Main reference: [EM] Lecture notes on Cherednik algebras by P. Etingof and X. Ma, §4.

1. SETUP

We begin with (W, S) a finite Coxeter group. It comes with a real reflection representation $\mathfrak{h}_{\mathbb{R}}$ which may be equipped with a positive definite W-invariant inner product (\cdot, \cdot) so that the action gives $W \hookrightarrow O\left(\mathfrak{h}_{\mathbb{R}},(\cdot, \cdot)\right)$. Using (\cdot, \cdot) we will identify $\mathfrak{h}_{\mathbb{R}} \cong \mathfrak{h}_{\mathbb{R}}^{*}$ but sometimes still separate the two notions whenever desired. Same for $\mathfrak{h}_{\mathbb{C}}=\mathfrak{h}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$. Denote by ${ }^{W} S$ the collections of all conjugates of S in W. For each $s \in{ }^{W} S$, we have that s stabilizes a hyperplane $V_{s} \subset \mathfrak{h}_{\mathbb{R}}$, so that $\left\{V_{s}\right\}_{s \in{ }^{W} S}$ cuts $\mathfrak{h}_{\mathbb{R}}$ into chambers. Pick one of them as the dominant chamber D. For each $s \in{ }^{W} S$ there is a unique $\alpha_{s} \in \mathfrak{h}_{\mathbb{R}}$ such that (i) $s . \alpha_{s}=-\alpha_{s}$, (ii) $\left(\alpha_{s}, \alpha_{s}\right)=2$, and (iii) $\left(\alpha_{s}, v\right) \geq 0$ for any $v \in D$. These α_{s} are called positive roots.

Fix $c \in \mathbb{C}$. Recall that we have the rational Cherednik algebra $H_{1, c}(W, \mathfrak{h})$ which is as a vector space is $\mathbb{C}[W] \otimes S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right) \otimes S\left(\mathfrak{h}_{\mathbb{C}}\right)$, for which $\mathbb{C}[W], S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ and $S\left(\mathfrak{h}_{\mathbb{C}}\right)$ are subalgebras, such that $\mathbb{C}[W]$ normalizes on $S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ and $S\left(\mathfrak{h}_{\mathbb{C}}\right)$ in the obvious way, and that for $x \in \mathfrak{h}_{\mathbb{C}}^{*}$, $y \in \mathfrak{h}_{\mathbb{C}}$ we have

$$
[y, x]=(y, x)-\sum_{s \in W_{S}} c\left(y, \alpha_{s}\right)\left(x, \alpha_{s}\right) s .
$$

Here we are in the special situation that c is constant and we identify $\hbar=1$.

2. Spherical Verma module and the contravariant form

The rational Cherednik algebra has the standard/Verma module

$$
M_{c}(W, \mathfrak{h}, \mathbb{C})=H_{1, c}(W, \mathfrak{h}) \otimes_{\mathbb{C}[W] \propto S(\mathfrak{h c})} \mathbb{C} .
$$

As a vector space $M_{c}(W, \mathfrak{h}, \mathbb{C}) \cong S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)=\mathbb{C}\left[\mathfrak{h}_{\mathbb{C}}\right]$ and we will adept this identification at times. Under this identification, $S\left(\mathfrak{h}_{\mathbb{C}}\right)$ acts on $\mathbb{C}\left[\mathfrak{h}_{\mathbb{C}}\right]$ via the Dunkl operators. We will abbreviate $H_{1, c}=H_{1, c}(W, \mathfrak{h})$ and $M_{c}=M_{c}(W, \mathfrak{h}, \mathbb{C})$. The module M_{c} has the following universal property as an instance of Frobenius reciprocity:
Proposition 1. Let U be a $H_{1, c}$-module for which we have a W-invariant injection $\bar{\phi}$: $\mathbb{C} \hookrightarrow U$ such that $y . v=0$ for any $y \in \mathfrak{h} \subset H_{1, c}, v \in \operatorname{Im}(\bar{\phi})$. Then $\bar{\phi}$ can be extended uniquely to a $H_{1, c}$-module homomorphism $M_{c} \rightarrow U$.

Write $\iota: \mathfrak{h} \cong \mathfrak{h}^{*}$ the isomorphism given by (\cdot, \cdot). For any $H_{1, c^{-}}$-module M, the linear dual space M^{*} is an $H_{1, c^{c}}^{o p}$-module. Nevertheless, we have an anti-involution $\gamma: H_{1, c}^{o p} \xrightarrow{\sim} H_{1, c}$ switching \mathfrak{h} and \mathfrak{h}^{*} using ι and sending $w \in W$ to w^{-1}. Via γ, we now view M^{*} also as an $H_{1, c}$-module.

Now suppose $M \in \mathcal{O}_{c}(W, \mathfrak{h})_{0}$, i.e. it is finitely generated over $S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ and is locally nilpotent under $S(\mathfrak{h})$. Fix $\left\{y_{i}\right\} \subset \mathfrak{h}^{*}$ any orthonormal basis and $x_{i}:=\iota\left(y_{i}\right)$. Recall that we have the grading element $\mathbf{h}:=\frac{1}{2} \sum x_{i} y_{i}+y_{i} x_{i} \in H_{1, c}$. The local nilpotency of $S(\mathfrak{h})$ action is equivalent to that it is \mathbf{h}-locally finite [EM, Thm. 3.20]. In fact, that M is finitely generated over $S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ also implies that any generalized eigenspace under \mathbf{h} is finitedimensional. Hence if we define $M^{\dagger} \subset M^{*}$ to be the submodule of \mathbf{h}-finite vectors, we have $M^{\dagger \dagger}=M$. In particular M is irreducible iff M^{\dagger} is.

Remark 2. In fact, $M \mapsto M^{\dagger}$ is an equivalence of category from $\mathcal{O}_{c}(W, \mathfrak{h})_{0}$ to $\mathcal{O}_{c}(W, \mathfrak{h})_{0}^{o p}$; see [Prop. 3.32, EM].

Consider the case $M=M_{c}$. Recall that as a vector space $M_{c} \cong S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right) \cong \mathbb{C} \oplus S^{+}\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$, so that we have $\bar{\phi}: \mathbb{C} \hookrightarrow M_{c}^{*}$ with the image being those functionals that are trivial on $S^{+}\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$. For any $y \in \mathfrak{h}$ and $v \in \operatorname{Im}(\bar{\phi})$ we have

$$
y \cdot v(w)=v(\iota(y) w)=0
$$

since $\iota(y) w \in S^{+}\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ for any $w \in S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$. Hence by Proposition 1 we have a canonical $H_{1, c}$-module homomorphism $\phi_{c}: M_{c} \rightarrow M_{c}^{*}$, or equivalently a pairing

$$
\beta_{c}: M_{c} \times M_{c} \rightarrow \mathbb{C},
$$

called the contravariant form. Recollecting the definitions, we have
Lemma 3. Up to scaling, the form $\beta_{c}: M_{c} \times M_{c} \rightarrow \mathbb{C}$ is the unique W-invariant symmetric bilinear form such that $\beta_{c}(\iota(y) v, w)=\beta(v, y w)$ for any $y \in \mathfrak{h}, v, w \in M_{c}$.

Now the upshot is
Proposition 4. The kernel of ϕ_{c} is the maximal proper submodule J_{c} of M_{c}.
Proof. Let $L_{c}=M_{c} / J_{c}$ be the maximal quotient of M_{c}, and recall that $L_{c}^{\dagger} \subset L_{c}^{*}$ is the $H_{1, c^{-}}$ submodule of \mathbf{h}-finite vectors in L_{c}^{*}. Since L_{c} is irreducible, so is L_{c}^{\dagger}. Under the vector space identification $M_{c} \cong \mathbb{C} \oplus S^{+}\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ we have that $J_{c} \subset S^{+}\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ since the \mathbb{C}-part is the unique line with lowest \mathbf{h}-grading. In particular, the line $\bar{\phi}: \mathbb{C} \hookrightarrow M_{c}^{*}$ has image in L_{c}^{\dagger}. By Proposition 1 , the map $\phi_{c}: M_{c} \rightarrow M_{c}^{*}$ factors through L_{c}^{\dagger}. Since L_{c}^{\dagger} is irreducible, the map $M_{c} \rightarrow L_{c}^{\dagger}$ furthermore factors through $M_{c} \rightarrow L_{c}$, i.e. ϕ_{c} is a composition $M_{c} \rightarrow L_{c} \rightarrow L_{c}^{\dagger} \hookrightarrow M_{c}^{*}$. Since $\phi_{c} \neq 0$ the middle map $L_{c} \rightarrow L_{c}^{\dagger}$ must be an isomorphism and this proves the proposition.

In summary, the irreducible quotient L_{c} of the Verma module M_{c} is characterized by the algebraic identity(ies) in Lemma 3.

3. Gaussian inner product

We had an element $\mathbf{F}:=\sum \frac{1}{2} y_{i}^{2} \in H_{1, c}$ with $[\mathbf{h}, \mathbf{F}]=-2 \mathbf{F}$. It satisfies
Lemma 5. For any $y \in \mathfrak{h}_{\mathbb{C}}$ we have $[\mathbf{F}, \iota(y)]=y$.
Proof. Note that in defining $\mathbf{F}:=\sum \frac{1}{2} y_{i}^{2}$ we may take any orthonormal basis $\left\{y_{i}\right\}$. For any such basis and $x \in \mathfrak{h}_{\mathbb{C}}^{*}$, we have

$$
y_{i} x=x y_{i}+\left(y_{i}, x\right)-\sum_{s \in W_{S}} c\left(y_{i}, \alpha_{s}\right)\left(x, \alpha_{s}\right) s
$$

which gives

$$
y_{i}^{2} x=x y_{i}^{2}+2\left(y_{i}, x\right) y_{i}-\sum_{s \in W_{S}} c\left(y_{i}, \alpha_{s}\right)\left(x, \alpha_{s}\right)\left(y_{i} s+s y_{i}\right) .
$$

and

$$
\left(\frac{1}{2} \sum_{i} y_{i}^{2}\right) x=x\left(\frac{1}{2} \sum_{i} y_{i}^{2}\right)+\sum_{i}\left(y_{i}, x\right) y_{i}-\frac{1}{2} \sum_{s \in W_{S}} \sum_{i} c\left(y_{i}, \alpha_{s}\right)\left(x, \alpha_{s}\right)\left(y_{i} s+s y_{i}\right) .
$$

By definition, we have $\sum_{i}\left(y_{i}, x\right) y_{i}=\iota^{-1}(x)$. Similarly,

$$
\sum_{s \in W_{S}} \sum_{i} c\left(y_{i}, \alpha_{s}\right)\left(x, \alpha_{s}\right) y_{i} s=\sum_{s \in W_{S}} c\left(x, \alpha_{s}\right) \iota^{-1}\left(\alpha_{s}\right) s
$$

which implies

$$
\sum_{s \in W_{S}} \sum_{i} c\left(y_{i}, \alpha_{s}\right)\left(x, \alpha_{s}\right)\left(y_{i} s+s y_{i}\right)=\sum_{s \in W_{S}} c\left(x, \alpha_{s}\right)\left(\iota^{-1}\left(\alpha_{s}\right) s+s \iota^{-1}\left(\alpha_{s}\right)\right)=0 .
$$

This proves the asserted identity.
Consider the operator $\exp (\mathbf{F})$. It is not an element in $H_{1, c}$, but for any $M \in \mathcal{O}_{c}(W, \mathfrak{h})_{0}$, the action of $\exp (\mathbf{F})$ on M is well-defined as M is locally $S(\mathfrak{h})$-finite.

Corollary 6. For any $M \in \mathcal{O}_{c}(W, \mathfrak{h})_{0}$ and $y \in \mathfrak{h}_{\mathbb{C}}$ we have $[\exp (\mathbf{F}), \iota(y)]=y \exp (\mathbf{F})$ as operators on M.

Definition 7. The Gaussian inner product γ_{c} on M_{c} is

$$
\gamma_{c}(v, w):=\beta_{c}(\exp (\mathbf{F}) v, \exp (\mathbf{F}) w)
$$

The following lemma is not needed, but might serve as a motivation.
Lemma 8. We have $\gamma_{c}(x v, w)=\gamma_{c}(v, x w)$ for any $x \in \mathfrak{h}_{\mathbb{C}}^{*}, v, w \in M_{c}$.
Proof. Suppose $x=\iota(y)$ for some $y \in \mathfrak{h}_{\mathbb{C}}$. Thanks to Corollary 6 we have

$$
\begin{aligned}
& \gamma_{c}(x v, w)=\beta_{c}(\exp (\mathbf{F}) \iota(y) v, \exp (\mathbf{F}) w)=\beta_{c}((\iota(y)+y) \exp (\mathbf{F}) v, \exp (\mathbf{F}) w) \\
& =\beta_{c}(\exp (\mathbf{F}) v,(\iota(y)+y) \exp (\mathbf{F}) w)=\beta_{c}(\exp (\mathbf{F}) v, \exp (\mathbf{F}) x w)=\gamma_{c}(v, x w) .
\end{aligned}
$$

Proposition 9. Up to scaling, the form $\gamma_{c}: M_{c} \times M_{c} \rightarrow \mathbb{C}$ is the unique W-invariant symmetric bilinear form such that $\gamma_{c}((\iota(y)-y) v, w)=\gamma_{c}(v, y w)$ for any $y \in \mathfrak{h}_{\mathbb{C}}, v, w \in M_{c}$.
Proof. Indeed, we have

$$
\begin{gathered}
\gamma_{c}((\iota(y)-y) v, w)=\beta_{c}(\exp (\mathbf{F})(\iota(y)-y) v, \exp (\mathbf{F}) w)=\beta_{c}(\iota(y) \exp (\mathbf{F}) v, \exp (\mathbf{F}) w) \\
=\beta_{c}(\exp (\mathbf{F}) v, y \exp (\mathbf{F}) w)=\beta_{c}(\exp (\mathbf{F}) v, \exp (\mathbf{F}) y w)=\gamma_{c}(v, y w)
\end{gathered}
$$

thanks to Corollary 6.
Let

$$
\delta(x)=\prod_{s \in W_{S}}\left(\alpha_{s}, x\right)
$$

be an element in $S\left(\mathfrak{h}_{\mathbb{R}}^{*}\right)$. It is the unique (up to constant) W-antisymmetric polynomial on $\mathfrak{h}_{\mathbb{R}}$ of the smallest degree. We have an analytical result by Dunkl.

Theorem 10. For $\operatorname{Re}(c) \leq 0$, up to scaling we have

$$
\begin{equation*}
\gamma_{c}(f, g)=\int_{x \in \mathfrak{h}_{\mathbb{R}}} f(x) g(x) e^{-(x, x) / 2}|\delta(x)|^{-2 c} d x . \tag{1}
\end{equation*}
$$

Proof. We use integration by parts to verify that (1) satisfies Proposition 9, where $y \in \mathfrak{h}$ acts on M_{c} via Dunkl operators. Indeed, (1) apparently defines a W-invariant symmetric bilinear form. Note that $y \in \mathfrak{h}_{\mathbb{C}}$ acts on $M_{c} \cong S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ by

$$
\begin{equation*}
y . f=\partial_{y} f-\sum_{s \in W_{S}} c \cdot\left(\alpha_{s}, y\right) \frac{(1-s) f}{\alpha_{s}}, \forall f \in S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right) . \tag{2}
\end{equation*}
$$

Applying ∂_{y} to (1), integration by parts says

$$
\begin{equation*}
0=\int_{x \in \mathfrak{h}_{\mathbb{R}}}\left(f(x) g(x) e^{-(x, x) / 2}|\delta(x)|^{-2 c}\right) \cdot\left(\frac{\partial_{y} f}{f}+\frac{\partial_{y} g}{g}-\iota(y)-2 c \sum_{s \in W_{S}} \frac{\left(\alpha_{s}, y\right)}{\left(\alpha_{s}, x\right)}\right) d x \tag{3}
\end{equation*}
$$

While the identity we need to prove in Proposition 9 is $\gamma_{c}(y . f, g)+\gamma_{c}(f, y . g)-\gamma_{c}(\iota(y) f, g)=$ 0 . Comparing (2) and (3), it remains to prove that the last terms in both equations match. Arguing separately for each $s \in{ }^{W} S$, we would like

$$
\int_{x \in \mathfrak{h}_{\mathbb{R}}} e^{-(x, x) / 2}|\delta(x)|^{-2 c} \frac{1}{\left(\alpha_{s}, x\right)}(2 f g-((1-s) f) g-f((1-s) g)) d x=0,
$$

or equivalently

$$
\int_{x \in \mathfrak{h}_{\mathbb{R}}} e^{-(x, x) / 2}|\delta(x)|^{-2 c} \frac{1}{\left(\alpha_{s}, x\right)}(f(s . x) g(x)+f(x) g(s . x)) d x=0 .
$$

Indeed, the integral vanishes because the integrand is anti-symmetric with respect to s. This finishes the proof of the theorem.

From now on let us normalize $\gamma_{c}(f, g)$ by requiring $\gamma_{c}(1,1)=\beta_{c}(\exp (\mathbf{F}) 1, \exp (\mathbf{F}) 1)=$ $\beta_{c}(1,1)=1$, i.e.

$$
\begin{equation*}
\gamma_{c}(f, g)=\frac{\int_{x \in \mathfrak{h}_{\mathbb{R}}} f(x) g(x) e^{-(x, x) / 2}|\delta(x)|^{-2 c} d x}{\int_{x \in \mathfrak{h}_{\mathbb{R}}} e^{-(x, x) / 2}|\delta(x)|^{-2 c} d x} . \tag{4}
\end{equation*}
$$

While the above integral only works for $\operatorname{Re}(c) \leq 0$, the term $\gamma_{c}(f, g)$ is, by its algebraic nature from the contravariant form and our normalization, a polynomial in c and linear in the coefficients of f and g. Hence (4) can also be defined for any $c \in \mathbb{C}$ by taking holomorphic continuation.

4. Tempered distributions and the support of L_{c}

Define

$$
\mathscr{S}\left(\mathbb{R}^{n}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{n}\right)|\sup | x^{\alpha} \partial^{\beta} f \mid<\infty\right\} .
$$

The Schwartz space on \mathbb{R}^{n} equipped with topology given by that $f_{n} \rightarrow f$ iff $\sup \mid x^{\alpha} \partial^{\beta}(f-$ $\left.f_{n}\right) \mid \rightarrow 0$ for any multi-index α, β. A tempered distribution ξ on \mathbb{R}^{n} is a continuous linear functional $\xi: \mathscr{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$. Its support $\operatorname{supp}(\xi)$ is the smallest closed subset $E \subset \mathbb{R}^{n}$ such that if $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ is supported away from E then $\xi(f)=0$. We need some results in analysis ${ }^{1}$:
Lemma 11. (i) $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] e^{-\sum x_{i}^{2} / 2} \subset \mathscr{S}\left(\mathbb{R}^{n}\right)$ is dense.
(ii) For any tempered distribution ξ, there exists $N=N(\xi) \in \mathbb{Z}_{\geq 0}$ such that for every $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ satisfying $f=d f=\ldots=d^{N} f=0$ on $\operatorname{supp}(\xi)$ we have $\xi(f)=0$.

Consider the distribution

$$
\begin{equation*}
\xi_{c}^{W}:=\frac{|\delta(x)|^{-2 c}}{\int_{x \in \mathfrak{h}_{\mathbb{R}}} e^{-(x, x) / 2}|\delta(x)|^{-2 c} d x} \tag{5}
\end{equation*}
$$

on $\mathscr{S}\left(\mathfrak{h}_{\mathbb{R}}\right)$. Originally it is only defined for $\operatorname{Re}(c) \leq 0$, but since the result is polynomial in c, one can interpolate and define it for all $c \in \mathbb{C}$.

Meanwhile, for any $M \in \mathcal{O}_{c}(W, \mathfrak{h})_{0}$, by definition M is finitely generated over $S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$; it can be viewed as a coherent sheaf on \mathfrak{h}. One has the definition of support

$$
\operatorname{supp}(M)=\{a \in \mathfrak{h} \mid P(a)=0 \text { for any } P \text { that annihilate } M\}
$$

which is a Zariski closed subset of \mathfrak{h}. We are ready to state our main theorem:
Theorem 12. We have $\operatorname{supp}\left(\xi_{c}^{W}\right)=\operatorname{supp}\left(L_{c}\right)(\mathbb{R})$, where $\operatorname{supp}\left(L_{c}\right)_{\mathbb{R}}$ is the real points of $\operatorname{supp}\left(L_{c}\right)$.

[^0]Proof. Suppose $a \notin \operatorname{supp}\left(L_{c}\right)$ but on the contrary $a \in \operatorname{supp}\left(\xi_{c}^{W}\right)$ Identifying $M_{c} \cong S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ and $J_{c} \subset S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ an ideal, we can find $P \in J_{c}=\operatorname{ker}\left(\gamma_{c}\right)$ such that $P(a) \neq 0$. There exists a compactly supported smooth function f such that P is nowhere vanishing on $\operatorname{supp}(f)$ and $\xi_{c}^{W}(f) \neq 0$. We have $f / P \in C_{c}^{\infty}\left(\mathfrak{h}_{\mathbb{R}}\right) \subset \mathscr{S}\left(\mathfrak{h}_{\mathbb{R}}\right)$. Thanks to Lemma 11(i) we have a sequence of polynomials P_{n} such that $P_{n} e^{-(x, x) / 2} \rightarrow f / P$ in $\mathscr{S}\left(\mathfrak{h}_{\mathbb{R}}\right)$ which also implies $P P_{n} e^{-(x, x) / 2} \rightarrow f$ in $\mathscr{S}\left(\mathfrak{h}_{\mathbb{R}}\right)$. We have however $\xi_{c}^{W}\left(P P_{n} e^{-(x, x) / 2}\right)=\gamma_{c}\left(P, P_{n}\right)=0$ as $P \in \operatorname{ker}\left(\gamma_{c}\right)$, contradiction!

Next we show that $\operatorname{supp}\left(L_{c}\right) \subset \operatorname{supp}\left(\xi_{c}^{W}\right)$. Suppose $P \in S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$ is a polynomial on \mathfrak{h} that vanishes on $\operatorname{supp}\left(\xi_{c}^{W}\right)$. Thanks to Lemma 11(ii), there exists integer N such that $\gamma_{c}\left(P^{N}, Q\right)=\xi_{c}^{W}\left(P^{N} Q e^{-(x, x) / 2}\right)=0$ for any $Q \in S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)$. Namely, $P^{N} \in \operatorname{ker}\left(\gamma_{c}\right)$ for some N or equivalently P vanishes on $\operatorname{supp}\left(L_{c}\right)$. This shows that $\operatorname{supp}\left(L_{c}\right)$ is contained in the Zariski closure of $\operatorname{supp}\left(\xi_{c}^{W}\right)$. The result then follows from the explicit description of $\operatorname{supp}\left(\xi_{c}^{W}\right)$ in Theorem 13 below which shows that $\operatorname{supp}\left(\xi_{c}^{W}\right)$ is itself Zariski closed.

We end by describing $\operatorname{supp}\left(\xi_{c}^{W}\right)$. By the Chevalley-Shepard-Todd theorem, $S\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)^{W}$ is a free algebra with generators x_{1}, \ldots, x_{r}. Let $d_{1}(W), \ldots, d_{r}(W)$ be their degrees. They satisfy

$$
\sum_{w \in W} q^{\ell(w)}=\prod_{i=1}^{r} \frac{1-q^{d_{i}}}{1-q} \in \mathbb{Z}[q]
$$

for a formal variable q. For any $a \in \mathfrak{h}_{\mathbb{R}}$, let $W_{a} \subset W$ be the subgroup generated by $\left\{s \in{ }^{W} S \mid s . a=a\right\} ; W_{a}$ is a conjugate of a parabolic subalgebra, and in particular also a Coxeter group. Let $d_{1}\left(W_{a}\right), \ldots, d_{r^{\prime}}\left(W_{a}\right)$ be defined for W_{a} similar to $d_{1}(W), \ldots$ for W.

Theorem 13. When $c \notin(\mathbb{Q} / \mathbb{Z})_{>0}$ we have $\operatorname{supp} \xi_{c}^{W}=\mathfrak{h}_{\mathbb{R}}$. When $c \in(\mathbb{Q} / \mathbb{Z})_{>0}$ has denominator m in its simplest expression, we have

$$
\operatorname{supp}\left(\xi_{c}^{W}\right)=\left\{a \in \mathfrak{h}_{\mathbb{R}} \mid \#\left\{i \mid d_{i}(W) / m \in \mathbb{Z}\right\}=\#\left\{i \mid d_{i}\left(W_{a}\right) / m \in \mathbb{Z}\right\}\right\}
$$

As one can see from $(5), \xi_{c}^{W}$ has full support whenever $\operatorname{Re}(c) \leq 0$. Hence the mystery is when ξ_{c}^{W} is going to have zeroes (in variable c) under the analytic continuation to $\operatorname{Re}(c)>0$. Following this line, the Theorem 13 is a corollary of the following:

Theorem 14. (The Macdonald-Mehta integral, [EM, Theorem 4.1]) When $\operatorname{Re}(c) \leq 0$ we have

$$
(2 \pi)^{-r / 2} \cdot \int_{\mathfrak{h}_{\mathbb{R}}} e^{-(x, x) / 2}|\delta(x)|^{-2 c} d x=\prod_{i=1}^{r} \frac{\Gamma\left(1-d_{i} c\right)}{\Gamma(1-c)}
$$

[^0]: ${ }^{1}$ See e.g. Chapter 7 of The Analysis of Linear Partial Differential Operators by Hörmander

