SMOOTH REPRESENTATION THEORY FOR LOCALLY PROFINITE GROUPS

Note by Tzu-Jan Li. Date: March 14th, 2023

1. Locally profinite groups

1.1. A group G is called locally profinite if it is a locally compact, Hausdorff and totally disconnected topological group. Upon setting

$$
\Omega(G)=\{\text { open compact subgroups of } G\},
$$

a theorem of van Dantzig (see for example [Ws, Sec. 1.1]) says that a locally profinite group G admits $\Omega(G)$ as a fundamental system of neighborhoods of the identity element 1_{G} of G (in fact the converse is also true).
1.2. Here are some examples of locally profinite groups:
(1) Finite groups (with discrete topology) are locally profinite (and compact).
(2) The p-adic field \mathbb{Q}_{p} (where p is a prime number), equipped with the p-adic topology and regard as an additive group, is locally profinite. In \mathbb{Q}_{p}, a fundemantal system of neighborhoods of 0 by open compact subgroups is given by $\left\{p^{n} \mathbb{Z}_{p}: n \in \mathbb{N}\right\}$, where \mathbb{Z}_{p} is the ring of p-adic integers.
(3) p-adic reductive groups, such as $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ (the group of 2×2 invertible matrices over \mathbb{Q}_{p}), are also locally profinite. In $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$, a fundamental system of neighborhoods of id_{2} by open compact subgroups is $\left\{\mathrm{id}_{2}+p^{n} \mathrm{M}_{2}\left(\mathbb{Z}_{p}\right): n \in \mathbb{N}^{*}\right\}$, where $\mathrm{M}_{2}\left(\mathbb{Z}_{p}\right)$ is the set of 2×2 matrices over \mathbb{Z}_{p}.
(4) Galois groups $\operatorname{Gal}(K / F)$ for (infinite) Galois extensions of fields $F \subset K$, equipped with the Krull topology, are locally profinite and compact. In $\operatorname{Gal}(K / F)$, a fundamental system of neighborhoods of id_{K} by open compact normal subgroups is $\{\operatorname{Gal}(K / E)$: $F \subset E \subset K$, and $F \subset E$ is a finite Galois extension $\}$.

2. Smooth representations

From now on and till the end of this note, let G be a locally profinite group, and let R be a commutative ring with unity 1 .
2.1. A function from G to R is called smooth if it is locally constant. In this way, "smooth" representations of G are G-modules whose elements are "locally stabilized" by G; to be more precise, let $\pi: G \longrightarrow \mathrm{GL}_{R}(V)$ be a representation of G over R (that is, π is a group homomorphism), where V is an R-module and $\mathrm{GL}_{R}(V)$ denotes the group of R-module isomorphisms from V to itself. The representation π is called smooth if for every $v \in V$, the stabilizer $G_{v}:=\{g \in G: \pi(g) v=v\}$ is open in G. An equivalent way to saying this is to say that V is a smooth $R G$-module (here $R G:=R[G]$ is the group ring of G over R), namely V is an $R G$-module with the action given by π such that all elements of V admit open stabilizers in G.

When G is a finite group, all $R G$-modules are smooth because the smoothness condition is automatically fulfilled.
2.2. We return to general G. By definition, a linear character of G over R is a group homomorphism from G to $R^{\times}=\mathrm{GL}_{1}(R)$. For a linear character $\varphi: G \longrightarrow R^{\times}$, the following equivalences can be easily verified:

$$
\varphi \text { is smooth } \Longleftrightarrow \operatorname{ker} \varphi \text { is open in } G \Longleftrightarrow \varphi \text { is locally constant. }
$$

In particular, for general R, the trivial representation $\mathbf{1}_{G}$ of G over R (that is, $\mathbf{1}_{G}=R$ where G acts trivially) is always smooth. When $R=\mathbb{C}$ equipped with Euclidean topology, as we shall see in the next lemma, the above three equivalent conditions are also equivalent to the condition that φ be continuous.
2.3. Lemma. A linear character $\varphi: G \longrightarrow \mathbb{C}^{\times}$is continuous (where \mathbb{C} is equipped with the Euclidean topology) if and only if it is locally constant.

Proof. (Compare [We, Lem. VII.4].) Suppose that φ is continuous, and we want to show that it is locally constant. Fix any choice of $K \in \Omega(G)$, and denote by $\varphi_{K}: K \longrightarrow \mathbb{C}^{\times}$the restriction of φ to K. Then $\left|\varphi_{K}\right|: K \longrightarrow \mathbb{R}_{>0}^{\times}$is a continuous group homomorphism, so the image of $\left|\varphi_{K}\right|$ is a compact subgroup of $\mathbb{R}_{>0}^{\times}$and must thus equal to $\{1\}$. Thus φ_{K} has its image in $S^{1}:=\{z \in \mathbb{C}:|z|=1\}$, and this image $\varphi_{K}(K)=\varphi(K)$ is a subgroup of S^{1}. Choose an open neighborhood U of 1 in $E:=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$, so that $\varphi^{-1}(U)$ is an open neighborhood of 1 in G. The group G being locally profinite, there is a $K^{\prime} \in \Omega(G)$ such that $K^{\prime} \subset \varphi^{-1}(U) \cap K$ (theorem of van Dantzig). Then $\varphi\left(K^{\prime}\right)=\varphi_{K}\left(K^{\prime}\right)$ is a subgroup of $S^{1} \cap E$, hence must be equal to $\{1\}$; in other words, $K^{\prime} \subset \operatorname{ker} \varphi$, whence the local constancy of φ.

Conversely, if φ is locally constant, then, as $\varphi(1)=1$, there is an open neighborhood U of 1 in G such that $\varphi=1$ on U; so $U \subset \operatorname{ker} \varphi$, and then for every $A \subset \mathbb{C}^{\times}$we see that $\varphi^{-1}(A)=\varphi^{-1}(A) \cdot \operatorname{ker} \varphi$ is open in G, whence the continuity of φ.
2.4. Lemma. The space $C_{c}^{\infty}(G, R)$ of locally constant functions from G to R with compact support is a smooth $R[G \times G]$-module with the following (left) $(G \times G)$-action: for $(x, y) \in G \times G$ and $f \in C_{c}^{\infty}(G, R),((x, y) \cdot f)(g):=f\left(x^{-1} g y\right)$ for all $g \in G$. Indeed, we may identify

$$
C_{c}^{\infty}(G, R)=\bigcup_{K \in \Omega(G)} C_{c}^{\infty}(G, R)^{K \times K}
$$

where $C_{c}^{\infty}(G, R)^{K \times K}$ consists of elements of $C_{c}^{\infty}(G, R)$ fixed by $K \times K$.
Proof. For $f \in C_{c}^{\infty}(G, R)$, there are finitely many open compact subsets U_{i} of G such that f is constant on each U_{i}. Using the locally profinite topology of G and the continuity of the map $g, h) \in G \times G \longmapsto g x h \in G$, we can find a sufficiently small $K \in \Omega(G)$ so that each U_{i} is the disjoint union of a finite number of open compact subsets of G of the form $K x K$ (with $x \in G$). We thus have $f \in C_{c}^{\infty}(G, R)^{K \times K}$.

3. Haar measures

3.1. An R-module homomorphism $T: C_{c}^{\infty}(G, R) \longrightarrow R$ will be called a distribution on G over R. For a distribution T on G over R, It is customary to write $T(f)=\langle T, f\rangle$ for $f \in C_{c}^{\infty}(G, R)$. Each (left) G-action on $C_{c}^{\infty}(G, R)$ induces a (left) G-action on distributions $T: C_{c}^{\infty}(G, R) \longrightarrow R$ via

$$
\langle x T, f\rangle:=\left\langle T, x^{-1} f\right\rangle
$$

for all $x \in G$ and $f \in C_{c}^{\infty}(G, R)$.
The $(G \times G)$-action on the space $C_{c}^{\infty}(G, R)$ described in Lemma 2.4 may be separated into two actions: the left translation $(l(x) f)(g)=f\left(x^{-1} g\right)$ and the right translation $(r(y) f)(g)=f(g y)$ where $x, y, g \in G$ and $f \in C_{c}^{\infty}(G, R)$; note that l and r are both left G-actions on $C_{c}^{\infty}(G, R)$. For a distribution T on G over R, we may thus consider $l(g) T$ and $r(g) T$ for $g \in G$.
3.2. A Haar measure of G over R is, by definition, a nontrivial distribution

$$
\mu: C_{c}^{\infty}(G, R) \longrightarrow R
$$

which is left-invariant in the way that $l(g) \mu=\mu$ for all $g \in G$. When G has a Haar measure μ, for $f \in C_{c}^{\infty}(G, R)$ it is customary to write

$$
\mu(f)=\int_{G} f \mathrm{~d} \mu=\int_{g \in G} f(g) \mathrm{d} \mu(g) .
$$

3.3. To discuss the existence of Haar measures, we need the notion of the proorder $|G|$ for our locally profinite groups G (see [V, I.1.5]): when G is compact, its pro-order $|G|$ is defined as the least common multiple of $[G: K]$ for K running over elements of $\Omega(G)$ (we regard $|G|$ as a supernatural number, identified as a function from the set of prime numbers to $\mathbb{N} \cup\{\infty\}$); for general G, its pro-order $|G|$ is defined as the least common multiple of $|K|$ for K running over elements of $\Omega(G)$. For example: if G is finite, then its pro-order $|G|$ is just its order; for a prime number p, we have $\left|\mathbb{Q}_{p}\right|=p^{\infty}$ and $\left|\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)\right|=(p-1)\left(p^{2}-1\right) p^{\infty}$.

With this preparation, we have the next lemma for Haar measures.
3.4. Lemma. (a) If there is a $K \in \Omega(G)$ with $|K| \in R^{\times}$, then there is a unique Haar measure μ_{K} of G such that the volume $\mu_{K}(K):=\mu_{K}\left(\mathbf{1}_{K}\right)=1$ (where $\mathbf{1}_{K}$ is the characteristic function of G with support K), and any other Haar measure μ of G over R is of the form $\mu=c \cdot \mu_{K}$ for some $0 \neq c \in R$.
(b) For $K \in \Omega(G)$, we have the following equivalence:

$$
|K| \in R^{\times} \Longleftrightarrow G \text { has a Haar measure } \mu \text { over } R \text { such that } \mu(K)=1
$$

Proof. (See also [V, I.2.4].) When there is a $K \in \Omega(G)$ with $|K| \in R^{\times}$, we first set for all $K^{\prime} \in \Omega(G)$ set the volume $\mu_{K}\left(K^{\prime}\right):=\left[K^{\prime}: K\right]:=\frac{\left[K^{\prime}: K^{\prime} \cap K\right]}{\left[K: K^{\prime} \cap K\right]}$; for each $f \in C_{c}^{\infty}(G, R)$, we may find a $K^{\prime} \in \Omega_{G}, g_{1}, \cdots, g_{r} \in G$ and $c_{1}, \cdots, c_{r} \in R$ such that $f=\sum_{i=1}^{r} c_{i} \mathbf{1}_{g_{i} K^{\prime}}$ (arguing as in the proof of Lemma 2.4), and then we set $\mu_{K}(f):=\sum_{i=1}^{r} c_{i} \cdot \mu_{K}\left(K^{\prime}\right)$ which may be checked to be well-defined. This uniquely constructs μ_{K}, and the other assertions are easily verified in the same fashion.
3.5. Corollary. For each $K \in \Omega(G), G$ admits a unique Haar measure μ over \mathbb{C} such that $\mu(K)=1$.
3.6. Suppose that G admits a Haar measure μ over R such that $\mu(K)=1$ for some $K \in \Omega(G)$. For each $g \in G$, as the right translation $r(g) \mu$ is left invariant (that is, invariant under the left translations $l(x)$ for all $x \in G)$, we know from Lemma 3.4 that there is a constant $0 \neq \Delta(g) \in R^{\times}$such that $r(g) \mu=\Delta(g) \mu$ (indeed, $\Delta(g)$ is only nonzero in R à priori, but as $\Delta\left(g^{-1}\right) \Delta(g) \mu=r\left(g^{-1}\right) r(g) \mu=\mu$, we get $\Delta\left(g^{-1}\right) \Delta(g)=1$ and hence $\left.\Delta(g) \in R^{\times}\right)$, and it is easy to verify that the association $g \longmapsto \Delta_{G}(g)$ gives a linear character $\Delta_{G}: G \longrightarrow R^{\times}$, called the modulus of G over R. Note that:
(a) Δ_{G} is independent of choices of Haar measure μ such that $\mu(K)=1$ for some $K \in \Omega(G)$ (depending on μ), as all such Haar measures of G differ only by a unit in R thanks to Lemma 3.4. (This independence from μ also follows from (b) below.)
(b) We have $\Delta_{G}(g)=\left[g K g^{-1}: K\right]:=\frac{\left[g K g^{-1}: g K g^{-1} \cap K\right]}{\left[K: g K g^{-1} \cap K\right]}$ for $g \in G$ and $K \in \Omega(G)$ with $|K| \in R^{\times}$. Indeed,

$$
\begin{aligned}
\Delta_{G}(g) \int_{x \in G} f(x) \mathrm{d} \mu(x) & =\int_{x \in G} f(x) \mathrm{d}(r(g) \mu)(x)=\int_{x \in G} f(x) \mathrm{d} \mu\left(x g^{-1}\right) \\
& =\int_{y \in G} f(y g) \mathrm{d} \mu(y) \quad\left(\text { take } y=x g^{-1}\right)
\end{aligned}
$$

setting therein $f=\mathbf{1}_{K}$ and using the relation $\mu\left(K g^{-1}\right)=\mu\left(g K g^{-1}\right)$, we will get the desired formula for Δ_{G}.
(c) When $R=\mathbb{C}, \Delta_{G}$ takes its values in $\mathbb{R}_{>0}^{\times}$and is smooth, as its restriction to every $K \in \Omega(G)$ is trivial $\left(\Delta_{G}(K)\right.$ is a compact subgroup of $\mathbb{R}_{>0}^{\times}$and so must be $\left.\{1\}\right)$.
3.7. Suppose that G admits a Haar measure μ over R such that $\mu(K)=1$ for some $K \in \Omega(G)$. Then the following two conditions are equivalent:
(i) $\Delta_{G}=1$ on G;
(ii) the Haar measure μ (and thus all Haar measures of G over R) is bi-invariant (that is, invariant under $l(x)$ and $r(x)$ for all $x \in G$).

When one of (i) and (ii) above holds for G, we call G unimodular over R.
3.8. Here are some examples of (non-)unimodular groups when $R=\mathbb{C}$:
(1) Compact groups are unimodular over \mathbb{C} (see (c) above).
(2) Commutative groups are unimodular over \mathbb{C} (Haar measures are bi-invariant).
(3) p-adic reductive groups are also unimodular over \mathbb{C}. (See $[\mathrm{R}, \mathrm{V} .5 .4]$ for a proof.)
(4) [V, I.2.7] The Borel subgroup $B=\left(\begin{array}{cc}\mathbb{Q}_{p}^{\times} & \mathbb{Q}_{p} \\ 0 & \mathbb{Q}_{p}^{\times}\end{array}\right)$of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ is not unimodular over \mathbb{C}. For $g=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in B$, we can evaluate $\Delta_{G}(g)$ by (b) above: taking the compact subgroup $K=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) \cap B=\left(\begin{array}{cc}\mathbb{Z}_{p}^{\times} & \mathbb{Z}_{p} \\ 0 & \mathbb{Z}_{p}^{\times}\end{array}\right)$of B, we have $g K g^{-1}=$ $\left(\begin{array}{cc}\mathbb{Z}_{p}^{\times} & a d^{-1} \mathbb{Z}_{p} \\ 0 & \mathbb{Z}_{p}^{\times}\end{array}\right)$, so $\Delta_{B}(g)=\left[g K g^{-1}: K\right]=\left[a d^{-1} \mathbb{Z}_{p}: \mathbb{Z}_{p}\right]=p^{\text {val }_{p}(d / a)}$ (here val_{p} is the p-adic valuation).

4. Global Hecke algebras

4.1. For a distribution $T: C_{c}^{\infty}(G, R) \longrightarrow R$, we may restrict it to an open subset U of G and get a distribution $\left.T\right|_{U}: C_{c}^{\infty}(U, R) \longrightarrow R$ via the relation $\left.T\right|_{U}(f)=T\left(i_{U}(f)\right)$, where $i_{U}(f) \in C_{c}^{\infty}(G, R)$ is the extension of f to G by zero outside U; the support of T is the set of elements $g \in G$ for which $\left.T\right|_{U} \neq 0$ for every open neighborhood U of x. On the other hand, the preceding distribution T is called locally constant if there is a $K \in \Omega(G)$ which fixes T by the left translation l (that is, $l(x) T=T$ for all $x \in K$).
4.2. The global Hecke algebra of G over R, denoted by $H_{R}(G)$, is the space of distributions $T: C_{c}^{\infty}(G, R) \longrightarrow R$ which are locally constant and of compact support. The space $H_{R}(G)$ is a smooth (left) $R[G \times G]$ module where $G \times G$ acts by (l,r) (left and right translations). Moreover, $H_{R}(G)$ an (associative) R-algebra, where R acts by scalar multiplication, the addition is $\left(T_{1}+T_{2}\right)(f)=T_{1}(f)+T_{2}(f)$ for $T_{1}, T_{2} \in H_{R}(G)$ and $f \in C_{c}^{\infty}(G, R)$, and the multiplication is the convolution $*$ defined as follows: for $T_{1}, T_{2} \in H_{R}(G), T_{1} * T_{2}$ is the unique element in $H_{R}(G)$ satisfying

$$
\int_{g \in G} f(g) \mathrm{d}\left(T_{1} * T_{2}\right)(g)=\int_{\left(g_{1}, g_{2}\right) \in G \times G} f\left(g_{1} g_{2}\right) \mathrm{d} T_{1}\left(g_{1}\right) \mathrm{d} T_{2}\left(g_{2}\right)
$$

for every $f \in C_{c}^{\infty}(G, R)$. We shall often write $T_{1} * T_{2}$ simply as $T_{1} T_{2}$.
4.3. Let us consider the following condition:

$$
\begin{equation*}
\text { there is a } K_{0} \in \Omega(G) \text { such that }\left|K_{0}\right| \in R^{\times} \text {. } \tag{4.3.1}
\end{equation*}
$$

Recall from Lemma 3.4 that the condition (4.3.1) is a necessary and sufficient condition for the existence of a Haar measure of G over R.
4.4. Lemma. Suppose that G satisfies (4.3.1), and let μ be the Haar measure of G over R normalized by $\mu\left(K_{0}\right)=1$. For all $K \in \Omega\left(K_{0}\right)$, set $\mu_{K}=\frac{1}{\mu(K)} \mu$, which is the Haar measure of G over R normalized by the condition $\mu_{K}(K)=1$. Then

$$
e_{K}:=\mathbf{1}_{K} \mu_{K}
$$

is an idempotent of $H_{R}(G)$ (that is, $e_{K}^{2}=e_{K}$), and we have $e_{K^{\prime}} e_{K}=e_{K} e_{K^{\prime}}=e_{K}$ for all $K, K^{\prime} \in \Omega\left(K_{0}\right)$ with $K^{\prime} \subset K$.

Proof. It suffices to show the identity $e_{K^{\prime}} e_{K}=e_{K}$ in the assertion; the equality $e_{K} e_{K^{\prime}}=e_{K}$ can be proved similarly, and the idempotency of e_{K} (that is, $e_{K}^{2}=e_{K}$) is the special case of $K^{\prime}=K$. So let $K, K^{\prime} \in \Omega\left(K_{0}\right)$ with $K^{\prime} \subset K$. For each $f \in C_{c}^{\infty}(G, R)$,

$$
\begin{aligned}
\left\langle e_{K^{\prime}} e_{K}, f\right\rangle & =\int_{\left(g_{1}, g_{2}\right) \in G \times G} f\left(g_{1} g_{2}\right) \mathbf{1}_{K^{\prime}}\left(g_{1}\right) \mathbf{1}_{K}\left(g_{2}\right) \mathrm{d} \mu_{K^{\prime}}\left(g_{1}\right) \mathrm{d} \mu_{K}\left(g_{2}\right) \\
& =\int_{\left(g_{1}, g_{2}\right) \in K^{\prime} \times K} f\left(g_{1} g_{2}\right) \mathrm{d} \mu_{K^{\prime}}\left(g_{1}\right) \mathrm{d} \mu_{K}\left(g_{2}\right) \\
& =\int_{\left(g_{1}, x\right) \in K^{\prime} \times K} f(x) \mathrm{d} \mu_{K^{\prime}}\left(g_{1}\right) \mathrm{d} \mu_{K}(x) \quad\left(x=g_{1} g_{2} \in K, \text { as } K^{\prime} \subset K\right) \\
& =\int_{x \in K} f(x) \mathrm{d} \mu_{K}(x)=\left\langle e_{K}, f\right\rangle ;
\end{aligned}
$$

therefore $e_{K^{\prime}} e_{K}=e_{K}$.
4.5. The algebra $H_{R}(G)$ admits natural actions on smooth representations of G over R : each smooth representation $\pi: G \longrightarrow \mathrm{GL}_{R}(V)$ induces an $H_{R}(G)$-action on the R-module V by

$$
T v=\int_{g \in G} \pi(g) v \mathrm{~d} T(g)
$$

for all $T \in H_{R}(G)$ and $v \in V$. (One may verify that $\left(T_{2} T_{1}\right) v=T_{2}\left(T_{1} v\right)$ for all $T_{1}, T_{2} \in H_{R}(G)$ and $\left.v \in V.\right)$
4.6. Lemma. Suppose that G satisfies (4.3.1). Let $K \in \Omega\left(K_{0}\right)$, so that we have the idempotent $e_{K}=\mathbf{1}_{K} \mu_{K} \in H_{R}(G)$ (Lemma 4.4). Then, for every smooth $R G$-module V, its K-invariant subspace $V^{K}:=\{v \in V: x v=v$ for all $x \in K\}$ is equal to $e_{K} V$.

Proof. For $v \in V$, we have $e_{K} v=\int_{g \in K} g v \mathrm{~d} \mu_{K}(g)$. For each $x \in K$, we may calculate $x e_{K} v=\int_{g \in K} x g v \mathrm{~d} \mu_{K}(g)=\int_{h \in K} h v \mathrm{~d} \mu_{K}\left(x^{-1} g\right)=\int_{h \in K} h v \mathrm{~d} \mu_{K}(h)=e_{K} v$ (μ_{K} is leftinvariant), so $e_{K} V \subset V^{K}$. Conversely, if $v \in V^{K}$, then $e_{K} v=\int_{g \in K} v \mathrm{~d} \mu_{K}(g)=v$, so $V^{K} \subset e_{K} V$. Thus $V^{K}=e_{K} V$.
4.7. If G has a Haar measure μ over R such that $\mu(K)=1$ for some $K \in \Omega(G)$, elements in $H_{R}(G)$ may be "represented" by $C_{c}^{\infty}(G, R)$ as follows: define the convolution $*_{\mu}$ on $C_{c}^{\infty}(G, R)$ by

$$
\left(f_{1} *_{\mu} f_{2}\right)(x)=\int_{g \in G} f_{1}(g) f_{2}\left(g^{-1} x\right) \mathrm{d} \mu(g)
$$

for $f_{1}, f_{2} \in C_{c}^{\infty}(G, R)$; then, equipping $C_{c}^{\infty}(G, R)$ with $*_{\mu}$ as multiplication, the map

$$
C_{c}^{\infty}(G, R) \longrightarrow H_{R}(G), \quad f \longmapsto f \mu,
$$

is an isomorphism of R-algebras. (See [BZ, 1.28-1.30] for a proof.)

5. Some frequently used functors

We shall denote by $\operatorname{Rep}_{R}(G)$ the category of smooth representations of G over R.
5.1. [V, I.4.1] The smooth part functor $(\cdot)^{\infty}:\{R G$-modules $\} \longrightarrow \operatorname{Rep}_{R}(G)$ is defined for every $R G$-module V by

$$
V^{\infty}=\left\{v \in V: \text { the stabilizer } G_{v} \text { of } v \text { by the } G \text {-action is open in } G\right\}=\bigcup_{K \in \Omega(G)} V^{K} \text {. }
$$

Thus an $R G$-module V is smooth if and only if $V^{\infty}=V$. The functor $(\cdot)^{\infty}$ is left exact but not right exact; a counterexample for the right-exactness is the surjective $R\left[\mathbb{Q}_{p}\right]$-homomorphism $\gamma: R\left[\mathbb{Q}_{p}\right] \rightarrow \mathbf{1}_{R}$ given by $\gamma(f)=\sum_{x \in \mathbb{Q}_{p}} f(x)$ (we identify the group ring $R\left[\mathbb{Q}_{p}\right]$ as functions from \mathbb{Q}_{p} to R with finite support): indeed, as each open compact subgroup of \mathbb{Q}_{p} is of infinity cardinality, we have $R\left[\mathbb{Q}_{p}\right]^{\infty}=0$, so the map $\gamma^{\infty}: R\left[\mathbb{Q}_{p}\right]^{\infty}=0 \longrightarrow\left(\mathbf{1}_{R}\right)^{\infty}=R$ induced by γ is not surjective.
5.2. [V, I.4.12] The dual functor $(\cdot)^{*}:\{R G$-modules $\} \longrightarrow\{R G$-modules $\}$ is defined for every $R G$-module V by $V^{*}=\operatorname{Hom}_{R}(V, R)$ with the G-action given by $\left(g v^{*}\right)(v):=v^{*}\left(g^{-1} v\right)$ for $g \in G$ and $\left(v, v^{*}\right) \in V \times V^{*}$. The contragredient functor $\stackrel{\sim}{\cdot}: \operatorname{Rep}_{R}(G) \longrightarrow \operatorname{Rep}_{R}(G)$ is defined by $\widetilde{V}=\left(V^{*}\right)^{\infty}$ for every $V \in \operatorname{Rep}_{R}(G)$.
5.3. [V, I.5] Let H be a closed subgroup of G. The restriction of G-actions to H gives the restriction functor $\operatorname{Res}_{H}^{G}: \operatorname{Rep}_{R}(G) \longrightarrow \operatorname{Rep}_{R}(H)$. On the inverse direction, we have two types of "inductions":
(i) The induction functor $\operatorname{Ind}_{H}^{G}: \operatorname{Rep}_{R}(H) \longrightarrow \operatorname{Rep}_{R}(G)$, which associates to each $W \in \operatorname{Rep}_{R}(H)$ the smooth $R G$-module $\operatorname{Ind}_{H}^{G} W:=V^{\infty}$ where

$$
V=\{f: G \longrightarrow W: f(h g)=h \cdot f(g) \text { for all } h \in H \text { and } g \in G\}
$$

is the $R G$-module with the (left) G-action $(x f)(g):=f(g x)$ for $x, g \in G$ and $f \in V$.
(ii) The compact induction functor $\operatorname{ind}_{H}^{G}: \operatorname{Rep}_{R}(H) \longrightarrow \operatorname{Rep}_{R}(G)$, which associates to each $W \in \operatorname{Rep}_{R}(H)$ the following smooth sub- $R G$-module of $\operatorname{Ind}_{H}^{G} W$:

$$
\operatorname{ind}_{H}^{G} W=\left\{f \in \operatorname{Ind}_{H}^{G} W: \text { the support of } f \text { is compact }\right\} .
$$

If $H \backslash G$ is compact (in particular, if G is a finite group), then $\operatorname{ind}_{H}^{G}=\operatorname{Ind}_{H}^{G}$.
We have Frobenius reciprocities for our closed subgroup H of G :

$$
\operatorname{Hom}_{R G}\left(V, \operatorname{Ind}_{H}^{G} W\right) \simeq \operatorname{Hom}_{R H}\left(\operatorname{Res}_{H}^{G} V, W\right) \text { as } R \text {-modules, }
$$

and, if H is also open in G,

$$
\operatorname{Hom}_{R G}\left(\operatorname{ind}_{H}^{G} W, V\right) \simeq \operatorname{Hom}_{R H}\left(W, \operatorname{Res}_{H}^{G} V\right) \text { as } R \text {-modules. }
$$

We also have Mackey's formulae: when H and K are two closed subgroups such that $H g K$ is open and closed in G for every $g \in G$, we have the following isomorphisms in $\operatorname{Rep}_{R}(H)$ for $W \in \operatorname{Rep}_{R}(K):\left(\operatorname{Ad}_{x}(g)=x g x^{-1}\right.$ is the adjoint action)

$$
\begin{aligned}
& \operatorname{Res}_{H}^{G} \operatorname{Ind}_{K}^{G} W \simeq \prod_{g \in H \backslash G / K} \operatorname{Ind}_{H \cap \operatorname{Ad}_{x}(K)}^{H} \operatorname{Res}_{H \cap \operatorname{Ad}_{x}(K)}^{\operatorname{Ad}_{x}(K)} \operatorname{Ad}_{x} W ; \\
& \operatorname{Res}_{H}^{G} \operatorname{ind}_{K}^{G} W \simeq \bigoplus_{g \in H \backslash G / K} \operatorname{ind}_{H \cap \operatorname{Ad}_{x}(K)}^{H} \operatorname{Res}_{H \cap \operatorname{Ad}_{x}(K)}^{\operatorname{Ad}_{x}(K)} \operatorname{Ad}_{x} W .
\end{aligned}
$$

5.4. [V, I.4] For every closed subgroup H of G, we have the invariant functor $(\cdot)^{H}$ and the coinvariant functor $(\cdot)_{H}$: (below, V is an $R G$-module)
$(\cdot)^{H}:\{R G$-modules $\} \longrightarrow\{R$-modules $\}, \quad V^{H}=\{v \in V: h v=v$ for all $h \in H\} ;$
$(\cdot)_{H}:\{R G$-modules $\} \longrightarrow\{R$-modules $\}, \quad V_{H}=V / V(H)$ with $V(H)=\sum_{\substack{h \in H \\ v \in V}} R .(h v-v)$.
In particular, $(\cdot)^{G}$ and $(\cdot)_{G}$ both give functors from $\operatorname{Rep}_{R}(G)$ to $\operatorname{Rep}_{R}(G) ;(\cdot)^{G}$ is left exact and $(\cdot)_{G}$ is right exact. For $V \in \operatorname{Rep}_{R}(G), V_{G}$ is the largest quotient of V on which G acts trivially. If $|G| \in R^{\times}$, then $e_{G}: V \rightarrow V^{G}$ is a projection with kernel $V(G)$, so e_{G} descends into an isomorphism $V_{G} \simeq V^{G}$ in $\operatorname{Rep}_{R}(G)$, and the functors $(\cdot)_{G} \simeq(\cdot)^{G}$ are exact; for general $|G|,(\cdot)^{G}$ and $(\cdot)_{G}$ need not be exact (see $\S 5.6(1)(2)$ below).
5.5. [V, II.2] Let G be a p-adic reductive group, and fix a choice of parabolic triple (P, M, U); that is, $P=M U \simeq M \ltimes U$ is a parabolic subgroup, M is a Levi subgroup of P, and U is the unipotent radical of P (all such parabolic triples are G-conjugate). For $W \in \operatorname{Rep}_{R}(M)$, we may regard it as an element in $\operatorname{Rep}_{R}(P)$ via the quotient $P \rightarrow P / U=M$, and then induce it to G; this gives a parabolic induction functor

$$
i_{M}^{G}: \operatorname{Rep}_{R}(M) \longrightarrow \operatorname{Rep}_{R}(G), \quad W \longmapsto \operatorname{ind}_{P}^{G} W=\operatorname{Ind}_{P}^{G} W
$$

$\left(\operatorname{ind}_{P}^{G}=\operatorname{Ind}_{P}^{G}\right.$ because $P \backslash G$ is compact). On the other hand, for each $V \in \operatorname{Rep}_{R}(G)$, the coinvariant space V_{U} lies in $\operatorname{Rep}_{R}(M)$ because M normalizes U; we then get a parabolic restriction functor

$$
r_{M}^{G}: \operatorname{Rep}_{R}(G) \longrightarrow \operatorname{Rep}_{R}(M), \quad V \longmapsto V_{U}
$$

The functor i_{M}^{G} admits r_{M}^{G} as its left adjoint:

$$
\operatorname{Hom}_{R M}\left(r_{M}^{G} V, W\right) \simeq \operatorname{Hom}_{R G}\left(V, i_{M}^{G} W\right) \text { as } R \text {-modules }
$$

A representation $V \in \operatorname{Rep}_{R}(G)$ is called cuspidal if $r_{M}^{G}(V)=0$ for all proper parabolic triples (P, M, U) ("proper" means that $M \neq G$), or equivalently (by the above adjunction between r_{M}^{G} and $\left.i_{M}^{G}\right)$ if $\operatorname{Hom}_{R G}\left(V, i_{M}^{G} W\right)=0$ for all proper parabolic triples (P, M, U) and for all $W \in \operatorname{Rep}_{R}(M)$. (See $\S 5.6(4)$ below for an example.)
5.6. Let us use the above tools to analyse the smooth $R G$-module $V=\operatorname{ind}_{B}^{G}\left(\mathbf{1}_{B}\right)$ in detail, where $G=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ with p a prime number and with \mathbb{F}_{p} the finite field of p elements, $B=\left(\begin{array}{cc}\mathbb{F}_{p}^{\times} & \mathbb{F}_{p} \\ 0 & \mathbb{F}_{p}^{\times}\end{array}\right)$, and $R=\overline{\mathbb{F}}_{\ell}$ with ℓ a prime number such that $\operatorname{ord}_{\ell}(p)=2$ (that is, ℓ dividing $(p+1)$ but not dividing $(p-1)$; in particular, $\ell \neq p)$. Observe that $|G|=\left(p^{2}-1\right)\left(p^{2}-p\right)=p(p-1)^{2}(p+1)=0 \in R$.

We identify $V=R[G / B]:=\bigoplus_{x \in G / B} R .[x]$ (the $[x]$'s are formal symbols) where G acts on left by multiplication: $g \cdot[x]=[g x]$ for $g \in G$ and $x \in G / B$. Via the bijection

$$
G / B \xrightarrow{\sim} \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)=\mathbb{F}_{p} \cup\{\infty\}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) B \longmapsto[a: c]=a / c,
$$

we also identify $V=R\left[\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)\right]:=\bigoplus_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)} R .[x]$, where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ acts on $[x] \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$ by $g \cdot[x]=\left[\frac{a x+b}{c x+d}\right]$. For $f \in V$, we then write $f=\sum_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)} f_{x} \cdot[x]\left(f_{x} \in R\right)$.

Now consider the map

$$
\pi: V \longrightarrow \mathbf{1}_{G}, \quad f \longmapsto \sum_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)} f_{x}
$$

which is a surjective morphism in $\operatorname{Rep}_{R}(G)$. Moreover, for the map

$$
\delta: \mathbf{1}_{G}=R \longrightarrow V, \quad r \longmapsto r \cdot \sum_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)}[x]
$$

we have $\pi \circ \delta=0$ since $\pi\left(\sum_{x \in \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)}[x]\right)=p+1=0 \in R=\overline{\mathbb{F}}_{\ell}$. Let $E=\operatorname{ker} \pi$, so that $\delta\left(\mathbf{1}_{G}\right) \subset E$; upon setting $F=E / \delta\left(\mathbf{1}_{G}\right)$, we obtain two exact sequences in $\operatorname{Rep}_{R}(G)$:

$$
\begin{align*}
& 0 \longrightarrow E \longrightarrow V \xrightarrow{\pi} \mathbf{1}_{G} \longrightarrow 0 \tag{5.6.1}\\
& 0 \longrightarrow \mathbf{1}_{G} \xrightarrow{\delta} E \longrightarrow F \longrightarrow 0 . \tag{5.6.2}
\end{align*}
$$

We may write $V=\left(E \mid \mathbf{1}_{G}\right)=\left(\mathbf{1}_{G}|F| \mathbf{1}_{G}\right)$ to record the above two exact sequences.
(1) The surjective map π gives an example of non-right-exactness of $(\cdot)^{G}$. Indeed, we have $V^{G}=\delta\left(\mathbf{1}_{G}\right)$ in $\operatorname{Rep}_{R}(G)$, so π induces $\pi^{G}: V^{G}=\delta\left(\mathbf{1}_{G}\right) \longrightarrow\left(\mathbf{1}_{G}\right)^{G}=\mathbf{1}_{G}$, which is a zero map (because $\pi \circ \delta=0$) and is hence no longer surjective.
(2) The injective map δ gives an example of non-left-exactness of $(\cdot)_{G}$. To see this, we first calculate $E_{G}=E / E(G)$. Note first that $\mathcal{B}:=\left\{[x]-[\infty]: x \in \mathbb{F}_{p}\right\}$ is a basis for the R-vector space E. Let $v=[\infty]-[0] \in E$; for $g=\left(\begin{array}{cc}1 & 0 \\ a & 1\end{array}\right) \in G\left(a \in \mathbb{F}_{p}^{\times}\right)$, we have $g v-v=\left[a^{-1}\right]-[\infty] \in E(G)$; for $h=\left(\begin{array}{cc}1 & b \\ 0 & 1\end{array}\right) \in G\left(b \in \mathbb{F}_{p}\right)$, we have $h v-v=[0]-[b] \in E(G)$; then $[0]-[\infty]=([0]-[1])+([1]-[\infty]) \in E(G)$, so $\mathcal{B} \subset E(G)$
and we deduce that $E(G)=E$, whence $E_{G}=0$. The injective map δ then induces $\delta_{G}:\left(\mathbf{1}_{G}\right)_{G}=\mathbf{1}_{G} \longrightarrow E_{G}=0$ which is not injective.
(3) The sequences (5.6.1) and (5.6.2) are not split in $\operatorname{Rep}_{R}(G)$. To prove this, notice first that $V=\operatorname{ind}_{B}^{G} \boldsymbol{1}_{B}$ is a projective object in $\operatorname{Rep}_{R}(G)$: as $|B|=p(p-1)^{2} \in R^{\times}=\overline{\mathbb{F}}_{\ell}^{\times}$, $\mathbf{1}_{B}$ is projective in $\operatorname{Rep}_{R}(B)$, so the Frobenius reciprocity and the exactness of $\operatorname{Res}_{B}^{G}$ imply that V is projective. If (5.6.1) were split in $\operatorname{Rep}_{R}(G)$, then $\mathbf{1}_{G}$ would be a direct summand of V and would thus be projective, so $(\cdot)^{G}$ would be an exact functor, contradicting (1). Thus (5.6.1) is not split in $\operatorname{Rep}_{R}(G)$. On the other hand, if (5.6.2) were split in $\operatorname{Rep}_{R}(G)$, then $\mathbf{1}_{G}$ would be a direct summand of E, so that we would have $E_{G} \supset\left(\mathbf{1}_{G}\right)_{G}=\mathbf{1}_{G} \neq 0$; but this would contradict (2). Therefore (5.6.2) is not split in $\operatorname{Rep}_{R}(G)$, either.
(4) The smooth $R G$-module F is cuspidal. Indeed, as all proper parabolic triples of G are G-conjugate to (B, T, U) wtih $T=\left(\begin{array}{cc}\mathbb{F}_{p}^{\times} & 0 \\ 0 & \mathbb{F}_{p}^{\times}\end{array}\right)$and $U=\left(\begin{array}{cc}1 & \mathbb{F}_{p} \\ 0 & 1\end{array}\right)$, to prove that F is cuspidal, it suffices to show that $F_{U}=0$. As $|U|=p \in R^{\times}=\overline{\mathbb{F}}_{\ell} \times$, we know that $(\cdot)_{U}$ and $(\cdot)^{U}$ in $\operatorname{Rep}_{R}(U)$ are isomorphic and are exact (§5.4), and that every exact sequence in $\operatorname{Rep}_{R}(U)$ splits (in fact, $\operatorname{Rep}_{R}(U) \simeq \operatorname{Rep}_{\mathbb{C}}(U)$). In particular, showing $F_{U}=0$ is the same as showing $F^{U}=0$. We now apply the exact functor $\left(\operatorname{Res}_{U}^{G}(\cdot)\right)^{U}$ to the exact sequences (5.6.1) and (5.6.2), and we get the following two split exact sequences in $\operatorname{Rep}_{R}(U)$:

$$
\begin{align*}
& 0 \longrightarrow E^{U} \longrightarrow V^{U} \xrightarrow{\pi^{U}} \mathbf{1}_{U} \longrightarrow 0 \tag{5.6.3}\\
& 0 \longrightarrow \mathbf{1}_{U} \xrightarrow{\delta^{U}} E^{U} \longrightarrow F^{U} \longrightarrow 0 . \tag{5.6.4}
\end{align*}
$$

Using Mackey's formula and the identifications $U \backslash G / B \simeq B \backslash G / B \simeq\left\{\operatorname{id}_{2},\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\right\}$ (Bruhat's decomposition), we have $\operatorname{Res}_{U}^{G} V=\mathbf{1}_{U} \oplus \operatorname{reg}_{U}$ where $\operatorname{reg}_{U}=\operatorname{ind}_{1}^{U} \mathbf{1}$ is the regular character of U; we then have $V^{U}=\mathbf{1}_{U} \oplus \mathbf{1}_{U}$, so (5.6.3) gives us $E^{U}=\mathbf{1}_{U}$, and then (5.6.4) gives us $F_{U}=F^{U}=0$. Thus F is a cuspidal representation in $\operatorname{Rep}_{R}(G)$.

6. Irreducible and admissible representations

6.1. A representation $V \in \operatorname{Rep}_{R}(G)$ is called irreducible if it is nonzero and if its only smooth $R G$-submodules are 0 and V itself. We shall denote by $\operatorname{Irr}_{R}(G)$ the set of isomorphism classes of irreducible representations in $\operatorname{Rep}_{R}(G)$.

A representation $V \in \operatorname{Rep}_{R}(G)$ is called admissible if V^{K} is an R-module of finite type for every $K \in \Omega(G)$.
6.2. Recall that G is called countable at infinity if it is the union of countably many compact subsets. Compact groups are clearly countable at infinity. In addition, p-adic reductive groups are countable at infinity, since for a p-adic reductive group
G, its Cartan decomposition into (K, K)-cosets for a maximal compact subgroup K implies that the double quotient $K \backslash G / K$ is countable. (For $G=\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ with p a prime number, one of its maximal compact subgroup is $K=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$, and $K \backslash G / K$ is in bijection with $T^{++}:=\left\{\left(\begin{array}{cc}t^{a} & 0 \\ 0 & t^{b}\end{array}\right): a, b \in \mathbb{Z}, a \geq b\right\}$.)
6.3. Schur's lemma. Let R be a field and $V \in \operatorname{Rep}_{R}(G)$ be irreducible. Then:
(a) The endomorphism ring $\operatorname{End}_{R G}(V)=\operatorname{Hom}_{R G}(V, V)$ is a division ring.
(b) $\operatorname{End}_{R G}(V)=R$ if the following two conditions both hold: (i) R is algebraically closed; (ii) one of the following is true: (1) $\operatorname{dim}_{R} V<|R|$, or (2) V is admissible, or (3) G is countable at infinity and $|R|$ is uncountable.

Proof. (See also [BZ, 2.11], [R, B.I] and [V, I.6].) The irreducibility of V implies that each $\sigma \in \operatorname{End}_{R G}(V)$ is either zero or an invertible operator, so (a) follows.

Now we prove (b). Suppose that (i) holds and that there is a $\sigma \in \operatorname{End}_{R G}(V)$ such that $\sigma \neq c \cdot \operatorname{id}_{V}$ for all $c \in R$. We are going to prove that (ii) does not hold.

By assumption, we may define invertible operators $\sigma_{c}:=(\sigma-c)^{-1}$ on V for all $c \in R$, and these operators $\sigma_{c}(c \in R)$ are linearly independent: indeed, for every $c_{1}, \cdots, c_{r} \in R$ and $d_{1}, \cdots, d_{r} \in R$, the operator $\tau=\sum_{i=1}^{r} d_{i} \sigma_{c_{i}}=\left(\prod_{i=1}^{r} \sigma_{c_{i}}\right) P(\sigma)$ for some $P(t) \in R[t]$, and then, by factorizing $P(t)=\prod_{j=1}^{s}\left(t-a_{j}\right)\left(a_{j} \in R\right)$ (we can do this by (i)), we get $P(\sigma)=\prod_{j=1}^{s} \sigma_{a_{j}}^{-1}$, so τ is invertible.

Fix any $0 \neq v \in V$. The invertibility of τ implies that $\left\{\sigma_{c} v: c \in R\right\}$ is a linearly independent subset of $V^{G_{v}}$, where G_{v} is the stabilizer of v in G, so that

$$
\operatorname{dim}_{R} V \geq \operatorname{dim}_{R} V^{G_{v}} \geq|R| ;
$$

in particular, as $|R|=\infty$ by (i), we have $\operatorname{dim}_{R} V^{G_{v}}=\infty$, so V is not admissible. In addition, the irreducibilty of V shows that $V=R G v=R\left[G / G_{v}\right] v$. If G is countable at infinity, then $\left[G: G_{v}\right]$ is countable, so $\operatorname{dim}_{R} V=\operatorname{dim}_{R} R\left[G / G_{v}\right] v$ is countable. As $\operatorname{dim}_{R} V \geq|R|$, we see that $|R|$ is also countable.
6.4. Suppose that R is a field, that $|G| \in R^{\times}$, and that $V \in \operatorname{Rep}_{R}(G)$ is admissible. Then, by [BZ, 2.15], we have:
(a) \tilde{V} is admissible, and we have a canonical isomorphism $V \simeq \widetilde{\widetilde{V}}$ in $\operatorname{Rep}_{R}(G)$.
(b) V is irreducible if and only if \widetilde{V} is irreducible.
6.5. By [BZ, 2.12], when G is countable at infinity, we have the completeness of the system of irreducible representations in $\operatorname{Rep}_{\mathbb{C}}(G)$: for every $0 \neq T \in H_{\mathbb{C}}(G)$ there exists an irreducible $V \in \operatorname{Rep}_{\mathbb{C}}(G)$ such that the action of T on V (§4.5) is nonzero.

This result need not hold when \mathbb{C} is replaced by general R. For example, consider $G=\mathbb{F}_{2}=\{0,1\}$ (as an additive group) and $R=\overline{\mathbb{F}}_{2}$, so that $\operatorname{Rep}_{R}(G)=\operatorname{Rep}_{\overline{\mathbb{F}}_{2}}\left(\mathbb{F}_{2}\right)$, and we have $H_{R}(G)=H_{\overline{\mathbb{F}}_{2}}\left(\mathbb{F}_{2}\right)=R . \mathbf{1}_{0}+R . \mathbf{1}_{1}$, where $\mathbf{1}_{i}: G \longrightarrow R$ is the characteristic
funtion of G with support $\{i\}$. Moreover, there is only one irreducible representation in $\operatorname{Rep}_{R}(G)$, namely the trivial representation $\mathbf{1}_{G}$. Now take $T:=\mathbf{1}_{0}+\mathbf{1}_{1} \in H_{R}(G)$: we have $T \neq 0$, but the action of T on the trivial representation $\mathbf{1}_{G}=R$ is zero, since for $1 \in R$ we have $T \cdot 1=1+1=2=0 \in R=\overline{\mathbb{F}}_{2}$.

7. Representations of compact groups

In this section, let G be a compact group.
Observe that for every open compact normal subgroup K, the quotient group G / K is finite (because G is compact); this observation makes the smooth representation theory of G ressembles the representation theory of finite groups:
(a) Every irreducible $V \in \operatorname{Rep}_{\mathbb{C}}(G)$ is of finite type as an R-module.
(b) Every $V \in \operatorname{Rep}_{\mathbb{C}}(G)$ is unitary (in the way that there is a G-invariant inner product on V) and hence is completely reducible (that is, split as a direct sum of irreducible submodules). The category $\operatorname{Rep}_{\mathbb{C}}(G)$ is thus semisimple.
(c) We have a decomposition

$$
\operatorname{Rep}_{\mathbb{C}}(G)=\prod_{V \in \operatorname{Irrc}_{\mathbb{C}}(G)} \operatorname{Rep}_{\mathbb{C}}(G)_{V}
$$

where $\operatorname{Rep}_{\mathbb{C}}(G)_{V}$ is the V-isotypic component of $\operatorname{Rep}_{\mathbb{C}}(G)$ (that is, $\operatorname{Rep}_{\mathbb{C}}(G)_{V}$ is the subcategory of $\operatorname{Rep}_{\mathbb{C}}(G)$ formed by smooth $\mathbb{C} G$-modules whose irreducible components are all isomorphic to V). For each $V \in \operatorname{Irr}_{\mathbb{C}}(G)$, we have

$$
\operatorname{Rep}_{\mathbb{C}}(G)_{V}=e_{V} \cdot \operatorname{Rep}_{\mathbb{C}}(G)
$$

where e_{V} is the central idempotent of $H_{R}(G)$ defined by

$$
e_{V}=(\operatorname{deg} V) \cdot \operatorname{trace}\left(g^{-1} \mid V\right) \mu_{G}(g),
$$

with $\operatorname{deg} V=\operatorname{dim}_{\mathbb{C}} V$ being the degree of V and μ_{G} being the Haar measure of G over \mathbb{C} normalized by $\mu_{G}(G)=1$. The idempotents $\left\{e_{V}: V \in \operatorname{Irr}_{\mathbb{C}}(G)\right\}$ are orthogonal: $e_{V} e_{W}=0$ whenever $V, W \in \operatorname{Irr}_{\mathbb{C}}(G)$ with $V \neq W$.

8. Compact representations

We return to general G (not necessarily compact).
8.1. Let $V \in \operatorname{Rep}_{R}(G)$. For $(v, \widetilde{v}) \in V \times \widetilde{V}$, we shall write $\widetilde{v}(v)$ as $\langle\widetilde{v}, v\rangle$, and we call the function

$$
\gamma_{v, \tilde{v}}: G \longrightarrow R, \quad g \longmapsto\langle g \widetilde{v}, v\rangle=\left\langle\widetilde{v}, g^{-1} v\right\rangle
$$

the matrix coefficient of V with respect to (v, \widetilde{v}). The representation V is called compact if all of its matrix coefficients $\gamma_{v, \widetilde{v}},(v, \widetilde{v}) \in V \times \widetilde{V}$, are of compact support.

One can show that irreducible compact representations in $\operatorname{Rep}_{R}(G)$ are of finite type as R-modules (and thus admissible). (Restrict them to their supports and apply $\S 7(\mathrm{a})$.)
8.2. Lemma. Let R be a field and suppose that G satisfies (4.3.1). If $V \in \operatorname{Rep}_{R}(G)$ is compact and is of finite type as an $R G$-module, then it is admissible.

Proof. (See also [BZ, 2.40-2.41] and [V, I.7.3-I.7.4].) For such a $V \in \operatorname{Rep}_{R}(G)$ (compact and of finite type), $V=\sum_{i=1}^{r} R G v_{i}$ for some $v_{1}, \cdots, v_{r} \in V$. Let $G_{v_{i}}$ be the stabilizer of v_{i} in G (each $G_{v_{i}}$ is an open subgroup in G), and set $N=\cap_{i=1}^{r} G_{v_{i}}$ which is an open subgroup in G, so that $V=V^{N}$. For every $K \in \Omega\left(K_{0} \cap N\right)$, we may consider the idempotent e_{K} in $H_{R}(G)$ (Lemma 4.4), and then $V=V^{K}=e_{K} V=\sum_{i=1}^{r} V_{i}$ where each $V_{i}:=e_{K} R G v_{i}$ (Lemma 4.6). To show that V is admissible, it then suffices to show that each V_{i} is of finite dimension over R.

We prove $\operatorname{dim}_{R} V_{i}<\infty$ by contradiction. So suppose $\operatorname{dim}_{R} V_{i}=\infty$, so that there would be a sequence $\left(g_{j}\right)_{j \geq 1}$ in G such that $\left\{u_{j}:=e_{V} g_{j} v_{i} \mid j \geq 1\right\}$ is a linearly independent subset in V_{i}; we could then construct a functional $T: V^{K} \longrightarrow R$ such that $T\left(u_{j}\right)=j$ for all $j \geq 1$ and $T=0$ outside $\bigoplus_{j \geq 1} R u_{j}$, and then extend it to a functional $T: V \longrightarrow R$ via $T(v):=T\left(e_{K} v\right)$ for all $v \in V$, so that $T \in\left(V^{*}\right)^{K} \subset \widetilde{V}$. We would then have $\gamma_{v_{i}, T}\left(g_{j}^{-1}\right)=T\left(g_{j} v_{i}\right)=T\left(u_{j}\right)=j$, so $\gamma_{v_{i}, T}$ would have an unbounded image and thus could not have compact support, contradicting to the compactness of V.
8.3. Suppose from now on that R is a field, that $|G| \in R^{\times}$, that G is unimodular over R, and that $V \in \operatorname{Rep}_{R}(G)$ is irreducible and compact (and thus admissible by §§ 8.1-8.2).

Let us consider the following maps:
(i) $a: V \otimes_{R} \widetilde{V} \longrightarrow \operatorname{End}_{R G}(V)^{\infty}$ is the R-linear map such that $a(v \otimes \widetilde{v})(w)=\langle\widetilde{v}, w\rangle v$ for all $v \otimes \widetilde{v} \in V \otimes_{R} \widetilde{V}$ and $w \in V$. With the natural $(G \times G)$-action on $V \otimes_{R} \widetilde{V}$ and the $(G \times G)$-action on $\operatorname{End}_{R G}(V)^{\infty}$ via $(g \cdot \sigma)(v):=g\left(\sigma\left(g^{-1} v\right)\right)$ for $g \in G, \sigma \in \operatorname{End}_{R G}(V)^{\infty}$ and $v \in V$, the map a is an $R[G \times G]$-isomorphism: indeed, as V is admissible, for each $K \in \Omega(G)$ we have $\widetilde{V}^{K}=\left(V^{*}\right)^{K}=\left(V^{K}\right)^{*}$ (see [BZ, 2.14(a)]) and thus

$$
\operatorname{dim}_{R}\left(V \otimes_{R} \widetilde{V}\right)^{K \times K}=\left(\operatorname{dim}_{R} V^{K}\right)^{2}=\operatorname{dim}_{R}\left(\operatorname{End}_{R G}(V)^{\infty}\right)^{K \times K}<\infty
$$

(ii) $\gamma: V \otimes_{R} \widetilde{V} \longrightarrow C_{c}^{\infty}(G, R)$ is the R-linear map such that $\gamma(v \otimes \widetilde{v})=\gamma_{v, \tilde{v}}$ for $v \otimes \widetilde{v} \in V \otimes_{R} \widetilde{V}$ (§ 8.1; the map γ is well-defined since V is compact). With the natural $(G \times G)$-action on $V \otimes_{R} \widetilde{V}$ and the $(G \times G)$-action (l, r) on $C_{c}^{\infty}(G, R)$ (Lemma 2.4), the map γ is an $R[G \times G]$-homomorphism. In addition, γ is not a zero map: indeed, we have $V \neq 0$, and also $\widetilde{V} \neq 0$ by the formula $\widetilde{V}^{K}=\left(V^{K}\right)^{*}(K \in \Omega(G))$ in (i); we may then choose a $0 \neq \widetilde{v} \in \widetilde{V}$, so that $\gamma(v \otimes \widetilde{v})(1)=\langle\widetilde{v}, v\rangle \neq 0$ for some $0 \neq v \in V$; we then have $\gamma(v \otimes \widetilde{v}) \neq 0$.
(iii) For each Haar measure μ of G over R, set the map

$$
\mu: C_{c}^{\infty}(G, R) \xrightarrow{\sim} H_{R}(G), \quad f \longmapsto f \mu .
$$

It is known that this map μ is an R-module isomorphism (§4.7), and we use it to trasnport the $(G \times G)$-action (l, r) on $C_{c}^{\infty}(G, R)$ to a $(G \times G)$-action on $H_{R}(G)$.
(iv) For each $W \in \operatorname{Rep}_{R}(G)$, we have the map $\eta_{W}: H_{R}(G) \longrightarrow \operatorname{End}_{R G}(W)^{\infty}$ which associates each $T \in H_{R}(G)$ to its action on $W: \eta_{W}(T) w=\int_{g \in G} g w \mathrm{~d} T(g)$ for $w \in W$ (§4.5). With the $(G \times G)$-actions on $H_{R}(G)$ and on $\operatorname{End}_{R G}(W)^{\infty}$ as in (i) and (iii), the map η_{W} is an $R[G \times G]$-module homomorphism. (Indeed, one uses the bi-invariance of μ to show that $\eta_{W} \circ \mu$ is an $R[G \times G]$-module homomorphism.)

With this setup, a Haar measure μ of G over R is called a formal degree of V if the following diagram in $\operatorname{Rep}_{R}(G \times G)$ is commutative:

Once a formal degree of V exists, it is unique because all Haar measures of G are proportional (Lemma 3.4). We shall see in $\S 8.6$ that in the case of compact G, the formal degree is a generalization of the usual degree of a representation.
8.4. Theorem. Setup as in § 8.3. If $R=\mathbb{C}$ and G is countable at infinity, then V admits a unique formal degree.

More generally, we have the following result (a corollary of [V, I.7.9]): with the setup in § 8.3, if R is an algebraically closed field, then V admits a formal degree if and only if V is projective in $\operatorname{Rep}_{R}(G)$ and \widetilde{V} is irreducible in $\operatorname{Rep}_{R}(G)$.

Proof of Theorem 8.4. (Compare [S, 1.6] and [BZ, 2.42].)
(1) Choose an arbitrary measure μ of G on R, and consider the map

$$
a^{-1} \circ \eta_{V} \circ \mu \circ \gamma: V \otimes_{\mathbb{C}} \tilde{V} \longrightarrow V \otimes_{\mathbb{C}} \tilde{V}
$$

which is a $\mathbb{C}[G \times G]$-module homomorphism. As V is irreducible and admissible in $\operatorname{Rep}_{\mathbb{C}}(G)$, the representation $V \otimes_{\mathbb{C}} \widetilde{V}$ is irreducible and admissible in $\operatorname{Rep}_{\mathbb{C}}(G \times G)$ (§6.4, and [BZ, 2.16]), so Schur's lemma (§6.3) tell us that

$$
a^{-1} \circ \eta_{V} \circ \mu \circ \gamma=d \cdot \mathrm{id}_{V \otimes_{\mathbb{C}} \tilde{V}}
$$

for some constant $d \in \mathbb{C}$. If we can show that $d \neq 0$, then $\mu_{V}:=d^{-1} \mu$ will fulfill the relation $a^{-1} \circ \eta_{V} \circ \mu_{V} \circ \gamma=\operatorname{id}_{V \otimes_{\mathbb{C}} \tilde{V}}$ and will hence be the formal degree of V.
(2) Upon considering the map $\gamma_{\mu}=\mu \circ \gamma: V \otimes_{\mathbb{C}} \widetilde{V} \longrightarrow H_{\mathbb{C}}(G)$, for each irreducible $W \in \operatorname{Rep}_{\mathbb{C}}(G)$ not isomorphic to V, we claim that $\eta_{W}\left(\gamma_{\mu}(\sigma)\right)=0$ for all $\sigma \in V \otimes_{\mathbb{C}} \widetilde{V}$, or equivalently $\eta_{W}\left(\gamma_{\mu}\left(V \otimes_{\mathbb{C}} \widetilde{V}\right)\right)=\{0\} \subset \operatorname{End}_{\mathbb{C} G}(W)$. Indeed, if we regard $V \otimes_{\mathbb{C}} \widetilde{V}$ as a smooth $\mathbb{C} G$-module where G only acts on V, then for each $w \in W$, the map

$$
V \otimes_{\mathbb{C}} \widetilde{V} \longrightarrow W, \quad \sigma \longmapsto \gamma_{\mu}(\sigma) w
$$

is a $\mathbb{C} G$-module homomorphism, so its image (in W) is a direct sum of V (by the irreducibility of V) and hence must be zero because $W \not \approx V$. We then deduce that $\gamma_{\mu}\left(V \otimes_{\mathbb{C}} \widetilde{V}\right) w=\{0\} \subset W$ for each $w \in W$, whence $\gamma_{\mu}\left(V \otimes_{\mathbb{C}} \widetilde{V}\right)=\{0\} \subset \operatorname{End}_{\mathbb{C} G}(W)$.
(3) Now we return to show that $d \neq 0$. By $\S 8.3$ (ii), γ is not a zero map, so there is a $\sigma \in V \otimes_{\mathbb{C}} \widetilde{V}$ such that $\gamma(\sigma) \neq 0$ and hence $\gamma_{\mu}(\sigma) \neq 0$; by $\S 6.5$, there is an irreducible $W \in \operatorname{Rep}_{\mathbb{C}}(G)$ such that $\eta_{W}\left(\gamma_{\mu}(\sigma)\right) \neq 0$, so by (2) we know that W must be isomorphic to V, so $\eta_{V}\left(\gamma_{\mu}(\sigma)\right) \neq 0$. It follows that $d \cdot \sigma=a^{-1}\left(\eta_{V}\left(\gamma_{\mu}(\sigma)\right)\right) \neq 0$, whence $d \neq 0$.
8.5. Theorem. Suppose G is unimodular over \mathbb{C} and is countable at infinity. Let $\operatorname{Irr}_{\mathbb{C}}(G)_{\mathrm{cpt}}$ be the set of isomorphism classes of compact irreducible representaitons in $\operatorname{Rep}_{\mathbb{C}}(G)$. Then: (below, the maps η_{W} are as in §8.3(iv))
(a) For each $V \in \operatorname{Irr}_{\mathbb{C}}(G)_{\mathrm{cpt}}$ and each $K \in \Omega(G)$, there exists a unique idempotent $e_{K}^{V} \in H_{\mathbb{C}}(G)$ such that $\eta_{V}\left(e_{K}^{V}\right)=\eta_{V}\left(e_{K}\right)$ and $\eta_{W}\left(e_{K}^{V}\right)=0$ for every $W \in \operatorname{Irr} \mathbb{C}(G)$ different from V. For every $K, K^{\prime} \in \Omega(G)$ with $K^{\prime} \subset K$, we have

$$
e_{K^{\prime}}^{V} e_{K}^{V}=e_{K}^{V} e_{K^{\prime}}^{V}=e_{K^{\prime}}^{V} e_{K}=e_{K} e_{K^{\prime}}^{V}=e_{K}^{V}
$$

(b) For every $V \in \operatorname{Irr}_{\mathbb{C}}(G)_{\mathrm{cpt}}$, each $E \in \operatorname{Rep}_{\mathbb{C}}(G)$ decomposes into a direct sum $E=E_{V} \oplus E_{V}^{\prime}$, where E_{V} is isomorphic to a direct sum of V, and E_{V}^{\prime} has no subquotients isomorphic to V.
(c) Let $E \in \operatorname{Rep}_{\mathbb{C}}(G)$, and let E_{cpt} be the submodule of E generated by E_{V} for all $V \in \operatorname{Irr}_{\mathbb{C}}(G)_{\mathrm{cpt}}$. Then E_{cpt} is completely reducible and compact, and E / E_{cpt} has no nonzero compact subquotients.

Proof of Theorem 8.5. (Compare [BZ, 2.42-2.44].) It suffices to prove (a) and (b).
(a) Let $V \in \operatorname{Irr}_{\mathbb{C}}(G)_{\text {cpt }}$ and $K \in \Omega(G)$. The uniqueness of e_{K}^{V} follows from $\S 6.5$, and we now construct e_{K}^{V}. By Theorem 8.4 we know that V has a unique formal degree μ_{V}; using the proof of Theorem 8.4, one can show that e_{K}^{V} is given by

$$
e_{K}^{V}=\left(\gamma \circ a^{-1} \circ \eta_{V}\right)\left(e_{K}\right) \mu_{V}
$$

for each $K \in \Omega(G)$. The desired relations concerning $K, K^{\prime} \in \Omega(G)$ follows from the uniqueness of e_{K}^{V} and Lemma 4.4.
(b) For each $f \in E$, the smoothness of E shows that $f \in E^{K}$ for some $K \in \Omega(G)$, so that $e_{K} f=f$ (Lemma 4.6); we then set $f_{V}=e_{K}^{V} f$, and by (a) we know that f_{V} is independent of choices of K; then $E_{V}:=\left\{f_{V}: f \in E\right\}$ and $E_{V}^{\prime}:=\left\{f-f_{V}: f \in E\right\}$ will have the desired properties.
8.6. Suppose that G is compact (so G is unimodular over \mathbb{C} by $\S 3.8$, and G is countable at infinity), and let $V \in \operatorname{Irr}_{\mathbb{C}}(G)$ (so V is necessarily compact).

We choose any $0 \neq v \in V$; as V is smooth, $v \in V^{K}$ for some $K \in \Omega(G)$; upon shrinking K when necessary, we may suppose furthermore that K is normal in G. The
space V^{K} thus obtained is a nonzero sub- $\mathbb{C} G$-module of V, so that $V=V^{K}=e_{K} V$ by the irreducibility of V and by Lemma 4.6, and in particular we have $\eta_{V}\left(e_{K}\right)=\mathrm{id}_{V}$.

By Theorem 8.5(a), there exists a unique idempotent $e_{K}^{V} \in H_{\mathbb{C}}(G)$ such that $\eta_{V}\left(e_{K}^{V}\right)=\mathrm{id}_{V}$ and $\eta_{W}\left(e_{K}^{V}\right)=0$ for all $V \neq W \in \operatorname{Irr}_{\mathbb{C}}(G) ;$ moreover, by the proof of that theorem, the idempotent e_{K}^{V} is given by $e_{K}^{V}=\left(\gamma \circ a^{-1} \circ \eta_{V}\right)\left(e_{K}\right) \mu_{V}$; if we observe that $\left(\gamma \circ a^{-1}\right)(A)(g)=\operatorname{trace}\left(g^{-1} A \mid V\right)$ for all $A \in \operatorname{End}_{\mathbb{C} G}(V)^{\infty}$ and all $g \in G$, then we can deduce that $e_{K}^{V}=\operatorname{trace}\left(g^{-1} \mid V\right) \mu_{V}(g)$.

On the other hand, in view of $\S 7(\mathrm{c})$, the idempotent $e_{V}=(\operatorname{deg} V) \operatorname{trace}\left(g^{-1} \mid V\right) \mu_{G}(g)$ (with $\mu_{G}(G)=1$) also satisfies $\eta_{V}\left(e_{V}\right)=\operatorname{id}_{V}$ and $\eta_{W}\left(e_{V}\right)=0$ for all $V \neq W \in \operatorname{Irr}_{\mathbb{C}}(G)$, so by the uniqueness of e_{K}^{V} we must have $e_{K}^{V}=e_{V}$, whence the relation

$$
\mu_{V}=(\operatorname{deg} V) \mu_{G},
$$

which links the formal degree of V and the degree of V.

Acknowledgements. The preliminary version of this note was used in a seminar talk on March 14th, 2023 in the Institute of Mathematics, Academia Sinica, and I thank Cheng-Chiang, Wille, Kazuki, Harrison and all the other participants in that talk for their enlightening comments, which led to an improvement of this note.

References

[BZ] I. N. Bernshtein and A. V. Zelevinskii, Representations of the group GL (n, F), where F is a non-Archimedean local field, Russian Math. Surveys 31:3 (1976)
[R] D. Renard, Représentations des groupes réductifs p-adiques, Cours Spécialisés n ${ }^{\circ}$ 17, Soc. Math. de France (2010). Also available online at https://perso.pages. math.cnrs.fr/users/david.renard/recherche.html
[S] V. Sécherre, The Bernstein decomposition for smooth complex representations of GL (n, F) (2013). Available online at https://lmv.math.cnrs.fr/laboratoire/ annuaire/membres-du-laboratoire/vincent-secherre/
[V] M.-F. Vignéras, Représentations ℓ-modulaires d'un groupe réductif p-adique avec $\ell \neq p$, Birkhäuser (1996)
[We] A. Weil, Basic Number Theory, reprint of the 1974 edition, Springer-Verlag (1995)
[Ws] P. R. Wesolek, An introduction to totally disconnected locally compact groups (2019). Available online at https://zerodimensional.group/reading_group/ 190227_michal_ferov.pdf

