Main reference: [EM] Lecture notes on Cherednik algebras by P. Etingof and X. Ma, §4.

1. Setup

We begin with (W, S) a finite Coxeter group. It comes with a real reflection representation $\mathfrak{h}_{\mathbb{R}}$ which may be equipped with a positive definite W-invariant inner product (\cdot, \cdot) so that the action gives $W \hookrightarrow O(\mathfrak{h}_{\mathbb{R}}, (\cdot, \cdot))$. Using (\cdot, \cdot) we will identify $\mathfrak{h}_{\mathbb{R}} \cong \mathfrak{h}_{\mathbb{R}}^*$ but sometimes still separate the two notions whenever desired. Same for $\mathfrak{h}_{\mathbb{C}} = \mathfrak{h}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$. Denote by ^{W}S the collections of all conjugates of S in W. For each $s \in ^{W}S$, we have that s stabilizes a hyperplane $V_s \subset \mathfrak{h}_{\mathbb{R}}$, so that $\{V_s\}_{s \in WS}$ cuts $\mathfrak{h}_{\mathbb{R}}$ into **chambers**. Pick one of them as the **dominant chamber** D. For each $s \in ^{W}S$ there is a unique $\alpha_s \in \mathfrak{h}_{\mathbb{R}}$ such that (i) $s.\alpha_s = -\alpha_s$, (ii) $(\alpha_s, \alpha_s) = 2$, and (iii) $(\alpha_s, v) \ge 0$ for any $v \in D$. These α_s are called **positive roots**.

Fix $c \in \mathbb{C}$. Recall that we have the rational Cherednik algebra $H_{1,c}(W, \mathfrak{h})$ which is as a vector space is $\mathbb{C}[W] \otimes S(\mathfrak{h}^*_{\mathbb{C}}) \otimes S(\mathfrak{h}_{\mathbb{C}})$, for which $\mathbb{C}[W]$, $S(\mathfrak{h}^*_{\mathbb{C}})$ and $S(\mathfrak{h}_{\mathbb{C}})$ are subalgebras, such that $\mathbb{C}[W]$ normalizes on $S(\mathfrak{h}^*_{\mathbb{C}})$ and $S(\mathfrak{h}_{\mathbb{C}})$ in the obvious way, and that for $x \in \mathfrak{h}^*_{\mathbb{C}}$, $y \in \mathfrak{h}_{\mathbb{C}}$ we have

$$[y,x] = (y,x) - \sum_{s \in {}^WS} c(y,\alpha_s)(x,\alpha_s)s.$$

Here we are in the special situation that c is constant and we identify $\hbar = 1$.

2. Spherical Verma module and the contravariant form

The rational Cherednik algebra has the standard/Verma module

$$M_c(W,\mathfrak{h},\mathbb{C}) = H_{1,c}(W,\mathfrak{h}) \otimes_{\mathbb{C}[W] \ltimes S(\mathfrak{h}_{\mathbb{C}})} \mathbb{C}.$$

As a vector space $M_c(W, \mathfrak{h}, \mathbb{C}) \cong S(\mathfrak{h}_{\mathbb{C}}^*) = \mathbb{C}[\mathfrak{h}_{\mathbb{C}}]$ and we will adept this identification at times. Under this identification, $S(\mathfrak{h}_{\mathbb{C}})$ acts on $\mathbb{C}[\mathfrak{h}_{\mathbb{C}}]$ via the Dunkl operators. We will abbreviate $H_{1,c} = H_{1,c}(W, \mathfrak{h})$ and $M_c = M_c(W, \mathfrak{h}, \mathbb{C})$. The module M_c has the following universal property as an instance of Frobenius reciprocity:

Proposition 1. Let U be a $H_{1,c}$ -module for which we have a W-invariant injection $\bar{\phi}$: $\mathbb{C} \hookrightarrow U$ such that y.v = 0 for any $y \in \mathfrak{h} \subset H_{1,c}$, $v \in \mathrm{Im}(\bar{\phi})$. Then $\bar{\phi}$ can be extended uniquely to a $H_{1,c}$ -module homomorphism $M_c \to U$.

Write $\iota : \mathfrak{h} \cong \mathfrak{h}^*$ the isomorphism given by (\cdot, \cdot) . For any $H_{1,c}$ -module M, the linear dual space M^* is an $H_{1,c}^{op}$ -module. Nevertheless, we have an anti-involution $\gamma : H_{1,c}^{op} \xrightarrow{\sim} H_{1,c}$ switching \mathfrak{h} and \mathfrak{h}^* using ι and sending $w \in W$ to w^{-1} . Via γ , we now view M^* also as an $H_{1,c}$ -module.

Now suppose $M \in \mathcal{O}_c(W, \mathfrak{h})_0$, i.e. it is finitely generated over $S(\mathfrak{h}^*_{\mathbb{C}})$ and is locally nilpotent under $S(\mathfrak{h})$. Fix $\{y_i\} \subset \mathfrak{h}^*$ any orthonormal basis and $x_i := \iota(y_i)$. Recall that we have the grading element $\mathbf{h} := \frac{1}{2} \sum x_i y_i + y_i x_i \in H_{1,c}$. The local nilpotency of $S(\mathfrak{h})$ action is equivalent to that it is **h**-locally finite [EM, Thm. 3.20]. In fact, that M is finitely generated over $S(\mathfrak{h}^*_{\mathbb{C}})$ also implies that any generalized eigenspace under **h** is finitedimensional. Hence if we define $M^{\dagger} \subset M^*$ to be the submodule of **h**-finite vectors, we have $M^{\dagger\dagger} = M$. In particular M is irreducible iff M^{\dagger} is.

Remark 2. In fact, $M \mapsto M^{\dagger}$ is an equivalence of category from $\mathcal{O}_c(W, \mathfrak{h})_0$ to $\mathcal{O}_c(W, \mathfrak{h})_0^{op}$; see [Prop. 3.32, EM].

 $\mathbf{2}$

Consider the case $M = M_c$. Recall that as a vector space $M_c \cong S(\mathfrak{h}^*_{\mathbb{C}}) \cong \mathbb{C} \oplus S^+(\mathfrak{h}^*_{\mathbb{C}})$, so that we have $\bar{\phi} : \mathbb{C} \hookrightarrow M_c^*$ with the image being those functionals that are trivial on $S^+(\mathfrak{h}^*_{\mathbb{C}})$. For any $y \in \mathfrak{h}$ and $v \in \mathrm{Im}(\bar{\phi})$ we have

$$y.v(w) = v(\iota(y)w) = 0$$

since $\iota(y)w \in S^+(\mathfrak{h}^*_{\mathbb{C}})$ for any $w \in S(\mathfrak{h}^*_{\mathbb{C}})$. Hence by Proposition 1 we have a canonical $H_{1,c}$ -module homomorphism $\phi_c: M_c \to M_c^*$, or equivalently a pairing

$$\beta_c: M_c \times M_c \to \mathbb{C}$$

called the **contravariant form**. Recollecting the definitions, we have

Lemma 3. Up to scaling, the form $\beta_c : M_c \times M_c \to \mathbb{C}$ is the unique W-invariant symmetric bilinear form such that $\beta_c(\iota(y)v, w) = \beta(v, yw)$ for any $y \in \mathfrak{h}$, $v, w \in M_c$.

Now the upshot is

Proposition 4. The kernel of ϕ_c is the maximal proper submodule J_c of M_c .

Proof. Let $L_c = M_c/J_c$ be the maximal quotient of M_c , and recall that $L_c^{\dagger} \subset L_c^*$ is the $H_{1,c}$ submodule of **h**-finite vectors in L_c^* . Since L_c is irreducible, so is L_c^{\dagger} . Under the vector space
identification $M_c \cong \mathbb{C} \oplus S^+(\mathfrak{h}_{\mathbb{C}}^*)$ we have that $J_c \subset S^+(\mathfrak{h}_{\mathbb{C}}^*)$ since the \mathbb{C} -part is the unique line
with lowest **h**-grading. In particular, the line $\overline{\phi} : \mathbb{C} \hookrightarrow M_c^*$ has image in L_c^{\dagger} . By Proposition
1, the map $\phi_c : M_c \to M_c^*$ factors through L_c^{\dagger} . Since L_c^{\dagger} is irreducible, the map $M_c \to L_c^{\dagger}$ furthermore factors through $M_c \twoheadrightarrow L_c$, i.e. ϕ_c is a composition $M_c \twoheadrightarrow L_c \to L_c^{\dagger} \hookrightarrow M_c^*$.
Since $\phi_c \neq 0$ the middle map $L_c \to L_c^{\dagger}$ must be an isomorphism and this proves the
proposition.

In summary, the irreducible quotient L_c of the Verma module M_c is characterized by the algebraic identity(ies) in Lemma 3.

3. Gaussian inner product

We had an element $\mathbf{F} := \sum \frac{1}{2} y_i^2 \in H_{1,c}$ with $[\mathbf{h}, \mathbf{F}] = -2\mathbf{F}$. It satisfies

Lemma 5. For any $y \in \mathfrak{h}_{\mathbb{C}}$ we have $[\mathbf{F}, \iota(y)] = y$.

Proof. Note that in defining $\mathbf{F} := \sum \frac{1}{2}y_i^2$ we may take any orthonormal basis $\{y_i\}$. For any such basis and $x \in \mathfrak{h}_{\mathbb{C}}^*$, we have

$$y_i x = x y_i + (y_i, x) - \sum_{s \in {}^{W}S} c(y_i, \alpha_s)(x, \alpha_s) s$$

which gives

$$y_i^2 x = xy_i^2 + 2(y_i, x)y_i - \sum_{s \in {}^WS} c(y_i, \alpha_s)(x, \alpha_s)(y_i s + sy_i).$$

and

$$(\frac{1}{2}\sum_{i}y_{i}^{2})x = x(\frac{1}{2}\sum_{i}y_{i}^{2}) + \sum_{i}(y_{i},x)y_{i} - \frac{1}{2}\sum_{s\in^{W}S}\sum_{i}c(y_{i},\alpha_{s})(x,\alpha_{s})(y_{i}s + sy_{i}).$$

By definition, we have $\sum_{i} (y_i, x) y_i = \iota^{-1}(x)$. Similarly,

$$\sum_{s \in {}^{W}S} \sum_{i} c(y_i, \alpha_s)(x, \alpha_s) y_i s = \sum_{s \in {}^{W}S} c(x, \alpha_s) \iota^{-1}(\alpha_s) s$$

which implies

$$\sum_{s \in {}^{W}S} \sum_{i} c(y_i, \alpha_s)(x, \alpha_s)(y_i s + s y_i) = \sum_{s \in {}^{W}S} c(x, \alpha_s)(\iota^{-1}(\alpha_s)s + s\iota^{-1}(\alpha_s)) = 0.$$

This proves the asserted identity.

Consider the operator $\exp(\mathbf{F})$. It is not an element in $H_{1,c}$, but for any $M \in \mathcal{O}_c(W, \mathfrak{h})_0$, the action of $\exp(\mathbf{F})$ on M is well-defined as M is locally $S(\mathfrak{h})$ -finite.

Corollary 6. For any $M \in \mathcal{O}_c(W, \mathfrak{h})_0$ and $y \in \mathfrak{h}_{\mathbb{C}}$ we have $[\exp(\mathbf{F}), \iota(y)] = y \exp(\mathbf{F})$ as operators on M.

Definition 7. The Gaussian inner product γ_c on M_c is

$$\gamma_c(v, w) := \beta_c(\exp(\mathbf{F})v, \exp(\mathbf{F})w).$$

The following lemma is not needed, but might serve as a motivation.

Lemma 8. We have $\gamma_c(xv, w) = \gamma_c(v, xw)$ for any $x \in \mathfrak{h}^*_{\mathbb{C}}$, $v, w \in M_c$.

Proof. Suppose $x = \iota(y)$ for some $y \in \mathfrak{h}_{\mathbb{C}}$. Thanks to Corollary 6 we have

$$\gamma_c(xv, w) = \beta_c(\exp(\mathbf{F})\iota(y)v, \exp(\mathbf{F})w) = \beta_c(\iota(y) + y)\exp(\mathbf{F})v, \exp(\mathbf{F})w)$$
$$= \beta_c(\exp(\mathbf{F})v, (\iota(y) + y)\exp(\mathbf{F})w) = \beta_c(\exp(\mathbf{F})v, \exp(\mathbf{F})xw) = \gamma_c(v, xw). \qquad \Box$$

Proposition 9. Up to scaling, the form $\gamma_c : M_c \times M_c \to \mathbb{C}$ is the unique W-invariant symmetric bilinear form such that $\gamma_c((\iota(y) - y)v, w) = \gamma_c(v, yw)$ for any $y \in \mathfrak{h}_{\mathbb{C}}, v, w \in M_c$.

Proof. Indeed, we have

$$\gamma_c((\iota(y) - y)v, w) = \beta_c(\exp(\mathbf{F})(\iota(y) - y)v, \exp(\mathbf{F})w) = \beta_c(\iota(y)\exp(\mathbf{F})v, \exp(\mathbf{F})w)$$
$$= \beta_c(\exp(\mathbf{F})v, y\exp(\mathbf{F})w) = \beta_c(\exp(\mathbf{F})v, \exp(\mathbf{F})yw) = \gamma_c(v, yw)$$

thanks to Corollary 6.

Let

$$\delta(x) = \prod_{s \in {}^{W}S} (\alpha_s, x)$$

be an element in $S(\mathfrak{h}_{\mathbb{R}}^*)$. It is the unique (up to constant) *W*-antisymmetric polynomial on $\mathfrak{h}_{\mathbb{R}}$ of the smallest degree. We have an analytical result by Dunkl.

Theorem 10. For $\operatorname{Re}(c) \leq 0$, up to scaling we have

(1)
$$\gamma_c(f,g) = \int_{x \in \mathfrak{h}_{\mathbb{R}}} f(x)g(x)e^{-(x,x)/2}|\delta(x)|^{-2c}dx.$$

Proof. We use integration by parts to verify that (1) satisfies Proposition 9, where $y \in \mathfrak{h}$ acts on M_c via Dunkl operators. Indeed, (1) apparently defines a W-invariant symmetric bilinear form. Note that $y \in \mathfrak{h}_{\mathbb{C}}$ acts on $M_c \cong S(\mathfrak{h}_{\mathbb{C}}^*)$ by

(2)
$$y \cdot f = \partial_y f - \sum_{s \in {}^W S} c \cdot (\alpha_s, y) \frac{(1-s)f}{\alpha_s}, \ \forall f \in S(\mathfrak{h}^*_{\mathbb{C}}).$$

Applying ∂_y to (1), integration by parts says

$$(3) \quad 0 = \int_{x \in \mathfrak{h}_{\mathbb{R}}} \left(f(x)g(x)e^{-(x,x)/2}|\delta(x)|^{-2c} \right) \cdot \left(\frac{\partial_y f}{f} + \frac{\partial_y g}{g} - \iota(y) - 2c\sum_{s \in {}^W S} \frac{(\alpha_s, y)}{(\alpha_s, x)} \right) dx$$

While the identity we need to prove in Proposition 9 is $\gamma_c(y.f,g) + \gamma_c(f,y.g) - \gamma_c(\iota(y)f,g) = 0$. Comparing (2) and (3), it remains to prove that the last terms in both equations match. Arguing separately for each $s \in {}^WS$, we would like

$$\int_{x \in \mathfrak{h}_{\mathbb{R}}} e^{-(x,x)/2} |\delta(x)|^{-2c} \frac{1}{(\alpha_s, x)} \left(2fg - \left((1-s)f\right)g - f\left((1-s)g\right)\right) dx = 0,$$

or equivalently

$$\int_{x \in \mathfrak{h}_{\mathbb{R}}} e^{-(x,x)/2} |\delta(x)|^{-2c} \frac{1}{(\alpha_s,x)} \left(f(s,x)g(x) + f(x)g(s,x) \right) dx = 0.$$

Indeed, the integral vanishes because the integrand is anti-symmetric with respect to s. This finishes the proof of the theorem.

From now on let us normalize $\gamma_c(f,g)$ by requiring $\gamma_c(1,1) = \beta_c(\exp(\mathbf{F})1, \exp(\mathbf{F})1) = \beta_c(1,1) = 1$, i.e.

(4)
$$\gamma_c(f,g) = \frac{\int_{x \in \mathfrak{h}_{\mathbb{R}}} f(x)g(x)e^{-(x,x)/2}|\delta(x)|^{-2c}dx}{\int_{x \in \mathfrak{h}_{\mathbb{R}}} e^{-(x,x)/2}|\delta(x)|^{-2c}dx}$$

While the above integral only works for $\operatorname{Re}(c) \leq 0$, the term $\gamma_c(f,g)$ is, by its algebraic nature from the contravariant form and our normalization, a polynomial in c and linear in the coefficients of f and g. Hence (4) can also be defined for any $c \in \mathbb{C}$ by taking holomorphic continuation.

4. Tempered distributions and the support of L_c

Define

$$\mathscr{S}(\mathbb{R}^n) = \{ f \in C^{\infty}(\mathbb{R}^n) \mid \sup |x^{\alpha} \partial^{\beta} f| < \infty \}.$$

The **Schwartz space** on \mathbb{R}^n equipped with topology given by that $f_n \to f$ iff $\sup |x^{\alpha}\partial^{\beta}(f - f_n)| \to 0$ for any multi-index α, β . A **tempered distribution** ξ on \mathbb{R}^n is a continuous linear functional $\xi : \mathscr{S}(\mathbb{R}^n) \to \mathbb{C}$. Its support $\operatorname{supp}(\xi)$ is the smallest closed subset $E \subset \mathbb{R}^n$ such that if $f \in \mathscr{S}(\mathbb{R}^n)$ is supported away from E then $\xi(f) = 0$. We need some results in analysis¹:

Lemma 11. (i) $\mathbb{C}[x_1, ..., x_n]e^{-\sum x_i^2/2} \subset \mathscr{S}(\mathbb{R}^n)$ is dense.

(ii) For any tempered distribution ξ , there exists $N = N(\xi) \in \mathbb{Z}_{\geq 0}$ such that for every $f \in \mathscr{S}(\mathbb{R}^n)$ satisfying $f = df = \ldots = d^N f = 0$ on $\operatorname{supp}(\xi)$ we have $\xi(f) = 0$.

Consider the distribution

(5)
$$\xi_c^W := \frac{|\delta(x)|^{-2c}}{\int_{x \in \mathfrak{h}_{\mathbb{R}}} e^{-(x,x)/2} |\delta(x)|^{-2c} dx}$$

on $\mathscr{S}(\mathfrak{h}_{\mathbb{R}})$. Originally it is only defined for $\operatorname{Re}(c) \leq 0$, but since the result is polynomial in c, one can interpolate and define it for all $c \in \mathbb{C}$.

Meanwhile, for any $M \in \mathcal{O}_c(W, \mathfrak{h})_0$, by definition M is finitely generated over $S(\mathfrak{h}^*_{\mathbb{C}})$; it can be viewed as a coherent sheaf on \mathfrak{h} . One has the definition of support

 $supp(M) = \{a \in \mathfrak{h} \mid P(a) = 0 \text{ for any } P \text{ that annihilate } M\}$

which is a Zariski closed subset of \mathfrak{h} . We are ready to state our main theorem:

Theorem 12. We have $\operatorname{supp}(\xi_c^W) = \operatorname{supp}(L_c)(\mathbb{R})$, where $\operatorname{supp}(L_c)_{\mathbb{R}}$ is the real points of $\operatorname{supp}(L_c)$.

¹See e.g. Chapter 7 of *The Analysis of Linear Partial Differential Operators* by Hörmander

Proof. Suppose $a \notin \operatorname{supp}(L_c)$ but on the contrary $a \in \operatorname{supp}(\xi_c^W)$ Identifying $M_c \cong S(\mathfrak{h}_{\mathbb{C}}^*)$ and $J_c \subset S(\mathfrak{h}_{\mathbb{C}}^*)$ an ideal, we can find $P \in J_c = \operatorname{ker}(\gamma_c)$ such that $P(a) \neq 0$. There exists a compactly supported smooth function f such that P is nowhere vanishing on $\operatorname{supp}(f)$ and $\xi_c^W(f) \neq 0$. We have $f/P \in C_c^\infty(\mathfrak{h}_{\mathbb{R}}) \subset \mathscr{S}(\mathfrak{h}_{\mathbb{R}})$. Thanks to Lemma 11(i) we have a sequence of polynomials P_n such that $P_n e^{-(x,x)/2} \to f/P$ in $\mathscr{S}(\mathfrak{h}_{\mathbb{R}})$ which also implies $PP_n e^{-(x,x)/2} \to f$ in $\mathscr{S}(\mathfrak{h}_{\mathbb{R}})$. We have however $\xi_c^W(PP_n e^{-(x,x)/2}) = \gamma_c(P,P_n) = 0$ as $P \in \operatorname{ker}(\gamma_c)$, contradiction!

Next we show that $\operatorname{supp}(L_c) \subset \operatorname{supp}(\xi_c^W)$. Suppose $P \in S(\mathfrak{h}_{\mathbb{C}}^*)$ is a polynomial on \mathfrak{h} that vanishes on $\operatorname{supp}(\xi_c^W)$. Thanks to Lemma 11(ii), there exists integer N such that $\gamma_c(P^N, Q) = \xi_c^W(P^N Q e^{-(x,x)/2}) = 0$ for any $Q \in S(\mathfrak{h}_{\mathbb{C}}^*)$. Namely, $P^N \in \ker(\gamma_c)$ for some N or equivalently P vanishes on $\operatorname{supp}(L_c)$. This shows that $\operatorname{supp}(L_c)$ is contained in the Zariski closure of $\operatorname{supp}(\xi_c^W)$. The result then follows from the explicit description of $\operatorname{supp}(\xi_c^W)$ in Theorem 13 below which shows that $\operatorname{supp}(\xi_c^W)$ is itself Zariski closed. \Box

We end by describing $\operatorname{supp}(\xi_c^W)$. By the Chevalley-Shepard-Todd theorem, $S(\mathfrak{h}_{\mathbb{C}}^*)^W$ is a free algebra with generators $x_1, ..., x_r$. Let $d_1(W), ..., d_r(W)$ be their degrees. They satisfy

$$\sum_{w \in W} q^{\ell(w)} = \prod_{i=1}^r \frac{1 - q^{d_i}}{1 - q} \in \mathbb{Z}[q]$$

for a formal variable q. For any $a \in \mathfrak{h}_{\mathbb{R}}$, let $W_a \subset W$ be the subgroup generated by $\{s \in {}^WS \mid s.a = a\}$; W_a is a conjugate of a parabolic subalgebra, and in particular also a Coxeter group. Let $d_1(W_a), \ldots, d_{r'}(W_a)$ be defined for W_a similar to $d_1(W), \ldots$ for W.

Theorem 13. When $c \notin (\mathbb{Q}/\mathbb{Z})_{>0}$ we have $\operatorname{supp} \xi_c^W = \mathfrak{h}_{\mathbb{R}}$. When $c \in (\mathbb{Q}/\mathbb{Z})_{>0}$ has denominator *m* in its simplest expression, we have

$$\operatorname{supp}(\xi_c^W) = \{ a \in \mathfrak{h}_{\mathbb{R}} \mid \#\{i \mid d_i(W)/m \in \mathbb{Z} \} = \#\{i \mid d_i(W_a)/m \in \mathbb{Z} \} \}.$$

As one can see from (5), ξ_c^W has full support whenever $\operatorname{Re}(c) \leq 0$. Hence the mystery is when ξ_c^W is going to have zeroes (in variable c) under the analytic continuation to $\operatorname{Re}(c) > 0$. Following this line, the Theorem 13 is a corollary of the following:

Theorem 14. (The Macdonald-Mehta integral, [EM, Theorem 4.1]) When $\operatorname{Re}(c) \leq 0$ we have

$$(2\pi)^{-r/2} \cdot \int_{\mathfrak{h}_{\mathbb{R}}} e^{-(x,x)/2} |\delta(x)|^{-2c} dx = \prod_{i=1}^{r} \frac{\Gamma(1-d_i c)}{\Gamma(1-c)}$$