SMOOTH REPRESENTATION THEORY FOR LOCALLY PROFINITE GROUPS
Note by Tzu-Jan Li. Date: March 14th, 2023

1. Locally profinite groups

1.1. A group G is called locally profinite if it is a locally compact, Hausdorff and
totally disconnected topological group. Upon setting

Q(G) = {open compact subgroups of G},

a theorem of van Dantzig (see for example [Ws, Sec. 1.1]) says that a locally profinite
group G admits Q(G) as a fundamental system of neighborhoods of the identity element
l¢ of G (in fact the converse is also true).

1.2. Here are some examples of locally profinite groups:
(1) Finite groups (with discrete topology) are locally profinite (and compact).

(2) The p-adic field Q, (where p is a prime number), equipped with the p-adic
topology and regard as an additive group, is locally profinite. In @Q,, a fundemantal
system of neighborhoods of 0 by open compact subgroups is given by {p"Z, : n € N},
where Z,, is the ring of p-adic integers.

(3) p-adic reductive groups, such as GL2(Q,) (the group of 2 x 2 invertible matrices
over QQ,), are also locally profinite. In GL2(Q,), a fundamental system of neighborhoods
of idy by open compact subgroups is {idy + p"Ms(Z,) : n € N*}, where My(Z,) is the
set of 2 x 2 matrices over Z,.

(4) Galois groups Gal(K/F) for (infinite) Galois extensions of fields F' C K, equipped
with the Krull topology, are locally profinite and compact. In Gal(K/F'), a fundamen-
tal system of neighborhoods of idx by open compact normal subgroups is {Gal(K/FE) :
F CECK,and F C E is a finite Galois extension}.

2. Smooth representations

From now on and till the end of this note, let G be a locally profinite group, and
let R be a commutative ring with unity 1.

2.1. A function from G to R is called smooth if it is locally constant. In this way,
“smooth” representations of G are G-modules whose elements are “locally stabilized”
by G; to be more precise, let 7 : G — GLg (V') be a representation of G over R (that is,
7 is a group homomorphism), where V' is an R-module and GLg(V') denotes the group
of R-module isomorphisms from V' to itself. The representation 7 is called smooth if
for every v € V, the stabilizer G, :== {g € G : 7(g)v = v} is open in G. An equivalent
way to saying this is to say that V' is a smooth RG-module (here RG := R[G] is the
group ring of G over R), namely V' is an RG-module with the action given by 7 such
that all elements of V' admit open stabilizers in G.
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When G is a finite group, all RG-modules are smooth because the smoothness
condition is automatically fulfilled.

2.2. We return to general G. By definition, a linear character of G over R is a
group homomorphism from G to R* = GL;(R). For a linear character ¢ : G — R*,
the following equivalences can be easily verified:

@ is smooth <= kery is open in G <= ¢ is locally constant.

In particular, for general R, the trivial representation 15 of G over R (that is,
1g = R where G acts trivially) is always smooth. When R = C equipped with Euclidean
topology, as we shall see in the next lemma, the above three equivalent conditions are
also equivalent to the condition that ¢ be continuous.

2.3. Lemma. A linear character ¢ : G — C* is continuous (where C is equipped
with the Euclidean topology) if and only if it is locally constant.

Proof. (Compare [We, Lem. VII.4].) Suppose that ¢ is continuous, and we want
to show that it is locally constant. Fix any choice of K € Q(G), and denote by
o : K — C* the restriction of ¢ to K. Then |pk| : K — RZ, is a continuous
group homomorphism, so the image of |¢k| is a compact subgroup of RZ, and must
thus equal to {1}. Thus px has its image in S' := {z € C : |z|] = 1}, and this
image px(K) = p(K) is a subgroup of S'. Choose an open neighborhood U of 1 in
E :={z € C: Re(z) > 0}, so that ¢~*(U) is an open neighborhood of 1 in G. The
group G being locally profinite, there is a K’ € Q(G) such that K/ € ¢ Y (U)N K
(theorem of van Dantzig). Then ¢(K’) = px(K’) is a subgroup of S* N E, hence must
be equal to {1}; in other words, K" C ker ¢, whence the local constancy of .

Conversely, if ¢ is locally constant, then, as ¢(1) = 1, there is an open neighborhood
U of 1 in G such that ¢ = 1 on U; so U C ker ¢, and then for every A C C* we see
that ¢ 1(A) = ¢ !(A) - ker ¢ is open in G, whence the continuity of ¢. O

2.4. Lemma. The space C°(G, R) of locally constant functions from G to R with
compact support is a smooth R[|G x G|-module with the following (left) (G x G)-action:
for (z,y) € Gx G and f € CX(G, R), ((x,y)- f)(g) := f(z""gy) for all g € G. Indeed,
we may identify

CX(G.R) = | Cx(@ R)K,

KeQ(G)

where C*(G, R)5*E consists of elements of C*°(G, R) fired by K x K.

Proof. For f € C°(G,R), there are finitely many open compact subsets U; of G
such that f is constant on each U;. Using the locally profinite topology of G' and the
continuity of the map ¢g,h) € G x G — gxh € G, we can find a sufficiently small
K € Q(G) so that each U; is the disjoint union of a finite number of open compact
subsets of G of the form KzK (with z € G). We thus have f € C®(G, R)K*K, O



3. Haar measures

3.1. An R-module homomorphism 7" : C°(G, R) — R will be called a distri-
bution on G over R. For a distribution 7" on G over R, It is customary to write
T(f) = (T, f) for f € C(G,R). Each (left) G-action on C°(G, R) induces a (left)
G-action on distributions 7' : C*°(G, R) — R via

(@T, f) = (T.a""f)

for all z € G and f € C*(G, R).

The (G'x G)-action on the space C2°(G, R) described in Lemma 2.4 may be separated
into two actions: the left translation (I(x)f)(g) = f(z~'g) and the right translation
(r(y)f)(g) = f(g9y) where z,y,9 € G and f € C*(G, R); note that [ and r are both
left G-actions on C'°(G, R). For a distribution 7" on G over R, we may thus consider
[(9)T and r(g)T for g € G.

3.2. A Haar measure of G over R is, by definition, a nontrivial distribution
p:Cr(G,R)— R

which is left-invariant in the way that [(g)u = p for all ¢ € G. When G has a Haar
measure pu, for f € C®(G, R) it is customary to write

u(f)Z/Gfdu=/€Gf(g)du(g)-

3.3. To discuss the existence of Haar measures, we need the notion of the pro-
order |G| for our locally profinite groups G (see [V, 1.1.5]): when G is compact, its
pro-order |G| is defined as the least common multiple of [G : K] for K running over
elements of Q(G) (we regard |G| as a supernatural number, identified as a function from
the set of prime numbers to N U {oo}); for general G, its pro-order |G| is defined as
the least common multiple of | K| for K running over elements of Q(G). For example:
if G is finite, then its pro-order |G| is just its order; for a prime number p, we have

Q| = p* and [GL2(Qy)| = (p — D(p* — 1)p>.
With this preparation, we have the next lemma for Haar measures.
3.4. Lemma. (a) If there is a K € Q(G) with |K| € R*, then there is a unique
Haar measure pr of G such that the volume px(K) = ux(lx) = 1 (where 1k is the

characteristic function of G- with support K ), and any other Haar measure u of G over
R is of the form pu = c- ux for some 0 # c € R.

(b) For K € Q(G), we have the following equivalence:

|K| € R* <= G has a Haar measure j over R such that u(K) = 1.



Proof. (See also [V, 1.2.4].) When thereisa K € Q(G) with |K| € R*, we first set for
all K" € Q(G) set the volume pg(K') = [K': K] := %, for each f € CX(G, R),
we may find a K" € Q¢, ¢1,-++ ,9, € Gand ¢1,--- ,¢, € Rsuch that f =Y., ¢;l,x
(arguing as in the proof of Lemma 2.4), and then we set ux(f) = >, ¢ - ux(K’)
which may be checked to be well-defined. This uniquely constructs ug, and the other

assertions are easily verified in the same fashion. O]

3.5. Corollary. For each K € Q(G), G admits a unique Haar measure p over C
such that pu(K) = 1.

3.6. Suppose that G admits a Haar measure pu over R such that u(K) = 1 for
some K € Q(G). For each g € G, as the right translation r(g)u is left invariant (that
is, invariant under the left translations I(z) for all x € G), we know from Lemma 3.4
that there is a constant 0 # A(g) € R* such that 7(g)u = A(g)p (indeed, A(g) is only
nonzero in R a priori, but as A(g ) A(g)p = r(g~Hr(g)p = u, we get A(g™1)A(g) =1
and hence A(g) € R*), and it is easy to verify that the association g — Ag(g) gives
a linear character Ag : G — R*, called the modulus of G over R. Note that:

(a) Ag is independent of choices of Haar measure p such that p(K) =1 for some
K € Q(G) (depending on ), as all such Haar measures of G differ only by a unit in R
thanks to Lemma 3.4. (This independence from p also follows from (b) below.)

(b) We have Ag(g) = [gKg™' : K| := [gl[(lg;;gﬁ!{:;]m for g € G and K € Q(G) with
|K| € R*. Indeed,

Aclo) / S@)dula) = / @) (@) = / f@)dutag™)
= / . f(yg)du(y) (take y = 29 ");

setting therein f = 1x and using the relation u(Kg™) = u(gKg™'), we will get the
desired formula for Ag.

(¢c) When R = C, Ag takes its values in RZ, and is smooth, as its restriction to
every K € Q(G) is trivial (Ag(K) is a compact subgroup of RZ; and so must be {1}).

3.7. Suppose that G admits a Haar measure p over R such that pu(K) = 1 for some
K € Q(G). Then the following two conditions are equivalent:

(i) Ag =1 on G;

(ii) the Haar measure p (and thus all Haar measures of G over R) is bi-invariant
(that is, invariant under [(x) and r(z) for all z € G).

When one of (i) and (ii) above holds for G, we call G unimodular over R.

3.8. Here are some examples of (non-)unimodular groups when R = C:

(1) Compact groups are unimodular over C (see (c¢) above).

4



(2) Commutative groups are unimodular over C (Haar measures are bi-invariant).

(3) p-adic reductive groups are also unimodular over C. (See [R, V.5.4] for a proof.)

X
(4) [V, 1.2.7] The Borel subgroup B = ( (%p 8’; ) of GL2(Q,) is not unimod-
)

ular over C. For g = ( 8 cbl ) € B, we can evaluate Ag(g) by (b) above: taking
Ly 7,
the compact subgroup K = GLy(Z,) N B = 6’ ZX of B, we have gKg!

7X ad'Z,
0z
p-adic valuation).

), so Ap(g) = [gKg™': K] = [ad™'Z, : Z,) = p*» ¥/ (here val, is the

4. Global Hecke algebras

4.1. For a distribution T : C°(G, R) — R, we may restrict it to an open subset U
of G and get a distribution 7|y : C°(U, R) — R via the relation T'|y(f) = T'(iv(f)),
where iy (f) € C°(G, R) is the extension of f to G by zero outside U; the support of
T is the set of elements g € G for which T'|y # 0 for every open neighborhood U of z.
On the other hand, the preceding distribution 7T is called locally constant if there is
a K € Q(G) which fixes T by the left translation [ (that is, [(z)T = T for all z € K).

4.2. The global Hecke algebra of G over R, denoted by Hg(G), is the space of
distributions 7" : C2°(G, R) — R which are locally constant and of compact support.
The space Hr(G) is a smooth (left) R[G x G] module where G x G acts by (I,r) (left
and right translations). Moreover, Hr(G) an (associative) R-algebra, where R acts by
scalar multiplication, the addition is (71 + T%)(f) = T1(f) + Ta(f) for T1, T, € Hr(G)
and f € C*°(G, R), and the multiplication is the convolution * defined as follows: for
Ty, Ty € Hr(G), T * Ty is the unique element in Hr(G) satisfying

/ F(9)d(Ty * Ty)(g) = /( S 09T 0B

for every f € C°(G, R). We shall often write T3 * Ty simply as T17T5.
4.3. Let us consider the following condition:
(4.3.1) there is a Koy € Q(G) such that |Ko| € R*.

Recall from Lemma 3.4 that the condition (4.3.1) is a necessary and sufficient condition
for the existence of a Haar measure of G over R.

4.4. Lemma. Suppose that G satisfies (4.3.1), and let p be the Haar measure of
G over R normalized by p(Ko) = 1. For all K € Q(Ky), set ux = ﬁu, which is the

Haar measure of G over R normalized by the condition puyx(K)=1. Then

ex = 1k
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is an idempotent of Hr(G) (that is, €% = ex ), and we have exrex = exexr = ex for
all K, K" € Q(Ky) with K’ C K.

Proof. 1t suffices to show the identity exrex = ex in the assertion; the equality
exex = ex can be proved similarly, and the idempotency of e (that is, €% = ef) is the
special case of K/ = K. So let K, K' € Q(K,) with K’ C K. For each f € C>*(G, R),

exoercs f) — / F(9192) L i (90) L (g2) e (90)dparc (g2)
(91,92)€GXG
-/ Florg) s (91) e ()
(91,92)EK' XK
-/ F()duse (g0) s () (¢ = grom € K. 25 K C K)
(91,2)EK' XK

/ f(@)dpk(z) = (ex, [);

therefore exrex = ex. O

4.5. The algebra Hp(G) admits natural actions on smooth representations of G
over R: each smooth representation 7 : G — GLg(V) induces an Hp(G)-action on
the R-module V' by

To - / _wlgwarto)

for all T € Hgr(G) and v € V. (One may verify that (1x71)v = Ty(Tyv) for all
Tl,TQ € HR(G) and v € V)

4.6. Lemma. Suppose that G satisfies (4.5.1). Let K € Q(Ky), so that we have the
idempotent ey = 1xpux € Hr(G) (Lemma 4.4). Then, for every smooth RG-module
V, its K-invariant subspace VE :={v €V :a2v =wv for all x € K} is equal to eV .

Proof. For v € V, we have exv = f cx 9V duK(g). For each x € K, we may calculate

TRV = fergUduK fheK hvd,uK(x g) thK hvdpg(h) = exv (px is left-
invariant), so exV' C V. Conversely, if v € V¥, then exv = [ vdug(g) = v, so
VE CexV. Thus VE = exV. O

4.7. If G has a Haar measure p over R such that u(K) = 1 for some K € Q(G),
elements in Hr(G) may be “represented” by C°(G, R) as follows: define the convolution
, on C*(G, R) by

(140 fo)( / £1(9) folg ™ 2)dp()

for fi, fo € C°(G, R); then, equipping C°(G, R) with *, as multiplication, the map
Co(G,R) — Hp(G),  fr— fu,
is an isomorphism of R-algebras. (See [BZ, 1.28-1.30] for a proof.)
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5. Some frequently used functors

We shall denote by Repy(G) the category of smooth representations of G over R.

5.1. [V, [.4.1] The smooth part functor (-)* : {RG-modules} — Repy(G) is
defined for every RG-module V' by

V> ={v eV : the stabilizer G, of v by the G-action is open in G} = U VE,
KeQ(G)

Thus an RG-module V' is smooth if and only if V> = V. The functor () is left
exact but not right exact; a counterexample for the right-exactness is the surjective
R[Qp)-homomorphism 7 : R[Q,] — 1 given by v(f) = >_,cq, f(z) (we identify the
group ring R[Q,] as functions from Q, to R with finite support): indeed, as each open
compact subgroup of Q, is of infinity cardinality, we have R[Q,]> = 0, so the map
7>+ R[Q,]* =0 — (1) = R induced by 7 is not surjective.

5.2. [V, 1.4.12] The dual functor (-)* : {RG-modules} — {RG-modules} is
defined for every RG-module V' by V* = Hompg(V, R) with the G-action given by
(gv*)(v) := v*(g~'v) for g € G and (v,v*) € V x V*. The contragredient functor
T Repp(G) — Repp(G) is defined by V = (V*)™ for every V € Repp(G).

5.3. [V, L.5] Let H be a closed subgroup of G. The restriction of G-actions to H
gives the restriction functor Res% : Repp(G) — Repp(H). On the inverse direction,
we have two types of “inductions”:

(i) The induction functor Ind% : Repp(H) — Repy(G), which associates to each
W € Repp(H) the smooth RG-module Ind$W := V> where

V={f:G—W:f(hg)=h-f(g) forall h € H and g € G}

is the RG-module with the (left) G-action (zf)(g) := f(gz) for x,g € G and f € V.

(ii) The compact induction functor ind$ : Repp(H) — Repy(G), which asso-
ciates to each W € Repp(H) the following smooth sub- RG-module of Ind$ W

indi ={fe Indi : the support of f is compact}.

If H\G is compact (in particular, if G is a finite group), then ind$; = Ind$.

We have Frobenius reciprocities for our closed subgroup H of G:
Hompgg(V, Ind$W) ~ Hompy (Res%V, W) as R-modules,
and, if H is also open in G,

Hompgg (indG W, V) ~ Hompy (W, Res$ V) as R-modules.



We also have Mackey’s formulae: when H and K are two closed subgroups such
that HgK is open and closed in G for every g € GG, we have the following isomorphisms
in Repg(H) for W € Repy(K): (Ad,(g) = zgz~' is the adjoint action)

Ad. (K
ResGIndGW ~ [ Indff a0 Resyinn (xoAds W
geH\G/K
Res%indG W ~ @ indgmAdx(K)Resﬁlfw””A () Ada WV
geH\G/K

5.4. [V, 1.4] For every closed subgroup H of G, we have the invariant functor (-)?

and the coinvariant functor (-)g: (below, V' is an RG-module)

()" : {RG-modules} — {R-modules}, V7 ={v eV :hv=wvforall he H};

() g : {RG-modules} — {R-modules}, Vy =V/V(H) with V(H) = Z R.(hv — v).
vev

In particular, (-)¢ and (-)¢ both give functors from Repz(G) to Repg(G); (+)¢ is left

exact and (-)¢ is right exact. For V € Repyp(G), Vi is the largest quotient of V' on

which G acts trivially. If |G| € R*, then eg : V — V% is a projection with kernel V(G),

so eg descends into an isomorphism Vg =~ V¢ in Repy(G), and the functors (-)g ~ (-)¢

are exact; for general |G|, ()¢ and (-)¢ need not be exact (see §5.6(1)(2) below).

5.5. [V, I1.2] Let G be a p-adic reductive group, and fix a choice of parabolic triple
(P,M,U); that is, P = MU ~ M x U is a parabolic subgroup, M is a Levi subgroup
of P, and U is the unipotent radical of P (all such parabolic triples are G-conjugate).
For W € Repg(M), we may regard it as an element in Repg(P) via the quotient
P — P/U = M, and then induce it to G; this gives a parabolic induction functor

i Reppr(M) — Repp(G), W +— indGW = IndGW

(ind% = Ind% because P\G is compact). On the other hand, for each V' € Repr(G),
the coinvariant space Vi; lies in Repy(M) because M normalizes U; we then get a
parabolic restriction functor

r$; : Repr(G) — Repp(M), V +— Vp.
The functor i§; admits r§; as its left adjoint:
Hompgy (r$;V, W) ~ Hompg(V,i§,W) as R-modules.

A representation V' € Repgy(G) is called cuspidal if r§;(V) = 0 for all proper
parabolic triples (P, M,U) (“proper” means that M # G), or equivalently (by the
above adjunction between r§; and i§;) if Homgq(V,i§,W) = 0 for all proper parabolic
triples (P, M,U) and for all W € Repg(M). (See §5.6(4) below for an example.)
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5.6. Let us use the above tools to analyse the smooth RG-module V = ind$%(15)
in detail, where G = GLy(F,) with p a prime number and with F, the finite field of p
>< —
elements, B = ( ]Fg’ IIFEQ ), and R = F, with ¢ a prime number such that ord,(p) = 2
P

(that is, ¢ dividing (p + 1) but not dividing (p — 1); in particular, ¢ # p). Observe that
Gl= - 1)@* —p)=pp-1)*(p+1)=0€R.

We identify V' = R[G/B] := @,cq,/p R-[7] (the [2]'s are formal symbols) where G

acts on left by multiplication: ¢ - [x] = [gz] for ¢ € G and = € G/B. Via the bijection

G/B — P'(F,) = F, U {co}, (ZL Z)Bl—>[a:c]:a/c,
we also identify V' = R[PY(F,)] := D.cpi(,) B-[z], where g = ( CCL Z ) € G acts on
+

[z] € PL(F,) by g- [z] = [c:erd] For f € V, we then write f = > _pi (s ) fo-[7] (fo € R).

Now consider the map

m:V —1q, f+— Z fe,

z€P1(F)p)
which is a surjective morphism in Repy(G). Moreover, for the map

§:lg=R—V, re—r- Y [q],

z€P1(F)p)

we have m o d = 0 since 7 (Zzepl(FP)[xD =p+1=0€ R=TF,. Let E = kerm, so that
d(1g) C E; upon setting F'= E/§(1g), we obtain two exact sequences in Repy(G):
(5.6.1) 0—F—V -1 —0;

(5.6.2) 0—1¢ - E— F — 0.

We may write V = (F|1lg) = (1¢|F|1¢) to record the above two exact sequences.

(1) The surjective map © gives an example of non-right-ezactness of (-)¢. Indeed,
we have V¢ = §(1¢) in Repg(G), so 7 induces 7% : V¢ = §(1¢) — (1¢)¢ = 1g,
which is a zero map (because m o d = 0) and is hence no longer surjective.

(2) The injective map 0 gives an example of non-left-exactness of (-)a. To see this,
we first calculate Eq = E/E(G). Note first that B := {[z] — [oc] : x € F,} is a basis

for the R-vector space E. Let v = [oo] — [0] € E; for g = ( Cll (1) ) € G (a €Fy),
we have gv — v = [a7!] — [o0] € E(G); for h = (1) ll) € G (b € F,), we have
hv—v = [0] = [b] € E(G); then [0] —[oo] = ([0] - [1]) + ([1] = [o0]) € E(G), so B C E(G)

9



and we deduce that E(G) = E, whence Eg = 0. The injective map 0 then induces
d¢ : (1g)e = 1¢ — Eg = 0 which is not injective.

(3) The sequences (5.6.1) and (5.6.2) are not split in Repz(G). To prove this, notice
first that V = ind$15 is a projective object in Repy(G): as |B| = p(p—1)? € R* =TF,,
15 is projective in Repy(B), so the Frobenius reciprocity and the exactness of Res§
imply that V' is projective. If (5.6.1) were split in Repg(G), then 1g would be a
direct summand of V' and would thus be projective, so (-)¢ would be an exact functor,
contradicting (1). Thus (5.6.1) is not split in Repz(G). On the other hand, if (5.6.2)
were split in Repy(G), then 15 would be a direct summand of E, so that we would
have E¢ D (1g)e = 1¢ # 0; but this would contradict (2). Therefore (5.6.2) is not
split in Repy(G), either.

(4) The smooth RG-module F is cuspidal. Indeed, as all proper parabolic triples

X
of G are G-conjugate to (B,T,U) wtih T = ( Fop IPE)X ) and U = ( (1) Iﬁip >, to
P
prove that F' is cuspidal, it suffices to show that Fy = 0. As |U| = p € R* = F,,
we know that (-)y and (-)V in Repg(U) are isomorphic and are exact (§5.4), and that
every exact sequence in Repy(U) splits (in fact, Repz(U) ~ Repe(U)). In particular,
showing Fy; = 0 is the same as showing F'V = 0. We now apply the exact functor
(Res$ ()Y to the exact sequences (5.6.1) and (5.6.2), and we get the following two split
exact sequences in Repy(U):

(5.6.3) 0— EV VvV "1, 0,
(5.6.4) 0—1y 2 BV BV .

Using Mackey’s formula and the identifications U\G/B ~ B\G/B ~ {idQ’ ( (1) (1) ) }

(Bruhat’s decomposition), we have ResjV = 1y @ reg;; where reg;; = ind{1 is the
regular character of U; we then have VYV = 1 @ 1y, so (5.6.3) gives us BV = 1y, and
then (5.6.4) gives us Fyy = FV = 0. Thus F is a cuspidal representation in Repy(G).

6. Irreducible and admissible representations

6.1. A representation V' € Repy(G) is called irreducible if it is nonzero and if its
only smooth RG-submodules are 0 and V itself. We shall denote by Irrz(G) the set of
isomorphism classes of irreducible representations in Repy(G).

A representation V' € Repy(G) is called admissible if VX is an R-module of finite
type for every K € Q(G).

6.2. Recall that G is called countable at infinity if it is the union of countably
many compact subsets. Compact groups are clearly countable at infinity. In addition,
p-adic reductive groups are countable at infinity, since for a p-adic reductive group
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G, its Cartan decomposition into (K, K)-cosets for a maximal compact subgroup K
implies that the double quotient K\G/K is countable. (For G = GLy(Q,) with p a
prime number, one of its maximal compact subgroup is K = GLy(Z,), and K\G/K is

in bijection with T+ := {( to 2, ) ca,b€Zya> b})

6.3. Schur’s lemma. Let R be a field and V' € Repg(G) be irreducible. Then:

(a) The endomorphism ring Endgg (V) = Hompga(V, V) is a division ring.

(b) Endgg(V) = R if the following two conditions both hold: (i) R is algebraically
closed; (ii) one of the following is true: (1) dimg V' < |R|, or (2) V is admissible, or
(3) G is countable at infinity and |R| is uncountable.

Proof. (See also [BZ, 2.11], [R, B.I] and [V, 1.6].) The irreducibility of V' implies
that each 0 € Endgg(V) is either zero or an invertible operator, so (a) follows.

Now we prove (b). Suppose that (i) holds and that there is a ¢ € Endgg (V') such
that o # ¢ - idy for all ¢ € R. We are going to prove that (ii) does not hold.

By assumption, we may define invertible operators o, := (¢ — ¢)™! on V for all
¢ € R, and these operators o. (¢ € R) are linearly independent: indeed, for every
¢, ,¢ € Rand dy,--- ,d, € R, the operator 7 = Y '_, dio., = ([[;_, 0¢;)P(0) for
some P(t) € R[t], and then, by factorizing P(t) = [[;_,(t — a;) (a; € R) (we can do
this by (i)), we get P(o) =[], 0, !, so 7 is invertible.

j:1 a; Y
Fix any 0 # v € V. The invertibility of 7 implies that {o.v : ¢ € R} is a linearly
independent subset of V& where G, is the stabilizer of v in G, so that

dimp V > dimp V" > |R|;

in particular, as |R| = oo by (i), we have dimp V% = oo, so V is not admissible. In
addition, the irreducibilty of V' shows that V' = RGv = R|G/G,]v. If G is countable
at infinity, then [G : G,] is countable, so dimg V' = dimg R[G/G,|v is countable. As
dimg V' > |R|, we see that |R| is also countable. O

6.4. Suppose that R is a field, that |G| € R*, and that V' € Repy(G) is admissible.
Then, by [BZ, 2.15], we have:

(a) V is admissible, and we have a canonical isomorphism V ~ V in Repp(G).
(b) V' is irreducible if and only if V is irreducible.

6.5. By [BZ, 2.12], when G is countable at infinity, we have the completeness of
the system of irreducible representations in Repe(G): for every 0 # T € Hc(G) there
exists an irreducible V' € Rep¢(G) such that the action of 7" on V (§4.5) is nonzero.

This result need not hold when C is replaced by general R. For example, consider
G = Fy = {0,1} (as an additive group) and R = Iy, so that Repp(G) = Repg, (F2),
and we have Hp(G) = Hg,(F2) = R.19+ R.1;, where 1; : G — R is the characteristic
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funtion of G with support {i}. Moreover, there is only one irreducible representation
in Repg(G), namely the trivial representation 1. Now take T := 1y +1; € Hg(G):
we have T # 0, but the action of T on the trivial representation 15 = R is zero, since
forle Rwehave T-1=1+1=2=0¢€ R=TF,.

7. Representations of compact groups

In this section, let G be a compact group.

Observe that for every open compact normal subgroup K, the quotient group G /K
is finite (because G is compact); this observation makes the smooth representation
theory of GG ressembles the representation theory of finite groups:

(a) Every irreducible V € Repc(G) is of finite type as an R-module.

(b) Every V' € Rep(G) is unitary (in the way that there is a G-invariant inner prod-
uct on V') and hence is completely reducible (that is, split as a direct sum of irreducible
submodules). The category Repe(G) is thus semisimple.

(¢) We have a decomposition

Repe(G) = [ Repc(@)v,
Velrre(G)

where Repe(G)y is the V-isotypic component of Repe(G) (that is, Repe(G)y is the
subcategory of Repe(G) formed by smooth CG-modules whose irreducible components
are all isomorphic to V). For each V € Irre(G), we have

Repe(G)v = ey - Repe(G)
where ey is the central idempotent of Hr(G) defined by
ev = (degV) - trace(g'|V)uc(g),

with degV = dim¢ V' being the degree of V' and ug being the Haar measure of G over
C normalized by pue(G) = 1. The idempotents {ey : V € Irre(G)} are orthogonal:
evew = 0 whenever V,W € Irre(G) with V # W.

8. Compact representations

We return to general G' (not necessarily compact).

8.1. Let V € Repy(G). For (v,7) € V x V, we shall write 0(v) as (7,v), and we
call the function
Yi:G— R, g+ (gv,v) = (1, g_lv>

the matrix coefficient of V' with respect to (v,v). The representation V is called
compact if all of its matrix coefficients 7,5, (v,0) € V x V, are of compact support.
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One can show that irreducible compact representations in Repg(G) are of finite type
as R-modules (and thus admissible). (Restrict them to their supports and apply § 7(a).)

8.2. Lemma. Let R be a field and suppose that G satisfies (4.3.1). If V € Repg(G)
18 compact and is of finite type as an RG-module, then it is admissible.

Proof. (See also [BZ, 2.40-2.41] and [V, 1.7.3-1.7.4].) For such a V' € Repy(G)
(compact and of finite type), V = 3| RGv; for some vy, -+ ,v, € V. Let G,, be the
stabilizer of v; in G (each G,, is an open subgroup in G), and set N = N;_,G,, which is
an open subgroup in G, so that V = V. For every K € Q(KyN N), we may consider
the idempotent ex in Hz(G) (Lemma 4.4), and then V = VE = exV =>"" | V; where
each V; := ex RGv; (Lemma 4.6). To show that V' is admissible, it then suffices to show
that each V; is of finite dimension over R.

We prove dimg V; < oo by contradiction. So suppose dimpg V; = oo, so that there
would be a sequence (g;);>1 in G such that {u; := eyg;v;|j > 1} is a linearly inde-
pendent subset in Vj; we could then construct a functional 7' : VX — R such that
T(uj) = j for all j > 1 and T' = 0 outside P, Ru;, and then extend it to a functional
T :V — R via T(v) := T(exv) for all v € V, so that T € (V*)X c V. We would
then have %Z.7T(gj_1) = T(g;v;) = T(uj) = j, s0 Y, v would have an unbounded image
and thus could not have compact support, contradicting to the compactness of V. [

8.3. Suppose from now on that R is a field, that |G| € R*, that G is unimodular
over R, and that V' € Repy(G) is irreducible and compact (and thus admissible by
§§8.1-8.2).

Let us consider the following maps:

(i) a:V®rV — Endpe(V)™ is the R-linear map such that a(v®?)(w) = (¥, w)v
forall v®@7 € V@rV and w € V. With the natural (G x G)-action on V @z V and the
(G x G)-action on Endgg (V)™ via (g-0)(v) := g(o(g'v)) for g € G, 0 € Endgg(V)>®
and v € V, the map a is an R|G x G]-isomorphism: indeed, as V' is admissible, for each
K € Q(G) we have VE = (V) = (VE)* (sce [BZ, 2.14(a)]) and thus

dimz(V @ V)K= (dimg VF)? = dimp(End ge (V)®) K < 0.

(i) v : V®rV — C®(G,R) is the R-linear map such that v(v ® 0) = 7,5 for
vRTEV RV (§8.1; the map = is well-defined since V' is compact). With the natural
(G x @)-action on V ®@g V and the (G x G)-action (I,7) on C=(G, R) (Lemma 2.4),
the map v is an R[G x G- homomorphlsm In addition, v is not a zero map: indeed,
we have V # 0, and also V ~# 0 by the formula VE = (VEY (K € Q(G)) in (i); we
may then choose a 0 # 7 € V, so that v(v ® 7)(1) = (7,v) # 0 for some 0 # v € V; we
then have (v ® v) # 0.

(iii) For each Haar measure p of G over R, set the map

p:CX(G,R) — Hp(G), [ fu
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It is known that this map p is an R-module isomorphism (§4.7), and we use it to
trasnport the (G x G)-action (I,7) on C*°(G, R) to a (G x G)-action on Hg(G).

(iv) For each W € Repy(G), we have the map nw : Hr(G) — Endge(W)> which
associates each T' € Hg(G) to its action on W: ny (T)w = fgeG gwdT(g) for w e W
(§4.5). With the (G x G)-actions on Hg(G) and on Endgg(W)* as in (i) and (iii), the
map ny is an R[G x G]-module homomorphism. (Indeed, one uses the bi-invariance of
p to show that ny o p is an R[G x GJ-module homomorphism.)

With this setup, a Haar measure p of G over R is called a formal degree of V if
the following diagram in Repy(G x G) is commutative:

(8.3.1) alz 2|

Once a formal degree of V' exists, it is unique because all Haar measures of G are
proportional (Lemma 3.4). We shall see in §8.6 that in the case of compact G, the
formal degree is a generalization of the usual degree of a representation.

8.4. Theorem. Setup as in §8.3. If R = C and G is countable at infinity, then
V' admits a unique formal degree.

More generally, we have the following result (a corollary of [V, 1.7.9]): with the setup
in §8.3, if R is an algebraically closed field, then V' admaits a formal degree if and only
if V' is projective in Repg(G) and V' is irreducible in Repg(G).

Proof of Theorem 8.4. (Compare [S, 1.6] and [BZ, 2.42].)
(1) Choose an arbitrary measure p of G on R, and consider the map
ailonVoMOfy:V(&cf/ﬁ%V@c‘N/,

which is a C[G x G]-module homomorphism. As V' is irreducible and admissible in

Repe(G), the representation V' ®¢ V' is irreducible and admissible in Repq(G x G)

(§6.4, and [BZ, 2.16]), so Schur’s lemma (§6.3) tell us that
ailonvouo’y:d-id‘/@@;

for some constant d € C. If we can show that d # 0, then uy = d 'y will fulfill the

relation a= oy oy oy = idy .7 and will hence be the formal degree of V.

(2) Upon considering the map v, = povy:V ®¢ V—s Hc(G), for each irreducible
W € Repe(G) not isomorphic to V', we claim that ny (v,(0)) =0 for all 0 € V ®¢ vV,
or equivalently nw (7,(V ®c V) = {0} C Endce(W). Indeed, if we regard V @¢ V as
a smooth CG-module where G only acts on V', then for each w € W, the map

V®CXN/ — W, o+ vy, (0)w,
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is a CG-module homomorphism, so its image (in W) is a direct sum of V' (by the
irreducibility of V') and hence must be zero because W 22 V. We then deduce that
Y, (V @c Vw = {0} € W for each w € W, whence ,(V ®¢ V) = {0} € Endeg(W).

(3) Now we return to show that d # 0. By §8.3(ii), v is not a zero map, so there is
a o €V ®cV such that v(o) # 0 and hence v,(0) # 0; by §6.5, there is an irreducible
W € Repe(G) such that ny (7,(0)) # 0, so by (2) we know that W must be isomorphic
to V', so ny(7.(0)) # 0. Tt follows that d- o = a™*(nv(v.(0))) # 0, whence d # 0. [

8.5. Theorem. Suppose G is unimodular over C and is countable at infinity. Let

Irre(G)ept e the set of isomorphism classes of compact irreducible representaitons in
Repc(G). Then: (below, the maps nw are as in §8.3(iw))

(a) For each V € Irrc(G)epy and each K € QU(G), there exists a unique idempotent

ey, € Hc(G) such that ny(ek) = nv(ex) and nw(el) = 0 for every W € Trre(G)
different from V. For every K, K' € Q(G) with K' C K, we have

6}/('/6}/( - 61‘?6}/(/ - 6}/(16[( - €K€Y</ - 6}/(

(b) For every V € Irrc(G)ept, each E € Repe(G) decomposes into a direct sum
E = Ey®Ey,, where Ey is isomorphic to a direct sum of V', and Ei, has no subquotients
1somorphic to V.

(¢) Let E € Repe(G), and let Eqy, be the submodule of E generated by Ey for all
V€ Irre(G)ept- Then Eqy is completely reducible and compact, and E/E.y has no
nonzero compact subquotients.

Proof of Theorem 8.5. (Compare [BZ, 2.42-2.44].) It suffices to prove (a) and (b).

(a) Let V € Irre(G) e and K € Q(G). The uniqueness of e}, follows from § 6.5, and
we now construct ey.. By Theorem 8.4 we know that V' has a unique formal degree jiy;
using the proof of Theorem 8.4, one can show that e} is given by

e = (yoa ™ ony)(ex) v

for each K € Q(G). The desired relations concerning K, K’ € Q(G) follows from the
uniqueness of ey and Lemma 4.4.

(b) For each f € E, the smoothness of E shows that f € EX for some K € Q(G),
so that ex f = f (Lemma 4.6); we then set fiy = ek f, and by (a) we know that fy is
independent of choices of K; then Ey := {fy : f € E} and E}, :={f — fv : f € E}
will have the desired properties.

8.6. Suppose that G is compact (so G is unimodular over C by §3.8, and G is
countable at infinity), and let V' € Irre(G) (so V' is necessarily compact).

We choose any 0 # v € V; as V is smooth, v € VX for some K € Q(G); upon
shrinking K when necessary, we may suppose furthermore that K is normal in G. The
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space V& thus obtained is a nonzero sub-CG-module of V', so that V = VE = exV by
the irreducibility of V' and by Lemma 4.6, and in particular we have ny(ex) = idy.

By Theorem 8.5(a), there exists a unique idempotent ey € Hc(G) such that

nyv(ek) = idy and ny(e)) = 0 for all V # W € Irre(G); moreover, by the proof
of that theorem, the idempotent e} is given by el = (yoa tony)(ex)uy; if we observe
that (yoa™1)(A)(g) = trace(¢g tA|V) for all A € Endcg(V)™ and all g € G, then we

can deduce that e}, = trace(g~ V) (g).

On the other hand, in view of § 7(c), the idempotent e = (deg V' )trace(g— |V )ug(g)
(with pg(G) = 1) also satisfies ny (ey) = idy and gy (ey) = 0 for all V £ W € Irre(G),
so by the uniqueness of e}, we must have e}, = ey, whence the relation

Hy = (deg V):U’Gv

which links the formal degree of V' and the degree of V.
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