
1. Preparation for affine Hecke algebra

In this note, we fix G a simply connected semisimple algebraic group over C. Let F
be a non-archimedean local field (e.g. F = Fq((t)) or F = Qp). Denote by OF ⊂ F
its ring of integers and kF := OF /mF the residue field. Let G be a split semisimple
group over O that is Langlands dual to G. Let B ⊂ G be a Borel subgroup. The group
I := G(OF )×G(kF ) B(kF ) is called the Iwahori subgroup. One should think of I ⊂ G(F ) as
an analogue of B(kF ) ⊂ G(kF ). In the latter case, the convolution algebra

Z(B(kF )\G(kF )/B(kF ))

is (canonically isomorphic to) the specialization of the Iwahori-Hecke algebra of G at q =
#kF . Likewise, we saw in CJ and Harrison’s talk that the convolution algebra (where the
subscript c indicates that the support is on a finite union of double cosets):

Zc(I\G(F )/I)

is canonically isomorphic to the specialization to q = #kF of the (extended?) affine Hecke
algebra H (see Definition 7.1.9) of G, a deformation of the group algebra of the extended
affine Weyl group of the root system of G.

In Harrison’s talk we saw a (fully faithful1) functor

Rep(Cc(I\G(F )/I)) → Rep(G(F ))
ρ 7→ ρ⊗ Cc[I\G(F )].

In particular, this induces a bijection

Irr(Cc(I\G(F )/I))→ IrrI(G(F ))

where by IrrI(G(F )) we denote the set of irreducible C-representations of G(F ) containing a
vector v stabilized by I ⊂ G(F ). The latter set is intensively studied by number theorists in
the Langlands program. In a sequence of works in the 70’s and 80’s by Deligne, Langlands,
Lusztig, and many others, a conjectural parameterization of IrrI(G(F )) is proposed, which
we will describe using a completely different approach.

Since Zc(I\G(F )/I) is a specialization of the affine Hecke algebra H, an simple C-module
of Zc(I\G(F )/I) is also a simple module of HC := H ⊗Z C. Since dimCHC is countable,
any simple module of it also has countable dimension. In this case, Schur’s lemma implies
that the center Z(HC) acts by a scalar.

What is Z(HC)? Using Bernstein’s presentation for the affine Hecke algebra we had

Tsα(eλ + esα(λ)) = (eλ + esα(λ))Tsα

for any λ ∈ X∗(T ) where T ⊂ G is the abstract maximal torus. Using this, we see
that {

∑
ewλ}λ∈X∗(T ) is a Z[q, q−1]-basis of Z(H) and also a C[q, q−1]-basis of Z(HC). In

particular this identifies the center Z(H) with R(T )W [q, q−1].

What’s awesome is that this fits into the great theorem in CJ’s talk that we have an
isomorphism

H ∼= KG×C×(Z)

where KG×C×(Z) := KG×C×
0 (Z) is the Grothendieck group of equivariant coherent sheaves

on Z = Ñ ×N Ñ , the Steinberg variety. One might also observes that R(T )W [q, q−1] =

KG×C×(pt). Indeed, the KG×C×(pt)-action on KG×C×(Z) happens to agree with that of

the center of KG×C×(Z), see the discussion between Remark 7.2.7 and Lemma 7.2.11.

1At least so if we take Rep(Cc(I\G(F )/I)) to be the category of finite-dimensional C-representations.
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It’s a fact in Lie theory (consequence of Tannakian formalism?) that any simple module

of KG×C×(pt) ⊗Z C is given by a unique semisimple conjugacy class (s, t) in G × C× so
that ρ ∈ Rep(G× C×) acts by the scalar (Tr ρ)(s, t). For any such a = (s, t) ∈ G× C× we

denote the corresponding simple module of KG×C×(pt)⊗ZC by Ca. For any simple module

of HC there exists a unique a such that KG×C×(pt) acts via Ca, i.e. HC acts through the
quotient HC⊗KG×C× (pt)

Ca. Now let we may suppose s ∈ T and denote by A ⊂ T ×C× be

any closed subgroup containing a such that Za = ZA. We have the following isomorphisms
from the localization theorems in You-Hung’s talk:

(1.1)
Ca ⊗KG×C× (pt)

KG×C×(Z) = Ca ⊗KG×C× (pt)
KA(pt)⊗KA(pt) K

G×C×(Z)
∼= Ca ⊗KG×C× (pt)

KA(Z) ∼= Ca ⊗KG×C× (pt)
KA(Za) ∼= K(Za)⊗Z C ∼= HBM

∗ (Za)

In other words, simple modules of HC for which Z(HC) acts via a are just simple modules
of HBM

∗ (Za) for some a as above.

Before we proceed to discuss (tools for) simple modules of HBM
∗ (Za), let us note the

special case when a is the identity. In this case Za = Z, and HC ⊗KG×C× (pt)
Ca is the

affine Hecke algebra specialized at q = 1 then “mod out the lattice”, i.e. the group algebra
of the Weyl group. In this case (1.1) is2 reduced to the treatment of Springer theory of
Chriss-Ginzburg.

2. Perverse sheaves

Our next goal is to see that the tool of perverse sheaves works well with the convolution
algebra HBM

∗ (Za) to give a sheaf-theoretic description of all its simple modules.

To begin with, for any variety X there is a well-behaved triangulated category Db
c(X),

the derived category of constructible complexes of sheaves on X (see e.g. the first two pages
in §8.3). For any morphism f : X1 → X2 we have pull-back functor f∗ : Db

c(X2)→ Db
c(X1)

and (derived) push-forward f∗ : Db
c(X1)→ Db

c(X2). They enjoy the adjointness that there
is a canonical functorial isomorphism

HomX1(f∗F ,F ′) = HomX2(F , f∗F ′)

They interpret ordinary cohomology in that H∗(X,C) = (X → pt)∗CX , where CX is the
constant sheaf on X.

We also have the (derived) proper push-forward f! : Db
c(X1)→ Db

c(X2) which is naturally
isomorphic to f∗ when f is proper, so that H∗c (X,C) = (X → pt)!CX . What is far less
elementary (to CC) is that f! has a right adjoint f ! : Db

c(X2)→ Db
c(X

1), giving

HomX1(f!F ,F ′) = HomX2(F , f !F ′)

f∗HomX1(F , f !F ′) = HomX2(f!F ,F ′)
Using it, one defines DX := (X → pt)!C. One also defines for any F ∈ Db

c(X) the Verdier
dual that D(F) := HomX(F ,DX) (the sheaf Hom is always derived). Formal property gives
D(D(F)) = HomX(Hom (F ,DX),DX) For f : X1 → X2 and F ∈ Db

c(X1) we have natural
isomorphisms

f∗D(F) = f∗HomX1(F , (X1 → pt)!C) = f∗HomX1(F , f !(X2 → pt)!C)
= HomX2(f!F , (X2 → pt)!C) = D(f!F).

In other words, f∗ ◦D = D ◦ f!. In view of this, when X is smooth of (complex) dimension
d, that H∗(X,C) ∼= H2d−∗

c (X,C) is an incarnation of the less elementary fact that

2Actually, Cheng-Chiang only believes so, but has not checked.
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Lemma 2.1. For a smooth variety X of dimension d we have

DX = CX [2d].

For F ∈ Db
c(X) (the constructible property is important here) we have that the natural

morphism F → D(D(F)) is an isomorphism. This and that f∗ ◦ D = D ◦ f! implies

f! ◦ D = D ◦ f∗, f∗ ◦ D = D ◦ f !, f ! ◦ D = D ◦ f∗

Lastly, we also have a (derived) tensor product ⊗ : Db
c(X) × Db

c(X) → Db
c(X). The

collection {f∗, f∗, f!, f
∗,Hom ,⊗} forms the so-called Grothendieck’s six functors.

Recall that if X ↪→ M is an embedding into a smooth variety of (complex) dimension
m, then the Borel-Moore homology enjoys

HBM
i (X) = H2m−i(M,M/X).

This is an incarnation of the sheaf-theoretic property that DM = CM [2m] and that for any
variety X we have a sheaf-theoretic interpretation of Borel-Moore homology that

HBM
i (X) := H−i(X,DX)

Recall that our goal was to study HBM
∗ (Za). We have Za = Ñ a ×Na Ñ a. Since Ñ is

smooth, the fixed points Ñ a = ÑA also form a smooth closed subvariety (see Lemma 5.11.1
for a quick elegant proof). This smooth subvariety is usually disconnected, and worse not
equi-dimensional. Still, this is good enough for a formal setup: suppose M is a smooth
(but not necessarily equi-dimensional) variety, N any variety, M → N a proper morphism,

and Z = M ×N M (we have in mind M = Ñ a and N = N a so that Z = Za). The setup
gives HBM

∗ (Z) a convolution structure that we have seen many times. Let’s look at the
diagram:

Z := M ×N M M ×M

N N ×N

ι

µZ µ×µ
∆N

HBM
i (Z) = H−i(Z,DZ) = H−i(Z, ι!DM×M )

= H−i(N, (µZ)∗ι
!DM×M ) = H−i(N,∆!

N (µ× µ)∗DM×M )
= H−i(N,D((∆N )∗(µ× µ)!CM×M )) = H−i(N,D(µ!CM ⊗ µ!CM ))
= H−i(N,HomN (µ!CM ,Dµ!CM )) = H−i(N,HomN (µ!CM , µ∗DM ))

= Ext−iN (µ!CM , µ∗DM )

Note that µ! = µ∗ as µ is proper. Since M is smooth, we have DM is CM up to a shift, but
with potentially different shifts on different components! This implies that

Proposition 2.2. We have a somewhat canonical isomorphism of C-vector spaces

(2.1) HBM
∗ (Z) ∼= Ext∗N (µ!CM , µ!CM )

that typically does not preserve the grading.

Now the key result is

Theorem 2.3. The isomorphism in (2.1) is an algebra isomorphisms, with respect to the
convolution structure on HBM

∗ (Z) and the natural composition on Ext∗N (µ!CM , µ!CM ).

Now the machinery of perverse sheaves comes into play. While the complex µ!CM is
just an object in a triangulated category Db

c(N), the theory of perverse sheaves gives a
full subcategory Perv(N) in Db

c(N) that is an abelian category, has Db
c(N) as its derived

category in a way similar to Shc(N) and Db
c(N), and such that the object µ!CM - when µ
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is proper and M is smooth - is (quasi-isomorphic to) a direct sum of shifts of semisimple
objects in Perv(N). In other words, we have a finite decomposition

µ!CM =
⊕
i∈Z,φ

ICφ[i]⊗C Lφ(i)

where φ is indexing data for which each ICφ is a simple object in the abelian category
Perv(N), and Lφ(i) is a finite-dimensional C-vector space. Let us merge Lφ(i) for various
i into a graded C-vector space Lφ and write

(2.2) µ!CM =
⊕
φ

ICφ ⊗C Lφ.

Now Perv(N) is similar to Shc(N) in that for any two objects K1,K2 ∈ Perv(N) we have
Exti(K1,K2) := HomDbc(N)(K1,K2[i]) = 0 for any i < 0. Moreover, if K1 and K2 are simple

then Ext0(K1,K2) = 0 unless K1
∼= K2 in which case Ext0(K1,K1) = C. (Also, everything

has finite cohomological dimension that Exti(K1,K2) = 0 for i � 0.) With (2.2) we now
have

(2.3) Ext∗(µ!CM , µ!CM ) =
⊕
φ

End∗(Lφ)⊕
⊕

φ,φ′,i>0

Exti(ICφ, ICφ′)⊗C Hom∗(Lφ, Lφ′)

In this decomposition, we have the subalgebra
⊕

φ End∗(Lφ) that is a direct sum of matrix

algebras and is semisimple, and the other part with Exti, i > 0 that are clearly in the
radical. Hence the Exti, i > 0 part is the radical, and we have

Lemma 2.4. Simple modules of Ext∗(µ!CM , µ!CM ) are in bijection with simple modules of
End∗(Lφ), i.e. with the set of those φ’s with Lφ 6= 0.

These φ’s are simple objects in Perv(N) that appear (with shifts) in µ!CM . In general,
simple objects in Perv(N) are uniquely given by a local system on an irreducible locally
closed subvariety in N . In general there can be a lot such locally closed subvarieties and
local systems, but the symmetry will leave us a finite number of them.

Let us remember our original setup that N = N a, M = Ñ a, and µ is the restriction of
the natural map Ñ → N . Recall a = (s, t) ∈ T ×C×. It’s easy to see that N a is stabilized

by the centralizer ZG(s), so that ZG(s) acts on Ñ a → N a equivariantly. We need a Lie
theory fact:

Lemma 2.5. The fixed points N a is the union of a finite number of ZG(s)-orbits.

Proof. Since N is a union of a finite number of G-orbits, it suffices to prove for any G-
orbit O ⊂ N that O ∩N a is a finite union of ZG(s)-orbits. The automorphism Ad(s) acts
semisimply on g decomposing it into several eigenspaces, and by definition the a-fixed points
ga is the t-eigenspace of Ad(s) (and N a = ga ∩N ). For any x ∈ O∩N a, the tangent space
Tx(O) ⊂ g has an analogous decomposition for which Tx(O∩N a) = Tx(O∩ ga) ⊂ Tx(O) is
the t-eigenspace. Consequently, the surjection ad(x) : g � Tx(O) induces another surjection
ad(x) : LieZG(s) = gs � Tx(O ∩ N a), which implies that the ZG(s)-orbit of x is open in
O ∩N a, hence the result. �

Remark 2.6. It’s a Lie theory fact that the group ZG(s) is connected. In general, the
centralizer of a semisimple element in a simply connected semisimple group is connected.

Writing H = ZG(s), we are in a situation that the proper morphism M → N enjoys an
equivariant H-action. The constant sheaf CM can certainly be viewed as an H-equivariant
sheaf in the trivial manner. With the machinery of equivariant perverse sheaves, this implies
that µ!CM is also a direct sum of shifted simple equivariant perverse sheaves on N . Each
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of these simple equivariant perverse sheaf comes from an irreducible H-equivariant local
system on an irreducible H-invariant locally closed subvariety of N . Thanks to Lemma
2.5, any such irreducible subvariety is an H-orbit. An H-equivariant local system on an H-
orbit H.x is simply an irreducible representation of π0(StabH(x)). Moreover, the StabH(x)-
fibration H → H.x gives a short exact sequence π1(H.x) → π0(StabH(x)) → π0(H) = 1
thanks to Remark 2.6. In particular, forgetting H-action gives an injective map from the
set of isomorphism classes of H-equivariant local systems on H.x to the set of isomorphism
classes of local systems on H.x. Combining all results in this paragraph we have:

Lemma 2.7. Assume our current setup that (i) A connected group H acts on M → N
equivariantly and (ii) N is a finite union of H-orbits. Then every φ appearing in (2.2)
comes from an H-orbit H.x ⊂ N and an irreducible representation of π0(ZH(x)).

Now (1.1), Theorem 2.3, (2.2), Lemma 2.4, and the above lemma are combined together
to give:

Theorem 2.8. There is an injective map from the set of isomorphism classes of simple
modules of HC to the set of data {(s, t, x, ρ)}/ ∼ where we have a semisimple orbit s ∈ G,
a non-zero scalar t ∈ C×, a ZG(s)-orbit of x ∈ N a for a = (s, t), and an irreducible
representation ρ of π0(ZZG(s)(x)) = π0(ZG(s, x)).

A next question is: what the image of this injective map? Consider the fiber of Ñ a → N a

at x. It is by definition the space parametrizing Borel subgroups that contains both x and
s. Denote this closed subvariety by Bsx ⊂ B. The group ZH(x) acts on the fiber, inducing
an action of π0(ZH(x)) on HBM

∗ (Bsx) and also the ordinary cohomology H∗(Bsx). Now the
main theorem is

Theorem 2.9. Suppose t ∈ C× is not a root of unity. Then the following are equivalent
for a quadruple (s, t, x, ρ) in the setup in Theorem 2.8:

(1) The quadruple (s, t, x, ρ) appears in the image of the map in Theorem 2.8.
(2) The irreducible representation ρ of π0(ZH(x)) = π0(ZG(s, x)) appears in HBM

∗ (Bsx).
(3) The irreducible representation ρ appears in H∗(Bsx).

Remark 2.10. The ρ-part of HBM
∗ (Bsx) is called a standard module while the ρ-part of

H∗(Bsx) is called a co-standard module. They have interesting character formulae which we
completely skip; see §8.2, and §8.7. The simple module in Theorem 2.8 is in fact the image
of the natural (non-degree preserving) map HBM

∗ (Bsx)→ H∗(Bsx); see §8.5.

Sketch of Theorem 2.9. Writing ix : {x} ↪→ N := N a, we note that by proper base change
H∗(Bsx) = i∗xµ!CM and (Verdier) dually HBM

−∗ (Bsx) = i!xµ!DM . The way π0(ZH(x)) acts on

i∗xµ!CM and i!xµ!DM necessarily comes from the way it acts on (2.2). This shows the easy
direction (1) =⇒ (2) and (3).

Assume for the moment that x belongs to an open H-orbit of N a. (Recall N = N a is a
finite union of orbits of H = ZG(s)). In this case, it’s a direct property of perverse sheaves
that the only factors in (2.2) that is not killed by i∗x comes from those ICφ given by local

systems on H.x. Consequently, every action of i∗xµ!CM and i!xµ!DM does come from the
action in 2.2, showing (2) or (3) =⇒ (1).

Now, it’s a delicate series of Lie theory arguments (which is §8.8 in the book) that if t
is not a root of unity, then one can pick a subset of the connected components of M = N a

which, on one hand, is big enough to see those ρ’s appearing in (2) and (3), and on the
other hand has their image to N = N a exactly the closure of H.x. When this is the case,
then we are reduced to the situation of the previous paragraph and we are done. �
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