Main reference: [EM] Lecture notes on Cherednik algebras by P. Etingof and X. Ma, §4.

1. SETUP

We begin with (W, S) a finite Coxeter group. It comes with a real reflection representation
hr which may be equipped with a positive definite W-invariant inner product (-,-) so that
the action gives W — O(bg, (-,-)). Using (-,-) we will identify hr = by but sometimes
still separate the two notions whenever desired. Same for hc = hr @r C. Denote by 'S
the collections of all conjugates of S in W. For each s € WS, we have that s stabilizes
a hyperplane Vi C bg, so that {Vs},cwg cuts hr into chambers. Pick one of them as
the dominant chamber D. For each s € 'S there is a unique as € hr such that (i)
sy = —ag, (ii) (as,a5) = 2, and (iil) (as,v) > 0 for any v € D. These a, are called
positive roots.

Fix ¢ € C. Recall that we have the rational Cherednik algebra H; (W, ) which is as a
vector space is C[W] ® S(hg) ® S(bc), for which C[W], S(bg) and S(hc) are subalgebras,
such that C[IW] normalizes on S(hg) and S(hc) in the obvious way, and that for = € bg,
y € hc we have

[y,l’] = (va) - Z c(yaas)(x7a8)8‘

seW s

Here we are in the special situation that ¢ is constant and we identify i = 1.

2. SPHERICAL VERMA MODULE AND THE CONTRAVARIANT FORM

The rational Cherednik algebra has the standard/Verma module
M(W,h,C) = H1 (W, h) ®ciw)xse) C-

As a vector space M.(W,h,C) = S(bg) = Clhc] and we will adept this identification at
times. Under this identification, S(hc) acts on C[hc] via the Dunkl operators. We will
abbreviate Hy . = Hy .(W.,h) and M, = M.(W,h,C). The module M, has the following
universal property as an instance of Frobenius reciprocity:

Proposition 1. Let U be a Hic-module for which we have a W-invariant injection b :

C < U such that yv = 0 for anyy € h C Hi., v € Im(¢). Then ¢ can be extended
uniquely to a Hy .-module homomorphism M. — U.

Write ¢ : h = h* the isomorphism given by (-, -). For any H; .-module M, the linear dual
space M™* is an Hloi—module. Nevertheless, we have an anti-involution ~ : H fpc = Hy

switching b and h* using ¢+ and sending w € W to w™!. Via 7, we now view M* also as an
H; .-module.

Now suppose M € O.(W,b)o, i.e. it is finitely generated over S(hy) and is locally
nilpotent under S(h). Fix {y;} C h* any orthonormal basis and x; := ¢(y;). Recall that
we have the grading element h := %leyz + yix; € Hie. The local nilpotency of S(h)-
action is equivalent to that it is h-locally finite [EM, Thm. 3.20]. In fact, that M is
finitely generated over S(hf) also implies that any generalized eigenspace under h is finite-
dimensional. Hence if we define M C M* to be the submodule of h-finite vectors, we have
M1t = M. In particular M is irreducible iff M7 is.

Remark 2. In fact, M — M is an equivalence of category from O.(W, )y to O.(W, H) s
see [Prop. 3.32, EM].
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Consider the case M = M,. Recall that as a vector space M, = S(hg) = C @ ST (he),
so that we have ¢ : C — M} with the image being those functionals that are trivial on

S*(bE). For any y € h and v € Im(¢) we have
yo(w) = v{u(y)w) = 0

since «(y)w € ST(hE) for any w € S(hE). Hence by Proposition 1 we have a canonical
H; .-module homomorphism ¢, : M. — M, or equivalently a pairing

Be: M. x M, — C,
called the contravariant form. Recollecting the definitions, we have

Lemma 3. Up to scaling, the form 5. : M. x M. — C is the unique W -invariant symmetric
bilinear form such that B.(c(y)v,w) = B(v,yw) for any y € b, v,w € M,.

Now the upshot is
Proposition 4. The kernel of ¢. is the mazximal proper submodule J. of M..

Proof. Let L. = M_./J. be the maximal quotient of M., and recall that Ll C L7} is the Hy -

submodule of h-finite vectors in L. Since L. is irreducible, so is L. Under the vector space
identification M, = C®S™(h%) we have that J. C ST(h) since the C-part is the unique line

with lowest h-grading. In particular, the line ¢ : C < M has image in Li. By Proposition
1, the map ¢, : M. — M} factors through LZ. Since Li is irreducible, the map M, — LZ
furthermore factors through M. — L., i.e. ¢. is a composition M, - L. — Ll — M.

Since ¢. # 0 the middle map L. — L;r must be an isomorphism and this proves the
proposition. O

In summary, the irreducible quotient L. of the Verma module M, is characterized by the
algebraic identity(ies) in Lemma 3.
3. GAUSSIAN INNER PRODUCT
We had an element F := 3" 1y? € Hy . with [h,F] = —2F. It satisfies
Lemma 5. For any y € hc we have [F,(y)] = y.

Proof. Note that in defining F := )" %yf we may take any orthonormal basis {y;}. For any
such basis and = € b, we have

vz = oy + o) — 3 elys as)(@,ay)s
seWs
which gives

V= o 2yt — 3 eluis )@ o) (yis + 592).
seWs

(Y )e =y S+ el — 5 3 3 el ) ) s + )

seWs i

and

By definition, we have Y. (i, z)y; = ¢~!(z). Similarly,

Z Zc(yi,as)($,as)yis: Z c(z, o) (o)

seWs i seW s



which implies
Z Zc(yi, as)(z, o) (yis + sy;) = Z c(x, as) (1™ Has)s + st Has)) = 0.
seWS 1 seW s

This proves the asserted identity. O

Consider the operator exp(F). It is not an element in H; ., but for any M € O.(W, h)o,
the action of exp(F) on M is well-defined as M is locally S(h)-finite.

Corollary 6. For any M € O.(W,b)o and y € bc we have [exp(F), (y)] = yexp(F) as
operators on M.

Definition 7. The Gaussian inner product . on M, is
Ye(v, w) := Be(exp(F)v, exp(F)w).
The following lemma is not needed, but might serve as a motivation.

Lemma 8. We have y.(xv,w) = v.(v,zw) for any x € b, v,w € M..
Proof. Suppose x = 1(y) for some y € hc. Thanks to Corollary 6 we have

Ye(zv,w) = Be(exp(F)u(y)v, exp(Fw) = Be((u(y) + y) exp(F)v, exp(F)w)

= Be(exp(F)v, (u(y) +y) exp(F)w) = Be(exp(F)v, exp(F)aw) = ve(v, 2w). O
Proposition 9. Up to scaling, the form . : M. x M. — C is the unique W -invariant
symmetric bilinear form such that v.((¢(y) —y)v,w) = v.(v,yw) for any y € b, v,w € M..
Proof. Indeed, we have

Ve((Ly) — y)v, w) = Be(exp(F)(u(y) — y)v, exp(F)w) = Be(w(y) exp(F)v, exp(F)w)
= Be(exp(F)v, y exp(F)w) = Bc(exp(F)v, exp(F)yw) = y.(v, yw)

thanks to Corollary 6. U

Let
5(z) =[] (s )
seW s
be an element in S(h). It is the unique (up to constant) W-antisymmetric polynomial on
br of the smallest degree. We have an analytical result by Dunkl.

Theorem 10. For Re(c) <0, up to scaling we have
W (o) = [ F@gte)e s
rebhr

Proof. We use integration by parts to verify that (1) satisfies Proposition 9, where y € b
acts on M, via Dunkl operators. Indeed, (1) apparently defines a W-invariant symmetric
bilinear form. Note that y € hc acts on M. = S(hg) by

) pf=0,f— 3 e (amy) =Y

seW s 5

, Vf € S(he).

Applying 0, to (1), integration by parts says

@ 0= [ (@) (BB - 35 0m ) g

g seW' s (o5, 2)
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While the identity we need to prove in Proposition 9 is v.(y.f, 9) +7:(f, y.9) —v(¢(y) f, g) =
0. Comparing (2) and (3), it remains to prove that the last terms in both equations match.
Arguing separately for each s € V'S, we would like

/ ) e—“vx)/?\a(x)r?c@ (2fg— (1= $)f)g— F((1 - s)g))dx =0,
or equivalently
/ ) e—@vw)/?w(:c)r?c@ (F(s.2)g(x) + f(@)g(s.2)) d = 0.

Indeed, the integral vanishes because the integrand is anti-symmetric with respect to s.
This finishes the proof of the theorem. U

From now on let us normalize 7.(f,g) by requiring v.(1,1) = B.(exp(F)1,exp(F)1) =
Bo(1,1) =1, i.e.
focy. F@)g(@)e @2 5(a)|2da
szhR ef(w,x)/2|5(x)‘—20dx
While the above integral only works for Re(c) < 0, the term ~.(f,g) is, by its algebraic
nature from the contravariant form and our normalization, a polynomial in ¢ and linear

in the coefficients of f and g. Hence (4) can also be defined for any ¢ € C by taking
holomorphic continuation.

(4) Velf,9) =

4. TEMPERED DISTRIBUTIONS AND THE SUPPORT OF L.

Define
S (R") = {f € C®(R") | sup |2*9” f| < oc}.

The Schwartz space on R” equipped with topology given by that f,, — f iff sup |229°(f —
frn)| = 0 for any multi-index «, 5. A tempered distribution £ on R” is a continuous
linear functional £ : .(R™) — C. Its support supp(&) is the smallest closed subset £ C R™
such that if f € .#(R") is supported away from E then &(f) = 0. We need some results in
analysis’:
Lemma 11. (i) Clzy, ..., z5)e” 2%/2 ¢ .7 (R") is dense.

(i1) For any tempered distribution &, there exists N = N(§) € Z>o such that for every
f € SR satisfying f =df = ... =d™ f =0 on supp(§) we have &(f) = 0.

Consider the distribution

Sz —2c
5 e €
fwebR e~ @2)/2|§(x)|~2¢dx
on . (hr). Originally it is only defined for Re(c) < 0, but since the result is polynomial in
¢, one can interpolate and define it for all ¢ € C.

Meanwhile, for any M € O.(W, h)o, by definition M is finitely generated over S(bg); it
can be viewed as a coherent sheaf on h. One has the definition of support

supp(M) ={a € b | P(a) = 0 for any P that annihilate M}

which is a Zariski closed subset of ). We are ready to state our main theorem:

Theorem 12. We have supp(£)Y) = supp(Lc.)(R), where supp(L¢)r is the real points of
supp(Le)-

ISee e.g. Chapter 7 of The Analysis of Linear Partial Differential Operators by Hérmander
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Proof. Suppose a & supp(L.) but on the contrary a € supp(&)) Identifying M. = S(h%)
and J. C S(hg) an ideal, we can find P € J. = ker(y.) such that P(a) # 0. There exists
a compactly supported smooth function f such that P is nowhere vanishing on supp(f)
and &Y (f) # 0. We have f/P € C(hg) C #(hr). Thanks to Lemma 11(i) we have
a sequence of polynomials P, such that P,e~(®*)/2 — f/P in .#(bg) which also implies
PPye~®®)/2 5 fin .#(hg). We have however &Y (PP,e~®)/2) = 4.(P,P,) = 0 as
P € ker(7.), contradiction!

Next we show that supp(L.) C supp(£)¥). Suppose P € S(hg) is a polynomial on b
that vanishes on supp(¢/V). Thanks to Lemma 11(ii), there exists integer N such that
(PN, Q) = V(PN Qe=@)/2) = 0 for any Q € S(h%). Namely, PV € ker(v,) for some N
or equivalently P vanishes on supp(L.). This shows that supp(L.) is contained in the Zariski
closure of supp(£V). The result then follows from the explicit description of supp(£YY) in
Theorem 13 below which shows that supp(¢/) is itself Zariski closed. O

We end by describing supp(£}”). By the Chevalley-Shepard-Todd theorem, S(h%)" is a
free algebra with generators x1, ..., x,. Let di(W),...,d, (W) be their degrees. They satisfy

o(w) 1—g%
> ¢ =11 € Zlq]

weW i=1

for a formal variable q. For any a € bg, let W, C W be the subgroup generated by
{s € ws | s.a = a}; W, is a conjugate of a parabolic subalgebra, and in particular also a
Coxeter group. Let di(W,),...,d (W) be defined for W, similar to di (W), ... for W.

Theorem 13. When ¢ € (Q/Z)s¢ we have supp&¥ = bhr. When ¢ € (Q/Z)so has
denominator m in its simplest expression, we have

supp(é,”) = {a € br | #{i | di(W)/m € Z} = #{i | di(Wa)/m € Z}}.

As one can see from (5), £V has full support whenever Re(c) < 0. Hence the mystery is
when &Y is going to have zeroes (in variable c) under the analytic continuation to Re(c) > 0.
Following this line, the Theorem 13 is a corollary of the following:

Theorem 14. (The Macdonald-Mehta integral, [EM, Theorem 4.1]) When Re(c) < 0 we

have
T

_ _ _ I'(1 —d;c)
/2 (z.2)/2 gy =TT 2 — %)
(2m) /hR e |0(x)|"*“dx lel Ta—c
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