
Main reference: Affine Hecke algebras and their representations by Maarten Solleveld,
§1-§4.

The goal of this note is to give partial description for the representation theory of affine
Hecke algebras and graded Hecke algebras (the latter also called degenerate affine Hecke
algebras). Throughout the note we fix a reduced root datum (X∗, X∗,Φ,Φ

∨) where Φ ⊂ X∗

are the roots and Φ∨ ⊂ X∗ are the coroots. We also fixed a choice of positive roots Φ+ ⊂ Φ
and the associated simple roots ∆ ⊂ Φ. For any α ∈ Φ denote by α∨ ∈ Φ∨ the corresponding
coroot. Let S = {sα | α ∈ ∆} be the set of simple reflections. It generates the Weyl group
W and realizes it as a Coxeter group.

Fix a set of numbers {qα ∈ C×}α∈Φ with the condition:

qα1 = qα2 whenever α1 and α2 are in the same W -orbit.

We will assume qα ∈ R≥1 for a large later part of this note, but we don’t need to worry
about that now. Let us also write qsα := qα. In particular qs is defined for every s ∈ S. The
finite Hecke algebra H(W, q) is the unique associative algebra with underlying vector
space C[W ] with basis {Tw | w ∈W} and the multiplication rule that

(1) (Ts + 1)(Ts − qs) = 0 for any s ∈ S.
(2) Tw1Tw2 = Tw1w2 for w1, w2 ∈W satisfying ℓ(w1w2) = ℓ(w1) + ℓ(w2).

where ℓ(w) := min{n | w = s1...sn for some s1, ..., sn ∈ S}.
We associate1 a complex reductive group G and a maximal torus T with our root datum,

so that X∗ = Homalg(T,C×), Φ = non-zero eigenvalues of T acting on LieG, etc.. The ring
O(T ) of regular algebraic functions on T is equal to the group ring C[X∗]. Since the latter
will be used a lot, we adapt the convention that for any χ ∈ X∗, we use θχ to denote the
corresponding basis element in X∗. The (extended) affine Weyl group is W a := X∗ ⋊W .
The group algebra C[W a] has underlying vector space C[X∗]⊗C[W ] with the multiplication
rule

θχ1w1 · θχ2w2 = θχ1+w1.χ2w1w2.

Theorem 1. There exists a unique associative algebra, the affine Hecke algebra H(W a, q),
with underlying vector space C[X∗]⊗H(W, q), such that

(1) C[X∗] and H(W, q) are subalgebras.
(2) For any χ ∈ X∗ and α ∈ ∆

(1) θχTsα − Tsαθsα.χ = (qα − 1)
θχ − θsα.χ
θ0 − θ−α

∈ C[X∗].

The (affine) Hecke algebras H(W, q) and H(W a, q) is said to be with equal parameters
if qα is the same for all α ∈ Φ. It is said of be with unequal parameters otherwise. In
fact, when we have a factor of type B (this includes B1=A1), generalization of (1) might
naturally occur. We leave this complication to the appendix.

1. Parabolic induction

For t ∈ T , denote by Ct the vector space C equipped with the action of C[X∗] through
t. Denote by

indHC[X∗]Ct := H⊗C[X∗] Ct

1If you are like Cheng-Chiang and prefer to think in terms of Langlands correspondence, you should be
warned that any reductive group appearing in this note lives on the Galois side.
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the module with the obvious left H-action. We have Frobenius reciprocity that

HomH(ind
H
C[X∗]Ct, V ) = HomC[X∗](Ct, V )

is non-zero iff t ∈ Wt(V ). Hence an irreducible V is a quotient of these indHC[X∗]Ct.

The action of C[X∗] on indHC[X∗]Ct = H ⊗C[X∗] Ct stabilizes
∑

ℓ(w)≤n TwCt so that C[X∗]

acts on
∑

ℓ(w)≤n TwCt/
∑

ℓ(w)<n TwCt with weights {w.t | ℓ(w) = n}. Hence we have

Wt(indHC[X∗]Ct) =W.t, the W -orbit of t in T .

In general, let ∆P ⊂ ∆ be a subset and let ΦP ⊂ Φ be the subsets consisting of linear
combinations of roots in ∆P . Then (X∗, X∗,ΦP ,Φ

∨
P ) is also a root system, in fact corre-

sponding to a Levi subgroup T ⊂ L ⊂ P in some standard parabolic P . We may form the
affine Hecke algebra HP := H(W (ΦP )

a, q) which is naturally a subalgebra of H and called
a parabolic subalgebra. The commutative algebra C[X∗] corresponds to the case when
∆P = ∅, i.e. when P is a Borel subgroup. The parabolic induction from HP to H is

indHHP
V := H⊗HP

V

for any V ∈ Mod(HP ). Our next goal is to understand how reducible indHHP
V can be for

irreducible V of HP .

Let us begin with a remark: let P be as above. Let TP := Zo
P be the center of P . We

have TP = ⟨∆P ⟩⊥⊗ZC× where ⟨∆P ⟩⊥ is those elements in X∗ annihilated by ∆P . For any
t ∈ TP , we have θα(t) = 1 for all α ∈ ΦP . This allows an automorphism ψt := HP → HP

given by

θχTw 7→ χ(t)θχTw.

Composing with this automorphism gives an equivalence ψt : Mod(HP ) → Mod(HP ), and
it should be obvious that Wt(ψt(V )) =Wt(V ) + t for any t ∈ TP .

On the other hand let TP be the preimage of T in the derived subgroup of the Levi L; it
is TP = ⟨Φ∨

P ⟩⊗ZC×. We have T = TPT
P (while TP ∩TP is finite but possibly non-trivial).

Since both TP and TP are invariant underWP :=W (ΦP ), for any V ∈ Irr(HP ) there exists
t ∈ TP such that Wt(ψ−1

t (V )) = Wt(ψt−1(V )) ⊂ TP . The importance of this is that if
Wt(V ) ⊂ TP , then we can quotient out the lattice ⟨Φ∨

P ⟩⊥ ⊂ X∗ from HP and are left with
a semisimple root system.

For any complex torus T we have T = X∗(T )⊗ZC× ∼= X∗(T )⊗ZR+×X∗(T )⊗Z S
1. We

identify via logarithmic map X∗(T )⊗ZR+ ∼= X∗(T )⊗ZR =: a, and write T uni := X∗(T )⊗Z
S1 the compact form of T , so that T = exp(a) × T uni. For the torus TP in the previous
paragraph we likewise decompose TP = exp(aP ) × T uni

P , where X∗(TP ) = ⟨Φ∨
P ⟩Q ∩ X∗.

Consider
a−P := {

∑
α∈∆R≤0 · α∨ | α ∈ ∆P }.

a−−
P := {

∑
α∈∆R<0 · α∨ | α ∈ ∆P }.

a+P := {X ∈ aP | α(X) ≥ 0, ∀α ∈ Φ+}.
a++
P := {X ∈ aP | α(X) > 0, ∀α ∈ Φ+}.

Note that a−P and a−−
P are “obtuse” and a+P and a++

P are “acute.” Denote by T ∗
P :=

exp(a∗P ) ⊂ T for any label ∗.

Definition 2. An irreducible representation V of HP is called tempered if Wt(V ) ⊂
T−
P T

uni
P . It is called essentially tempered if Wt(V ) ⊂ T−

P T
uni
P TP . It is called a discrete

series representation, if TP = 1 and Wt(V ) ⊂ T−−
P T uni

P . It is called a essentially

discrete series representation if Wt(V ) ⊂ T−−
P T uni

P TP .
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Relative to the original root datum, we furthermore put

aP,+ := {X ∈ aP | α(X) ≥ 0, ∀α ∈ ∆−∆P }
aP,++ := {X ∈ aP | α(X) > 0, ∀α ∈ ∆−∆P }

and likewise TP,+ := exp(aP,+), TP,++ := exp(aP,++). We say an irreducible representation
V of HP is in positive (resp. strictly positive) position if Wt(V ) ⊂ TP,+TP,uniTP (resp.
Wt(V ) ⊂ TP,++TP,uniTP ).

Definition 3. A Langlands datum is (P, V ) where P is as before (which is really a choice
of ∆P ⊂ ∆) and V ∈ Irr(HP ) is essentially tempered and in strictly positive position.

The representation indHHP
V for a Langlands datum is called standard or a standard

module.

Theorem 4. (Langlands classification) Recall that qα ∈ R≥1 is enforced.

(1) For a Langlands datum (P, V ), the standard module indHHP
V has a unique irre-

ducible quotient, which we denote by L(P, V ).
(2) Every irreducible representation of H arises as L(P, V ) for a unique Langlands

datum.

Definition 5. An induction datum is (P, V ) where P is as before and V ∈ Irr(HP ) is an
essentially discrete series representation.

Theorem 6. Every irreducible representation of H is an irreducible quotient of indHHP
V

for some induction datum (P, V ) for which V is in positive position.

The downside of Theorem 6 compared to Theorem 4 is that in Theorem 6 the induction
indHHP

V might have more than one irreducible quotient. The classification of such can
be a tricky calculation. Nevertheless, the two theorems can be combined in the following
way: let ξ = (P, V ) be an induction datum in positive position. Let t ∈ TP be such that
Wt(V ) = T−−

P T uni
P t. Let ∆ξ := {α ∈ ∆ |α(t)| = 1}. By definition of TP we have ∆ξ ⊃ ∆P .

Let P (ξ) be the parabolic associated to ∆ξ and HP (ξ) the associated parabolic subalgebra.
We have

Theorem 7. Let (P, V ) be an induction datum in positive position as before. Then

(1) The induction ind
HP (ξ)

HP
V is completely reducible and essentially tempered.

(2) Every irreducible quotient of indHHP
V is of the form indHHP (ξ)

ρ for some simple

component ρ ⊂ ind
HP (ξ)

HP
V .

(3) Every irreducible representation of H arises as in (2) (though probably in more than
one way).

(4) The functor indHHP (ξ)
induces an isomorphism

EndHP (Ξ)
(ind

HP (ξ)

HP
V )

∼−→ EndH(ind
H
HP

V ).

2. Example: G = PGL2

We assume we are in the equal parameter case (the unequal parameter setup is explained
in the Appendix). Since every irreducible representation of H is a constituent of indHC[x∗]Ct

for some t ∈ T , and that indHC[x∗]Ct is 2-dimensional, we directly study how it decomposes.

Denote by s the unique non-trivial element in the finite Weyl group, and α ∈ ∆ the unique
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simple root in the root datum. We have vectors Te, Ts ∈ indHC[x∗]Ct as a C-basis, on which

Ts acts by the matrix [
0 q
1 q − 1

]
with eigenvectors Te+Ts,−qTe+Ts ∈ indHC[x∗]Ct. Thus any potential proper H-submodule

of indHC[x∗]Ct should be either of this two. It remains to compute the action of θα on them.

Denote by t̃ := α(t). We have

θα(Te + Ts) = Teθα(t) + Tsθ−α(t) + Te(q − 1)(θ0(t) + θα(t))

= (t̃+ (q − 1)(t̃+ 1))Te + t̃−1Ts = (qt̃+ (q − 1))Te + t̃−1Ts

which is a scalar multiple of Te + Ts iff qt̃+ (q − 1) = t̃−1, i.e. iff t̃ = q−1 or −1. Similarly,
we have

θα(−qTe + Ts) = −qTeθα(t) + Tsθ−α(t) + Te(q − 1)(θ0(t) + θα(t))

= (−qt̃+ (q − 1)(t̃+ 1))Te + t̃−1Ts = (−t̃+ (q − 1))Te + t̃−1Ts

which is a scalar multiple of −qTe + Ts iff −t̃+ (q− 1) = −qt̃−1, i.e. iff t̃ = −1 or q. In our
G = PGL2 case α generates X∗, i.e. α : T → Gm is an isomorphism. We will identify T
with Gm using α, and thus identify t with t̃. We have

Proposition 8. When t ̸= q±1,−1, the induction indHC[x∗]Ct is irreducible. When t =

q±1, indHC[x∗]Ct has a unique 1-dimensional subrepresentation and a unique 1-dimensional

subquotient. When t = −1, the induction indHC[x∗]C−1 is a direct sum of two distinct 1-

dimensional representations.

Since Wt(indHC[x∗]Ct) = {t, t−1}. By Frobenius reciprocity we have that the unique

proper irreducible quotient of indHC[x∗]Cq has weight q and the unique proper submodule

has weight q−1, which is thus a subquotient of indHC[x∗]Cq−1 . For any t ̸= −1, q±1 the

irreducible module indHC[x∗]Ct is a subquotient of indHC[x∗]Ct−1 . This gives

Proposition 9. The irreducible H-modules in Proposition 8 are only isomorphic in the
following two cases: when t ̸= −1, q±1 indHC[x∗]Ct−1

∼= indHC[x∗]Ct. Secondly, the proper

quotient of indHC[x∗]Cq±1 is isomorphic to the proper submodule of indHC[x∗]Cq∓1.

3. First Reduction theorem

From now on we mostly abbreviate H(W a, q) to H. Recall that from (1) we have that the
center of H is C[X∗]W , the W -invariant part of C[X∗], or equivalently the ring of regular
functions O(T/W ) where T/W is the categorical quotient (at the variety level). Since H
has finite rank over C[X∗]W , any irreducible representation of H is finite-dimensional. As
a first approach to the representation theory of H we would like to study the “generic
parameter version” C(X∗)⊗C[X∗] where C(X∗) is the field of fractions of C[X∗]. This does
not make direct sense as an algebra, precisely because C[X∗] is not central in H. However,
thanks to that C(X∗) ∼= C(X∗)w ⊗C[X∗]W C[X] as algebras, we may consider the vector
space

C(X∗)⊗C H(W, q) = C(X∗)⊗C[X∗] H = C(X∗)W ⊗C[X∗]W H
whose multiplication is defined using the rightmost expression that C(X∗)W is central and
H is a subalgebra. The algebra is of finite dimension over the field C(X∗)W containing the
field extension C(X∗), so it’s probably not very surprising that
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Theorem 10. We have an algebra2 isomorphism

C(X∗)⋊W ∼= C(X∗)W ⊗C[X∗]W H
sending C(X∗) identically to C(X∗) on the right. It can be given as follows: for any
s = sα ∈ S ⊂W in the left, it is mapped to

(2) ι◦s =
q−1
α (θα − 1)

θα − qα
(1 + Ts)− 1.

Note that ι◦s is expressed in the vector space C(X∗)⊗C H(W, q) and some care is needed
to realize it in the algebra. The theorem is equivalent to that ι◦s satisfies (ι◦s)

2 = 1, the
braid relation, and ι◦sfι

◦
s = s.f for any f ∈ C(X). In fact, suppose

U0 = {t ∈ T | θα ̸= 1, qα, ∀α ∈ ∆}.
The subset U0 is Zariski open and W -stable. The ring O(U0) of regular functions satisfy
C[X∗] ⊂ O(U0) ⊂ C(X∗), and we still have

(3) O(U0)⋊W ∼= O(U0/W )⊗C[X∗]W H = O(U0)
W ⊗C[X∗]W H.

Let V be a finite-dimensional representation of H (say our representations are always
left modules over C). Since C[X∗] ⊂ H is a commutative subalgebra, we can consider
generalized eigenspace: for any C-algebra homomorphism t : C[X∗] → C, let Vt ⊂ V
be the subspace of vectors annihilated by (f − t(f))n for some n ∈ Z>0. Note that as
C[X∗] = O(T ), the set of all such t are exactly given by t ∈ T , points in the complex torus.
Standard linear algebra gives

V =
⊕
t∈T

Vt.

Denote by Wt(V ) := {t ∈ T | Vt ̸= 0} the weights of V . Suppose Wt(V ) ⊂ U0 as in (3),
then the representation theory of V is built up from the commutative part O(U0) andW via
Clifford theory. Essentially, it is just the representation theory ofWt := {w ∈W | w.t = t}.

In general, whenever U ⊂ T is any analytically open subset that is W -stable, we may
consider Oan(U) the ring of holomorphic functions on U . If V is any finite-dimensional
representation of H with Wt(V ) ⊂ U , then the the action map H → End(V ) extends to
Han(U) := Oan(U)W ⊗C[X∗]W H → End(V ) (by letting Oan(U)W acts on each generalized

eigenspace via similar Jordan form). Denote by ModU (H) the category of finite-dimensional
representations ofH with weights in U , and Mod(Han(U)) the category of finite-dimensional
representations of Han(U). We have

Proposition 11. The natural restriction functor Mod(Han(U)) → ModT (H) has essen-
tially image ModU (H), and is an equivalence of category to the image with inverse as above.

Fix t ∈ T for the moment.We may decompose t = tunitrs with unitary part tuni ∈ T uni

and real split part trs ∈ exp(a). Put Wt := {w ∈ W | w.t = t} and Wtuni := {w ∈
W | w.tuni = tuni}. We take an additional assumption that Wt = Wtuni ; things can
be done more complicatedly in the (sometimes more interesting) case Wt ̸= Wtuni , but in
this note (as in Solleveld) we will be content with the simpler case Wt =Wtuni .

Consider Φt := {α ∈ Φ | sα(t) = t}. It is not hard to show that (X∗, X∗,Φt,Φ
∨
t ) is also

a root datum, and we denote by W (Φt) its Weyl group. Let Φ+
t := Φt ∩ Φ+. Then Φ+

t is
also a choice of positive roots. Let Γt := {w ∈Wt | w.Φ+

t = Φ+
t }. We have

Wt =W (Φt)⋊ Γt.

2For A a C-algebra and G a finite group acting on A, we denote by A ⋊G the algebra with underlying
vector space A⊗C C[G], having A and C[G] as subalgebras, and ag = g(g−1.a) for a ∈ A, g ∈ G.
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We consider the affine Hecke algebra H(W (Φt)
a, q) associated to (X∗, X∗,Φt,Φ

∨
t ) and the

restriction of {qα} to Φt. Consider a Γt-action on the algebra given by

γ.θχTw = θγ.χTγwγ−1 , γ ∈ Γt, χ ∈ X∗, w ∈W (Φt).

For analytic open subset U ⊂ T we likely have the algebra H(W (Φt)
a, q)an(U) and Γt

acts on H(W (Φt)
a, q)an(U) in the same way, so that we can form H(W (Φt)

a, q)an(U)⋊Γt.
Consider a “sufficiently small” Wt-invariant neighborhood Ut of t. We now enforce the
condition that all qw ∈ R≥1. With all assumptions we have ι◦w ∈ Han(Ut) for any w ∈ Wt.
ThereforeWt and in particular Γt can be embedded into Han(Ut). This gives an embedding

(4) H(W (Φt)
a, q)an(Ut)⋊ Γt ↪→ H(W, q)an(WUt).

We have

Theorem 12. Assume all qw ∈ R≥1 and that Wt = Wtuni. The embedding (4) induces an
equivalence of categories

Mod(H(W, q)an(WUt)) ∼= Mod(H(W (Φt)
a, q)an(Ut)⋊ Γt)

which fits into a sequence of equivalences

ModW.Ut(H) ∼= Mod(H(W, q)an(W.Ut)) ∼= Mod(H(W (Φt)
a, q)an(Ut)⋊Γt) ∼= ModUt(H(W (Φt)

a, q)⋊Γt).

The difference between ModUt(H(W (Φt)
a, q) ⋊ Γt) and ModUt(H(W (Φt)

a, q)) is again
Clifford theory. We will see that the representation theory of ModUt(H(W (Φt)

a, q)) is
somewhat simple; every irreducible representation is a direct summand of certain parabolic
induction from the commutative case. On the other hand, the representation theory is also
related to representations of graded Hecke algebras, which we now explain.

4. Second Reduction Theorem

We again begin with our root datum, and put t = LieT . The condition that qα ∈ R≥1 is
still (and from now on always) enforced. Denote by S(t∗) = O(t) the algebra of polynomial
functions on t. For any α ∈ Φ we identify it as an element in t∗ (by taking differential
for example). Fix a function k : Φ → C that is W -invariant. The graded Hecke algebra
H(W,k) is the vector space C[W ]⊗C S(t

∗) with the multiplication rule that

(1) C[W ] and S(t∗) are subalgebras.
(2) For α ∈ ∆ and ξ ∈ S(t∗) we have

ξ ⊗ sα − sα ⊗ (sα.ξ) = k(α)
ξ − sα.ξ

α
.

We will abbreviate H = H(W,k). Analogous to H, the center of H is S(t∗)W . Denote by
Q((S(t∗))) the quotient field of the polynomial algebra S(t∗), we again have isomorphisms
of vector spaces

Q(S(t∗))⊗C C[W ] ∼= Q(S(t∗))⊗S(t∗) H ∼= Q(S(t∗)W )⊗S(t∗)W H

and that the rightmost expression gives an algebra structure by requiring Q(S(t∗)W ) to be
central. In this case one has analogous to Theorem 2 that

Theorem 13. We have an algebra isomorphism

Q(S(t∗))⋊W ∼= Q(S(t∗)W )⊗S(t∗)W H

sending Q(S(t∗)) identically to C(X∗) on the right. It can be given as follows: for any
s = sα ∈ S ⊂W in the left, it is mapped to

(5) ιs =
α+ k(α)

α
(1 + sα)− 1.
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For any representation V of H, we can likewise talk about its weight as how S(t∗) acts
on V ; weights are elements in t. For any U ⊂ t we again denote by ModU (H) the category
of finite-dimensional representations of H with weights in U . Suppose U is furthermore a
W -stable analytic open set U , we can form Han(U) := Oan(U)W ⊗S(t∗)W H. We again have
an equivalence of category

Mod(Han(U)) ∼= ModU (H).

Note that by Theorem 2 and 13, both H and H are “locally” like holomorphic functions on
a dimT -dimensional manifold semidirect product the Weyl group. This suggests that if we
have some W -equivariant map between t and T , then such map should connect the affine
Hecke algebra and graded Hecke algebra. This is indeed the case. Let us fix u ∈ TW , so
that eu(X) := u exp(X) is such a map. Suppose the function k : Φ → C is determined by
u and the values {qw} in the way that

(6) k(α) =
1 + θα(u)

2
log qα.

We note that since u ∈ TW , we have θα(u) = θ−α(u) = θα(u)
−1, i.e. θα(u) = ±1,

simplifying the above formula. Now we can state Lusztig’s second reduction theorem.

Theorem 14. Suppose U ⊂ t is such that

(1) U is W -stable,
(2) eu is injective on U , and
(3) For all α ∈ Φ, X ∈ U , the numbers α(X) and α(X)+ k(α) do not lie in πiZ−{0}.

Under these assumptions, there exists an isomorphism Han(eu(U)) ∼= Han(U) of algebras
that sends ι◦s to ιs, and sends f ∈ Oan(eu(U)) to f ◦ eu.

Appendix: Affine Hecke algebra of unequal parameters in type B

The reason that type B is more complicated is as follows: We constructed our affine
Hecke algebra using the finite Hecke algebra. In particular every affine simple reflection is
somewhat studied from the their gradients, as a possibly non-simple reflection in the finite
Weyl group. In type B only, it can happen that we have two affine simple reflection s̃1, s̃2
that are not conjugate, but their gradients s1, s2 are conjugate. In this case, in the finite
Hecke algebra we are forced to have qs1 = qs2 , while for the affine Hecke algebra we want to
allow qs̃1 ̸= qs̃2 . Such s1, s2 are characterized by the property that si = sαi for short root
αi so that α∨

i ∈ 2X∗.

To address the issue, we begin with another set of constants {q′α ∈ C× | α ∈ Φ}, again
with the property that q′α1

= q′α2
whenever α1, α2 ∈ W are in the same W -orbit. Thanks

to the discussion of the previous paragraph, they are mostly the same as qα; we impose the
condition

q′α = qα unless α∨ ∈ 2X∗.

We say we are in equal parameters setting if all qα and q′α are equal to a single constant q,
reducing to the simplest case. When sα = s1 in the previous paragraph, one should realize
these constants as qs̃1 = qα, qs̃2 = q′α. Because of this, (1) needs to be replaced by a much
more complicated formula:

(7) θχTsα − Tsαθsα.χ =
(
(qα − 1) + θ−α(q

1/2
α (q′α)

1/2 − q1/2α (q′α)
−1/2)

) θχ − θsα.χ
θ0 − θ−2α

where some square roots need to be chosen; we will impose the conditions that qα ≥ q′α ∈
R≥1, and let’s say we just choose the positive square roots. It is easy to see that (7)
specializes to (1) when q′α = qα.
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It shouldn’t be surprising that the element ι◦s in (2) needs a more complicated definition
when qs ̸= q′s. Indeed, (2) will be replaced by

ι◦s =
q−1
α (θα − 1)(θα + 1)

(θα − q
1/2
α (q′α)

1/2)(θα + q
1/2
α (q′α)

−1/2)
(1 + Ts)− 1.

Lastly, some analogous change is needed when we reduce from affine Hecke algebras to
graded Hecke algebras in Theorem 14. More precisely, we need to replace (6) by

k(α) =
1

2
log qα +

θα(u)

2
q′α.
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