1. Preparation for affine Hecke algebra

In this note, we fix G a simply connected semisimple algebraic group over \mathbb{C}. Let F be a non-archimedean local field (e.g. $F=\mathbb{F}_{q}((t))$ or $F=\mathbb{Q}_{p}$). Denote by $\mathcal{O}_{F} \subset F$ its ring of integers and $k_{F}:=\mathcal{O}_{F} / \mathfrak{m}_{F}$ the residue field. Let \mathcal{G} be a split semisimple group over \mathcal{O} that is Langlands dual to G. Let $\mathcal{B} \subset \mathcal{G}$ be a Borel subgroup. The group $\mathcal{I}:=\mathcal{G}\left(\mathcal{O}_{F}\right) \times_{\mathcal{G}\left(k_{F}\right)} \mathcal{B}\left(k_{F}\right)$ is called the Iwahori subgroup. One should think of $\mathcal{I} \subset \mathcal{G}(F)$ as an analogue of $\mathcal{B}\left(k_{F}\right) \subset \mathcal{G}\left(k_{F}\right)$. In the latter case, the convolution algebra

$$
\mathbb{Z}\left(\mathcal{B}\left(k_{F}\right) \backslash \mathcal{G}\left(k_{F}\right) / \mathcal{B}\left(k_{F}\right)\right)
$$

is (canonically isomorphic to) the specialization of the Iwahori-Hecke algebra of G at $q=$ $\# k_{F}$. Likewise, we saw in CJ and Harrison's talk that the convolution algebra (where the subscript ${ }_{c}$ indicates that the support is on a finite union of double cosets):

$$
\mathbb{Z}_{c}(\mathcal{I} \backslash \mathcal{G}(F) / \mathcal{I})
$$

is canonically isomorphic to the specialization to $q=\# k_{F}$ of the (extended?) affine Hecke algebra \mathbf{H} (see Definition 7.1.9) of G, a deformation of the group algebra of the extended affine Weyl group of the root system of G.

In Harrison's talk we saw a (fully faithful ${ }^{1}$) functor

$$
\begin{array}{clc}
\operatorname{Rep}\left(\mathbb{C}_{c}(\mathcal{I} \backslash \mathcal{G}(F) / \mathcal{I})\right) & \rightarrow & \operatorname{Rep}(\mathcal{G}(F)) \\
\rho & \mapsto & \rho \otimes \mathbb{C}_{c}[\mathcal{I} \backslash \mathcal{G}(F)] .
\end{array}
$$

In particular, this induces a bijection

$$
\operatorname{Irr}\left(\mathbb{C}_{c}(\mathcal{I} \backslash \mathcal{G}(F) / \mathcal{I})\right) \rightarrow \operatorname{Irr}_{\mathcal{I}}(\mathcal{G}(F))
$$

where by $\operatorname{Irr}_{\mathcal{I}}(\mathcal{G}(F))$ we denote the set of irreducible \mathbb{C}-representations of $\mathcal{G}(F)$ containing a vector v stabilized by $\mathcal{I} \subset \mathcal{G}(F)$. The latter set is intensively studied by number theorists in the Langlands program. In a sequence of works in the 70's and 80's by Deligne, Langlands, Lusztig, and many others, a conjectural parameterization of $\operatorname{Irr}_{\mathcal{I}}(\mathcal{G}(F))$ is proposed, which we will describe using a completely different approach.

Since $\mathbb{Z}_{c}(\mathcal{I} \backslash \mathcal{G}(F) / \mathcal{I})$ is a specialization of the affine Hecke algebra \mathbf{H}, an simple \mathbb{C}-module of $\mathbb{Z}_{c}(\mathcal{I} \backslash \mathcal{G}(F) / \mathcal{I})$ is also a simple module of $\mathbf{H}_{\mathbb{C}}:=\mathbf{H} \otimes_{\mathbb{Z}} \mathbb{C}$. Since $\operatorname{dim}_{\mathbb{C}} \mathbf{H}_{\mathbb{C}}$ is countable, any simple module of it also has countable dimension. In this case, Schur's lemma implies that the center $Z\left(\mathbf{H}_{\mathbb{C}}\right)$ acts by a scalar.

What is $Z\left(\mathbf{H}_{\mathbb{C}}\right)$? Using Bernstein's presentation for the affine Hecke algebra we had

$$
T_{s_{\alpha}}\left(e^{\lambda}+e^{s_{\alpha}(\lambda)}\right)=\left(e^{\lambda}+e^{s_{\alpha}(\lambda)}\right) T_{s_{\alpha}}
$$

for any $\lambda \in X^{*}(T)$ where $T \subset G$ is the abstract maximal torus. Using this, we see that $\left\{\sum e^{w \lambda}\right\}_{\lambda \in X^{*}(T)}$ is a $\mathbb{Z}\left[q, q^{-1}\right]$-basis of $Z(\mathbf{H})$ and also a $\mathbb{C}\left[q, q^{-1}\right]$-basis of $Z\left(\mathbf{H}_{\mathbb{C}}\right)$. In particular this identifies the center $Z(\mathbf{H})$ with $R(T)^{W}\left[q, q^{-1}\right]$.

What's awesome is that this fits into the great theorem in CJ's talk that we have an isomorphism

$$
\mathbf{H} \cong K^{G \times \mathbb{C}^{\times}}(\mathcal{Z})
$$

where $K^{G \times \mathbb{C}^{\times}}(\mathcal{Z}):=K_{0}^{G \times \mathbb{C}^{\times}}(\mathcal{Z})$ is the Grothendieck group of equivariant coherent sheaves on $\mathcal{Z}=\tilde{\mathcal{N}} \times_{\mathcal{N}} \tilde{\mathcal{N}}$, the Steinberg variety. One might also observes that $R(T)^{W}\left[q, q^{-1}\right]=$ $K^{G \times \mathbb{C}^{\times}}(p t)$. Indeed, the $K^{G \times \mathbb{C}^{\times}}(p t)$-action on $K^{G \times \mathbb{C}^{\times}}(\mathcal{Z})$ happens to agree with that of the center of $K^{G \times \mathbb{C}^{\times}}(\mathcal{Z})$, see the discussion between Remark 7.2.7 and Lemma 7.2.11.

[^0]It's a fact in Lie theory (consequence of Tannakian formalism?) that any simple module of $K^{G \times \mathbb{C}^{\times}}(p t) \otimes_{\mathbb{Z}} \mathbb{C}$ is given by a unique semisimple conjugacy class (s, t) in $G \times \mathbb{C}^{\times}$so that $\rho \in \operatorname{Rep}\left(G \times \mathbb{C}^{\times}\right)$acts by the scalar $(\operatorname{Tr} \rho)(s, t)$. For any such $a=(s, t) \in G \times \mathbb{C}^{\times}$we denote the corresponding simple module of $K^{G \times \mathbb{C}^{\times}}(p t) \otimes_{\mathbb{Z}} \mathbb{C}$ by \mathbb{C}_{a}. For any simple module of $\mathbf{H}_{\mathbb{C}}$ there exists a unique a such that $K^{G \times \mathbb{C}^{\times}}(p t)$ acts via \mathbb{C}_{a}, i.e. $\mathbf{H}_{\mathbb{C}}$ acts through the quotient $\mathbf{H}_{\mathbb{C}} \otimes_{K^{G \times \mathbb{C}^{\times}}{ }_{(p t)}} \mathbb{C}_{a}$. Now let we may suppose $s \in T$ and denote by $A \subset T \times \mathbb{C}^{\times}$be any closed subgroup containing a such that $Z^{a}=Z^{A}$. We have the following isomorphisms from the localization theorems in You-Hung's talk:

$$
\begin{align*}
& \mathbb{C}_{a} \otimes_{K^{G \times \mathbb{C}^{\times}}(p t)} K^{G \times \mathbb{C}^{\times}}(\mathcal{Z})=\mathbb{C}_{a} \otimes_{K^{G \times \mathbb{C}^{\times}}(p t)} K^{A}(p t) \otimes_{K^{A}(p t)} K^{G \times \mathbb{C}^{\times}}(\mathcal{Z}) \tag{1.1}\\
\cong & \mathbb{C}_{a} \otimes_{K^{G \times \mathbb{C}^{\times}}(p t)} K^{A}(\mathcal{Z}) \cong \mathbb{C}_{a} \otimes_{K^{G \times \mathbb{C}^{\times}}(p t)} K^{A}\left(\mathcal{Z}^{a}\right) \cong K\left(\mathcal{Z}^{a}\right) \otimes_{\mathbb{Z}} \mathbb{C} \cong H_{*}^{B M}\left(\mathcal{Z}^{a}\right)
\end{align*}
$$

In other words, simple modules of $\mathbf{H}_{\mathbb{C}}$ for which $Z\left(\mathbf{H}_{\mathbb{C}}\right)$ acts via a are just simple modules of $H_{*}^{B M}\left(\mathcal{Z}^{a}\right)$ for some a as above.

Before we proceed to discuss (tools for) simple modules of $H_{*}^{B M}\left(\mathcal{Z}^{a}\right)$, let us note the special case when a is the identity. In this case $\mathcal{Z}^{a}=\mathcal{Z}$, and $\mathbf{H}_{\mathbb{C}} \otimes_{K^{G \times \mathbb{C}^{\times}}{ }_{(p t)} \mathbb{C}_{a} \text { is the }}$ affine Hecke algebra specialized at $q=1$ then "mod out the lattice", i.e. the group algebra of the Weyl group. In this case (1.1) is ${ }^{2}$ reduced to the treatment of Springer theory of Chriss-Ginzburg.

2. Perverse sheaves

Our next goal is to see that the tool of perverse sheaves works well with the convolution algebra $H_{*}^{B M}\left(\mathcal{Z}^{a}\right)$ to give a sheaf-theoretic description of all its simple modules.

To begin with, for any variety X there is a well-behaved triangulated category $D_{c}^{b}(X)$, the derived category of constructible complexes of sheaves on X (see e.g. the first two pages in §8.3). For any morphism $f: X_{1} \rightarrow X_{2}$ we have pull-back functor $f^{*}: D_{c}^{b}\left(X_{2}\right) \rightarrow D_{c}^{b}\left(X_{1}\right)$ and (derived) push-forward $f_{*}: D_{c}^{b}\left(X_{1}\right) \rightarrow D_{c}^{b}\left(X_{2}\right)$. They enjoy the adjointness that there is a canonical functorial isomorphism

$$
\operatorname{Hom}_{X_{1}}\left(f^{*} \mathcal{F}, \mathcal{F}^{\prime}\right)=\operatorname{Hom}_{X_{2}}\left(\mathcal{F}, f_{*} \mathcal{F}^{\prime}\right)
$$

They interpret ordinary cohomology in that $H^{*}(X, \mathbb{C})=(X \rightarrow p t)_{*} \mathbb{C}_{X}$, where \mathbb{C}_{X} is the constant sheaf on X.

We also have the (derived) proper push-forward $f_{!}: D_{c}^{b}\left(X_{1}\right) \rightarrow D_{c}^{b}\left(X_{2}\right)$ which is naturally isomorphic to f_{*} when f is proper, so that $H_{c}^{*}(X, \mathbb{C})=(X \rightarrow p t)!\mathbb{C}_{X}$. What is far less elementary (to CC) is that f ! has a right adjoint $f^{!}: D_{c}^{b}\left(X_{2}\right) \rightarrow D_{c}^{b}\left(X^{1}\right)$, giving

$$
\begin{gathered}
\operatorname{Hom}_{X_{1}}\left(f_{!} \mathcal{F}, \mathcal{F}^{\prime}\right)=\operatorname{Hom}_{X_{2}}\left(\mathcal{F}, f^{!} \mathcal{F}^{\prime}\right) \\
f_{*} \mathscr{H} \operatorname{Hom}_{X_{1}}\left(\mathcal{F}, f^{!} \mathcal{F}^{\prime}\right)=\mathscr{H} \operatorname{Hom}_{X_{2}}\left(f_{!} \mathcal{F}, \mathcal{F}^{\prime}\right)
\end{gathered}
$$

Using it, one defines $\mathbb{D}_{X}:=(X \rightarrow p t)^{!} \mathbb{C}$. One also defines for any $\mathcal{F} \in D_{c}^{b}(X)$ the Verdier dual that $\mathbb{D}(\mathcal{F}):=\mathscr{H}_{X}\left(\mathcal{F}, \mathbb{D}_{X}\right)$ (the sheaf Hom is always derived). Formal property gives $\mathbb{D}(\mathbb{D}(\mathcal{F}))=\mathscr{H}_{\mathrm{Com}}^{X}\left(\mathscr{H} o m\left(\mathcal{F}, \mathbb{D}_{X}\right), \mathbb{D}_{X}\right)$ For $f: X_{1} \rightarrow X_{2}$ and $\mathcal{F} \in D_{c}^{b}\left(X_{1}\right)$ we have natural isomorphisms

$$
\begin{aligned}
f_{*} \mathbb{D}(\mathcal{F}) & =f_{*} \mathscr{H o m}_{X_{1}}\left(\mathcal{F},\left(X_{1} \rightarrow p t\right)!\mathbb{C}\right)=f_{*} \mathscr{H o m}_{X_{1}}\left(\mathcal{F}, f^{!}\left(X_{2} \rightarrow p t\right)!\mathbb{C}\right) \\
& =\mathscr{H o m}_{X_{2}}\left(f_{!} \mathcal{F},\left(X_{2} \rightarrow p t\right)!\mathbb{C}\right)=\mathbb{D}\left(f_{!} \mathcal{F}\right) .
\end{aligned}
$$

In other words, $f_{*} \circ \mathbb{D}=\mathbb{D} \circ f_{!}$. In view of this, when X is smooth of (complex) dimension d, that $H^{*}(X, \mathbb{C}) \cong H_{c}^{2 d-*}(X, \mathbb{C})$ is an incarnation of the less elementary fact that

[^1]Lemma 2.1. For a smooth variety X of dimension d we have

$$
\mathbb{D}_{X}=\underline{\mathbb{C}}_{X}[2 d] .
$$

For $\mathcal{F} \in D_{c}^{b}(X)$ (the constructible property is important here) we have that the natural morphism $\mathcal{F} \rightarrow \mathbb{D}(\mathbb{D}(\mathcal{F}))$ is an isomorphism. This and that $f_{*} \circ \mathbb{D}=\mathbb{D} \circ f_{!}$implies

$$
f_{!} \circ \mathbb{D}=\mathbb{D} \circ f_{*}, f^{*} \circ \mathbb{D}=\mathbb{D} \circ f^{!}, f^{!} \circ \mathbb{D}=\mathbb{D} \circ f^{*}
$$

Lastly, we also have a (derived) tensor product $\otimes: D_{c}^{b}(X) \times D_{c}^{b}(X) \rightarrow D_{c}^{b}(X)$. The collection $\left\{f_{*}, f^{*}, f_{!}, f^{*}, \mathscr{H}_{o m}, \otimes\right\}$ forms the so-called Grothendieck's six functors.

Recall that if $X \hookrightarrow M$ is an embedding into a smooth variety of (complex) dimension m, then the Borel-Moore homology enjoys

$$
H_{i}^{B M}(X)=H^{2 m-i}(M, M / X)
$$

This is an incarnation of the sheaf-theoretic property that $\mathbb{D}_{M}=\mathbb{C}_{M}[2 m]$ and that for any variety X we have a sheaf-theoretic interpretation of Borel-Moore homology that

$$
H_{i}^{B M}(X):=H^{-i}\left(X, \mathbb{D}_{X}\right)
$$

Recall that our goal was to study $H_{*}^{B M}\left(\mathcal{Z}_{a}\right)$. We have $\mathcal{Z}^{a}=\tilde{\mathcal{N}}^{a} \times_{\mathcal{N}^{a}} \tilde{\mathcal{N}}^{a}$. Since $\tilde{\mathcal{N}}$ is smooth, the fixed points $\tilde{\mathcal{N}}^{a}=\tilde{\mathcal{N}}^{A}$ also form a smooth closed subvariety (see Lemma 5.11.1 for a quick elegant proof). This smooth subvariety is usually disconnected, and worse not equi-dimensional. Still, this is good enough for a formal setup: suppose M is a smooth (but not necessarily equi-dimensional) variety, N any variety, $M \rightarrow N$ a proper morphism, and $Z=M \times_{N} M$ (we have in mind $M=\tilde{\mathcal{N}}^{a}$ and $N=\mathcal{N}^{a}$ so that $Z=\mathcal{Z}^{a}$). The setup gives $H_{*}^{B M}(Z)$ a convolution structure that we have seen many times. Let's look at the diagram:

$$
\begin{gathered}
Z:=M \times{ }_{N} M \stackrel{\iota}{\longrightarrow} M \times M \\
H_{i}^{B M}(Z)=N \times N \\
=H^{-i}\left(Z, \mathbb{D}_{Z}\right)=H^{-i}\left(Z,!\mathbb{D}_{M \times M}\right) \\
=H^{-i}\left(N,\left(\mu_{Z}\right)_{*}!\mathbb{D}_{M \times M}\right)=H^{-i}\left(N, \Delta_{N}(\mu \times \mu)_{*} \mathbb{D}_{M \times M}\right) \\
=H^{-i}\left(N, \mathbb{D}_{N}\left(\left(\Delta_{N}\right)^{*}(\mu \times \mu)!\mathbb{C}_{M \times M}\right)\right)=H^{-i}\left(N, \mathbb{D}\left(\mu!\mathbb{C}_{M} \otimes \mu_{!} \mathbb{C}_{M}\right)\right) \\
=H^{-i}\left(N, \mathscr{H}_{0} m_{N}\left(\mu!\mathbb{C}_{M}, \mathbb{D} \mu_{!} \underline{\mathbb{C}}_{M}\right)\right)=H^{-i}\left(N, \mathscr{H} o m N\left(\mu!\mathbb{C}_{M}, \mu_{*} \mathbb{D}_{M}\right)\right) \\
=\operatorname{Ext}_{N}^{-i}\left(\mu!\mathbb{C}_{M}, \mu_{*} \mathbb{D}_{M}\right)
\end{gathered}
$$

Note that $\mu_{!}=\mu_{*}$ as μ is proper. Since M is smooth, we have \mathbb{D}_{M} is \mathbb{C}_{M} up to a shift, but with potentially different shifts on different components! This implies that

Proposition 2.2. We have a somewhat canonical isomorphism of \mathbb{C}-vector spaces

$$
\begin{equation*}
H_{*}^{B M}(Z) \cong \operatorname{Ext}_{N}^{*}\left(\mu_{!} \underline{\mathbb{C}}_{M}, \mu_{!} \underline{\mathbb{C}}_{M}\right) \tag{2.1}
\end{equation*}
$$

that typically does not preserve the grading.
Now the key result is
Theorem 2.3. The isomorphism in (2.1) is an algebra isomorphisms, with respect to the convolution structure on $H_{*}^{B M}(Z)$ and the natural composition on $\operatorname{Ext}_{N}^{*}\left(\mu!\mathbb{C}_{M}, \mu_{!} \mathbb{C}_{M}\right)$.

Now the machinery of perverse sheaves comes into play. While the complex $\mu_{!} \underline{\mathbb{C}}_{M}$ is just an object in a triangulated category $D_{c}^{b}(N)$, the theory of perverse sheaves gives a full subcategory $\operatorname{Perv}(N)$ in $D_{c}^{b}(N)$ that is an abelian category, has $D_{c}^{b}(N)$ as its derived category in a way similar to $\operatorname{Sh}_{c}(N)$ and $D_{c}^{b}(N)$, and such that the object $\mu!\mathbb{C}_{M}$ - when μ
is proper and M is smooth - is (quasi-isomorphic to) a direct sum of shifts of semisimple objects in $\operatorname{Perv}(N)$. In other words, we have a finite decomposition

$$
\mu_{!} \mathbb{C}_{M}=\bigoplus_{i \in \mathbb{Z}, \phi} I C_{\phi}[i] \otimes_{\mathbb{C}} L_{\phi}(i)
$$

where ϕ is indexing data for which each $I C_{\phi}$ is a simple object in the abelian category $\operatorname{Perv}(N)$, and $L_{\phi}(i)$ is a finite-dimensional \mathbb{C}-vector space. Let us merge $L_{\phi}(i)$ for various i into a graded \mathbb{C}-vector space L_{ϕ} and write

$$
\begin{equation*}
\mu_{!} \mathbb{C}_{M}=\bigoplus_{\phi} I C_{\phi} \otimes_{\mathbb{C}} L_{\phi} \tag{2.2}
\end{equation*}
$$

Now $\operatorname{Perv}(N)$ is similar to $\operatorname{Sh}_{c}(N)$ in that for any two objects $K_{1}, K_{2} \in \operatorname{Perv}(N)$ we have $\operatorname{Ext}^{i}\left(K_{1}, K_{2}\right):=\operatorname{Hom}_{D_{c}^{b}(N)}\left(K_{1}, K_{2}[i]\right)=0$ for any $i<0$. Moreover, if K_{1} and K_{2} are simple then $\operatorname{Ext}^{0}\left(K_{1}, K_{2}\right)=0$ unless $K_{1} \cong K_{2}$ in which case $\operatorname{Ext}^{0}\left(K_{1}, K_{1}\right)=\mathbb{C}$. (Also, everything has finite cohomological dimension that $\operatorname{Ext}^{i}\left(K_{1}, K_{2}\right)=0$ for $i \gg 0$.) With (2.2) we now have

$$
\begin{equation*}
\operatorname{Ext}^{*}\left(\mu!\mathbb{C}_{M}, \mu!\mathbb{C}_{M}\right)=\bigoplus_{\phi} \operatorname{End}^{*}\left(L_{\phi}\right) \oplus \bigoplus_{\phi, \phi^{\prime}, i>0} \operatorname{Ext}^{i}\left(I C_{\phi}, I C_{\phi^{\prime}}\right) \otimes_{\mathbb{C}} \operatorname{Hom}^{*}\left(L_{\phi}, L_{\phi^{\prime}}\right) \tag{2.3}
\end{equation*}
$$

In this decomposition, we have the subalgebra $\bigoplus_{\phi} \operatorname{End}^{*}\left(L_{\phi}\right)$ that is a direct sum of matrix algebras and is semisimple, and the other part with $\mathrm{Ext}^{i}, i>0$ that are clearly in the radical. Hence the Ext ${ }^{i}, i>0$ part is the radical, and we have

Lemma 2.4. Simple modules of $\operatorname{Ext}^{*}\left(\mu!\underline{\mathbb{C}}_{M}, \mu!\underline{\mathbb{C}}_{M}\right)$ are in bijection with simple modules of End $^{*}\left(L_{\phi}\right)$, i.e. with the set of those ϕ 's with $L_{\phi} \neq 0$.

These ϕ 's are simple objects in $\operatorname{Perv}(N)$ that appear (with shifts) in $\mu!\mathbb{C}_{M}$. In general, simple objects in $\operatorname{Perv}(N)$ are uniquely given by a local system on an irreducible locally closed subvariety in N. In general there can be a lot such locally closed subvarieties and local systems, but the symmetry will leave us a finite number of them.

Let us remember our original setup that $N=\mathcal{N}^{a}, M=\tilde{\mathcal{N}}^{a}$, and μ is the restriction of the natural $\operatorname{map} \tilde{\mathcal{N}} \rightarrow \mathcal{N}$. Recall $a=(s, t) \in T \times \mathbb{C}^{\times}$. It's easy to see that \mathcal{N}^{a} is stabilized by the centralizer $Z_{G}(s)$, so that $Z_{G}(s)$ acts on $\tilde{\mathcal{N}}^{a} \rightarrow \mathcal{N}^{a}$ equivariantly. We need a Lie theory fact:

Lemma 2.5. The fixed points \mathcal{N}^{a} is the union of a finite number of $Z_{G}(s)$-orbits.
Proof. Since \mathcal{N} is a union of a finite number of G-orbits, it suffices to prove for any G orbit $\mathcal{O} \subset \mathcal{N}$ that $\mathcal{O} \cap \mathcal{N}^{a}$ is a finite union of $Z_{G}(s)$-orbits. The automorphism $\operatorname{Ad}(s)$ acts semisimply on \mathfrak{g} decomposing it into several eigenspaces, and by definition the a-fixed points \mathfrak{g}^{a} is the t-eigenspace of $\operatorname{Ad}(s)$ (and $\left.\mathcal{N}^{a}=\mathfrak{g}^{a} \cap \mathcal{N}\right)$. For any $x \in \mathcal{O} \cap \mathcal{N}^{a}$, the tangent space $T_{x}(\mathcal{O}) \subset \mathfrak{g}$ has an analogous decomposition for which $T_{x}\left(\mathcal{O} \cap \mathcal{N}^{a}\right)=T_{x}\left(\mathcal{O} \cap \mathfrak{g}^{a}\right) \subset T_{x}(\mathcal{O})$ is the t-eigenspace. Consequently, the surjection $\operatorname{ad}(x): \mathfrak{g} \rightarrow T_{x}(\mathcal{O})$ induces another surjection $\operatorname{ad}(x): \operatorname{Lie} Z_{G}(s)=\mathfrak{g}^{s} \rightarrow T_{x}\left(\mathcal{O} \cap \mathcal{N}^{a}\right)$, which implies that the $Z_{G}(s)$-orbit of x is open in $\mathcal{O} \cap \mathcal{N}^{a}$, hence the result.

Remark 2.6. It's a Lie theory fact that the group $Z_{G}(s)$ is connected. In general, the centralizer of a semisimple element in a simply connected semisimple group is connected.

Writing $H=Z_{G}(s)$, we are in a situation that the proper morphism $M \rightarrow N$ enjoys an equivariant H-action. The constant sheaf \mathbb{C}_{M} can certainly be viewed as an H-equivariant sheaf in the trivial manner. With the machinery of equivariant perverse sheaves, this implies that $\mu!\mathbb{C}_{M}$ is also a direct sum of shifted simple equivariant perverse sheaves on N. Each
of these simple equivariant perverse sheaf comes from an irreducible H-equivariant local system on an irreducible H-invariant locally closed subvariety of N. Thanks to Lemma 2.5 , any such irreducible subvariety is an H-orbit. An H-equivariant local system on an H orbit $H . x$ is simply an irreducible representation of $\pi_{0}\left(\operatorname{Stab}_{H}(x)\right)$. Moreover, the $\operatorname{Stab}_{H}(x)$ fibration $H \rightarrow H . x$ gives a short exact sequence $\pi_{1}(H . x) \rightarrow \pi_{0}\left(\operatorname{Stab}_{H}(x)\right) \rightarrow \pi_{0}(H)=1$ thanks to Remark 2.6. In particular, forgetting H-action gives an injective map from the set of isomorphism classes of H-equivariant local systems on $H . x$ to the set of isomorphism classes of local systems on H.x. Combining all results in this paragraph we have:

Lemma 2.7. Assume our current setup that (i) A connected group H acts on $M \rightarrow N$ equivariantly and (ii) N is a finite union of H-orbits. Then every ϕ appearing in (2.2) comes from an H-orbit $H . x \subset N$ and an irreducible representation of $\pi_{0}\left(Z_{H}(x)\right)$.

Now (1.1), Theorem 2.3, (2.2), Lemma 2.4, and the above lemma are combined together to give:
Theorem 2.8. There is an injective map from the set of isomorphism classes of simple modules of $\mathbf{H}_{\mathbb{C}}$ to the set of data $\{(s, t, x, \rho)\} / \sim$ where we have a semisimple orbit $s \in G$, a non-zero scalar $t \in \mathbb{C}^{\times}$, a $Z_{G}(s)$-orbit of $x \in \mathcal{N}^{a}$ for $a=(s, t)$, and an irreducible representation ρ of $\pi_{0}\left(Z_{Z_{G}(s)}(x)\right)=\pi_{0}\left(Z_{G}(s, x)\right)$.

A next question is: what the image of this injective map? Consider the fiber of $\tilde{\mathcal{N}}^{a} \rightarrow \mathcal{N}^{a}$ at x. It is by definition the space parametrizing Borel subgroups that contains both x and s. Denote this closed subvariety by $\mathcal{B}_{x}^{s} \subset \mathcal{B}$. The group $Z_{H}(x)$ acts on the fiber, inducing an action of $\pi_{0}\left(Z_{H}(x)\right)$ on $H_{*}^{B M}\left(\mathcal{B}_{x}^{s}\right)$ and also the ordinary cohomology $H^{*}\left(\mathcal{B}_{x}^{s}\right)$. Now the main theorem is

Theorem 2.9. Suppose $t \in \mathbb{C}^{\times}$is not a root of unity. Then the following are equivalent for a quadruple (s, t, x, ρ) in the setup in Theorem 2.8:
(1) The quadruple (s, t, x, ρ) appears in the image of the map in Theorem 2.8.
(2) The irreducible representation ρ of $\pi_{0}\left(Z_{H}(x)\right)=\pi_{0}\left(Z_{G}(s, x)\right)$ appears in $H_{*}^{B M}\left(\mathcal{B}_{x}^{s}\right)$.
(3) The irreducible representation ρ appears in $H^{*}\left(\mathcal{B}_{x}^{s}\right)$.

Remark 2.10. The ρ-part of $H_{*}^{B M}\left(\mathcal{B}_{x}^{s}\right)$ is called a standard module while the ρ-part of $H^{*}\left(\mathcal{B}_{x}^{s}\right)$ is called a co-standard module. They have interesting character formulae which we completely skip; see $\S 8.2$, and $\S 8.7$. The simple module in Theorem 2.8 is in fact the image of the natural (non-degree preserving) map $H_{*}^{B M}\left(\mathcal{B}_{x}^{s}\right) \rightarrow H^{*}\left(\mathcal{B}_{x}^{s}\right)$; see $\S 8.5$.

Sketch of Theorem 2.9. Writing $i_{x}:\{x\} \hookrightarrow N:=\mathcal{N}^{a}$, we note that by proper base change $H^{*}\left(\mathcal{B}_{x}^{s}\right)=i_{x}^{*} \mu!\underline{\mathbb{C}}_{M}$ and (Verdier) dually $H_{-*}^{B M}\left(\mathcal{B}_{x}^{s}\right)=i_{x}^{!} \mu!\mathbb{D}_{M}$. The way $\pi_{0}\left(Z_{H}(x)\right)$ acts on $i_{x}^{*} \mu!\mathbb{C}_{M}$ and $i_{x}^{!} \mu_{!} \mathbb{D}_{M}$ necessarily comes from the way it acts on (2.2). This shows the easy direction (1) $\Longrightarrow(2)$ and (3).

Assume for the moment that x belongs to an open H-orbit of \mathcal{N}^{a}. (Recall $N=\mathcal{N}^{a}$ is a finite union of orbits of $\left.H=Z_{G}(s)\right)$. In this case, it's a direct property of perverse sheaves that the only factors in (2.2) that is not killed by i_{x}^{*} comes from those $I C_{\phi}$ given by local systems on H.x. Consequently, every action of $i_{x}^{*} \mu!\underline{\mathbb{C}}_{M}$ and $i_{x}^{!} \mu!\mathbb{D}_{M}$ does come from the action in 2.2 , showing (2) or $(3) \Longrightarrow(1)$.

Now, it's a delicate series of Lie theory arguments (which is $\S 8.8$ in the book) that if t is not a root of unity, then one can pick a subset of the connected components of $M=\mathcal{N}^{a}$ which, on one hand, is big enough to see those ρ 's appearing in (2) and (3), and on the other hand has their image to $N=\mathcal{N}^{a}$ exactly the closure of $H . x$. When this is the case, then we are reduced to the situation of the previous paragraph and we are done.

[^0]: ${ }^{1}$ At least so if we take $\operatorname{Rep}\left(\mathbb{C}_{c}(\mathcal{I} \backslash \mathcal{G}(F) / \mathcal{I})\right)$ to be the category of finite-dimensional \mathbb{C}-representations.

[^1]: ${ }^{2}$ Actually, Cheng-Chiang only believes so, but has not checked.

