1. PREPARATION FOR AFFINE HECKE ALGEBRA

In this note, we fix G a simply connected semisimple algebraic group over C. Let F
be a non-archimedean local field (e.g. F = Fy((t)) or F = @Q,). Denote by Op C F
its ring of integers and kp := Op/mp the residue field. Let G be a split semisimple
group over O that is Langlands dual to G. Let B C G be a Borel subgroup. The group
T :=G(OF) Xg(ky) B(kr) is called the Iwahori subgroup. One should think of 7 C G(F) as

an analogue of B(kr) C G(kr). In the latter case, the convolution algebra
Z(B(kp)\G(kr)/B(kF))

is (canonically isomorphic to) the specialization of the Iwahori-Hecke algebra of G at ¢ =
#kp. Likewise, we saw in CJ and Harrison’s talk that the convolution algebra (where the
subscript . indicates that the support is on a finite union of double cosets):

Ze(I\G(F)/T)

is canonically isomorphic to the specialization to ¢ = #kp of the (extended?) affine Hecke
algebra H (see Definition 7.1.9) of G, a deformation of the group algebra of the extended
affine Weyl group of the root system of G.

In Harrison’s talk we saw a (fully faithful!) functor

Rep(C.(Z\G(F)/I)) —  Rep(G(F)
P = PR (CC[I\Q(F)]

In particular, this induces a bijection
Irr(C(Z\G(F)/T)) — Irrz(G(F))

where by Irrz(G(F)) we denote the set of irreducible C-representations of G(F') containing a
vector v stabilized by Z C G(F'). The latter set is intensively studied by number theorists in
the Langlands program. In a sequence of works in the 70’s and 80’s by Deligne, Langlands,
Lusztig, and many others, a conjectural parameterization of Irrz(G(F)) is proposed, which
we will describe using a completely different approach.

Since Z.(Z\G(F')/Z) is a specialization of the affine Hecke algebra H, an simple C-module
of Z(Z\G(F)/I) is also a simple module of H¢ := H ®z C. Since dim¢ H¢ is countable,
any simple module of it also has countable dimension. In this case, Schur’s lemma implies
that the center Z(Hc) acts by a scalar.

What is Z(Hc)? Using Bernstein’s presentation for the affine Hecke algebra we had
Ty, (€ + €5V = (X + esaNT,
for any A € X*(T') where T C G is the abstract maximal torus. Using this, we see

that {3 "} \ex+(7) is a Z[g,q"]-basis of Z(H) and also a C[g, ¢~']-basis of Z(Hc). In
particular this identifies the center Z(H) with R(T)"[q, ¢ }].

What’s awesome is that this fits into the great theorem in CJ’s talk that we have an
isomorphism

H= K9 (2)
where K6*C(2) := K§ *C*(Z) is the Grothendieck group of equivariant coherent sheaves
on Z = N xn N, the Steinberg variety. One might also observes that R(T)"[q,q7!] =
KG*C(pt). Indeed, the KE*C" (pt)-action on KE*C(Z) happens to agree with that of
the center of K¢*C”(Z), see the discussion between Remark 7.2.7 and Lemma 7.2.11.

LAt least so if we take Rep(Ce(Z\G(F)/T)) to be the category of finite-dimensional C-representations.
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It’s a fact in Lie theory (consequence of Tannakian formalism?) that any simple module
of KE*C(pt) @z C is given by a unique semisimple conjugacy class (s,t) in G x C* so
that p € Rep(G x C*) acts by the scalar (Tr p)(s,t). For any such a = (s,t) € G x C* we
denote the corresponding simple module of K GxCx (pt) ®z C by C,. For any simple module
of H¢ there exists a unique a such that K&*C* (pt) acts via C,, i.e. Hc acts through the
quotient He ® jguex (pt) Cq4. Now let we may suppose s € T and denote by A C T x C* be

any closed subgroup containing a such that Z% = Z4. We have the following isomorphisms
from the localization theorems in You-Hung’s talk:

Ca ®KGXCX(pt) KExC” (2)=C, ® graxex (pt) KA(pt) ®KA(pt) KGxCx (2)

1.1
( ) = Ca ®KG><CX(pt) KA(Z)%(CCL ®KG><CX(pt) KA(za)gK(Za) ®ZC§H*BM(Z(I)

In other words, simple modules of H¢ for which Z(Hc) acts via a are just simple modules
of HBM(Z%) for some a as above.

Before we proceed to discuss (tools for) simple modules of HEM(Z?), let us note the
special case when a is the identity. In this case Z¢ = Z, and H¢ ®chcx(pt) C, is the
affine Hecke algebra specialized at ¢ = 1 then “mod out the lattice”, i.e. the group algebra
of the Weyl group. In this case (1.1) is* reduced to the treatment of Springer theory of
Chriss-Ginzburg.

2. PERVERSE SHEAVES

Our next goal is to see that the tool of perverse sheaves works well with the convolution
algebra HBM (Z%) to give a sheaf-theoretic description of all its simple modules.

To begin with, for any variety X there is a well-behaved triangulated category D%(X),
the derived category of constructible complexes of sheaves on X (see e.g. the first two pages
in §8.3). For any morphism f : X; — X3 we have pull-back functor f* : D%(X3) — D%(X1)
and (derived) push-forward f, : D?(X;) — D%(X5). They enjoy the adjointness that there
is a canonical functorial isomorphism

Homy, (f*F,F') = Homx, (F, f«F)
They interpret ordinary cohomology in that H*(X,C) = (X — pt).Cx, where Cx is the

constant sheaf on X.

We also have the (derived) proper push-forward f; : D%(X1) — D2(X5) which is naturally
isomorphic to f, when f is proper, so that H*(X,C) = (X — pt))Cyx. What is far less
elementary (to CC) is that f; has a right adjoint f': D%(Xs) — D%(X1!), giving

Homy, (AiF, F') = Homy, (F, f'F)

fe oo xc\(F, ' F') = Homn x, (I F, F')

Using it, one defines Dx := (X — pt)'C. One also defines for any F € D%(X) the Verdier
dual that D(F) := H2sm x (F,Dx) (the sheaf Hom is always derived). Formal property gives
D(D(F)) = Hor x(Hom(F,Dx),Dx) For f: X; — Xo and F € DY(X;) we have natural

isomorphisms

[D(F) = feHomx,(F, (X1 = pt)'C) = fu Howm x,(F, f'(Xa — pt)'C)
= Hom x,(IF, (X2 — pt)'C) = D(/iF).

In other words, f. oD = Do f;. In view of this, when X is smooth of (complex) dimension
d, that H*(X,C) = H2?=*(X,C) is an incarnation of the less elementary fact that

2Actually7 Cheng-Chiang only believes so, but has not checked.



Lemma 2.1. For a smooth variety X of dimension d we have
Dx = Cx[2d].

For F € D%(X) (the constructible property is important here) we have that the natural
morphism F — D(ID(F)) is an isomorphism. This and that f, oD = Do f; implies

fioD=Dof,, ffoD=Dof, foD=Do f*

Lastly, we also have a (derived) tensor product ® : D%(X) x D2%(X) — Db X). The
collection { fu, f*, fi, f*, H#2sm,®} forms the so-called Grothendieck’s six functors.

Recall that if X < M is an embedding into a smooth variety of (complex) dimension
m, then the Borel-Moore homology enjoys

HPM(X) = H>™ (M, M/X).

This is an incarnation of the sheaf-theoretic property that Dy, = C,,[2m] and that for any
variety X we have a sheaf-theoretic interpretation of Borel-Moore homology that

HBM(X) .= H (X, Dyx)

Recall that our goal was to study HPM(Z,). We have Z¢ = N x« N®. Since N is
smooth, the fixed points N = N4 also form a smooth closed subvariety (see Lemma 5.11.1
for a quick elegant proof). This smooth subvariety is usually disconnected, and worse not
equi-dimensional. Still, this is good enough for a formal setup: suppose M is a smooth
(but not necessarily equi-dimensional) variety, N any variety, M — N a proper morphism,
and Z = M x M (we have in mind M = N® and N = N'® so that Z = Z%). The setup
gives HPM(Z) a convolution structure that we have seen many times. Let’s look at the
diagram:

Z:=MxyM —-— MxM

Iz [

N—8 L NxN
HPM(Z) = H™'(2,Dy) = H™(Z, L’DMxM)
=H~ Z(N» (kz)st'Darscnr) = HH(N (p X 1)« Darxar)
=H™

,A
"N, D((AN)* (X M)'(CMxM)) = H'(N,D(uCp @ uCyy))
=H~ (N %mN(uxCM,DwCM)) :H (N %mN(M'(CMy,U*DM))

- EXtN (/‘!@M; M*DM)

Note that p = ps as p is proper. Since M is smooth, we have Dy is C,, up to a shift, but
with potentially different shifts on different components! This implies that

Proposition 2.2. We have a somewhat canonical isomorphism of C-vector spaces
(2.1) HEM (2) 2 Exty (1Cys. Cyy)
that typically does not preserve the grading.

Now the key result is

Theorem 2.3. The isomorphism in (2.1) is an algebra isomorphisms, with respect to the
convolution structure on HPM (Z) and the natural composition on Exty (nCpy, inCpy)-

Now the machinery of perverse sheaves comes into play. While the complex 1 C;, is
just an object in a triangulated category DIC’(N ), the theory of perverse sheaves gives a
full subcategory Perv(N) in D2(N) that is an abelian category, has D%(N) as its derived
category in a way similar to Sh.(N) and D?(N), and such that the object C,, - when u
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is proper and M is smooth - is (quasi-isomorphic to) a direct sum of shifts of semisimple
objects in Perv(N). In other words, we have a finite decomposition

wCr = EP 1Cy[i] @c Ly (i)
€L, P
where ¢ is indexing data for which each ICy is a simple object in the abelian category
Perv(NN), and Lg(4) is a finite-dimensional C-vector space. Let us merge Ly(i) for various
i into a graded C-vector space Ly and write

(2.2) mCy = EPICs @c Ly,

¢
Now Perv(lV) is similar to Sh¢(N) in that for any two objects K1, Ky € Perv(NN) we have
Ext" (K1, K2) := Hompy ) (K71, K2[i]) = 0 for any i < 0. Moreover, if K1 and K3 are simple
then Ext?(K1, K3) = 0 unless K; = Ks in which case Ext’(K, K;) = C. (Also, everything
has finite cohomological dimension that Ext'(K7, K2) = 0 for ¢ > 0.) With (2.2) we now
have

(2.3)  Ext*(wmCh, mCh) = PEnd*(Ly) © @ Ext'(ICs,ICy) @c Hom™(Lg, Ly)
¢ ¢,9',i>0
In this decomposition, we have the subalgebra (P, End"(Ly) that is a direct sum of matrix

algebras and is semisimple, and the other part with Ext’, i > 0 that are clearly in the
radical. Hence the Ext*, ¢ > 0 part is the radical, and we have

Lemma 2.4. Simple modules of Ext™(imnCys, mCyy) are in bijection with simple modules of
End*(Ly), i.e. with the set of those ¢’s with Ly # 0.

These ¢’s are simple objects in Perv(V) that appear (with shifts) in ;C,,. In general,
simple objects in Perv(NN) are uniquely given by a local system on an irreducible locally
closed subvariety in N. In general there can be a lot such locally closed subvarieties and
local systems, but the symmetry will leave us a finite number of them.

Let us remember our original setup that N = A% M = N, and pu is the restriction of
the natural map N’ — N. Recall a = (s,t) € T x C*. It’s easy to see that N'® is stabilized
by the centralizer Zg(s), so that Zg(s) acts on N — N equivariantly. We need a Lie
theory fact:

Lemma 2.5. The fized points N is the union of a finite number of Zg(s)-orbits.

Proof. Since N is a union of a finite number of G-orbits, it suffices to prove for any G-
orbit O C N that O NN is a finite union of Zg(s)-orbits. The automorphism Ad(s) acts
semisimply on g decomposing it into several eigenspaces, and by definition the a-fixed points
g“ is the t-eigenspace of Ad(s) (and N® = g*NN). For any x € O NN, the tangent space
T,(O) C g has an analogous decomposition for which T,,(ONN®) = T,.(ONg*) C T,(O) is
the t-eigenspace. Consequently, the surjection ad(z) : g — T, (O) induces another surjection
ad(z) : Lie Zg(s) = ¢g° — T,(O NN®), which implies that the Zg(s)-orbit of x is open in
O NN, hence the result. O

Remark 2.6. It’s a Lie theory fact that the group Zg(s) is connected. In general, the
centralizer of a semisimple element in a simply connected semisimple group is connected.

Writing H = Zg(s), we are in a situation that the proper morphism M — N enjoys an
equivariant H-action. The constant sheaf C,; can certainly be viewed as an H-equivariant
sheaf in the trivial manner. With the machinery of equivariant perverse sheaves, this implies
that 1C,, is also a direct sum of shifted simple equivariant perverse sheaves on N. Each
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of these simple equivariant perverse sheaf comes from an irreducible H-equivariant local
system on an irreducible H-invariant locally closed subvariety of N. Thanks to Lemma
2.5, any such irreducible subvariety is an H-orbit. An H-equivariant local system on an H-
orbit H.x is simply an irreducible representation of mo(Stabg(x)). Moreover, the Stabg (x)-
fibration H — H.x gives a short exact sequence m(H.x) — mo(Staby(x)) — mo(H) = 1
thanks to Remark 2.6. In particular, forgetting H-action gives an injective map from the
set of isomorphism classes of H-equivariant local systems on H.x to the set of isomorphism
classes of local systems on H.x. Combining all results in this paragraph we have:

Lemma 2.7. Assume our current setup that (i) A connected group H acts on M — N
equivariantly and (i) N is a finite union of H-orbits. Then every ¢ appearing in (2.2)
comes from an H-orbit H.x C N and an irreducible representation of mo(Zu(x)).

Now (1.1), Theorem 2.3, (2.2), Lemma 2.4, and the above lemma are combined together
to give:

Theorem 2.8. There is an injective map from the set of isomorphism classes of simple
modules of Hc to the set of data {(s,t,x,p)}/ ~ where we have a semisimple orbit s € G,
a non-zero scalar t € C*, a Zg(s)-orbit of x € N® for a = (s,t), and an irreducible
representation p of mo(Zz.(s) (7)) = mo(Za(s,)).

A next question is: what the image of this injective map? Consider the fiber of N'@ — A/@
at x. It is by definition the space parametrizing Borel subgroups that contains both =z and
s. Denote this closed subvariety by B C B. The group Zg(x) acts on the fiber, inducing
an action of mo(Zy(z)) on HEM(B2) and also the ordinary cohomology H*(B%). Now the
main theorem is

Theorem 2.9. Suppose t € C* is not a root of unity. Then the following are equivalent
for a quadruple (s,t,x,p) in the setup in Theorem 2.8:

(1) The quadruple (s,t,x,p) appears in the image of the map in Theorem 2.8.
(2) The irreducible representation p of mo(Zw(z)) = 70(Za(s,x)) appears in HEM (B3).
(8) The irreducible representation p appears in H*(B3).

Remark 2.10. The p-part of HBM(B2%) is called a standard module while the p-part of
H*(B?) is called a co-standard module. They have interesting character formulae which we
completely skip; see §8.2, and §8.7. The simple module in Theorem 2.8 is in fact the image
of the natural (non-degree preserving) map HPM (BS) — H*(B2); see §8.5.

Sketch of Theorem 2.9. Writing i, : {z} — N := N, we note that by proper base change
H*(B%) = i%uC,, and (Verdier) dually HBM (B5) = i}, juDys. The way mo(Zx(z)) acts on
it C,y and i\ necessarily comes from the way it acts on (2.2). This shows the easy
direction (1) = (2) and (3).

Assume for the moment that z belongs to an open H-orbit of N®. (Recall N = N is a
finite union of orbits of H = Z(s)). In this case, it’s a direct property of perverse sheaves
that the only factors in (2.2) that is not killed by 4 comes from those ICy given by local
systems on H.z. Consequently, every action of i}uC,, and z'!x,u!]D)M does come from the
action in 2.2, showing (2) or (3) = (1).

Now, it’s a delicate series of Lie theory arguments (which is §8.8 in the book) that if ¢
is not a root of unity, then one can pick a subset of the connected components of M = N
which, on one hand, is big enough to see those p’s appearing in (2) and (3), and on the
other hand has their image to N = N® exactly the closure of H.z. When this is the case,
then we are reduced to the situation of the previous paragraph and we are done. O
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