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These lecture notes are informally written and reflect my own incomplete understanding. Because of that, I

hope that readers can e-mail me at chenhi.math@gmail.com if they have any comments at all (especially if they find

I’ve written something false). Most arguments are taken directly from [EM10]. Our notation sometimes diverges

from that in [EM10], especially when it comes to subscripts and superscripts.

0.1 Background and review

Let pW, hq be a complex reflection group acting on h; this means it is generated by elements in a set S Ă W of

complex reflections, i.e. elements with eigenvalues λs, 1, 1, . . . , 1 for some λs ‰ 1. We let S Ă W be the set of

reflections in W , and αs P h˚ an eigenvector (choice up to scaling) for the unique eigenvalue λs. If W is a real

reflection group (e.g. a Weyl group) we have λs “ ´1.

We will take k “ C. Consider the rational Cherednik algebra HcpW, hq. Recall that this is an algebra which is

module-isomorphic to kW b Shb Sh˚, and we are interested in a certain category OcpW, hq of modules which are

finitely generated over Sh˚, while Sh acts locally finitely. Our notation and linguistic conventions:

� We take a basis xi P h˚ Ă Sh˚ “ krhs of lowering operators (think multiplication) and a basis yi P h Ă Sh a

basis of raising operators (think differentiation) which act in category O by (generalized) torsion. Note that

this is somewhat opposite to conventions that appear in e.g. Beilinson-Bernstein.

� Category O consists of highest weight modules.

� Let c̄psq “ cps´1q. There is an anti-involution γ : Hop
c̄ pW, h

˚q Ñ HcpW, hq fixing h, h˚ and sending w to w´1,

probably “coming from a Fourier transform”.

The commutator between h, h˚ is expressed:

ry, xs “ xy, xy ~´
ÿ

sPS
csxy, αsyxx, α

_
s ys.

It is convenient to view the affine Hecke algebra as embedded in differential operators kW ˙ Dphregq on h, where

raising operators Sh˚ as via multiplication by regular functions, W acts through the W -action on h, and lowering

operators Sh acts as deformations of differentiation (we will always set ~ “ u “ 1)1 via Dunkl operators:

y ÞÑ Dy :“ ~By ` u
ÿ

sPS

2cs
1´ λs

xαs, yy

αs
ps´ 1q.

Note that Dy preserves the space of regular functions krhs because p1 ´ sq kills all orthogonal components to the

eigenvector αs. That is, Dy is a k-linear endomorphism of krhs.

We note that the “two deformations” appearing in this formula arise as shadows of certain geometric Gm-actions

that arise in a geometric definition of DAHAs (from [VV09]). The parameter ~ (denoted δ in [OY16]) arises from

loop rotation in loop groups, and the parameter u arises via dilation on fibers of an analogue of the “Steinberg”

variety. The authors [OY16] also discuss an element Λcan arising from central extension; I’m not really sure how

this appears in [EM10].

1The notation ~ is from [EM10] and appears as δ in [OY16]. The notation u comes from [OY16], Section 4.2.2.

1

mailto:chenhi.math@gmail.com


A key feature in the study of Hc appear to be the grading element h which arises as an sl2-triple:

e “ ´
1

2

ÿ

x2
i , h “

1

2

ÿ

xiyi ` yixi “
ÿ

xiyi `
1

2
dim h´

ÿ

sPS

2cs
1´ λs

s, f “
1

2

ÿ

y2
i .

with rh, es “ 2~e, rh, fs “ ´2~f, re, fs “ ~h (we will set ~ “ 1). I kind of want to say this comes from thinking

about Hc as some kind of deformation of differential operators on h{{W (or maybe, h{W ), where h is the vector

field generating the Gm-action.

0.2 Parabolic restriction and induction for affine Hecke algebras

Our goal will be to define parabolic induction/restriction functors. Before we even begin I want to recall how

parabolic induction/restriction works for finite Hecke algebras and affine Hecke algebras.

1. For finite Hecke algebras we have an identification H :“ HpGpFqq, BpFqqq “ HpW, qq between the “Iwahori”

and “Coxeter” presentations. Let P be a parabolic with Levi M ; then we also have a Hecke algebra HM :“

HpMpFqq, BM pFqqq. The choice of parabolic gives rise to an embedding HM ãÑ H, and we denote its image

by HP Ă H. This subalgebra has a nice explicit description: they are subalgebras HP “ HpWP , qq Ă H “

HpW, qq generated by the Tw for w PWP , where WP ĂW is the subgroup of reflections fixing P . Furthermore,

we have a compatibility:

ModpHq ReppGpFqqq

ModpHP q ReppMpFqqq.

ResHHP Res
HompInd

GpFqq
BpFqq

C,´q
IndH

HP

HompInd
MpFqq
BM pFqq

C,´q

Ind

Note that for finite groups, induction is compact induction, and invariants are coinvariants, so this simplifies

things a bit.

2. For affine Hecke algebras, the idea is that affine Hecke algebras arise in the study of groups GpF q where F is

a local field. Here, there are two kinds of subgroups one induces from.

Parabolic induction is inflation of a (inertial equivalence class of) cuspidal representation from a Levi MpF q

to P pF q and then non-compact induction to GpF q. The benefit here is that the Levis and can be easily

combinatorially described (and I think the cuspidals too, but less easily), but the representation theory

of the induced representations does not have as simple a description. Important theorem: the Bernstein

decomposition into a sum of blocks indexed by supercuspidal supports:

ReppGpF qq “
à

pM,πq

ReppGpF qqpM,πq.

Compact open induction is compact induction from compact opens K Ă GpF q. Endomorphism rings of

such induced representations are (roughly) affine Hecke algebras HpK, τq with unequal parameters, which

have nice explicit descriptions from their description as convolution algebras. Furthermore, modules for

KpK, τq naturally embed as the full subcategory of ReppGpF qq of representations generated by pK, τq-isotypical

components. The challenge is to isolate the pairs pK, τq which give rise to Bernstein components. This leads

to the notion of (semisimple) types and covers in [BK99].

The usual affine Hecke algebra H “ HpI, 1q comes from inducing the trivial representation from the Iwahori

subgroup and is a simple type that corresponds to the supercuspidal support pT, 1q. This means we have a

strong compatibility between parabolic induction and compact open induction for its covers, i.e.

ModpHq ReppGF q

ModpHP q ReppMF q.

ResHHP
JU´

HompcInd
GpF q
I C,´q

IndH
HP

HompcInd
MpF q
IM

C,´q

iGP
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The “parabolic Hecke algebra” is a subalgebra HP Ă H that has the following Bernstein-style description: it

is generated by the lattice and elements Tw for w PWP , where WP ĂW are the reflections preserving P . For

example, we have HG “ H and HB “ CrT_s. In particular, parabolic induction in the Iwahori-block is all

about the finite Weyl group W .

3. For DAHAs, we will focus only on the “Coxeter” side. As in the AHA case, a parabolic P determines some

subgroup WP ĂW . We will see that HcpW, hq sheafifies over h{{W , and that the fiber over a point b P h{{W

looks like |W {Wb| ˆ |W {Wb| matrices valued in HcpW
b, hq. Morally speaking, this sheaf of algebras gives rise

to a sheaf of module categories O, and the “exit paths” from deeper strata in h{{W to more generic strata

give rise to restriction functors whose right adjoints are induction functors.

I would be very interested if anyone could explain how to understand this notion of parabolic induction “more

automorphically” (e.g. via Varagnolo-Vasserot or Kapranov) or maybe “Koszul dually” in terms of some kind

of parabolic category O.

0.3 Sheafifying algebras

Our method for establishing parabolic induction will rest on, morally, realizing HcpW, hq as a family of algebras,

determining a family of categories, over h, and writing down functors which move between various fibers in this

family. The first order of business is to realize this sheafification of HcpW, hq.

1. Any algebra A always sheafifies over the spectrum of its center X “ SpecZpAq. The case we are interested in

will not arise in this way! E.g. if c “ 0, then H0pW, hq “ kW bDphq, so ZpH0pW, hqq “ kZpW q, which does

not see h at all.

2. Realize as differential or equivariant operators on some function space, and sheafify. Standard example: the

sheaf of differential operators DX can be viewed as a OX -quasicoherent sheaf by either left multiplication or

right multiplication, which differ. To see that it is a sheaf of algebras, one may realize DX Ă EndkpOXq as

the subalgebra generated by OX -linear endomorphisms (degree 0) and derivations (degree 1).

The rational Cherednik algebra has an embedding, where q : hÑ h{{W is the affine quotient

HcpW, hq ãÑ Γph{{W, Endkpq˚Ohqq

where the xi act by multiplication, w P CW act via the W -action on q˚Oh, and the yi act via Dunkl operators.

Note that Hc also sheafifies over h˚{{W via the involution γ. However, since Sh is required to act locally finitely,

the category OcpW, hq is very “fractured” over h˚{{W , i.e. it is a sum of its formal neighborhoods at points:

OcpW, hq “
à

λPh˚{{W

OcpW, hqλ.

Informally, modules in OcpW, hq do not arise as families over h˚.

0.4 Completing algebras: toy example

The strategy for defining parabolic induction functors will rest on passing between Hc and completions of it over

various points of h. Let’s do a toy example: we want to compare krxs-modules and krrxss-modules. The adjoint

extension/restriction of scalars functors are far from equivalences, but we can realize finitely generated krrxss-

modules inside krxs-modules in two Grothendieck dual ways:2

2We probably really need to work with derived categories here and establish certain t-exactness up to shifts to recover abelian
statements, and also check that Ext vanishes; since this is just a toy example let me just ignore this.
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1. Take the completion of krxs, i.e.
ykrxs “ lim krxs{xn`1 “ krrxss

and compute that Endkrxspkrrxssq “ krrxss. Note that krxs Ă krrxss is dense, and any krxs-linear map

krxs Ñ krrxss is given by multiplication by some power series (say with leading/lowest term of degree d), so it

suffices to show that any krxs-linear map φ : krrxss Ñ krrxss is continuous in the x-adic topology. This means

we need φ´1pmnq “ mm for some m, and we may take m “ n´ d.3

The small subcategory generated by krrxss consists of the x-complete modules such that cokerpxq is a finite

krxs{x-module.

2. Take the (shifted) local cohomology of krxs, i.e.

Γt0upkrxsqr1s “ krx, x´1s{krxs

and compute that Endkrxspkrx, x
´1s{krxsq “ krrxss. This calculation can be done formally:

Homkrxspcolim
i

x´ikrxs{xi, colim
j

x´jkrxs{xjq “ lim
i

colim
j

Homkrxspx
´ikrxs{xi, x´jkrxs{xjq

“ lim
i

colim
j

krxs{xi “ krrxss.

The small subcategory generated by krx, x´1s{krxs consists of locally x-nilpotent modules such that kerpxq is

a finite krxs{x-module.

3. Finally, note that there is one setting in which we can actually identify the categories Modpkrrxssq and

Modpkrxsq – if we have a Gm-action or grading on A1 (where x has weight grading 1). Roughly, the idea is

that in setting (2), the limit in the category of graded modules is a colimit. This informal remark can be

made precise, but we point out there is no Gm-action on Spec krrxss (what would the coaction on
ř

xn be?),

so it is not precise as we’ve currnetly stated. Something closer to a formal statement would be: the category

of graded x-adically complete krxs-modules is equivalent to the category of krxs-modules, and likewise the

category of graded locally x-nilpotent modules.

We record two standard results which we will use, but not prove.

Theorem 0.4.1 (Grothendieck existence). Let A be a ring and I Ă A and ideal, and pA the completion of A along

I. There is an equivalence of categories between:

1. A-modules M which are complete for the ideal I, and such that M{IM is finitely geneated as an A{I-module,

and

2. finitely generated pA-modules.

Theorem 0.4.2 (Grothendieck duality). Let V be a vector space, and b P V . The naive dual

Homkp´, kq : ModpkrV sq Ñ ModpkrV sq

induces an equivalence of categories between

1. modules where x´ xpbq acts nilpotently for x P V ˚ and such that
č

xPV ˚

kerpx´ xpbqq is finite-dimensional.

2. and modules M which are complete for the ideal I “ xx ´ xpbq | x P V ˚y and such that M{IM is finite-

dimensional.

3Thanks to Nobuo Sato for some discussions surrounding completions.
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0.5 Completions of rational Cherednik algebras and category O
In OcpW, hq, we may complete at points b P h, or we may take blocks at points λ P h˚. To avoid confusion, we take

the notational conventions.

1. We denote elements b P h. The completion of HcpW, hq at b P h is denoted pHcpW, hqb, and pOcpW, hqb denotes

the category of pHcpW, hqb-modules finitely generated over ySh˚b (see also Theorem 0.4.1). Note we do not

require modules to be locally finite for the h-action; e.g. a power series 1 ` x ` x2 ` ¨ ¨ ¨ will not generate a

finite-dimensional vector space under the action of y “ Bx.

2. We denote elements λ P h˚. We won’t complete with respect to these parameters since OcpW, hq already

decomposes into blocks for generalized eigenvalues, which we denote by OcpW, hq
λ.4 These are Whittaker

categories of “locally λ-nilpotent” modules, i.e. the Grothendieck dual of complete modules.

The following exhibits the duality between complete modules and locally nilpotent modules observed in our toy

example. Recall the naive dual is defined by M ÞÑ M˚ “ HomkpM,kq, which is a right module, and then turning

it back into a left module via the involution γ. The contragredient dual on the other hand restricts to the subspace

of h-nilpotent vectors.

Proposition 0.5.1. The naive dual ˚ defines an anti-equivalence

OcpW, hq
λ

pOc̄pW, h
˚qλ.

p´q
˚

»

Its inverse is the continuous dual in the adic topology, which we abusively also denote by ˚. The contragredient

dual _ defines an anti-equivalence

OcpW, hq
0 Oc̄pW, h

˚q0.
p´q

_

»

Proof. The statement for contragredient dual follows from Theorem 0.6.2, which we postpone. For the naive dual,

in view of Theorems 0.4.1 and 0.4.2, we only need to show that, assuming y ´ λpyq acts nilpotently, the condition

of finite generation over Sh˚ is equivalent to finite-dimensionality of K :“
č

yPh

kerpy ´ λpyqq.

In the case of the former, take generators m1, . . . ,mr for Sh˚. Since y´λpyq acts nilpotently, the subspace gen-

erated by these vectors is finite-dimensional, and contains the joint kernel K, which must also be finite-dimensional.

In the case of the latter, we may take a basis of the joint kernel K to be generators for Sh˚.

We now introduce a piece of crucial notation. I am told these are analogues of Backelin functors.

Definition 0.5.2. For b P h and λ P h˚, we define Whittaker functors5

Eλb : pOcpW, hqb Ñ OcpW, hq
λ

where EλpMq ĂM is the subspace of vectors such that the raising operators h act by generalized eigenvalue λ. In

the other direction, we have the completion functors, i.e. the completion at b restricted to the λ-block:

yp´q
λ

b : OcpW, hq
λ Ñ pOcpW, hqb.

Remark 0.5.3. A way to remember the notation. Superscript always associated to blocks, subscripts to comple-

tions. The same goes for the functors. The completion functors always start in a block and end in a completion;

the E-functors always start in a completion and pick out the subspace which “algebraically continue” to a given

block. (Also, we sometimes omit 0 from the notation, e.g. Eλ0 “ Eλ, or yp´q
0

0 “
yp´q, et cetera.)

4Note the deviation from notation in [EM10].
5I am not sure if this is a good name but let’s just go with it for now.
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0.6 Relationship between completion and Whittaker functors

We will see now that for the completion and Whittaker functors between the special points 0 P h and 0 P h˚, we

have an equivalence, essentially due the the grading element.

Proposition 0.6.1. Let M P pOcpW, hq0. A vector v PM is h-finite if and only if it is h-nilpotent.

Proof. Suppose that h acts on v nilpotently. Then, letting there is a finite filtration of Sh ¨ v:

0 Ă kerphq Ă kerpS2hq Ă ¨ ¨ ¨ kerpSkhq Ă Sh ¨ v.

Now, h acts on kerphq, using the formula, through kW , thus finitely. Similarly, it acts on every subquotient of the

filtration finitely, one can fiddle around a bit to see that it must act on v finitely.

Suppose that h acts on v finitely. Then, v decomposes as a sum of generalized eigenvectors for h, and we may

reduce to the case where it is a generalized eigenvector with eigenvalue, say, λ. Furthermore, yv is a generalized

eigenvector with eigenvalue λ´ 1, and xv with λ` 1. Now, consider the filtration

M Ą mM Ą ¨ ¨ ¨ Ą mkM Ą ¨ ¨ ¨

where m Ă ySh˚ is the maximal ideal. The grading element h acts on each subquotient finitely, and in particular

the generalized eigenvalues appearing in M are bounded below by those appearing in M{mM . Thus y must act

nilpotently.

Theorem 0.6.2. The functors

yp´q : OcpW, hq
0

pOcpW, hq0 : E

are inverse equivalences. Furthermore, the equivalences are compatible with contragredient duality:

OcpW, hq
0

pOcpW, hq0

Oc̄pW, h
˚q0,op Oc̄pW, h

˚q0,op

yp´q

»

p´q
_

E

p´q
˚

Proof. We use the grading element h, and use the characterization of OcpW, hq
0 as modules which are h-finite. For

simplicity, we denote the functors by yp´q and E.

We first show that M “ EpxMq for M P OcpW, hq
0. Clearly, M Ă EpxMq. To see that EpxMq Ă M , take

Sh˚-generators m1, . . . ,mr P M for M which are generalized eigenvectors of h with eigenvalues λ1, . . . , λr (thus

generated xM over ySh˚). Take an arbitrarily element m P EpxMq (i.e. a generalized eigenvector) of eigenvalue λ. We

can write any element m “
ř

fimi for fi P ySh˚. Note that degree d monomials in ySh˚ have generalized eigenvalue

d (e.g. rh, xds “ dxd). This means m is actually the sum of the mi where we replace fi with the degree λ´λi part,

thus the coefficients are polynomial so m PM . This completes the first direction.

We now show that {EpNq “ N , where N P pOcpW, hq0. It is clear that {EpNq Ă N , i.e. we took the completion of

a subset of a complete space. For equality we need to show that {EpNq is dense in N , i.e. the map {EpNq Ñ N{mkN

is surjective for all k (and m is the maximal ideal of ySh˚). First, note that h preserves the filtration

N Ą mN Ą ¨ ¨ ¨ Ą mkN Ą ¨ ¨ ¨

essentially because one can lose a degree in the xi by commuting a yj across it, but it is recovered by multiplication

by xj . Thus, h acts on the finite-dimensional graded pieces of the filtration, thus locally finitely on any finite length

subquotient, thus each subquotient consists of sums of generalized eigenvectors.

Away from zero, we have the following adjunctions and interaction with duality.
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Proposition 0.6.3. We have commuting squares of adjoint functors

OcpW, hq
λ

pOcpW, hqb

pOc̄pW, h
˚q
op
λ Oc̄pW, h

˚qb,op

yp´q
λ

b

p´q
˚

E0
b

p´q
˚

Ebλ

yp´q
b

λ

and likewise where we swap the roles of h, h˚. Note that since completions are exact, this implies their adjoints

above are as well.

Proof. We check that pyp´q
λ

b , E
λ
b q are adjoint; the rest follow by duality. Indeed,

Hom
xHc
pxMb, Nq » Hom

xHc
p pHc,b bHcpW,hqM,Nq » HomHcpM,N |Hcq » HomHcpM,EbpNqq

i.e. since the image of any vector with generalized eigenvalue λ also has that property.

0.7 Equivariant localization

Definition 0.7.1. Let H Ă G be finite groups, and A an H-equivariant algebra. Then, the induced representation

IndGHpAq is a right A-module. We define

ZGHpAq :“ EndApIndGHpAqq.

Proposition 0.7.2 (Morita equivalence). If A contains kH (i.e. H acts freely on 1 P A), then ZGHpAq is non-

canonically isomorphic to Mat|G{H|pAq. Thus by Morita theory, the ZGHpAq-A-bimodule IndGHpAq defines an equiv-

alence of categories between ModpAq and ModpZGHpAqq.

Definition 0.7.3. Let W 1 ĂW be a subgroup. We define by ZWW 1OcpW
1, hq Ă ModpZWW 1HcpW

1, hqq the full subcat-

egory corresponding to OcpW
1, hq under the Morita equivalence above, and likewise ZWW 1

pOcpW
1, hq, ZWW 1

pOcpW
1, hqλ,

et cetera.

The point is that Hc is “free” over h but it only sheafifies over h{{W . Thus when we move from 0 P h to a

generic point we pick up |W | points in the preimage of h Ñ h{{W . The previous proposition says this is just a

technical annoyance that doesn’t matter. We have the following.

Theorem 0.7.4. Let b P h, and Wb be the stabilizer of b. There is a natural isomorphism of algebras

θ : pHcpW, hqb Ñ ZWWb
p pHcpWb, hqq0.

The isomorphism is given by some formulas; see Theorem 5.4 of [EM10]. In particular, the induction functor θ˚
and Morita equivalence define an equivalence

Modp pHcpW, hqbq ModpZWWb
p pHcpWb, hq0qq Modp pHcpWb, hq0qq.

θ˚
»

IndWWb
pxHcqb

xHc
´

»

Proof. We give an idea of why this should be true. First, when we move from the formal neighborhood of 0 P h{{W

to b P h{{W , we pick up some multiplicities, i.e. HcpW, hq is a “constant” over h (as a module) but not over h{{W .

This amounts to passing to some matrix algebra (non-canonically). Next, we note that in the formula for Dunkl

operators

y ÞÑ Dy :“ By `
ÿ

sPS

2cs
1´ λs

xαs, yy

αs
ps´ 1q

the 1{αs denominators in the coefficients to the simple reflections corresponding to walls b is not standing on are
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now regular functions away from the walls; thus we may write

Dy “ By `Ay `
ÿ

sPSXWb

2cs
1´ λs

xαs, yy

αs
ps´ 1q

where Ay is a function valued in krrhssb-matrices compatible with w P Wb. Replacing Dy with Dy ´ Ay we find

that the relations still hold.

Example 0.7.5. Let b be regular; then Wb “ 1, and we have

pHcpW, hqb » ZW1 p
pHcp1, hq0q.

Note that Hcp1, hq “ Dphq is the ring of differential operators on h. Consider the category Ocp1, hq of D-modules

where the differential operators By act locally nilpotently. This is the category of regular flat connections on h, all

of which are direct sums of Oh, thus

Ocp1, hqq » Modpkq.

Let X “ A1 and note that the condition that Bx acts locally nilpotently rules out D-modules such as the

exponential D-module DX{DXpBx ´ 1q.

We also will invoke the following algebraic reduction. We won’t prove it but the idea is the above example.

Proposition 0.7.6. There is an equivalence

ζ : OcpW, hq0 OcpW, h{h
W q0

»

where ζpMq ĂM is the subspace of vectors on which hW acts by zero. The inverse is

ζ´1pNq “ N bk Sph
˚W q

where hW acts on the tensor factor Sph˚W q by differentiation and h˚W acts by multiplication.

0.8 Parabolic induction and restriction

We now get to define the functors we want.

Definition 0.8.1. Let P “ IndWWb
pHcpWb, hq. We define (non-compact) induction and restriction functors

OcpW, hq
0

pOcpW, hqb ZWWb

pOcpWb, hq0 pOpWb, hq0 OpWb, hq
0 OpWb, h{h

Wbq0
yp´qb

Res0b

θ˚

Eb

HompP,´q

θ´1
˚

Pb
xHc
´

E

yp´q

ζ

ζ´1

Ind0
b

They are adjoint and exact by construction. One can similarly define partial induction/restriction functors.

Remark 0.8.2. One can also use the graded dual to define “compact induction and restriction” functors. We refer

the reader to [EM10] for details.

Remark 0.8.3. In some sense, one can think about the functors Res0
b as arising in a family paramterized by b. This

family is locally constant for all b in a given stratum of h (by working on h rather than h{{W we remove the issue

of multiplicity). Thus for different b in a given stratum, the restriction (thus induction) functors are isomorphic,

but not canonically. More precisely, the functors may be assembled into a local system of functors. I will leave this

discussion to the next speaker.
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Remark 0.8.4. An interesting question brought up by Shun-Jen Cheng during this talk (possibly incorrectly

paraphrased by myself) was whether there is a parabolic-singular Koszul duality for rational Cherednik algebras

which would relate the “Coxeter” presentation of parabolic induction/restriction to the usual ”Iwahori” presentation.

Another question was whether it is known that these “Coxeter” parabolic induction/restriction functors for HcpW, hq

are known to preserve simples and/or projectives, which is crucial for some arguments in the setting of Lie algebras.

I don’t know the answer to either question but leave it here for posterity.
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