y € D,.

Let N, be the chain complex with Ny = N and N; = 0 for all i # 0. Consider
the chain map D, — N,, where Dy — N is the original map #,. This gives rise
to a surjective chain map 6 : C, ® D, — C, ® N, of double complexes and thus
a chain map g : [C. ® D,] = C, ®g N of single chain complexes. We next
show that the chain complex Ker 6 has all its homologies zero (thus 6 induces
an isomorphism in homology). Let D, C D, be the chain subcomplex defined
by D, := D, if n > 0 and Dj := Ker #p. Since any C, is (R, §)-projective,
tensoring with C, is an exact functor on the category of (R, §)-exact sequences
(cf. D.1). Thus, Ker 8 is the double complex C, @ D.. Consider the increasing
filtration JF (p) (by chain subcomplexes) of the single chain complex [C, @ D,]
defined by
F(p) =D C: @ D,

r<p
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Then the associated spectral sequence (cf. Appendix E) has
(4) E} = Hysg(F(p)/F(p — 1)) 2 Hy4q(C, ®r D).

But since D, is an (R, S)-exact complex (and C,, is (R, S)-projective), C, ®x D,
remains exact. Thus H,(C, ®x D,) = 0. Combining this :vith (4), we get that
E;' , = 0forall p, g > 0, and thus the chain complex Ker6 = [Ker 8] is exact,

thereby 6 induces an isomorphism in homology.

A similar argument shows that the chain map [C, ® D,] -> M ®g D, induces
an isomorphism in homology. Combining these two homology isomorphisms,
we get that there is a canonical isomorphism

® H.(M ®r D,) ~ H.(C, ®r N).

This completes the proof of (1). The proof of (2) follows by a similar argument.
g

D.9 Remark. Observe that the isomorphism (3) (in the above proof) also follows
from the isomorphism (5). But we have retained a more direct proof of (3).

As an immediate consequence of the above proposition, we get the following:

D.10 Corollary. Let M be a right R-module and N a (left) R-module. Assume
that at least one of M or N is a (R, S)-projective module. Then

) Tor,(M, N) =0, foralln > 0.
Similarly, for any (left) R-modules M and N,
) Ext*(M,N) =0, foralln > 0,

provided either M is a projective (R, S)-module or N is an injective (R, S)-
module. [

D.11 Lemma. For any right, resp. left, R-module M and any left R-module
homomorphism f : Ny = N, there exists a functorial homomorphism of abelian
groups (defined in the proof below)

Jo : Tor (M, Ny) - Tor (M, N2)

and
f*: Ext*(M, N)) = Ext*(M, Ny)

respectively.
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Similarly, for any left R-module N and right, resp. left, R-module homo-
morphism g © M| — M,, there exists a functorial homomorphism of abelian
groups

g+ : Tor, (M1, N) — Tor (M2, N)

and
g* : Ext* (M3, N) - Ext"(M|, N)

respectively.

Thus, for any n > 0 and any left R-module N, resp. right R-module M,
Tor, (—, N), resp. Tor,(M, =), is a covariant functor from the category of right
R-modules, resp. left R-modules, to the category of abelian groups.

Similarly, for a R-module Q, Ext*(—, ), resp. Ext*(Q, —), is a contravari-
ant, resp. covariant, functor from the category of R-modules to the category of
abelian groups.

Proof. Take aright (R, S)-projective resolution of M:
o> 1> Co—> M- 0.

Then the map f, is induced from the chain map

C.ox N =¥ . ®x Ny

The definition of g, is very similar.
The map f* is induced from the cochain map

Homg(C,, N1) — Homgz(C., N2), x +> fox.
Take an (R, S)-injective resolution of N:
0—>N-—>By—> B — -
Then the map g* is induced from the cochain map
Homg(M;, B,) - Homg(M,, B,), X = X og. a

D.12 Lemma. Let
O—)Ml LMzi)-M:;—)O

be an (R, S)-exact sequence of right R-modules. Then, for any R-module N,
there is a functorial long exact sequence of abelian groups:

e > Tot,(M;, N) L Tor, (Ma, N) L5 Tor, (M5, N) —

H Tor, (M, N) > --- — Torg(M;, N) —> 0,
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Similarly, for an (R, S)-exact sequence
OQNl——g—l?NzﬁN:;—)O

of left R-modules, right R-module M, and (left) R-module Q, there are functorial
long exact sequences of abelian groups:

.+« = Tor, (M, N\) 25 Tor, (M, N2) =5 Tor, (M, N3) —>

2) Tor,_;(M, N;) = ... — Torg(M, N3) - 0,

0 - Ext%(Q, N1) = «-- — Ext(Q, N1) 5 Bxt"(Q, Np) >
(3) Ext"(Q, N3) — Ext"*Y(Q, N)) —» -+ -,

and

0 — Ext%(N3, Q) — - — Ext'(N3, @) > Ext*(Ny, Q) 2>
) Ext"(N1, Q) — Ext"* (N3, Q) — -+ - .

Proof. Take an (R, §)-projective resolution of N:
---—>C1—>Co—>N.

Since each C; is (R, S)-projective, this gives rise to a short exact sequence of
chain complexes:

0—-> M, ®@rC, fﬂ& M, ®r C, fﬂg. My®rC, = 0.

Then (1) is the associated long exact homology sequence (cf. [Spanier—66, Chap.
4, §5, Theorem 4]). The derivation of (2) is exactly similar.
Take an (R, S)-injective resolution of Q:
0>Q0—>By— B —> ---.
This gives rise to a short exact sequence of cochain complexes (cf. D.1):

0 — Homg(Ns, B,) - Homg(N2, B,) — Homg(Ny, B,) — 0.

Then (4) is the associated long exact cohomology sequence. The derivation of
(3)is similar. O
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D.13 Definition. (Koszul resolution) Let
0>V 2 v 2y o0

be a short exact sequence of vector spaces (over any field k). For any n > 0,
consider the sequence

05 AMV) o> - = SIV) @ AL (V) 23 57 '+‘(V)® ALV
€)) S STV RV s (V) B SV - 0,
where p, is induced by the map p, and

o Sn—i(v) ®Ai(vl) = Sn—-i-H(V) ®Ai—l(vl)

is defined by

@) 5 ((PRUIA---AY) = Z(—l)j"(plvj)P QUIA- AT A AV
j=1

Then, as is well known, the above sequence (1) is an exact complex, called the
Koszul complex (cf. [Serre-89, Chap. IV.A]).

D.E EXERCISE. For any right R-module M and (left) R-module N, show that
Tory™ (M, N) =~ M ®x N.
Similarly, for R-modules M, N, show that

Extl 5,(M, N) = Homg (M, N).
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An Introduction to Spectral Sequences

Basic references for this appendix are [Cartan—Eilenberg~56, Chap. XV1], [Gode-
ment-58, Chap. 1, §4] and [Spanier—66, Chap. 9].

The aim of this appendix is to define the homology and cohomology spectral
sequences and associate a homology, resp. cohomology, spectral sequence to
anincreasing, resp. decreasing, filtration of a chain, resp. cochain, complex.
We give examples of two spectral sequences associated to a double complex.
Further, we recall the Leray—Serre spectral sequence associated to a fibration and
the Hochschild—Serre spectral sequence associated to a Lie algebra pair.

E.1 Definition. Let R be a commutative ring with identity. A bigraded module E
over R is an indexed collection of R-modules {E; ;}; ;cz. A differentiald : E —
E of bidegree (~r,r —1) isacollection of R-modulemapsd : E;; — E;_, 14,1,
for all s and ¢, such that d®> = 0. The homology module H(E) is the bigraded
module defined by

H.r,t(E) = Ker(d : E.s',l - E.r—r.l+r—l)/d(E.r+r,l—r+1)-

Note that if [E], is defined to equal ®;,~, E;,. the differential d defines d :
[El; = [E]4—1 such that {[E], J} is a chain complex. Furthermore, the g-th
homology module of this chain complex equals ©;,,—; H; (E).

A homology spectral sequence E is a sequence {E", d"},»q such that

(a) E" is abigraded module over R and d” is a differential of bidegree (—r, r —
1) on E".

(b) For r > 0, there is given a bigraded isomorphism H(E") ~ E"*!.

The above spectral sequence is said to collapse (or degenerate) at E™ (for
some r, > 0)ifd” = O for all 7 > r,. Thus, in this case, E ~ E%+! ~ ...,
A homomorphism ¢ : E — E’ between two spectral sequences is a collection
of R-module maps ¢" : E, — E;’ , forr > 0 (and all s and ¢) commuting
with the differentials and such that the induced map ¢} : H(E’) — H(E")
corresponds to the map ¢"+! : E'*! — E7+! ynder the isomorphisms of the
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spectral sequences. The composite of homomorphisms is a homomorphism, and
so there is a category of spectral sequences and homomorphisms.

To define the limit term of a spectral sequence, we regard E™+! as identified
with H (E") by the isomorphism of the spectral sequence. Let Z0 be the bigraded
module Z?, := Ker (d° : E2, — E?,_)) and let B® be the bigraded module
BY, = d%E?,,,). Then B® C Z°®and E' >~ Z°B°. Let Z(E') be the
bigraded module Z(E'),, := Ker (d' : E}, - E,;_, ) and let B(E") be the
bigraded module B(E'),, := d'(E!,, ). By the Noether isomorphism, there
exist unique bigraded submodules Z' and B! of Z° both containing B® such that
Z(E")s, = Z},/B?, and B(E");, = B[ /B, forall s and r. It follows that
B! c Z!, and we have

B®c B'cz'c 2z’
Continuing by induction, we obtain graded submodules for any r > 0:
B°cB'c...cBcC...czZ c---Ccz'cz’cE°,

such that E’+! ~ Z'/B”. We define bigraded modules Z% := N, Z’, B® :=
U, B, and E® := Z%®/B*. The bigraded module E® is called the limit of
the spectral sequence E. Thus the terms E” of the spectral sequence can be
considered as successive approximations to E®.

A homomorphismg : E — E’between spectral sequences induces a bigraded
R-module map ¢ : E® — E'® between their limit terms. Therefore, there
is a covariant functor from the category of spectral sequences to the category of
bigraded modules which assigns to every spectral sequence its limit.

The spectral sequence E is said to be convergent if, for every s and 1, there exists
a nonnegative integer r (s, t) such that, forr > r(s,1),d" : E;, — E{ ., | is
trivial. In this case E/}! is isomorphic to a quotient of E7, and E is isomorphic
to the direct limit of the sequence

E;'(‘.\',l) —n E£‘£v,t)+1 —
Observe that a first quadrant spectral sequence, i.e., a spectral sequence E such
that E{ = 0if s < Oort < 0 is convergent.

The following very useful result is trivial to prove.

E.2 Proposition. Let ¢ : E — E' be a homomorphism of spectral sequences,
which is an isomorphism for some r > 0. Then ¢ is an isomorphism for all
r' = r. Furthermore, if E and E' are convergent, then ¢* is an isomorphism of
their limits.

E.3 Definition. An increasing filtration F of an R-module A is a sequence of
submodules F; A for all integers s such that F;A C F,;, 1 A. Given a filtration F
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of A, the associated graded module Gr(A) is defined by Gr(A), := F,A/F;_{A.
A filtration F of A is said to be convergent if N, F;A =0 and U; F; A = A.

If A is a graded module and the filtration F is compatible with the gradation
(i.e., FsA is graded by { F; A,}), the associated graded module Gr(A) is brigraded
by the modules Gr(A);; = FsAgt/Fe—1 Agy;- Inthis case, s is called the filtered
degree, t the complementary degree, and s + t the total degree of an element of
Gr(A)s,,-

A chain filtration F of a chain complex C is a filtration of C compatible
with its gradation as well as with the differential of C (i.e., each F,C is a chain
subcomplex of C consisting of { F;C,}). The filtration F of C induces a filtration
of H,(C) defined by

FH (C) :=Im (H.(F;C) = H.(C)).

Because the homology functor commutes with direct limits (cf. [Spanier-66,
Chap. 4, §1, Theorem 7)), if F is a convergent filtration of C, it follows that
U F H, (C) = H,(C); however, it is not true in general that N, F; H,(C) = 0.
Thus, to ensure that F induces a convergent filtration of H, (C), we need a stronger
assumption on the filtration F. A filtration F of a graded module A compatible
with the gradation is said to be bounded below if for any ¢ there is s(¢) such that
FsinAr = 0. It is clear that if F is a chain filtration bounded below of a chain
complex C, then the induced filtration of H,(C) is also bounded below. Thus, if
a chain filtration F of C is convergent and bounded below, the same is true for
the induced filtration of H,(C).

The following theorem associates a spectral sequence to a chain filtration of
a chain complex. This is one of the most important ways in which a spectral
sequence arises naturally.

E.4 Theorem. Let F be a convergent chain filtration bounded below of a chain
complex C. Then there is a convergent homology spectral sequence with

E;, = H, . (F;C/F;_,C),

andd' : E}, — E!_, , corresponds to the boundary operator in the long exact
homology sequence associated to the short exact sequence of chain complexes:

(1) 0> FiC/F;2C — F,C/F,,C — F,C/F;,,C >0

(cf [Spanier—66, Chap. 4, §5, Lemma 3]).
Moreover, E™ is isomorphic to the bigraded module Gr H,(C) associated to
the filtration F;H,(C) := Im (H.(F;C) = H.(C)).

Proof. For an arbitrary r > 0, define
Z! :={ce€ F,C:3c € F,_,C}, and Z®° := {c € F,C : 3c = O}.
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These are graded modules with zZ, = {c € F;Cs4; : dc € F;_,C}and Z)) =
{c € F;Cyy, : 3c = 0}. We then have a sequence of graded modules

aZ?CBZ:+1CCaCnF‘CCZ;x‘C ...... CZ;CZ_?:F;C
We first define
Egt 1= FyCoy o/ Fim1Coqr = Gr(C)s,e o

and d° : FyCyyi/Feo1Cyys —> FyCyys—1/Fs—1Csp-y as the boundary operator
of the quotient complex F,C/F,_,C.
Now, we define (forany r > 1)

El:=ZI/(ZIZ) +82Z77) ), and E® := ZZ°/(Z%, + (8C N F,C)).

The map 9 sends Z! to Z/_, and Z/~| +8Z,]}_, todZ]"|. Therefore, it induces
a homomorphism (for any r > 1)

d:E — E;_,.
Then £ is a bigraded module and d” is a differential of bidegree (—r,r — 1) on
it.

It is easy to see that E] , ~ H, . (F,C/F,_|C) by the Noether isomorphism.
The fact that, under this isomorphism, d' corresponds to the boundary operator
in the long exact homology sequence, associated to the short exact sequence (1)
of chain complexes, is proved by a direct verification using the definitions.

We prove that E = {E"},»¢ is a spectral sequence by computing the homology
of E” with respect to d”. We have

{ceZ]:8ce ZZ}_|+3Z/"}})
={ce€Z :3ce€F,_,1C}+{ceZ :3cedZ}}
=ZM+(ZL+ 2 =2+ 7T
Therefore, Ker (d" : Ef — EI_) = (Z!*' + ZI)h/(Z2] +8Z.!.). By
definition,

Im@ : Ej, - E})=0Z,, +Z-H/(Z!Z] +98Z.)_)).

Hence, by the Noether isomorphism, in E7 we have
Kerd"/Imd" ~(Z'*' + Z/2))/(Z!,, + Z7})
> ZMN(Z N @z, + ZI0)))
=Z* @z, +Z,_) = E;t.



Appendix E. An Introduction to Spectral Sequences 553

Therefore, we have obtained a canonical isomorphism H,(E") ~ E’*!, and thus
E is a spectral sequence.

We now compute the limit of this spectral sequence. By definition and the
Noether isomorphism,

=ZINZIT + 082} ) = (ZL + Fo1O) [ (Fsm €+ 3253} ).

In the last expression, the numerators descrease as r increases and the denom-
inators increase as r increases. Since the filtration F is bounded below, for a
fixed pair s, t, Z, = Z7 for all large enough r. Thus, by definition, the limit
equals

(N (Z5 + Fo O) /(U (F € +0Z03 )
= (" Z}) + Fet O)/(Fei C + U DZ0) ).

Since Us F;C = C, we have U, 3Z7,}_, = 8C N F,C. Therefore, the limit term
equals

(Z& + F;1O)/(Fs_1C+ (3C N FC)) = ZP /(22 + (8C N F,C)) = EX.

To show that the spectral sequence is convergent, note that, because the filtration
F is bounded below, for fixed s + ¢, E7, = 0 for s small enough. Therefore, for
fixed s and ¢, there exists r such that for r'>r Ef, "+ is a quotient of E‘ 1 thus
the spectral sequence is convergent.

To complete the proof, we interpret the limit E® as Gr H,(C): By defi-
nition, Gr H,(C),, = F,H;.(C)/F;_1Hs1,(C). Clearly, the graded module
FyH,(C) = ZX/3C N F;C, and thus

F,Hy(C)/ Fooy Ho(C) = (Z2°/3C O\ F,C)/(Z2,/3C O F,_iC)
= ZP(Z2) + (3C N F,C))
= E. O

In Theorem E.4 note that, even in the most favorable circumstances, E* does
not determine H,(C) completely, but only up to module extensions.

It should be observed that the spectral sequence of the above theorem is func-
torial on the category of chain complexes with convergent chain filtrations which
are bounded below. Combining this with Proposition E.2, we obtain the following
result.
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E.5 Corollary, Let C and C’ be chain complexes having convergent chain filtra-
tions bounded below and let Tt : C — C' be a chain map preserving the filtrations.
If. for some r > 1, the induced map t" : E" — E" is an isomorphism, then T
induces an isomorphism

7. : H(C) = H (C).

Proof. By Proposition E.2, 7™ is an isomorphism. We have the following
commutative diagram with exact rows:

0 —— Fs 1Hn(C) —— FyHu(C) —— EJ . —— 0

R

0 — Fo 1 Hy(C') —— FyHp(C')—— ES , — 0.

s,n—-s

For fixed n, F;_| H,(C) and F,_| H,(C’) are both 0 for s small enough (because
the filtrations are bounded below). It follows by induction on s, using the five
lemma and the fact that £ is an isomorphism, that 7, : F; H,(C) ~ F,H,(C’)
for all 5. Because the filtrations are convergent, H,(C) = U;F,H,(C) and
H,(C"y =U; F,H,(C'),and so 1, : H,(C) =~ H,(C"). O

E.6 Example. Let C’' and C” be nonnegative chain complexes consisting of free
R-modules with boundary operators 3’ and 8", respectively,and let C = C'®3zC"
be their tensor product with the boundary operator 3. Recall that

d(xRy)=3xQ@y+ (-1)’x®38"y, forx € C,andy € c.
There is a convergent filtration bounded below of C defined by
F,C = C,® C.
For the corresponding spectral sequence,
E}, ~C,®z H(C),

and E\z, ~ H,(C'®z H/(C")), where C’' ® H,(C") is the chain complex under
the differential

3x®y)=03x®y, forx e C'andy € H,(C").

A similar result is obtained by filtering the tensor product by the gradation of
the second factor.
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There is a completely parallel theory of cohomology spectral sequences.

E.7 Definition. A cohomology spectral sequence E is a sequence {E,, d,},>0
such that

(a) E, is abigraded module over R and d, is a differential of bidegree (r, 1 —r)
on E,.

(b) Forr > 0, there is given a bigraded isomorphism H(E,) >~ E,4;.

A homology spectral sequence is distingunished from a cohomology spectral
sequence by using a different indexing convention. A homology, resp. cohomol-
ogy, spectral sequence is denoted by E', resp. E,. '

The notion of a homomorphism ¢ : E — E’ between cohomology spectral
sequences is exactly parallel. Also, the same way as in E.1, we can define the
limit Eo of a cohomology spectral sequence, which is a bigraded module. The
spectral sequence E is said to be convergent if, for every s and ¢, there exists a
nonnegative integer r(s, t) such that for r > r(s,1),d, : E¥ — ES*i—r+ljs
trivial. In this case E}*, is isomorphic to a quotient of ES and EJ is isomorphic

r+
to the direct limit of the sequence

E:'(:,z) - E:E:,r)ﬂ I
The analogue of Proposition E.2 is true for cohomology spectral sequences.

Let M be a graded module with a filtration compatible with its gradation.
Then we (loosely) say that a spectral sequence abuts (or converges) to M if
Ex =~ Gr M (as bigraded R-modules). This is denoted as E, = M.

E.8 Definition. A cochain filtration F of a cochain complex C = {C"}, is a
decreasing filtration
D FCOFYCoH...

of C compatible with the gradation of C as well as with the differential of C, i.e.,
F*C is a cochain subcomplex of C consisting of { F*C’}. The filtration F of C
induces a filtration of H*(C) defined by

FSH*(C) := Im (H*(F*C) - H*(C)).

The filtration F of C is defined to be convergent if U, F°C = Cand N, F°C = 0.
It is said to be bounded above if for each n there is s(n) such that F*™C" = 0.
We have the following cohomological analogue of Theorem E.4.

E.9 Theorem. Let F be a convergent cochain filtration bounded above of a
cochain complex C. Then there is a convergent cohomology spectral sequence
with

E-]"v' ~ HsH (F:C/FH-]C),
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and dy : E}' — E{*"" corresponds to the coboundary operator in the long
exact cohomology sequence associated to the short exact sequence of cochain
complexes:

(1) 0— I;‘.\'-}-lC'/F'.\'-}-ZCv_> I;‘SC'/F'.!‘-}-ZC'_> FSC/F'Y-’_IC—) 0.

Moreover, E, is isomorphic to the bigraded module Gr H*(C) associated to the
filtration F*H*(C) :=Im (H*(F*C) — H*(C)).

Proof. For an arbitrary r > 0, define
Z::={ceF'C:3ce F*C}, and Z}, :={ce F'C:3c=0}.

These are graded modules with Z¥ = {c € F*C**' : 3c € F**'C} and Z}] =
{c € F*C**' : 3¢ = 0}. We define (for any r > 1):

Ef = Z8/(Z5H +9Z:TM), and ES, = Z5 /(Z5H + (3C N F5C)).

r—1

We also define Eg = F* C/F**'C and the mapd, : Ej — Ej as the coboundary
map of the quotient complex Ej.

The map 8 sends Zf to ZS* and ZFH] + 3Z [+ to 3Z*F]. Therefore, it
induces a homomorphism (for any r > 1)

d,: ES > ES*T.

Then E, is a bigraded module and d, is a differential of bidegree (r, 1 —r) onit.

It is easy to see that E}" ~ H*+ (F*C/F*+'C) by the Noether isomorphism.
The assertion that H*(E,) ~ E,, is obtained similar to the corresponding fact
in homology and so are the remaining assertions of the theorem. O

A particular example of the above theorem given by a double complex is often
used. This generalizes Example E.6.

E.10 Exaniple. A double cochain complex is a bigraded group
K™ = @p 20 K*7
together with differentials
d: kP9 — KPHhe 5 KP4 KA

satisfying .
d“=8"=dé+46d=0.



Appendix E. An Introduction to Spectral Sequences 557

The double complex is denoted by (K**; d, 8). The associated single cochain
complex ([K]*, D) is defined by

[K]" = @pyg=n KP?, and D :=d + 6.
There are two cochain filtrations of ((K'1*, D) given by
"FPIKY = @p», KP" 7, and
"FPIKY = @pzp KV7P.
Observe that both of these filtrations are convergent and bounded above. Thus, by
Theorem E.9, there are two convergent spectral sequences ('E,) and (' E,) both
abutting to H*([K]). Let us consider the first one. (The second one is similar by
symmetry.) We have
KP4 4- KPtla-1 o .,
Kp+ha-t 4 ...
and the differential d is induced from D by passing to the quotient. Thus, under
the above isomorphism, dy = 8 and

'EPY ~ HI(KP®),

'EPY = ~ KP4,

where the right side denotes the g-th cohomology of the complex:
o> kPt L gpa S gpat

The differential d; is computed from D = d 4 § on’E;. Since § =0 on'E; we
see that d; = d and thus
'EP >~ HP(EYY, dy) =~ HJ (H{ (K*™*)).

The last expression denotes the p-th cohomology of

oo HE(KPYY S B3RP s HIRPHYY S

where d is induced from @, which is possible since 8d + dé = 0. Summarizing:
Associated to a bigraded cochain complex (K**; d, 8) are two spectral se-
quences both abutting to the cohomology of the total complex [K] and where

'ED? > HJ(Hj (K**)), and

”

E2? ~ HP (HI(K**).

We recall the following fundamental Leray—Serre spectral sequence for a fi-
bration. For a proof see, e.g., [Spanier—66, Chap. 9, §4].

Let M be a Z-module. For any topological pair (B, A), let H*(B, A, M)
denote the singular cohomology of the pair with coefficients in M.
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E.11 Theorem. Let 7 : E — B be a fibration over a connected simply-
connected base B and let F := n~'(b,) be a fiber. Given any subspace A C B,
there is a convergent cohomology spectral sequence with

E;' ~ H*(B, A, H'(F, M))
and abutting to H*(E, n "' A, M).

In fact, the theorem is true more generally for any “orientable” fibration (with
no simply-connectedness assumption on the base).

We recall the following Hochschild—Serre spectral sequence (cf. [Hoch-
schild-Serre—53] for the cohomology spectral sequence and [Cartan-Eilenberg—
56, Chap. XVI, §6] for both).

E.12 Theorem. Let s be a (not necessarily finite-dimensional) Lie algebra, t be
an ideal and let M be a s-module. There exists a convergent homology spectral
sequence with
E}, =~ Hy(s/t, H,(t, M))
and abutting to H,(s, M).
Similarly, there is a convergent cohomology spectral sequence with

ESY ~ HP(s/t, H'(t, M))

and abutting to H*(s, M).
(Observe that , by Subsections 3.1.1-3.1.2, t acts trivially on H,(t, M) and
also on H*(t, M). Thus, these are modules for the quotient Lie algebra s/t.)

We also recall the following from [Hochschild-Serre-53]. Though the fol-
lowing theorem is proved in loc. cit. under the additional assumption that s
is finite-dimensional, and only for the Lie algebra cohomology, the same proof
applies.

E.13 Theorem. Let s be a Lie algebra, t be a finite-dimensional subalgebra
and let M be a s-module which is finitely semisimple as a t-module (¢f. 3.1.6).
Assume further that the adjoint action of t on s is finitely semisimple. Then, there
exists a convergent homology spectral sequence with

E2, = Hy(s,t, M) ®c H,(t,C)

and abutting to H,(s, M), where H,(s, t, M) denotes the (Chevalley—FEilenberg)
Lie algebra homology of the pair (s, V) (¢f. 3.1.3).
Similarly, there is a convergent cohomology spectral sequence with

Ef‘q ~ HP(s,t, M) ®@c H'(,C)
and abutting to H*(s, M).
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