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1. Locally profinite groups

1.1. A group G is called locally profinite if it is a locally compact, Hausdorff and
totally disconnected topological group. Upon setting

Ω(G) = {open compact subgroups of G},

a theorem of van Dantzig (see for example [Ws, Sec. 1.1]) says that a locally profinite
group G admits Ω(G) as a fundamental system of neighborhoods of the identity element
1G of G (in fact the converse is also true).

1.2. Here are some examples of locally profinite groups:

(1) Finite groups (with discrete topology) are locally profinite (and compact).

(2) The p-adic field Qp (where p is a prime number), equipped with the p-adic
topology and regard as an additive group, is locally profinite. In Qp, a fundemantal
system of neighborhoods of 0 by open compact subgroups is given by {pnZp : n ∈ N},
where Zp is the ring of p-adic integers.

(3) p-adic reductive groups, such as GL2(Qp) (the group of 2× 2 invertible matrices
over Qp), are also locally profinite. In GL2(Qp), a fundamental system of neighborhoods
of id2 by open compact subgroups is {id2 + pnM2(Zp) : n ∈ N∗}, where M2(Zp) is the
set of 2× 2 matrices over Zp.

(4) Galois groups Gal(K/F ) for (infinite) Galois extensions of fields F ⊂ K, equipped
with the Krull topology, are locally profinite and compact. In Gal(K/F ), a fundamen-
tal system of neighborhoods of idK by open compact normal subgroups is {Gal(K/E) :
F ⊂ E ⊂ K, and F ⊂ E is a finite Galois extension}.

2. Smooth representations

From now on and till the end of this note, let G be a locally profinite group, and
let R be a commutative ring with unity 1.

2.1. A function from G to R is called smooth if it is locally constant. In this way,
“smooth” representations of G are G-modules whose elements are “locally stabilized”
by G; to be more precise, let π : G −→ GLR(V ) be a representation of G over R (that is,
π is a group homomorphism), where V is an R-module and GLR(V ) denotes the group
of R-module isomorphisms from V to itself. The representation π is called smooth if
for every v ∈ V , the stabilizer Gv := {g ∈ G : π(g)v = v} is open in G. An equivalent
way to saying this is to say that V is a smooth RG-module (here RG := R[G] is the
group ring of G over R), namely V is an RG-module with the action given by π such
that all elements of V admit open stabilizers in G.
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When G is a finite group, all RG-modules are smooth because the smoothness
condition is automatically fulfilled.

2.2. We return to general G. By definition, a linear character of G over R is a
group homomorphism from G to R× = GL1(R). For a linear character φ : G −→ R×,
the following equivalences can be easily verified:

φ is smooth ⇐⇒ kerφ is open in G ⇐⇒ φ is locally constant.

In particular, for general R, the trivial representation 1G of G over R (that is,
1G = R whereG acts trivially) is always smooth. WhenR = C equipped with Euclidean
topology, as we shall see in the next lemma, the above three equivalent conditions are
also equivalent to the condition that φ be continuous.

2.3. Lemma. A linear character φ : G −→ C× is continuous (where C is equipped
with the Euclidean topology) if and only if it is locally constant.

Proof. (Compare [We, Lem. VII.4].) Suppose that φ is continuous, and we want
to show that it is locally constant. Fix any choice of K ∈ Ω(G), and denote by
φK : K −→ C× the restriction of φ to K. Then |φK | : K −→ R×

>0 is a continuous
group homomorphism, so the image of |φK | is a compact subgroup of R×

>0 and must
thus equal to {1}. Thus φK has its image in S1 := {z ∈ C : |z| = 1}, and this
image φK(K) = φ(K) is a subgroup of S1. Choose an open neighborhood U of 1 in
E := {z ∈ C : Re(z) > 0}, so that φ−1(U) is an open neighborhood of 1 in G. The
group G being locally profinite, there is a K ′ ∈ Ω(G) such that K ′ ⊂ φ−1(U) ∩ K
(theorem of van Dantzig). Then φ(K ′) = φK(K

′) is a subgroup of S1 ∩E, hence must
be equal to {1}; in other words, K ′ ⊂ kerφ, whence the local constancy of φ.

Conversely, if φ is locally constant, then, as φ(1) = 1, there is an open neighborhood
U of 1 in G such that φ = 1 on U ; so U ⊂ kerφ, and then for every A ⊂ C× we see
that φ−1(A) = φ−1(A) · kerφ is open in G, whence the continuity of φ.

2.4. Lemma. The space C∞
c (G,R) of locally constant functions from G to R with

compact support is a smooth R[G×G]-module with the following (left) (G×G)-action:
for (x, y) ∈ G×G and f ∈ C∞

c (G,R), ((x, y) · f)(g) := f(x−1gy) for all g ∈ G. Indeed,
we may identify

C∞
c (G,R) =

⋃
K∈Ω(G)

C∞
c (G,R)K×K ,

where C∞
c (G,R)K×K consists of elements of C∞

c (G,R) fixed by K ×K.

Proof. For f ∈ C∞
c (G,R), there are finitely many open compact subsets Ui of G

such that f is constant on each Ui. Using the locally profinite topology of G and the
continuity of the map g, h) ∈ G × G 7−→ gxh ∈ G, we can find a sufficiently small
K ∈ Ω(G) so that each Ui is the disjoint union of a finite number of open compact
subsets of G of the form KxK (with x ∈ G). We thus have f ∈ C∞

c (G,R)K×K .
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3. Haar measures

3.1. An R-module homomorphism T : C∞
c (G,R) −→ R will be called a distri-

bution on G over R. For a distribution T on G over R, It is customary to write
T (f) = ⟨T, f⟩ for f ∈ C∞

c (G,R). Each (left) G-action on C∞
c (G,R) induces a (left)

G-action on distributions T : C∞
c (G,R) −→ R via

⟨xT, f⟩ := ⟨T, x−1f⟩

for all x ∈ G and f ∈ C∞
c (G,R).

The (G×G)-action on the space C∞
c (G,R) described in Lemma 2.4 may be separated

into two actions: the left translation (l(x)f)(g) = f(x−1g) and the right translation
(r(y)f)(g) = f(gy) where x, y, g ∈ G and f ∈ C∞

c (G,R); note that l and r are both
left G-actions on C∞

c (G,R). For a distribution T on G over R, we may thus consider
l(g)T and r(g)T for g ∈ G.

3.2. A Haar measure of G over R is, by definition, a nontrivial distribution

µ : C∞
c (G,R) −→ R

which is left-invariant in the way that l(g)µ = µ for all g ∈ G. When G has a Haar
measure µ, for f ∈ C∞

c (G,R) it is customary to write

µ(f) =

∫
G

fdµ =

∫
g∈G

f(g)dµ(g).

3.3. To discuss the existence of Haar measures, we need the notion of the pro-
order |G| for our locally profinite groups G (see [V, I.1.5]): when G is compact, its
pro-order |G| is defined as the least common multiple of [G : K] for K running over
elements of Ω(G) (we regard |G| as a supernatural number, identified as a function from
the set of prime numbers to N ∪ {∞}); for general G, its pro-order |G| is defined as
the least common multiple of |K| for K running over elements of Ω(G). For example:
if G is finite, then its pro-order |G| is just its order; for a prime number p, we have
|Qp| = p∞ and |GL2(Qp)| = (p− 1)(p2 − 1)p∞.

With this preparation, we have the next lemma for Haar measures.

3.4. Lemma. (a) If there is a K ∈ Ω(G) with |K| ∈ R×, then there is a unique
Haar measure µK of G such that the volume µK(K) := µK(1K) = 1 (where 1K is the
characteristic function of G with support K), and any other Haar measure µ of G over
R is of the form µ = c · µK for some 0 ̸= c ∈ R.

(b) For K ∈ Ω(G), we have the following equivalence:

|K| ∈ R× ⇐⇒ G has a Haar measure µ over R such that µ(K) = 1.
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Proof. (See also [V, I.2.4].) When there is aK ∈ Ω(G) with |K| ∈ R×, we first set for

all K ′ ∈ Ω(G) set the volume µK(K
′) := [K ′ : K] := [K′:K′∩K]

[K:K′∩K]
; for each f ∈ C∞

c (G,R),

we may find a K ′ ∈ ΩG, g1, · · · , gr ∈ G and c1, · · · , cr ∈ R such that f =
∑r

i=1 ci1giK′

(arguing as in the proof of Lemma 2.4), and then we set µK(f) :=
∑r

i=1 ci · µK(K
′)

which may be checked to be well-defined. This uniquely constructs µK , and the other
assertions are easily verified in the same fashion.

3.5. Corollary. For each K ∈ Ω(G), G admits a unique Haar measure µ over C
such that µ(K) = 1.

3.6. Suppose that G admits a Haar measure µ over R such that µ(K) = 1 for
some K ∈ Ω(G). For each g ∈ G, as the right translation r(g)µ is left invariant (that
is, invariant under the left translations l(x) for all x ∈ G), we know from Lemma 3.4
that there is a constant 0 ̸= ∆(g) ∈ R× such that r(g)µ = ∆(g)µ (indeed, ∆(g) is only
nonzero in R à priori, but as ∆(g−1)∆(g)µ = r(g−1)r(g)µ = µ, we get ∆(g−1)∆(g) = 1
and hence ∆(g) ∈ R×), and it is easy to verify that the association g 7−→ ∆G(g) gives
a linear character ∆G : G −→ R×, called the modulus of G over R. Note that:

(a) ∆G is independent of choices of Haar measure µ such that µ(K) = 1 for some
K ∈ Ω(G) (depending on µ), as all such Haar measures of G differ only by a unit in R
thanks to Lemma 3.4. (This independence from µ also follows from (b) below.)

(b) We have ∆G(g) = [gKg−1 : K] := [gKg−1:gKg−1∩K]
[K:gKg−1∩K]

for g ∈ G and K ∈ Ω(G) with

|K| ∈ R×. Indeed,

∆G(g)

∫
x∈G

f(x)dµ(x) =

∫
x∈G

f(x)d(r(g)µ)(x) =

∫
x∈G

f(x)dµ(xg−1)

=

∫
y∈G

f(yg)dµ(y) (take y = xg−1);

setting therein f = 1K and using the relation µ(Kg−1) = µ(gKg−1), we will get the
desired formula for ∆G.

(c) When R = C, ∆G takes its values in R×
>0 and is smooth, as its restriction to

every K ∈ Ω(G) is trivial (∆G(K) is a compact subgroup of R×
>0 and so must be {1}).

3.7. Suppose that G admits a Haar measure µ over R such that µ(K) = 1 for some
K ∈ Ω(G). Then the following two conditions are equivalent:

(i) ∆G = 1 on G;

(ii) the Haar measure µ (and thus all Haar measures of G over R) is bi-invariant
(that is, invariant under l(x) and r(x) for all x ∈ G).

When one of (i) and (ii) above holds for G, we call G unimodular over R.

3.8. Here are some examples of (non-)unimodular groups when R = C:

(1) Compact groups are unimodular over C (see (c) above).
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(2) Commutative groups are unimodular over C (Haar measures are bi-invariant).

(3) p-adic reductive groups are also unimodular over C. (See [R, V.5.4] for a proof.)

(4) [V, I.2.7] The Borel subgroup B =

(
Q×

p Qp

0 Q×
p

)
of GL2(Qp) is not unimod-

ular over C. For g =

(
a b
0 d

)
∈ B, we can evaluate ∆G(g) by (b) above: taking

the compact subgroup K = GL2(Zp) ∩ B =

(
Z×

p Zp

0 Z×
p

)
of B, we have gKg−1 =(

Z×
p ad−1Zp

0 Z×
p

)
, so ∆B(g) = [gKg−1 : K] = [ad−1Zp : Zp] = pvalp(d/a) (here valp is the

p-adic valuation).

4. Global Hecke algebras

4.1. For a distribution T : C∞
c (G,R) −→ R, we may restrict it to an open subset U

of G and get a distribution T |U : C∞
c (U,R) −→ R via the relation T |U(f) = T (iU(f)),

where iU(f) ∈ C∞
c (G,R) is the extension of f to G by zero outside U ; the support of

T is the set of elements g ∈ G for which T |U ̸= 0 for every open neighborhood U of x.
On the other hand, the preceding distribution T is called locally constant if there is
a K ∈ Ω(G) which fixes T by the left translation l (that is, l(x)T = T for all x ∈ K).

4.2. The global Hecke algebra of G over R, denoted by HR(G), is the space of
distributions T : C∞

c (G,R) −→ R which are locally constant and of compact support.
The space HR(G) is a smooth (left) R[G×G] module where G×G acts by (l, r) (left
and right translations). Moreover, HR(G) an (associative) R-algebra, where R acts by
scalar multiplication, the addition is (T1 + T2)(f) = T1(f) + T2(f) for T1, T2 ∈ HR(G)
and f ∈ C∞

c (G,R), and the multiplication is the convolution ∗ defined as follows: for
T1, T2 ∈ HR(G), T1 ∗ T2 is the unique element in HR(G) satisfying∫

g∈G
f(g)d(T1 ∗ T2)(g) =

∫
(g1,g2)∈G×G

f(g1g2)dT1(g1)dT2(g2)

for every f ∈ C∞
c (G,R). We shall often write T1 ∗ T2 simply as T1T2.

4.3. Let us consider the following condition:

(4.3.1) there is a K0 ∈ Ω(G) such that |K0| ∈ R×.

Recall from Lemma 3.4 that the condition (4.3.1) is a necessary and sufficient condition
for the existence of a Haar measure of G over R.

4.4. Lemma. Suppose that G satisfies (4.3.1), and let µ be the Haar measure of
G over R normalized by µ(K0) = 1. For all K ∈ Ω(K0), set µK = 1

µ(K)
µ, which is the

Haar measure of G over R normalized by the condition µK(K) = 1. Then

eK := 1KµK
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is an idempotent of HR(G) (that is, e2K = eK), and we have eK′eK = eKeK′ = eK for
all K,K ′ ∈ Ω(K0) with K ′ ⊂ K.

Proof. It suffices to show the identity eK′eK = eK in the assertion; the equality
eKeK′ = eK can be proved similarly, and the idempotency of eK (that is, e2K = eK) is the
special case of K ′ = K. So let K,K ′ ∈ Ω(K0) with K ′ ⊂ K. For each f ∈ C∞

c (G,R),

⟨eK′eK , f⟩ =
∫
(g1,g2)∈G×G

f(g1g2)1K′(g1)1K(g2)dµK′(g1)dµK(g2)

=

∫
(g1,g2)∈K′×K

f(g1g2)dµK′(g1)dµK(g2)

=

∫
(g1,x)∈K′×K

f(x)dµK′(g1)dµK(x) (x = g1g2 ∈ K, as K ′ ⊂ K)

=

∫
x∈K

f(x)dµK(x) = ⟨eK , f⟩;

therefore eK′eK = eK .

4.5. The algebra HR(G) admits natural actions on smooth representations of G
over R: each smooth representation π : G −→ GLR(V ) induces an HR(G)-action on
the R-module V by

Tv =

∫
g∈G

π(g)v dT (g)

for all T ∈ HR(G) and v ∈ V . (One may verify that (T2T1)v = T2(T1v) for all
T1, T2 ∈ HR(G) and v ∈ V .)

4.6. Lemma. Suppose that G satisfies (4.3.1). Let K ∈ Ω(K0), so that we have the
idempotent eK = 1KµK ∈ HR(G) (Lemma 4.4). Then, for every smooth RG-module
V , its K-invariant subspace V K := {v ∈ V : xv = v for all x ∈ K} is equal to eKV .

Proof. For v ∈ V , we have eKv =
∫
g∈K gv dµK(g). For each x ∈ K, we may calculate

xeKv =
∫
g∈K xgv dµK(g) =

∫
h∈K hv dµK(x

−1g) =
∫
h∈K hv dµK(h) = eKv (µK is left-

invariant), so eKV ⊂ V K . Conversely, if v ∈ V K , then eKv =
∫
g∈K v dµK(g) = v, so

V K ⊂ eKV . Thus V K = eKV .

4.7. If G has a Haar measure µ over R such that µ(K) = 1 for some K ∈ Ω(G),
elements inHR(G) may be “represented” by C∞

c (G,R) as follows: define the convolution
∗µ on C∞

c (G,R) by

(f1 ∗µ f2)(x) =
∫
g∈G

f1(g)f2(g
−1x)dµ(g)

for f1, f2 ∈ C∞
c (G,R); then, equipping C∞

c (G,R) with ∗µ as multiplication, the map

C∞
c (G,R) −→ HR(G), f 7−→ fµ,

is an isomorphism of R-algebras. (See [BZ, 1.28-1.30] for a proof.)
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5. Some frequently used functors

We shall denote by RepR(G) the category of smooth representations of G over R.

5.1. [V, I.4.1] The smooth part functor (·)∞ : {RG-modules} −→ RepR(G) is
defined for every RG-module V by

V ∞ = {v ∈ V : the stabilizer Gv of v by the G-action is open in G} =
⋃

K∈Ω(G)

V K .

Thus an RG-module V is smooth if and only if V ∞ = V . The functor (·)∞ is left
exact but not right exact; a counterexample for the right-exactness is the surjective
R[Qp]-homomorphism γ : R[Qp] ↠ 1R given by γ(f) =

∑
x∈Qp

f(x) (we identify the

group ring R[Qp] as functions from Qp to R with finite support): indeed, as each open
compact subgroup of Qp is of infinity cardinality, we have R[Qp]

∞ = 0, so the map
γ∞ : R[Qp]

∞ = 0 −→ (1R)
∞ = R induced by γ is not surjective.

5.2. [V, I.4.12] The dual functor (·)∗ : {RG-modules} −→ {RG-modules} is
defined for every RG-module V by V ∗ = HomR(V,R) with the G-action given by
(gv∗)(v) := v∗(g−1v) for g ∈ G and (v, v∗) ∈ V × V ∗. The contragredient functor

·̃ : RepR(G) −→ RepR(G) is defined by Ṽ = (V ∗)∞ for every V ∈ RepR(G).

5.3. [V, I.5] Let H be a closed subgroup of G. The restriction of G-actions to H
gives the restriction functor ResGH : RepR(G) −→ RepR(H). On the inverse direction,
we have two types of “inductions”:

(i) The induction functor IndG
H : RepR(H) −→ RepR(G), which associates to each

W ∈ RepR(H) the smooth RG-module IndG
HW := V ∞ where

V = {f : G −→ W : f(hg) = h · f(g) for all h ∈ H and g ∈ G}

is the RG-module with the (left) G-action (xf)(g) := f(gx) for x, g ∈ G and f ∈ V .

(ii) The compact induction functor indG
H : RepR(H) −→ RepR(G), which asso-

ciates to each W ∈ RepR(H) the following smooth sub-RG-module of IndG
HW :

indG
HW = {f ∈ IndG

HW : the support of f is compact}.

If H\G is compact (in particular, if G is a finite group), then indG
H = IndG

H .

We have Frobenius reciprocities for our closed subgroup H of G:

HomRG(V, Ind
G
HW ) ≃ HomRH(Res

G
HV,W ) as R-modules,

and, if H is also open in G,

HomRG(ind
G
HW,V ) ≃ HomRH(W,ResGHV ) as R-modules.
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We also have Mackey’s formulae: when H and K are two closed subgroups such
that HgK is open and closed in G for every g ∈ G, we have the following isomorphisms
in RepR(H) for W ∈ RepR(K): (Adx(g) = xgx−1 is the adjoint action)

ResGHInd
G
KW ≃

∏
g∈H\G/K

IndH
H∩Adx(K)Res

Adx(K)
H∩Adx(K)AdxW ;

ResGH ind
G
KW ≃

⊕
g∈H\G/K

indH
H∩Adx(K)Res

Adx(K)
H∩Adx(K)AdxW.

5.4. [V, I.4] For every closed subgroup H of G, we have the invariant functor (·)H
and the coinvariant functor (·)H : (below, V is an RG-module)

(·)H : {RG-modules} −→ {R-modules}, V H = {v ∈ V : hv = v for all h ∈ H};

(·)H : {RG-modules} −→ {R-modules}, VH = V/V (H) with V (H) =
∑
h∈H
v∈V

R.(hv − v).

In particular, (·)G and (·)G both give functors from RepR(G) to RepR(G); (·)G is left
exact and (·)G is right exact. For V ∈ RepR(G), VG is the largest quotient of V on
which G acts trivially. If |G| ∈ R×, then eG : V ↠ V G is a projection with kernel V (G),
so eG descends into an isomorphism VG ≃ V G in RepR(G), and the functors (·)G ≃ (·)G
are exact; for general |G|, (·)G and (·)G need not be exact (see § 5.6(1)(2) below).

5.5. [V, II.2] Let G be a p-adic reductive group, and fix a choice of parabolic triple
(P,M,U); that is, P = MU ≃ M ⋉ U is a parabolic subgroup, M is a Levi subgroup
of P , and U is the unipotent radical of P (all such parabolic triples are G-conjugate).
For W ∈ RepR(M), we may regard it as an element in RepR(P ) via the quotient
P ↠ P/U = M , and then induce it to G; this gives a parabolic induction functor

iGM : RepR(M) −→ RepR(G), W 7−→ indG
PW = IndG

PW

(indG
P = IndG

P because P\G is compact). On the other hand, for each V ∈ RepR(G),
the coinvariant space VU lies in RepR(M) because M normalizes U ; we then get a
parabolic restriction functor

rGM : RepR(G) −→ RepR(M), V 7−→ VU .

The functor iGM admits rGM as its left adjoint:

HomRM(rGMV,W ) ≃ HomRG(V, i
G
MW ) as R-modules.

A representation V ∈ RepR(G) is called cuspidal if rGM(V ) = 0 for all proper
parabolic triples (P,M,U) (“proper” means that M ̸= G), or equivalently (by the
above adjunction between rGM and iGM) if HomRG(V, i

G
MW ) = 0 for all proper parabolic

triples (P,M,U) and for all W ∈ RepR(M). (See § 5.6(4) below for an example.)
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5.6. Let us use the above tools to analyse the smooth RG-module V = indG
B(1B)

in detail, where G = GL2(Fp) with p a prime number and with Fp the finite field of p

elements, B =

(
F×
p Fp

0 F×
p

)
, and R = Fℓ with ℓ a prime number such that ordℓ(p) = 2

(that is, ℓ dividing (p+ 1) but not dividing (p− 1); in particular, ℓ ̸= p). Observe that
|G| = (p2 − 1)(p2 − p) = p(p− 1)2(p+ 1) = 0 ∈ R.

We identify V = R[G/B] :=
⊕

x∈G/B R.[x] (the [x]’s are formal symbols) where G

acts on left by multiplication: g · [x] = [gx] for g ∈ G and x ∈ G/B. Via the bijection

G/B
∼−−→ P1(Fp) = Fp ∪ {∞},

(
a b
c d

)
B 7−→ [a : c] = a/c,

we also identify V = R[P1(Fp)] :=
⊕

x∈P1(Fp)
R.[x], where g =

(
a b
c d

)
∈ G acts on

[x] ∈ P1(Fp) by g · [x] = [ax+b
cx+d

]. For f ∈ V , we then write f =
∑

x∈P1(Fp)
fx.[x] (fx ∈ R).

Now consider the map

π : V −→ 1G, f 7−→
∑

x∈P1(Fp)

fx,

which is a surjective morphism in RepR(G). Moreover, for the map

δ : 1G = R −→ V, r 7−→ r ·
∑

x∈P1(Fp)

[x],

we have π ◦ δ = 0 since π
(∑

x∈P1(Fp)
[x]

)
= p+ 1 = 0 ∈ R = Fℓ. Let E = ker π, so that

δ(1G) ⊂ E; upon setting F = E/δ(1G), we obtain two exact sequences in RepR(G):

0 −→ E −→ V
π−−→ 1G −→ 0;(5.6.1)

0 −→ 1G
δ−−→ E −→ F −→ 0.(5.6.2)

We may write V = (E|1G) = (1G|F |1G) to record the above two exact sequences.

(1) The surjective map π gives an example of non-right-exactness of (·)G. Indeed,
we have V G = δ(1G) in RepR(G), so π induces πG : V G = δ(1G) −→ (1G)

G = 1G,
which is a zero map (because π ◦ δ = 0) and is hence no longer surjective.

(2) The injective map δ gives an example of non-left-exactness of (·)G. To see this,
we first calculate EG = E/E(G). Note first that B := {[x] − [∞] : x ∈ Fp} is a basis

for the R-vector space E. Let v = [∞] − [0] ∈ E; for g =

(
1 0
a 1

)
∈ G (a ∈ F×

p ),

we have gv − v = [a−1] − [∞] ∈ E(G); for h =

(
1 b
0 1

)
∈ G (b ∈ Fp), we have

hv−v = [0]− [b] ∈ E(G); then [0]− [∞] = ([0]− [1])+([1]− [∞]) ∈ E(G), so B ⊂ E(G)
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and we deduce that E(G) = E, whence EG = 0. The injective map δ then induces
δG : (1G)G = 1G −→ EG = 0 which is not injective.

(3) The sequences (5.6.1) and (5.6.2) are not split in RepR(G). To prove this, notice

first that V = indG
B1B is a projective object in RepR(G): as |B| = p(p−1)2 ∈ R× = F×

ℓ ,
1B is projective in RepR(B), so the Frobenius reciprocity and the exactness of ResGB
imply that V is projective. If (5.6.1) were split in RepR(G), then 1G would be a
direct summand of V and would thus be projective, so (·)G would be an exact functor,
contradicting (1). Thus (5.6.1) is not split in RepR(G). On the other hand, if (5.6.2)
were split in RepR(G), then 1G would be a direct summand of E, so that we would
have EG ⊃ (1G)G = 1G ̸= 0; but this would contradict (2). Therefore (5.6.2) is not
split in RepR(G), either.

(4) The smooth RG-module F is cuspidal. Indeed, as all proper parabolic triples

of G are G-conjugate to (B, T, U) wtih T =

(
F×
p 0
0 F×

p

)
and U =

(
1 Fp

0 1

)
, to

prove that F is cuspidal, it suffices to show that FU = 0. As |U | = p ∈ R× = F×
ℓ ,

we know that (·)U and (·)U in RepR(U) are isomorphic and are exact (§ 5.4), and that
every exact sequence in RepR(U) splits (in fact, RepR(U) ≃ RepC(U)). In particular,
showing FU = 0 is the same as showing FU = 0. We now apply the exact functor
(ResGU (·))U to the exact sequences (5.6.1) and (5.6.2), and we get the following two split
exact sequences in RepR(U):

0 −→ EU −→ V U πU

−−−→ 1U −→ 0;(5.6.3)

0 −→ 1U
δU−−−→ EU −→ FU −→ 0.(5.6.4)

Using Mackey’s formula and the identifications U\G/B ≃ B\G/B ≃
{
id2,

(
0 1
1 0

)}
(Bruhat’s decomposition), we have ResGUV = 1U ⊕ regU where regU = indU

1 1 is the
regular character of U ; we then have V U = 1U ⊕ 1U , so (5.6.3) gives us EU = 1U , and
then (5.6.4) gives us FU = FU = 0. Thus F is a cuspidal representation in RepR(G).

6. Irreducible and admissible representations

6.1. A representation V ∈ RepR(G) is called irreducible if it is nonzero and if its
only smooth RG-submodules are 0 and V itself. We shall denote by IrrR(G) the set of
isomorphism classes of irreducible representations in RepR(G).

A representation V ∈ RepR(G) is called admissible if V K is an R-module of finite
type for every K ∈ Ω(G).

6.2. Recall that G is called countable at infinity if it is the union of countably
many compact subsets. Compact groups are clearly countable at infinity. In addition,
p-adic reductive groups are countable at infinity, since for a p-adic reductive group
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G, its Cartan decomposition into (K,K)-cosets for a maximal compact subgroup K
implies that the double quotient K\G/K is countable. (For G = GL2(Qp) with p a
prime number, one of its maximal compact subgroup is K = GL2(Zp), and K\G/K is

in bijection with T++ :=

{(
ta 0
0 tb

)
: a, b ∈ Z, a ≥ b

}
.)

6.3. Schur’s lemma. Let R be a field and V ∈ RepR(G) be irreducible. Then:

(a) The endomorphism ring EndRG(V ) = HomRG(V, V ) is a division ring.

(b) EndRG(V ) = R if the following two conditions both hold: (i) R is algebraically
closed; (ii) one of the following is true: (1) dimR V < |R|, or (2) V is admissible, or
(3) G is countable at infinity and |R| is uncountable.

Proof. (See also [BZ, 2.11], [R, B.I] and [V, I.6].) The irreducibility of V implies
that each σ ∈ EndRG(V ) is either zero or an invertible operator, so (a) follows.

Now we prove (b). Suppose that (i) holds and that there is a σ ∈ EndRG(V ) such
that σ ̸= c · idV for all c ∈ R. We are going to prove that (ii) does not hold.

By assumption, we may define invertible operators σc := (σ − c)−1 on V for all
c ∈ R, and these operators σc (c ∈ R) are linearly independent: indeed, for every
c1, · · · , cr ∈ R and d1, · · · , dr ∈ R, the operator τ =

∑r
i=1 diσci = (

∏r
i=1 σci)P (σ) for

some P (t) ∈ R[t], and then, by factorizing P (t) =
∏s

j=1(t − aj) (aj ∈ R) (we can do

this by (i)), we get P (σ) =
∏s

j=1 σ
−1
aj
, so τ is invertible.

Fix any 0 ̸= v ∈ V . The invertibility of τ implies that {σcv : c ∈ R} is a linearly
independent subset of V Gv , where Gv is the stabilizer of v in G, so that

dimR V ≥ dimR V Gv ≥ |R|;

in particular, as |R| = ∞ by (i), we have dimR V Gv = ∞, so V is not admissible. In
addition, the irreducibilty of V shows that V = RGv = R[G/Gv]v. If G is countable
at infinity, then [G : Gv] is countable, so dimR V = dimR R[G/Gv]v is countable. As
dimR V ≥ |R|, we see that |R| is also countable.

6.4. Suppose that R is a field, that |G| ∈ R×, and that V ∈ RepR(G) is admissible.
Then, by [BZ, 2.15], we have:

(a) Ṽ is admissible, and we have a canonical isomorphism V ≃ ˜̃
V in RepR(G).

(b) V is irreducible if and only if Ṽ is irreducible.

6.5. By [BZ, 2.12], when G is countable at infinity, we have the completeness of
the system of irreducible representations in RepC(G): for every 0 ̸= T ∈ HC(G) there
exists an irreducible V ∈ RepC(G) such that the action of T on V (§ 4.5) is nonzero.

This result need not hold when C is replaced by general R. For example, consider
G = F2 = {0, 1} (as an additive group) and R = F2, so that RepR(G) = RepF2

(F2),
and we have HR(G) = HF2

(F2) = R.10 +R.11, where 1i : G −→ R is the characteristic
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funtion of G with support {i}. Moreover, there is only one irreducible representation
in RepR(G), namely the trivial representation 1G. Now take T := 10 + 11 ∈ HR(G):
we have T ̸= 0, but the action of T on the trivial representation 1G = R is zero, since
for 1 ∈ R we have T · 1 = 1 + 1 = 2 = 0 ∈ R = F2.

7. Representations of compact groups

In this section, let G be a compact group.

Observe that for every open compact normal subgroup K, the quotient group G/K
is finite (because G is compact); this observation makes the smooth representation
theory of G ressembles the representation theory of finite groups:

(a) Every irreducible V ∈ RepC(G) is of finite type as an R-module.

(b) Every V ∈ RepC(G) is unitary (in the way that there is a G-invariant inner prod-
uct on V ) and hence is completely reducible (that is, split as a direct sum of irreducible
submodules). The category RepC(G) is thus semisimple.

(c) We have a decomposition

RepC(G) =
∏

V ∈IrrC(G)

RepC(G)V ,

where RepC(G)V is the V -isotypic component of RepC(G) (that is, RepC(G)V is the
subcategory of RepC(G) formed by smooth CG-modules whose irreducible components
are all isomorphic to V ). For each V ∈ IrrC(G), we have

RepC(G)V = eV · RepC(G)

where eV is the central idempotent of HR(G) defined by

eV = (deg V ) · trace(g−1|V )µG(g),

with deg V = dimC V being the degree of V and µG being the Haar measure of G over
C normalized by µG(G) = 1. The idempotents {eV : V ∈ IrrC(G)} are orthogonal:
eV eW = 0 whenever V,W ∈ IrrC(G) with V ̸= W .

8. Compact representations

We return to general G (not necessarily compact).

8.1. Let V ∈ RepR(G). For (v, ṽ) ∈ V × Ṽ , we shall write ṽ(v) as ⟨ṽ, v⟩, and we
call the function

γv,ṽ : G −→ R, g 7−→ ⟨gṽ, v⟩ = ⟨ṽ, g−1v⟩
the matrix coefficient of V with respect to (v, ṽ). The representation V is called

compact if all of its matrix coefficients γv,ṽ, (v, ṽ) ∈ V × Ṽ , are of compact support.
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One can show that irreducible compact representations in RepR(G) are of finite type
as R-modules (and thus admissible). (Restrict them to their supports and apply § 7(a).)

8.2. Lemma. Let R be a field and suppose that G satisfies (4.3.1). If V ∈ RepR(G)
is compact and is of finite type as an RG-module, then it is admissible.

Proof. (See also [BZ, 2.40-2.41] and [V, I.7.3-I.7.4].) For such a V ∈ RepR(G)
(compact and of finite type), V =

∑r
i=1 RGvi for some v1, · · · , vr ∈ V . Let Gvi be the

stabilizer of vi in G (each Gvi is an open subgroup in G), and set N = ∩r
i=1Gvi which is

an open subgroup in G, so that V = V N . For every K ∈ Ω(K0 ∩N), we may consider
the idempotent eK in HR(G) (Lemma 4.4), and then V = V K = eKV =

∑r
i=1 Vi where

each Vi := eKRGvi (Lemma 4.6). To show that V is admissible, it then suffices to show
that each Vi is of finite dimension over R.

We prove dimR Vi < ∞ by contradiction. So suppose dimR Vi = ∞, so that there
would be a sequence (gj)j≥1 in G such that {uj := eV gjvi | j ≥ 1} is a linearly inde-
pendent subset in Vi; we could then construct a functional T : V K −→ R such that
T (uj) = j for all j ≥ 1 and T = 0 outside

⊕
j≥1Ruj, and then extend it to a functional

T : V −→ R via T (v) := T (eKv) for all v ∈ V , so that T ∈ (V ∗)K ⊂ Ṽ . We would
then have γvi,T (g

−1
j ) = T (gjvi) = T (uj) = j, so γvi,T would have an unbounded image

and thus could not have compact support, contradicting to the compactness of V .

8.3. Suppose from now on that R is a field, that |G| ∈ R×, that G is unimodular
over R, and that V ∈ RepR(G) is irreducible and compact (and thus admissible by
§§ 8.1-8.2).

Let us consider the following maps:

(i) a : V ⊗R Ṽ −→ EndRG(V )∞ is the R-linear map such that a(v⊗ ṽ)(w) = ⟨ṽ, w⟩v
for all v⊗ ṽ ∈ V ⊗R Ṽ and w ∈ V . With the natural (G×G)-action on V ⊗R Ṽ and the
(G×G)-action on EndRG(V )∞ via (g · σ)(v) := g(σ(g−1v)) for g ∈ G, σ ∈ EndRG(V )∞

and v ∈ V , the map a is an R[G×G]-isomorphism: indeed, as V is admissible, for each

K ∈ Ω(G) we have Ṽ K = (V ∗)K = (V K)∗ (see [BZ, 2.14(a)]) and thus

dimR(V ⊗R Ṽ )K×K = (dimR V K)2 = dimR(EndRG(V )∞)K×K < ∞.

(ii) γ : V ⊗R Ṽ −→ C∞
c (G,R) is the R-linear map such that γ(v ⊗ ṽ) = γv,ṽ for

v⊗ ṽ ∈ V ⊗R Ṽ (§ 8.1; the map γ is well-defined since V is compact). With the natural

(G × G)-action on V ⊗R Ṽ and the (G × G)-action (l, r) on C∞
c (G,R) (Lemma 2.4),

the map γ is an R[G × G]-homomorphism. In addition, γ is not a zero map: indeed,

we have V ̸= 0, and also Ṽ ̸= 0 by the formula Ṽ K = (V K)∗ (K ∈ Ω(G)) in (i); we

may then choose a 0 ̸= ṽ ∈ Ṽ , so that γ(v ⊗ ṽ)(1) = ⟨ṽ, v⟩ ≠ 0 for some 0 ̸= v ∈ V ; we
then have γ(v ⊗ ṽ) ̸= 0.

(iii) For each Haar measure µ of G over R, set the map

µ : C∞
c (G,R)

∼−−→ HR(G), f 7−→ fµ.
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It is known that this map µ is an R-module isomorphism (§ 4.7), and we use it to
trasnport the (G×G)-action (l, r) on C∞

c (G,R) to a (G×G)-action on HR(G).

(iv) For each W ∈ RepR(G), we have the map ηW : HR(G) −→ EndRG(W )∞ which
associates each T ∈ HR(G) to its action on W : ηW (T )w =

∫
g∈G gw dT (g) for w ∈ W

(§ 4.5). With the (G×G)-actions on HR(G) and on EndRG(W )∞ as in (i) and (iii), the
map ηW is an R[G×G]-module homomorphism. (Indeed, one uses the bi-invariance of
µ to show that ηW ◦ µ is an R[G×G]-module homomorphism.)

With this setup, a Haar measure µ of G over R is called a formal degree of V if
the following diagram in RepR(G×G) is commutative:

(8.3.1)

V ⊗R Ṽ C∞
c (G,R)

EndRG(V )∞ HR(G)

γ

a

∼

µ
∼

ηV

Once a formal degree of V exists, it is unique because all Haar measures of G are
proportional (Lemma 3.4). We shall see in § 8.6 that in the case of compact G, the
formal degree is a generalization of the usual degree of a representation.

8.4. Theorem. Setup as in § 8.3. If R = C and G is countable at infinity, then
V admits a unique formal degree.

More generally, we have the following result (a corollary of [V, I.7.9]): with the setup
in § 8.3, if R is an algebraically closed field, then V admits a formal degree if and only
if V is projective in RepR(G) and Ṽ is irreducible in RepR(G).

Proof of Theorem 8.4. (Compare [S, 1.6] and [BZ, 2.42].)

(1) Choose an arbitrary measure µ of G on R, and consider the map

a−1 ◦ ηV ◦ µ ◦ γ : V ⊗C Ṽ −→ V ⊗C Ṽ ,

which is a C[G × G]-module homomorphism. As V is irreducible and admissible in

RepC(G), the representation V ⊗C Ṽ is irreducible and admissible in RepC(G × G)
(§ 6.4, and [BZ, 2.16]), so Schur’s lemma (§ 6.3) tell us that

a−1 ◦ ηV ◦ µ ◦ γ = d · idV⊗CṼ

for some constant d ∈ C. If we can show that d ̸= 0, then µV := d−1µ will fulfill the
relation a−1 ◦ ηV ◦ µV ◦ γ = idV⊗CṼ

and will hence be the formal degree of V .

(2) Upon considering the map γµ = µ ◦ γ : V ⊗C Ṽ −→ HC(G), for each irreducible

W ∈ RepC(G) not isomorphic to V , we claim that ηW (γµ(σ)) = 0 for all σ ∈ V ⊗C Ṽ ,

or equivalently ηW (γµ(V ⊗C Ṽ )) = {0} ⊂ EndCG(W ). Indeed, if we regard V ⊗C Ṽ as
a smooth CG-module where G only acts on V , then for each w ∈ W , the map

V ⊗C Ṽ −→ W, σ 7−→ γµ(σ)w,
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is a CG-module homomorphism, so its image (in W ) is a direct sum of V (by the
irreducibility of V ) and hence must be zero because W ̸≃ V . We then deduce that

γµ(V ⊗C Ṽ )w = {0} ⊂ W for each w ∈ W , whence γµ(V ⊗C Ṽ ) = {0} ⊂ EndCG(W ).

(3) Now we return to show that d ̸= 0. By § 8.3(ii), γ is not a zero map, so there is

a σ ∈ V ⊗C Ṽ such that γ(σ) ̸= 0 and hence γµ(σ) ̸= 0; by § 6.5, there is an irreducible
W ∈ RepC(G) such that ηW (γµ(σ)) ̸= 0, so by (2) we know that W must be isomorphic
to V , so ηV (γµ(σ)) ̸= 0. It follows that d · σ = a−1(ηV (γµ(σ))) ̸= 0, whence d ̸= 0.

8.5. Theorem. Suppose G is unimodular over C and is countable at infinity. Let
IrrC(G)cpt be the set of isomorphism classes of compact irreducible representaitons in
RepC(G). Then: (below, the maps ηW are as in § 8.3(iv))

(a) For each V ∈ IrrC(G)cpt and each K ∈ Ω(G), there exists a unique idempotent
eVK ∈ HC(G) such that ηV (e

V
K) = ηV (eK) and ηW (eVK) = 0 for every W ∈ IrrC(G)

different from V . For every K,K ′ ∈ Ω(G) with K ′ ⊂ K, we have

eVK′eVK = eVKe
V
K′ = eVK′eK = eKe

V
K′ = eVK .

(b) For every V ∈ IrrC(G)cpt, each E ∈ RepC(G) decomposes into a direct sum
E = EV ⊕E ′

V , where EV is isomorphic to a direct sum of V , and E ′
V has no subquotients

isomorphic to V .

(c) Let E ∈ RepC(G), and let Ecpt be the submodule of E generated by EV for all
V ∈ IrrC(G)cpt. Then Ecpt is completely reducible and compact, and E/Ecpt has no
nonzero compact subquotients.

Proof of Theorem 8.5. (Compare [BZ, 2.42-2.44].) It suffices to prove (a) and (b).

(a) Let V ∈ IrrC(G)cpt and K ∈ Ω(G). The uniqueness of eVK follows from § 6.5, and
we now construct eVK . By Theorem 8.4 we know that V has a unique formal degree µV ;
using the proof of Theorem 8.4, one can show that eVK is given by

eVK = (γ ◦ a−1 ◦ ηV )(eK)µV

for each K ∈ Ω(G). The desired relations concerning K,K ′ ∈ Ω(G) follows from the
uniqueness of eVK and Lemma 4.4.

(b) For each f ∈ E, the smoothness of E shows that f ∈ EK for some K ∈ Ω(G),
so that eKf = f (Lemma 4.6); we then set fV = eVKf , and by (a) we know that fV is
independent of choices of K; then EV := {fV : f ∈ E} and E ′

V := {f − fV : f ∈ E}
will have the desired properties.

8.6. Suppose that G is compact (so G is unimodular over C by § 3.8, and G is
countable at infinity), and let V ∈ IrrC(G) (so V is necessarily compact).

We choose any 0 ̸= v ∈ V ; as V is smooth, v ∈ V K for some K ∈ Ω(G); upon
shrinking K when necessary, we may suppose furthermore that K is normal in G. The
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space V K thus obtained is a nonzero sub-CG-module of V , so that V = V K = eKV by
the irreducibility of V and by Lemma 4.6, and in particular we have ηV (eK) = idV .

By Theorem 8.5(a), there exists a unique idempotent eVK ∈ HC(G) such that
ηV (e

V
K) = idV and ηW (eVK) = 0 for all V ̸= W ∈ IrrC(G); moreover, by the proof

of that theorem, the idempotent eVK is given by eVK = (γ ◦a−1 ◦ηV )(eK)µV ; if we observe
that (γ ◦ a−1)(A)(g) = trace(g−1A|V ) for all A ∈ EndCG(V )∞ and all g ∈ G, then we
can deduce that eVK = trace(g−1|V )µV (g).

On the other hand, in view of § 7(c), the idempotent eV = (deg V )trace(g−1|V )µG(g)
(with µG(G) = 1) also satisfies ηV (eV ) = idV and ηW (eV ) = 0 for all V ̸= W ∈ IrrC(G),
so by the uniqueness of eVK we must have eVK = eV , whence the relation

µV = (deg V )µG,

which links the formal degree of V and the degree of V .
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