SMOOTH REPRESENTATION THEORY FOR LOCALLY PROFINITE GROUPS

Note by Tzu-Jan Li. Date: March 14th, 2023

1. Locally profinite groups

1.1. A group G is called **locally profinite** if it is a locally compact, Hausdorff and totally disconnected topological group. Upon setting

 $\Omega(G) = \{ \text{open compact subgroups of } G \},\$

a theorem of van Dantzig (see for example [Ws, Sec. 1.1]) says that a locally profinite group G admits $\Omega(G)$ as a fundamental system of neighborhoods of the identity element 1_G of G (in fact the converse is also true).

1.2. Here are some examples of locally profinite groups:

(1) Finite groups (with discrete topology) are locally profinite (and compact).

(2) The *p*-adic field \mathbb{Q}_p (where *p* is a prime number), equipped with the *p*-adic topology and regard as an additive group, is locally profinite. In \mathbb{Q}_p , a fundemantal system of neighborhoods of 0 by open compact subgroups is given by $\{p^n \mathbb{Z}_p : n \in \mathbb{N}\}$, where \mathbb{Z}_p is the ring of *p*-adic integers.

(3) *p*-adic reductive groups, such as $\operatorname{GL}_2(\mathbb{Q}_p)$ (the group of 2×2 invertible matrices over \mathbb{Q}_p), are also locally profinite. In $\operatorname{GL}_2(\mathbb{Q}_p)$, a fundamental system of neighborhoods of id₂ by open compact subgroups is $\{\operatorname{id}_2 + p^n \operatorname{M}_2(\mathbb{Z}_p) : n \in \mathbb{N}^*\}$, where $\operatorname{M}_2(\mathbb{Z}_p)$ is the set of 2×2 matrices over \mathbb{Z}_p .

(4) Galois groups $\operatorname{Gal}(K/F)$ for (infinite) Galois extensions of fields $F \subset K$, equipped with the Krull topology, are locally profinite and compact. In $\operatorname{Gal}(K/F)$, a fundamental system of neighborhoods of id_K by open compact normal subgroups is $\{\operatorname{Gal}(K/E) : F \subset E \subset K, \text{ and } F \subset E \text{ is a finite Galois extension}\}$.

2. Smooth representations

From now on and till the end of this note, let G be a locally profinite group, and let R be a commutative ring with unity 1.

2.1. A function from G to R is called **smooth** if it is locally constant. In this way, "smooth" representations of G are G-modules whose elements are "locally stabilized" by G; to be more precise, let $\pi : G \longrightarrow \operatorname{GL}_R(V)$ be a representation of G over R (that is, π is a group homomorphism), where V is an R-module and $\operatorname{GL}_R(V)$ denotes the group of R-module isomorphisms from V to itself. The representation π is called **smooth** if for every $v \in V$, the stabilizer $G_v := \{g \in G : \pi(g)v = v\}$ is open in G. An equivalent way to saying this is to say that V is a **smooth** RG-module (here RG := R[G] is the group ring of G over R), namely V is an RG-module with the action given by π such that all elements of V admit open stabilizers in G. When G is a finite group, all RG-modules are smooth because the smoothness condition is automatically fulfilled.

2.2. We return to general G. By definition, a **linear character of** G **over** R is a group homomorphism from G to $R^{\times} = \operatorname{GL}_1(R)$. For a linear character $\varphi : G \longrightarrow R^{\times}$, the following equivalences can be easily verified:

 φ is smooth \iff ker φ is open in $G \iff \varphi$ is locally constant.

In particular, for general R, the **trivial representation** $\mathbf{1}_G$ of G over R (that is, $\mathbf{1}_G = R$ where G acts trivially) is always smooth. When $R = \mathbb{C}$ equipped with Euclidean topology, as we shall see in the next lemma, the above three equivalent conditions are also equivalent to the condition that φ be continuous.

2.3. Lemma. A linear character $\varphi : G \longrightarrow \mathbb{C}^{\times}$ is continuous (where \mathbb{C} is equipped with the Euclidean topology) if and only if it is locally constant.

Proof. (Compare [We, Lem. VII.4].) Suppose that φ is continuous, and we want to show that it is locally constant. Fix any choice of $K \in \Omega(G)$, and denote by $\varphi_K : K \longrightarrow \mathbb{C}^{\times}$ the restriction of φ to K. Then $|\varphi_K| : K \longrightarrow \mathbb{R}_{>0}^{\times}$ is a continuous group homomorphism, so the image of $|\varphi_K|$ is a compact subgroup of $\mathbb{R}_{>0}^{\times}$ and must thus equal to {1}. Thus φ_K has its image in $S^1 := \{z \in \mathbb{C} : |z| = 1\}$, and this image $\varphi_K(K) = \varphi(K)$ is a subgroup of S^1 . Choose an open neighborhood U of 1 in $E := \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$, so that $\varphi^{-1}(U)$ is an open neighborhood of 1 in G. The group G being locally profinite, there is a $K' \in \Omega(G)$ such that $K' \subset \varphi^{-1}(U) \cap K$ (theorem of van Dantzig). Then $\varphi(K') = \varphi_K(K')$ is a subgroup of $S^1 \cap E$, hence must be equal to {1}; in other words, $K' \subset \ker \varphi$, whence the local constancy of φ .

Conversely, if φ is locally constant, then, as $\varphi(1) = 1$, there is an open neighborhood U of 1 in G such that $\varphi = 1$ on U; so $U \subset \ker \varphi$, and then for every $A \subset \mathbb{C}^{\times}$ we see that $\varphi^{-1}(A) = \varphi^{-1}(A) \cdot \ker \varphi$ is open in G, whence the continuity of φ .

2.4. Lemma. The space $C_c^{\infty}(G, R)$ of locally constant functions from G to R with compact support is a smooth $R[G \times G]$ -module with the following (left) $(G \times G)$ -action: for $(x, y) \in G \times G$ and $f \in C_c^{\infty}(G, R)$, $((x, y) \cdot f)(g) := f(x^{-1}gy)$ for all $g \in G$. Indeed, we may identify

$$C_c^{\infty}(G,R) = \bigcup_{K \in \Omega(G)} C_c^{\infty}(G,R)^{K \times K},$$

where $C_c^{\infty}(G, R)^{K \times K}$ consists of elements of $C_c^{\infty}(G, R)$ fixed by $K \times K$.

Proof. For $f \in C_c^{\infty}(G, R)$, there are finitely many open compact subsets U_i of G such that f is constant on each U_i . Using the locally profinite topology of G and the continuity of the map $g, h) \in G \times G \longmapsto gxh \in G$, we can find a sufficiently small $K \in \Omega(G)$ so that each U_i is the disjoint union of a finite number of open compact subsets of G of the form KxK (with $x \in G$). We thus have $f \in C_c^{\infty}(G, R)^{K \times K}$. \Box

3. Haar measures

3.1. An *R*-module homomorphism $T : C_c^{\infty}(G, R) \longrightarrow R$ will be called a **distribution on** *G* **over** *R*. For a distribution *T* on *G* over *R*, It is customary to write $T(f) = \langle T, f \rangle$ for $f \in C_c^{\infty}(G, R)$. Each (left) *G*-action on $C_c^{\infty}(G, R)$ induces a (left) *G*-action on distributions $T : C_c^{\infty}(G, R) \longrightarrow R$ via

$$\langle xT, f \rangle := \langle T, x^{-1}f \rangle$$

for all $x \in G$ and $f \in C_c^{\infty}(G, R)$.

The $(G \times G)$ -action on the space $C_c^{\infty}(G, R)$ described in Lemma 2.4 may be separated into two actions: the **left translation** $(l(x)f)(g) = f(x^{-1}g)$ and the **right translation** (r(y)f)(g) = f(gy) where $x, y, g \in G$ and $f \in C_c^{\infty}(G, R)$; note that l and r are both left G-actions on $C_c^{\infty}(G, R)$. For a distribution T on G over R, we may thus consider l(g)T and r(g)T for $g \in G$.

3.2. A Haar measure of G over R is, by definition, a nontrivial distribution

$$\mu: C_c^{\infty}(G, R) \longrightarrow R$$

which is left-invariant in the way that $l(g)\mu = \mu$ for all $g \in G$. When G has a Haar measure μ , for $f \in C_c^{\infty}(G, R)$ it is customary to write

$$\mu(f) = \int_G f d\mu = \int_{g \in G} f(g) d\mu(g).$$

3.3. To discuss the existence of Haar measures, we need the notion of the **pro-order** |G| for our locally profinite groups G (see [V, I.1.5]): when G is compact, its pro-order |G| is defined as the least common multiple of [G : K] for K running over elements of $\Omega(G)$ (we regard |G| as a supernatural number, identified as a function from the set of prime numbers to $\mathbb{N} \cup \{\infty\}$); for general G, its pro-order |G| is defined as the least common multiple of [G : K] for example: if G is finite, then its pro-order |G| is just its order; for a prime number p, we have $|\mathbb{Q}_p| = p^{\infty}$ and $|\operatorname{GL}_2(\mathbb{Q}_p)| = (p-1)(p^2-1)p^{\infty}$.

With this preparation, we have the next lemma for Haar measures.

3.4. Lemma. (a) If there is a $K \in \Omega(G)$ with $|K| \in \mathbb{R}^{\times}$, then there is a unique Haar measure μ_K of G such that the volume $\mu_K(K) := \mu_K(\mathbf{1}_K) = 1$ (where $\mathbf{1}_K$ is the characteristic function of G with support K), and any other Haar measure μ of G over R is of the form $\mu = c \cdot \mu_K$ for some $0 \neq c \in R$.

(b) For $K \in \Omega(G)$, we have the following equivalence:

 $|K| \in R^{\times} \iff G$ has a Haar measure μ over R such that $\mu(K) = 1$.

Proof. (See also [V, I.2.4].) When there is a $K \in \Omega(G)$ with $|K| \in R^{\times}$, we first set for all $K' \in \Omega(G)$ set the volume $\mu_K(K') := [K':K] := \frac{[K':K'\cap K]}{[K:K'\cap K]}$; for each $f \in C_c^{\infty}(G, R)$, we may find a $K' \in \Omega_G$, $g_1, \dots, g_r \in G$ and $c_1, \dots, c_r \in R$ such that $f = \sum_{i=1}^r c_i \mathbf{1}_{g_i K'}$ (arguing as in the proof of Lemma 2.4), and then we set $\mu_K(f) := \sum_{i=1}^r c_i \cdot \mu_K(K')$ which may be checked to be well-defined. This uniquely constructs μ_K , and the other assertions are easily verified in the same fashion.

3.5. Corollary. For each $K \in \Omega(G)$, G admits a unique Haar measure μ over \mathbb{C} such that $\mu(K) = 1$.

3.6. Suppose that G admits a Haar measure μ over R such that $\mu(K) = 1$ for some $K \in \Omega(G)$. For each $g \in G$, as the right translation $r(g)\mu$ is left invariant (that is, invariant under the left translations l(x) for all $x \in G$), we know from Lemma 3.4 that there is a constant $0 \neq \Delta(g) \in R^{\times}$ such that $r(g)\mu = \Delta(g)\mu$ (indeed, $\Delta(g)$ is only nonzero in R à priori, but as $\Delta(g^{-1})\Delta(g)\mu = r(g^{-1})r(g)\mu = \mu$, we get $\Delta(g^{-1})\Delta(g) = 1$ and hence $\Delta(g) \in R^{\times}$), and it is easy to verify that the association $g \longmapsto \Delta_G(g)$ gives a linear character $\Delta_G : G \longrightarrow R^{\times}$, called the **modulus of** G **over** R. Note that:

(a) Δ_G is independent of choices of Haar measure μ such that $\mu(K) = 1$ for some $K \in \Omega(G)$ (depending on μ), as all such Haar measures of G differ only by a unit in R thanks to Lemma 3.4. (This independence from μ also follows from (b) below.)

(b) We have $\Delta_G(g) = [gKg^{-1}:K] := \frac{[gKg^{-1}:gKg^{-1}\cap K]}{[K:gKg^{-1}\cap K]}$ for $g \in G$ and $K \in \Omega(G)$ with $|K| \in \mathbb{R}^{\times}$. Indeed,

$$\begin{split} \Delta_G(g) \int_{x \in G} f(x) \mathrm{d}\mu(x) &= \int_{x \in G} f(x) \mathrm{d}(r(g)\mu)(x) = \int_{x \in G} f(x) \mathrm{d}\mu(xg^{-1}) \\ &= \int_{y \in G} f(yg) \mathrm{d}\mu(y) \qquad (\text{take } y = xg^{-1}); \end{split}$$

setting therein $f = \mathbf{1}_K$ and using the relation $\mu(Kg^{-1}) = \mu(gKg^{-1})$, we will get the desired formula for Δ_G .

(c) When $R = \mathbb{C}$, Δ_G takes its values in $\mathbb{R}_{>0}^{\times}$ and is smooth, as its restriction to every $K \in \Omega(G)$ is trivial ($\Delta_G(K)$ is a compact subgroup of $\mathbb{R}_{>0}^{\times}$ and so must be {1}).

3.7. Suppose that G admits a Haar measure μ over R such that $\mu(K) = 1$ for some $K \in \Omega(G)$. Then the following two conditions are equivalent:

(i) $\Delta_G = 1$ on G;

(ii) the Haar measure μ (and thus all Haar measures of G over R) is bi-invariant (that is, invariant under l(x) and r(x) for all $x \in G$).

When one of (i) and (ii) above holds for G, we call G unimodular over R.

3.8. Here are some examples of (non-)unimodular groups when $R = \mathbb{C}$:

(1) Compact groups are unimodular over \mathbb{C} (see (c) above).

- (2) Commutative groups are unimodular over \mathbb{C} (Haar measures are bi-invariant).
- (3) p-adic reductive groups are also unimodular over \mathbb{C} . (See [R, V.5.4] for a proof.)

(4) [V, I.2.7] The Borel subgroup $B = \begin{pmatrix} \mathbb{Q}_p^{\times} & \mathbb{Q}_p \\ 0 & \mathbb{Q}_p^{\times} \end{pmatrix}$ of $\operatorname{GL}_2(\mathbb{Q}_p)$ is not unimodular over \mathbb{C} . For $g = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in B$, we can evaluate $\Delta_G(g)$ by (b) above: taking the compact subgroup $K = \operatorname{GL}_2(\mathbb{Z}_p) \cap B = \begin{pmatrix} \mathbb{Z}_p^{\times} & \mathbb{Z}_p \\ 0 & \mathbb{Z}_p^{\times} \end{pmatrix}$ of B, we have $gKg^{-1} = \begin{pmatrix} \mathbb{Z}_p^{\times} & ad^{-1}\mathbb{Z}_p \\ 0 & \mathbb{Z}_p^{\times} \end{pmatrix}$, so $\Delta_B(g) = [gKg^{-1} : K] = [ad^{-1}\mathbb{Z}_p : \mathbb{Z}_p] = p^{\operatorname{val}_p(d/a)}$ (here val_p is the p-adic valuation).

4. Global Hecke algebras

4.1. For a distribution $T : C_c^{\infty}(G, R) \longrightarrow R$, we may restrict it to an open subset U of G and get a distribution $T|_U : C_c^{\infty}(U, R) \longrightarrow R$ via the relation $T|_U(f) = T(i_U(f))$, where $i_U(f) \in C_c^{\infty}(G, R)$ is the extension of f to G by zero outside U; the **support of** T is the set of elements $g \in G$ for which $T|_U \neq 0$ for every open neighborhood U of x. On the other hand, the preceding distribution T is called **locally constant** if there is a $K \in \Omega(G)$ which fixes T by the left translation l (that is, l(x)T = T for all $x \in K$).

4.2. The global Hecke algebra of G over R, denoted by $H_R(G)$, is the space of distributions $T : C_c^{\infty}(G, R) \longrightarrow R$ which are locally constant and of compact support. The space $H_R(G)$ is a smooth (left) $R[G \times G]$ module where $G \times G$ acts by (l, r) (left and right translations). Moreover, $H_R(G)$ an (associative) R-algebra, where R acts by scalar multiplication, the addition is $(T_1 + T_2)(f) = T_1(f) + T_2(f)$ for $T_1, T_2 \in H_R(G)$ and $f \in C_c^{\infty}(G, R)$, and the multiplication is the convolution * defined as follows: for $T_1, T_2 \in H_R(G), T_1 * T_2$ is the unique element in $H_R(G)$ satisfying

$$\int_{g \in G} f(g) \mathrm{d}(T_1 * T_2)(g) = \int_{(g_1, g_2) \in G \times G} f(g_1 g_2) \mathrm{d}T_1(g_1) \mathrm{d}T_2(g_2)$$

for every $f \in C_c^{\infty}(G, R)$. We shall often write $T_1 * T_2$ simply as T_1T_2 .

4.3. Let us consider the following condition:

(4.3.1) there is a
$$K_0 \in \Omega(G)$$
 such that $|K_0| \in \mathbb{R}^{\times}$.

Recall from Lemma 3.4 that the condition (4.3.1) is a necessary and sufficient condition for the existence of a Haar measure of G over R.

4.4. Lemma. Suppose that G satisfies (4.3.1), and let μ be the Haar measure of G over R normalized by $\mu(K_0) = 1$. For all $K \in \Omega(K_0)$, set $\mu_K = \frac{1}{\mu(K)}\mu$, which is the Haar measure of G over R normalized by the condition $\mu_K(K) = 1$. Then

$$e_K := \mathbf{1}_K \mu_K$$

is an idempotent of $H_R(G)$ (that is, $e_K^2 = e_K$), and we have $e_{K'}e_K = e_K e_{K'} = e_K$ for all $K, K' \in \Omega(K_0)$ with $K' \subset K$.

Proof. It suffices to show the identity $e_{K'}e_K = e_K$ in the assertion; the equality $e_K e_{K'} = e_K$ can be proved similarly, and the idempotency of e_K (that is, $e_K^2 = e_K$) is the special case of K' = K. So let $K, K' \in \Omega(K_0)$ with $K' \subset K$. For each $f \in C_c^{\infty}(G, R)$,

$$\langle e_{K'}e_K, f \rangle = \int_{(g_1,g_2)\in G\times G} f(g_1g_2) \mathbf{1}_{K'}(g_1) \mathbf{1}_K(g_2) d\mu_{K'}(g_1) d\mu_K(g_2)$$

$$= \int_{(g_1,g_2)\in K'\times K} f(g_1g_2) d\mu_{K'}(g_1) d\mu_K(g_2)$$

$$= \int_{(g_1,x)\in K'\times K} f(x) d\mu_{K'}(g_1) d\mu_K(x) \qquad (x = g_1g_2 \in K, \text{ as } K' \subset K)$$

$$= \int_{x\in K} f(x) d\mu_K(x) = \langle e_K, f \rangle;$$
erefore $e_{K'}e_K = e_K.$

therefore $e_{K'}e_K = e_K$.

4.5. The algebra $H_R(G)$ admits natural actions on smooth representations of G over R: each smooth representation $\pi: G \longrightarrow \operatorname{GL}_R(V)$ induces an $H_R(G)$ -action on the R-module V by

$$Tv = \int_{g \in G} \pi(g) v \, \mathrm{d}T(g)$$

for all $T \in H_R(G)$ and $v \in V$. (One may verify that $(T_2T_1)v = T_2(T_1v)$ for all $T_1, T_2 \in H_R(G)$ and $v \in V$.)

4.6. Lemma. Suppose that G satisfies (4.3.1). Let $K \in \Omega(K_0)$, so that we have the idempotent $e_K = \mathbf{1}_K \mu_K \in H_R(G)$ (Lemma 4.4). Then, for every smooth RG-module V, its K-invariant subspace $V^K := \{v \in V : xv = v \text{ for all } x \in K\}$ is equal to $e_K V$.

Proof. For $v \in V$, we have $e_K v = \int_{g \in K} gv \, d\mu_K(g)$. For each $x \in K$, we may calculate $xe_K v = \int_{g \in K} xgv \, \mathrm{d}\mu_K(g) = \int_{h \in K} hv \, \mathrm{d}\mu_K(x^{-1}g) = \int_{h \in K} hv \, \mathrm{d}\mu_K(h) = e_K v \ (\mu_K \text{ is left-invariant}), \text{ so } e_K V \subset V^K.$ Conversely, if $v \in V^K$, then $e_K v = \int_{g \in K} v \, \mathrm{d}\mu_K(g) = v$, so $V^K \subset e_K V$. Thus $V^K = e_K V$.

4.7. If G has a Haar measure μ over R such that $\mu(K) = 1$ for some $K \in \Omega(G)$, elements in $H_R(G)$ may be "represented" by $C_c^{\infty}(G, R)$ as follows: define the convolution $*_{\mu}$ on $C_c^{\infty}(G, R)$ by

$$(f_1 *_{\mu} f_2)(x) = \int_{g \in G} f_1(g) f_2(g^{-1}x) \mathrm{d}\mu(g)$$

for $f_1, f_2 \in C_c^{\infty}(G, R)$; then, equipping $C_c^{\infty}(G, R)$ with $*_{\mu}$ as multiplication, the map

$$C_c^{\infty}(G, R) \longrightarrow H_R(G), \qquad f \longmapsto f\mu,$$

is an isomorphism of R-algebras. (See [BZ, 1.28-1.30] for a proof.)

5. Some frequently used functors

We shall denote by $\operatorname{Rep}_R(G)$ the category of smooth representations of G over R.

5.1. [V, I.4.1] The **smooth part** functor $(\cdot)^{\infty}$: {RG-modules} $\longrightarrow \operatorname{Rep}_R(G)$ is defined for every RG-module V by

$$V^{\infty} = \{v \in V : \text{ the stabilizer } G_v \text{ of } v \text{ by the } G \text{-action is open in } G\} = \bigcup_{K \in \Omega(G)} V^K.$$

Thus an *RG*-module *V* is smooth if and only if $V^{\infty} = V$. The functor $(\cdot)^{\infty}$ is left exact but not right exact; a counterexample for the right-exactness is the surjective $R[\mathbb{Q}_p]$ -homomorphism $\gamma : R[\mathbb{Q}_p] \twoheadrightarrow \mathbf{1}_R$ given by $\gamma(f) = \sum_{x \in \mathbb{Q}_p} f(x)$ (we identify the group ring $R[\mathbb{Q}_p]$ as functions from \mathbb{Q}_p to *R* with finite support): indeed, as each open compact subgroup of \mathbb{Q}_p is of infinity cardinality, we have $R[\mathbb{Q}_p]^{\infty} = 0$, so the map $\gamma^{\infty} : R[\mathbb{Q}_p]^{\infty} = 0 \longrightarrow (\mathbf{1}_R)^{\infty} = R$ induced by γ is not surjective.

5.2. [V, I.4.12] The **dual** functor $(\cdot)^* : \{RG\text{-modules}\} \longrightarrow \{RG\text{-modules}\}$ is defined for every RG-module V by $V^* = \operatorname{Hom}_R(V, R)$ with the G-action given by $(gv^*)(v) := v^*(g^{-1}v)$ for $g \in G$ and $(v, v^*) \in V \times V^*$. The **contragredient** functor $\widetilde{\cdot} : \operatorname{Rep}_R(G) \longrightarrow \operatorname{Rep}_R(G)$ is defined by $\widetilde{V} = (V^*)^\infty$ for every $V \in \operatorname{Rep}_R(G)$.

5.3. [V, I.5] Let H be a closed subgroup of G. The restriction of G-actions to H gives the **restriction** functor $\operatorname{Res}_{H}^{G} : \operatorname{Rep}_{R}(G) \longrightarrow \operatorname{Rep}_{R}(H)$. On the inverse direction, we have two types of "inductions":

(i) The **induction** functor $\operatorname{Ind}_{H}^{G} : \operatorname{Rep}_{R}(H) \longrightarrow \operatorname{Rep}_{R}(G)$, which associates to each $W \in \operatorname{Rep}_{R}(H)$ the smooth RG-module $\operatorname{Ind}_{H}^{G}W := V^{\infty}$ where

$$V = \{ f : G \longrightarrow W : f(hg) = h \cdot f(g) \text{ for all } h \in H \text{ and } g \in G \}$$

is the RG-module with the (left) G-action (xf)(g) := f(gx) for $x, g \in G$ and $f \in V$.

(ii) The **compact induction** functor $\operatorname{ind}_{H}^{G} : \operatorname{Rep}_{R}(H) \longrightarrow \operatorname{Rep}_{R}(G)$, which associates to each $W \in \operatorname{Rep}_{R}(H)$ the following smooth sub-RG-module of $\operatorname{Ind}_{H}^{G}W$:

 $\operatorname{ind}_{H}^{G}W = \{ f \in \operatorname{Ind}_{H}^{G}W : \text{ the support of } f \text{ is compact} \}.$

If $H \setminus G$ is compact (in particular, if G is a finite group), then $\operatorname{ind}_{H}^{G} = \operatorname{Ind}_{H}^{G}$.

We have **Frobenius reciprocities** for our closed subgroup H of G:

$$\operatorname{Hom}_{RG}(V, \operatorname{Ind}_{H}^{G}W) \simeq \operatorname{Hom}_{RH}(\operatorname{Res}_{H}^{G}V, W)$$
 as *R*-modules,

and, if H is also open in G,

$$\operatorname{Hom}_{RG}(\operatorname{ind}_{H}^{G}W, V) \simeq \operatorname{Hom}_{RH}(W, \operatorname{Res}_{H}^{G}V)$$
 as *R*-modules.

We also have **Mackey's formulae**: when H and K are two closed subgroups such that HgK is open and closed in G for every $g \in G$, we have the following isomorphisms in $\operatorname{Rep}_R(H)$ for $W \in \operatorname{Rep}_R(K)$: $(\operatorname{Ad}_x(g) = xgx^{-1}$ is the adjoint action)

$$\operatorname{Res}_{H}^{G}\operatorname{Ind}_{K}^{G}W \simeq \prod_{g \in H \setminus G/K} \operatorname{Ind}_{H \cap \operatorname{Ad}_{x}(K)}^{H} \operatorname{Res}_{H \cap \operatorname{Ad}_{x}(K)}^{\operatorname{Ad}_{x}(K)} \operatorname{Ad}_{x}W;$$

$$\operatorname{Res}_{H}^{G}\operatorname{ind}_{K}^{G}W \simeq \bigoplus_{g \in H \setminus G/K} \operatorname{ind}_{H \cap \operatorname{Ad}_{x}(K)}^{H} \operatorname{Res}_{H \cap \operatorname{Ad}_{x}(K)}^{\operatorname{Ad}_{x}(K)} \operatorname{Ad}_{x}W.$$

5.4. [V, I.4] For every closed subgroup H of G, we have the **invariant** functor $(\cdot)^H$ and the **coinvariant** functor $(\cdot)_H$: (below, V is an RG-module)

$$(\cdot)^{H} : \{RG\text{-modules}\} \longrightarrow \{R\text{-modules}\}, \quad V^{H} = \{v \in V : hv = v \text{ for all } h \in H\};$$
$$(\cdot)_{H} : \{RG\text{-modules}\} \longrightarrow \{R\text{-modules}\}, \quad V_{H} = V/V(H) \text{ with } V(H) = \sum_{\substack{h \in H \\ v \in V}} R.(hv - v).$$

In particular, $(\cdot)^G$ and $(\cdot)_G$ both give functors from $\operatorname{Rep}_R(G)$ to $\operatorname{Rep}_R(G)$; $(\cdot)^G$ is left exact and $(\cdot)_G$ is right exact. For $V \in \operatorname{Rep}_R(G)$, V_G is the largest quotient of V on which G acts trivially. If $|G| \in R^{\times}$, then $e_G : V \twoheadrightarrow V^G$ is a projection with kernel V(G), so e_G descends into an isomorphism $V_G \simeq V^G$ in $\operatorname{Rep}_R(G)$, and the functors $(\cdot)_G \simeq (\cdot)^G$ are exact; for general |G|, $(\cdot)^G$ and $(\cdot)_G$ need not be exact (see § 5.6(1)(2) below).

5.5. [V, II.2] Let G be a p-adic reductive group, and fix a choice of parabolic triple (P, M, U); that is, $P = MU \simeq M \ltimes U$ is a parabolic subgroup, M is a Levi subgroup of P, and U is the unipotent radical of P (all such parabolic triples are G-conjugate). For $W \in \operatorname{Rep}_R(M)$, we may regard it as an element in $\operatorname{Rep}_R(P)$ via the quotient $P \twoheadrightarrow P/U = M$, and then induce it to G; this gives a **parabolic induction** functor

$$i_M^G : \operatorname{Rep}_R(M) \longrightarrow \operatorname{Rep}_R(G), \quad W \longmapsto \operatorname{ind}_P^G W = \operatorname{Ind}_P^G W$$

 $(\operatorname{ind}_P^G = \operatorname{Ind}_P^G \text{ because } P \setminus G \text{ is compact}).$ On the other hand, for each $V \in \operatorname{Rep}_R(G)$, the coinvariant space V_U lies in $\operatorname{Rep}_R(M)$ because M normalizes U; we then get a **parabolic restriction** functor

$$r_M^G : \operatorname{Rep}_R(G) \longrightarrow \operatorname{Rep}_R(M), \quad V \longmapsto V_U.$$

The functor i_M^G admits r_M^G as its left adjoint:

$$\operatorname{Hom}_{RM}(r_M^G V, W) \simeq \operatorname{Hom}_{RG}(V, i_M^G W)$$
 as *R*-modules.

A representation $V \in \operatorname{Rep}_R(G)$ is called **cuspidal** if $r_M^G(V) = 0$ for all *proper* parabolic triples (P, M, U) ("proper" means that $M \neq G$), or equivalently (by the above adjunction between r_M^G and i_M^G) if $\operatorname{Hom}_{RG}(V, i_M^G W) = 0$ for all proper parabolic triples (P, M, U) and for all $W \in \operatorname{Rep}_R(M)$. (See § 5.6(4) below for an example.)

5.6. Let us use the above tools to analyse the smooth RG-module $V = \operatorname{ind}_B^G(\mathbf{1}_B)$ in detail, where $G = \operatorname{GL}_2(\mathbb{F}_p)$ with p a prime number and with \mathbb{F}_p the finite field of p elements, $B = \begin{pmatrix} \mathbb{F}_p^{\times} & \mathbb{F}_p \\ 0 & \mathbb{F}_p^{\times} \end{pmatrix}$, and $R = \overline{\mathbb{F}}_{\ell}$ with ℓ a prime number such that $\operatorname{ord}_{\ell}(p) = 2$ (that is, ℓ dividing (p+1) but not dividing (p-1); in particular, $\ell \neq p$). Observe that $|G| = (p^2 - 1)(p^2 - p) = p(p-1)^2(p+1) = 0 \in R$.

We identify $V = R[G/B] := \bigoplus_{x \in G/B} R[x]$ (the [x]'s are formal symbols) where G acts on left by multiplication: $g \cdot [x] = [gx]$ for $g \in G$ and $x \in G/B$. Via the bijection

$$G/B \xrightarrow{\sim} \mathbb{P}^1(\mathbb{F}_p) = \mathbb{F}_p \cup \{\infty\}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} B \longmapsto [a:c] = a/c,$$

we also identify $V = R[\mathbb{P}^1(\mathbb{F}_p)] := \bigoplus_{x \in \mathbb{P}^1(\mathbb{F}_p)} R.[x]$, where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ acts on $[x] \in \mathbb{P}^1(\mathbb{F}_p)$ by $g \cdot [x] = [\frac{ax+b}{cx+d}]$. For $f \in V$, we then write $f = \sum_{x \in \mathbb{P}^1(\mathbb{F}_p)} f_x.[x]$ $(f_x \in R)$. Now consider the map

Now consider the map

$$\pi: V \longrightarrow \mathbf{1}_G, \quad f \longmapsto \sum_{x \in \mathbb{P}^1(\mathbb{F}_p)} f_x,$$

which is a surjective morphism in $\operatorname{Rep}_R(G)$. Moreover, for the map

$$\delta : \mathbf{1}_G = R \longrightarrow V, \quad r \longmapsto r \cdot \sum_{x \in \mathbb{P}^1(\mathbb{F}_p)} [x],$$

we have $\pi \circ \delta = 0$ since $\pi \left(\sum_{x \in \mathbb{P}^1(\mathbb{F}_p)} [x] \right) = p + 1 = 0 \in R = \overline{\mathbb{F}}_{\ell}$. Let $E = \ker \pi$, so that $\delta(\mathbf{1}_G) \subset E$; upon setting $F = E/\delta(\mathbf{1}_G)$, we obtain two exact sequences in $\operatorname{Rep}_R(G)$:

$$(5.6.1) 0 \longrightarrow E \longrightarrow V \xrightarrow{\pi} \mathbf{1}_G \longrightarrow 0;$$

We may write $V = (E|\mathbf{1}_G) = (\mathbf{1}_G|F|\mathbf{1}_G)$ to record the above two exact sequences.

(1) The surjective map π gives an example of non-right-exactness of $(\cdot)^G$. Indeed, we have $V^G = \delta(\mathbf{1}_G)$ in $\operatorname{Rep}_R(G)$, so π induces $\pi^G : V^G = \delta(\mathbf{1}_G) \longrightarrow (\mathbf{1}_G)^G = \mathbf{1}_G$, which is a zero map (because $\pi \circ \delta = 0$) and is hence no longer surjective.

(2) The injective map δ gives an example of non-left-exactness of $(\cdot)_G$. To see this, we first calculate $E_G = E/E(G)$. Note first that $\mathcal{B} := \{[x] - [\infty] : x \in \mathbb{F}_p\}$ is a basis for the *R*-vector space *E*. Let $v = [\infty] - [0] \in E$; for $g = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \in G$ $(a \in \mathbb{F}_p^{\times})$, we have $gv - v = [a^{-1}] - [\infty] \in E(G)$; for $h = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in G$ $(b \in \mathbb{F}_p)$, we have $hv - v = [0] - [b] \in E(G)$; then $[0] - [\infty] = ([0] - [1]) + ([1] - [\infty]) \in E(G)$, so $\mathcal{B} \subset E(G)$ and we deduce that E(G) = E, whence $E_G = 0$. The injective map δ then induces $\delta_G : (\mathbf{1}_G)_G = \mathbf{1}_G \longrightarrow E_G = 0$ which is not injective.

(3) The sequences (5.6.1) and (5.6.2) are not split in $\operatorname{Rep}_R(G)$. To prove this, notice first that $V = \operatorname{ind}_B^G \mathbf{1}_B$ is a projective object in $\operatorname{Rep}_R(G)$: as $|B| = p(p-1)^2 \in R^{\times} = \overline{\mathbb{F}}_{\ell}^{\times}$, $\mathbf{1}_B$ is projective in $\operatorname{Rep}_R(B)$, so the Frobenius reciprocity and the exactness of Res_B^G imply that V is projective. If (5.6.1) were split in $\operatorname{Rep}_R(G)$, then $\mathbf{1}_G$ would be a direct summand of V and would thus be projective, so $(\cdot)^G$ would be an exact functor, contradicting (1). Thus (5.6.1) is not split in $\operatorname{Rep}_R(G)$. On the other hand, if (5.6.2) were split in $\operatorname{Rep}_R(G)$, then $\mathbf{1}_G$ would be a direct summand of E, so that we would have $E_G \supset (\mathbf{1}_G)_G = \mathbf{1}_G \neq 0$; but this would contradict (2). Therefore (5.6.2) is not split in $\operatorname{Rep}_R(G)$, either.

(4) The smooth RG-module F is cuspidal. Indeed, as all proper parabolic triples of G are G-conjugate to (B, T, U) with $T = \begin{pmatrix} \mathbb{F}_p^{\times} & 0\\ 0 & \mathbb{F}_p^{\times} \end{pmatrix}$ and $U = \begin{pmatrix} 1 & \mathbb{F}_p\\ 0 & 1 \end{pmatrix}$, to prove that F is cuspidal, it suffices to show that $F_U = 0$. As $|U| = p \in R^{\times} = \overline{\mathbb{F}}_{\ell}^{\times}$, we know that $(\cdot)_U$ and $(\cdot)^U$ in $\operatorname{Rep}_R(U)$ are isomorphic and are exact (§ 5.4), and that every exact sequence in $\operatorname{Rep}_R(U)$ splits (in fact, $\operatorname{Rep}_R(U) \simeq \operatorname{Rep}_{\mathbb{C}}(U)$). In particular, showing $F_U = 0$ is the same as showing $F^U = 0$. We now apply the exact functor $(\operatorname{Res}_U^G(\cdot))^U$ to the exact sequences (5.6.1) and (5.6.2), and we get the following two split exact sequences in $\operatorname{Rep}_R(U)$:

(5.6.3)
$$0 \longrightarrow E^U \longrightarrow V^U \xrightarrow{\pi^U} \mathbf{1}_U \longrightarrow 0;$$

(5.6.4)
$$0 \longrightarrow \mathbf{1}_U \xrightarrow{\delta^U} E^U \longrightarrow F^U \longrightarrow 0.$$

Using Mackey's formula and the identifications $U \setminus G/B \simeq B \setminus G/B \simeq \left\{ \operatorname{id}_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ (Bruhat's decomposition), we have $\operatorname{Res}_U^G V = \mathbf{1}_U \oplus \operatorname{reg}_U$ where $\operatorname{reg}_U = \operatorname{ind}_1^U \mathbf{1}$ is the regular character of U; we then have $V^U = \mathbf{1}_U \oplus \mathbf{1}_U$, so (5.6.3) gives us $E^U = \mathbf{1}_U$, and then (5.6.4) gives us $F_U = F^U = 0$. Thus F is a cuspidal representation in $\operatorname{Rep}_R(G)$.

6. Irreducible and admissible representations

6.1. A representation $V \in \operatorname{Rep}_R(G)$ is called **irreducible** if it is nonzero and if its only smooth RG-submodules are 0 and V itself. We shall denote by $\operatorname{Irr}_R(G)$ the set of *isomorphism classes* of irreducible representations in $\operatorname{Rep}_R(G)$.

A representation $V \in \operatorname{Rep}_R(G)$ is called **admissible** if V^K is an *R*-module of finite type for every $K \in \Omega(G)$.

6.2. Recall that G is called **countable at infinity** if it is the union of countably many compact subsets. Compact groups are clearly countable at infinity. In addition, p-adic reductive groups are countable at infinity, since for a p-adic reductive group

G, its Cartan decomposition into (K, K)-cosets for a maximal compact subgroup *K* implies that the double quotient $K \setminus G/K$ is countable. (For $G = \operatorname{GL}_2(\mathbb{Q}_p)$ with *p* a prime number, one of its maximal compact subgroup is $K = \operatorname{GL}_2(\mathbb{Z}_p)$, and $K \setminus G/K$ is in bijection with $T^{++} := \left\{ \begin{pmatrix} t^a & 0 \\ 0 & t^b \end{pmatrix} : a, b \in \mathbb{Z}, a \geq b \right\}$.)

6.3. Schur's lemma. Let R be a field and $V \in \operatorname{Rep}_R(G)$ be irreducible. Then:

(a) The endomorphism ring $\operatorname{End}_{RG}(V) = \operatorname{Hom}_{RG}(V, V)$ is a division ring.

(b) $\operatorname{End}_{RG}(V) = R$ if the following two conditions both hold: (i) R is algebraically closed; (ii) one of the following is true: (1) $\dim_R V < |R|$, or (2) V is admissible, or (3) G is countable at infinity and |R| is uncountable.

Proof. (See also [BZ, 2.11], [R, B.I] and [V, I.6].) The irreducibility of V implies that each $\sigma \in \operatorname{End}_{RG}(V)$ is either zero or an invertible operator, so (a) follows.

Now we prove (b). Suppose that (i) holds and that there is a $\sigma \in \operatorname{End}_{RG}(V)$ such that $\sigma \neq c \cdot \operatorname{id}_V$ for all $c \in R$. We are going to prove that (ii) does not hold.

By assumption, we may define invertible operators $\sigma_c := (\sigma - c)^{-1}$ on V for all $c \in R$, and these operators σ_c ($c \in R$) are linearly independent: indeed, for every $c_1, \dots, c_r \in R$ and $d_1, \dots, d_r \in R$, the operator $\tau = \sum_{i=1}^r d_i \sigma_{c_i} = (\prod_{i=1}^r \sigma_{c_i}) P(\sigma)$ for some $P(t) \in R[t]$, and then, by factorizing $P(t) = \prod_{j=1}^s (t - a_j)$ ($a_j \in R$) (we can do this by (i)), we get $P(\sigma) = \prod_{j=1}^s \sigma_{a_j}^{-1}$, so τ is invertible.

Fix any $0 \neq v \in V$. The invertibility of τ implies that $\{\sigma_c v : c \in R\}$ is a linearly independent subset of V^{G_v} , where G_v is the stabilizer of v in G, so that

$$\dim_R V \ge \dim_R V^{G_v} \ge |R|;$$

in particular, as $|R| = \infty$ by (i), we have $\dim_R V^{G_v} = \infty$, so V is not admissible. In addition, the irreducibility of V shows that $V = RGv = R[G/G_v]v$. If G is countable at infinity, then $[G : G_v]$ is countable, so $\dim_R V = \dim_R R[G/G_v]v$ is countable. As $\dim_R V \ge |R|$, we see that |R| is also countable.

6.4. Suppose that R is a field, that $|G| \in R^{\times}$, and that $V \in \operatorname{Rep}_R(G)$ is admissible. Then, by [BZ, 2.15], we have:

(a) \widetilde{V} is admissible, and we have a canonical isomorphism $V \simeq \widetilde{\widetilde{V}}$ in $\operatorname{Rep}_{R}(G)$.

(b) V is irreducible if and only if \widetilde{V} is irreducible.

6.5. By [BZ, 2.12], when G is countable at infinity, we have the *completeness of* the system of irreducible representations in $\operatorname{Rep}_{\mathbb{C}}(G)$: for every $0 \neq T \in H_{\mathbb{C}}(G)$ there exists an irreducible $V \in \operatorname{Rep}_{\mathbb{C}}(G)$ such that the action of T on V (§ 4.5) is nonzero.

This result need not hold when \mathbb{C} is replaced by general R. For example, consider $G = \mathbb{F}_2 = \{0, 1\}$ (as an additive group) and $R = \overline{\mathbb{F}}_2$, so that $\operatorname{Rep}_R(G) = \operatorname{Rep}_{\overline{\mathbb{F}}_2}(\mathbb{F}_2)$, and we have $H_R(G) = H_{\overline{\mathbb{F}}_2}(\mathbb{F}_2) = R.\mathbf{1}_0 + R.\mathbf{1}_1$, where $\mathbf{1}_i : G \longrightarrow R$ is the characteristic

function of G with support $\{i\}$. Moreover, there is only one irreducible representation in $\operatorname{Rep}_R(G)$, namely the trivial representation $\mathbf{1}_G$. Now take $T := \mathbf{1}_0 + \mathbf{1}_1 \in H_R(G)$: we have $T \neq 0$, but the action of T on the trivial representation $\mathbf{1}_G = R$ is zero, since for $1 \in R$ we have $T \cdot 1 = 1 + 1 = 2 = 0 \in R = \overline{\mathbb{F}}_2$.

7. Representations of compact groups

In this section, let G be a compact group.

Observe that for every open compact normal subgroup K, the quotient group G/K is finite (because G is compact); this observation makes the smooth representation theory of G resembles the representation theory of finite groups:

(a) Every irreducible $V \in \operatorname{Rep}_{\mathbb{C}}(G)$ is of finite type as an R-module.

(b) Every $V \in \operatorname{Rep}_{\mathbb{C}}(G)$ is unitary (in the way that there is a G-invariant inner product on V) and hence is completely reducible (that is, split as a direct sum of irreducible submodules). The category $\operatorname{Rep}_{\mathbb{C}}(G)$ is thus semisimple.

(c) We have a decomposition

$$\operatorname{Rep}_{\mathbb{C}}(G) = \prod_{V \in \operatorname{Irr}_{\mathbb{C}}(G)} \operatorname{Rep}_{\mathbb{C}}(G)_V,$$

where $\operatorname{Rep}_{\mathbb{C}}(G)_V$ is the V-isotypic component of $\operatorname{Rep}_{\mathbb{C}}(G)$ (that is, $\operatorname{Rep}_{\mathbb{C}}(G)_V$ is the subcategory of $\operatorname{Rep}_{\mathbb{C}}(G)$ formed by smooth $\mathbb{C}G$ -modules whose irreducible components are all isomorphic to V). For each $V \in \operatorname{Irr}_{\mathbb{C}}(G)$, we have

$$\operatorname{Rep}_{\mathbb{C}}(G)_V = e_V \cdot \operatorname{Rep}_{\mathbb{C}}(G)$$

where e_V is the central idempotent of $H_R(G)$ defined by

$$e_V = (\deg V) \cdot \operatorname{trace}(g^{-1}|V)\mu_G(g),$$

with deg $V = \dim_{\mathbb{C}} V$ being the degree of V and μ_G being the Haar measure of G over \mathbb{C} normalized by $\mu_G(G) = 1$. The idempotents $\{e_V : V \in \operatorname{Irr}_{\mathbb{C}}(G)\}$ are orthogonal: $e_V e_W = 0$ whenever $V, W \in \operatorname{Irr}_{\mathbb{C}}(G)$ with $V \neq W$.

8. Compact representations

We return to general G (not necessarily compact).

8.1. Let $V \in \operatorname{Rep}_R(G)$. For $(v, \tilde{v}) \in V \times \tilde{V}$, we shall write $\tilde{v}(v)$ as $\langle \tilde{v}, v \rangle$, and we call the function

$$\gamma_{v,\widetilde{v}}: G \longrightarrow R, \quad g \longmapsto \langle g\widetilde{v}, v \rangle = \langle \widetilde{v}, g^{-1}v \rangle$$

the matrix coefficient of V with respect to (v, \tilde{v}) . The representation V is called **compact** if all of its matrix coefficients $\gamma_{v,\tilde{v}}$, $(v, \tilde{v}) \in V \times \tilde{V}$, are of compact support.

One can show that *irreducible compact representations in* $\operatorname{Rep}_R(G)$ are of finite type as *R*-modules (and thus admissible). (Restrict them to their supports and apply § 7(a).)

8.2. Lemma. Let R be a field and suppose that G satisfies (4.3.1). If $V \in \operatorname{Rep}_R(G)$ is compact and is of finite type as an RG-module, then it is admissible.

Proof. (See also [BZ, 2.40-2.41] and [V, I.7.3-I.7.4].) For such a $V \in \operatorname{Rep}_R(G)$ (compact and of finite type), $V = \sum_{i=1}^r RGv_i$ for some $v_1, \dots, v_r \in V$. Let G_{v_i} be the stabilizer of v_i in G (each G_{v_i} is an open subgroup in G), and set $N = \bigcap_{i=1}^r G_{v_i}$ which is an open subgroup in G, so that $V = V^N$. For every $K \in \Omega(K_0 \cap N)$, we may consider the idempotent e_K in $H_R(G)$ (Lemma 4.4), and then $V = V^K = e_K V = \sum_{i=1}^r V_i$ where each $V_i := e_K RGv_i$ (Lemma 4.6). To show that V is admissible, it then suffices to show that each V_i is of finite dimension over R.

We prove $\dim_R V_i < \infty$ by contradiction. So suppose $\dim_R V_i = \infty$, so that there would be a sequence $(g_j)_{j\geq 1}$ in G such that $\{u_j := e_V g_j v_i \mid j \geq 1\}$ is a linearly independent subset in V_i ; we could then construct a functional $T : V^K \longrightarrow R$ such that $T(u_j) = j$ for all $j \geq 1$ and T = 0 outside $\bigoplus_{j\geq 1} Ru_j$, and then extend it to a functional $T : V \longrightarrow R$ via $T(v) := T(e_K v)$ for all $v \in V$, so that $T \in (V^*)^K \subset \tilde{V}$. We would then have $\gamma_{v_i,T}(g_j^{-1}) = T(g_j v_i) = T(u_j) = j$, so $\gamma_{v_i,T}$ would have an unbounded image and thus could not have compact support, contradicting to the compactness of V. \Box

8.3. Suppose from now on that R is a field, that $|G| \in R^{\times}$, that G is unimodular over R, and that $V \in \operatorname{Rep}_R(G)$ is irreducible and compact (and thus admissible by §§ 8.1-8.2).

Let us consider the following maps:

(i) $a: V \otimes_R \widetilde{V} \longrightarrow \operatorname{End}_{RG}(V)^{\infty}$ is the *R*-linear map such that $a(v \otimes \widetilde{v})(w) = \langle \widetilde{v}, w \rangle v$ for all $v \otimes \widetilde{v} \in V \otimes_R \widetilde{V}$ and $w \in V$. With the natural $(G \times G)$ -action on $V \otimes_R \widetilde{V}$ and the $(G \times G)$ -action on $\operatorname{End}_{RG}(V)^{\infty}$ via $(g \cdot \sigma)(v) := g(\sigma(g^{-1}v))$ for $g \in G$, $\sigma \in \operatorname{End}_{RG}(V)^{\infty}$ and $v \in V$, the map *a* is an $R[G \times G]$ -isomorphism: indeed, as *V* is admissible, for each $K \in \Omega(G)$ we have $\widetilde{V}^K = (V^*)^K = (V^K)^*$ (see [BZ, 2.14(a)]) and thus

$$\dim_R (V \otimes_R \widetilde{V})^{K \times K} = (\dim_R V^K)^2 = \dim_R (\operatorname{End}_{RG}(V)^\infty)^{K \times K} < \infty.$$

(ii) $\gamma: V \otimes_R \widetilde{V} \longrightarrow C_c^{\infty}(G, R)$ is the *R*-linear map such that $\gamma(v \otimes \widetilde{v}) = \gamma_{v,\widetilde{v}}$ for $v \otimes \widetilde{v} \in V \otimes_R \widetilde{V}$ (§ 8.1; the map γ is well-defined since *V* is compact). With the natural $(G \times G)$ -action on $V \otimes_R \widetilde{V}$ and the $(G \times G)$ -action (l, r) on $C_c^{\infty}(G, R)$ (Lemma 2.4), the map γ is an $R[G \times G]$ -homomorphism. In addition, γ is not a zero map: indeed, we have $V \neq 0$, and also $\widetilde{V} \neq 0$ by the formula $\widetilde{V}^K = (V^K)^*$ ($K \in \Omega(G)$) in (i); we may then choose a $0 \neq \widetilde{v} \in \widetilde{V}$, so that $\gamma(v \otimes \widetilde{v})(1) = \langle \widetilde{v}, v \rangle \neq 0$ for some $0 \neq v \in V$; we then have $\gamma(v \otimes \widetilde{v}) \neq 0$.

(iii) For each Haar measure μ of G over R, set the map

$$\mu: C_c^{\infty}(G, R) \xrightarrow{\sim} H_R(G), \qquad f \longmapsto f\mu.$$

It is known that this map μ is an *R*-module isomorphism (§ 4.7), and we use it to transport the $(G \times G)$ -action (l, r) on $C_c^{\infty}(G, R)$ to a $(G \times G)$ -action on $H_R(G)$.

(iv) For each $W \in \operatorname{Rep}_R(G)$, we have the map $\eta_W : H_R(G) \longrightarrow \operatorname{End}_{RG}(W)^{\infty}$ which associates each $T \in H_R(G)$ to its action on W: $\eta_W(T)w = \int_{g \in G} gw \, dT(g)$ for $w \in W$ (§ 4.5). With the $(G \times G)$ -actions on $H_R(G)$ and on $\operatorname{End}_{RG}(W)^{\infty}$ as in (i) and (iii), the map η_W is an $R[G \times G]$ -module homomorphism. (Indeed, one uses the bi-invariance of μ to show that $\eta_W \circ \mu$ is an $R[G \times G]$ -module homomorphism.)

With this setup, a Haar measure μ of G over R is called a **formal degree of** V if the following diagram in $\operatorname{Rep}_R(G \times G)$ is commutative:

(8.3.1)
$$V \otimes_R \widetilde{V} \xrightarrow{\gamma} C_c^{\infty}(G, R)$$
$$a \downarrow \wr \qquad \downarrow \mu$$
$$\operatorname{End}_{RG}(V)^{\infty} \xleftarrow{\eta_V} H_R(G)$$

Once a formal degree of V exists, it is unique because all Haar measures of G are proportional (Lemma 3.4). We shall see in § 8.6 that in the case of compact G, the formal degree is a generalization of the usual degree of a representation.

8.4. Theorem. Setup as in § 8.3. If $R = \mathbb{C}$ and G is countable at infinity, then V admits a unique formal degree.

More generally, we have the following result (a corollary of [V, I.7.9]): with the setup in § 8.3, if R is an algebraically closed field, then V admits a formal degree if and only if V is projective in $\operatorname{Rep}_R(G)$ and \widetilde{V} is irreducible in $\operatorname{Rep}_R(G)$.

Proof of Theorem 8.4. (Compare [S, 1.6] and [BZ, 2.42].)

(1) Choose an arbitrary measure μ of G on R, and consider the map

$$a^{-1} \circ \eta_V \circ \mu \circ \gamma : V \otimes_{\mathbb{C}} \widetilde{V} \longrightarrow V \otimes_{\mathbb{C}} \widetilde{V},$$

which is a $\mathbb{C}[G \times G]$ -module homomorphism. As V is irreducible and admissible in $\operatorname{Rep}_{\mathbb{C}}(G)$, the representation $V \otimes_{\mathbb{C}} \widetilde{V}$ is irreducible and admissible in $\operatorname{Rep}_{\mathbb{C}}(G \times G)$ (§ 6.4, and [BZ, 2.16]), so Schur's lemma (§ 6.3) tell us that

$$a^{-1} \circ \eta_V \circ \mu \circ \gamma = d \cdot \mathrm{id}_{V \otimes_{\mathbb{C}} \widetilde{V}}$$

for some constant $d \in \mathbb{C}$. If we can show that $d \neq 0$, then $\mu_V := d^{-1}\mu$ will fulfill the relation $a^{-1} \circ \eta_V \circ \mu_V \circ \gamma = \operatorname{id}_{V \otimes_{\mathbb{C}} \widetilde{V}}$ and will hence be the formal degree of V.

(2) Upon considering the map $\gamma_{\mu} = \mu \circ \gamma : V \otimes_{\mathbb{C}} \widetilde{V} \longrightarrow H_{\mathbb{C}}(G)$, for each irreducible $W \in \operatorname{Rep}_{\mathbb{C}}(G)$ not isomorphic to V, we claim that $\eta_W(\gamma_{\mu}(\sigma)) = 0$ for all $\sigma \in V \otimes_{\mathbb{C}} \widetilde{V}$, or equivalently $\eta_W(\gamma_{\mu}(V \otimes_{\mathbb{C}} \widetilde{V})) = \{0\} \subset \operatorname{End}_{\mathbb{C}G}(W)$. Indeed, if we regard $V \otimes_{\mathbb{C}} \widetilde{V}$ as a smooth $\mathbb{C}G$ -module where G only acts on V, then for each $w \in W$, the map

$$V \otimes_{\mathbb{C}} V \longrightarrow W, \quad \sigma \longmapsto \gamma_{\mu}(\sigma)w,$$

is a $\mathbb{C}G$ -module homomorphism, so its image (in W) is a direct sum of V (by the irreducibility of V) and hence must be zero because $W \not\simeq V$. We then deduce that $\gamma_{\mu}(V \otimes_{\mathbb{C}} \widetilde{V})w = \{0\} \subset W$ for each $w \in W$, whence $\gamma_{\mu}(V \otimes_{\mathbb{C}} \widetilde{V}) = \{0\} \subset \operatorname{End}_{\mathbb{C}G}(W)$.

(3) Now we return to show that $d \neq 0$. By § 8.3(ii), γ is not a zero map, so there is a $\sigma \in V \otimes_{\mathbb{C}} \widetilde{V}$ such that $\gamma(\sigma) \neq 0$ and hence $\gamma_{\mu}(\sigma) \neq 0$; by § 6.5, there is an irreducible $W \in \operatorname{Rep}_{\mathbb{C}}(G)$ such that $\eta_W(\gamma_{\mu}(\sigma)) \neq 0$, so by (2) we know that W must be isomorphic to V, so $\eta_V(\gamma_{\mu}(\sigma)) \neq 0$. It follows that $d \cdot \sigma = a^{-1}(\eta_V(\gamma_{\mu}(\sigma))) \neq 0$, whence $d \neq 0$. \Box

8.5. Theorem. Suppose G is unimodular over \mathbb{C} and is countable at infinity. Let $\operatorname{Irr}_{\mathbb{C}}(G)_{\operatorname{cpt}}$ be the set of isomorphism classes of compact irreducible representations in $\operatorname{Rep}_{\mathbb{C}}(G)$. Then: (below, the maps η_W are as in § 8.3(iv))

(a) For each $V \in \operatorname{Irr}_{\mathbb{C}}(G)_{\operatorname{cpt}}$ and each $K \in \Omega(G)$, there exists a unique idempotent $e_K^V \in H_{\mathbb{C}}(G)$ such that $\eta_V(e_K^V) = \eta_V(e_K)$ and $\eta_W(e_K^V) = 0$ for every $W \in \operatorname{Irr}_{\mathbb{C}}(G)$ different from V. For every $K, K' \in \Omega(G)$ with $K' \subset K$, we have

$$e_{K'}^{V}e_{K}^{V} = e_{K}^{V}e_{K'}^{V} = e_{K'}^{V}e_{K} = e_{K}e_{K'}^{V} = e_{K}^{V}$$

(b) For every $V \in \operatorname{Irr}_{\mathbb{C}}(G)_{\operatorname{cpt}}$, each $E \in \operatorname{Rep}_{\mathbb{C}}(G)$ decomposes into a direct sum $E = E_V \oplus E'_V$, where E_V is isomorphic to a direct sum of V, and E'_V has no subquotients isomorphic to V.

(c) Let $E \in \operatorname{Rep}_{\mathbb{C}}(G)$, and let E_{cpt} be the submodule of E generated by E_V for all $V \in \operatorname{Irr}_{\mathbb{C}}(G)_{\operatorname{cpt}}$. Then E_{cpt} is completely reducible and compact, and E/E_{cpt} has no nonzero compact subquotients.

Proof of Theorem 8.5. (Compare [BZ, 2.42-2.44].) It suffices to prove (a) and (b).

(a) Let $V \in \operatorname{Irr}_{\mathbb{C}}(G)_{\operatorname{cpt}}$ and $K \in \Omega(G)$. The uniqueness of e_K^V follows from § 6.5, and we now construct e_K^V . By Theorem 8.4 we know that V has a unique formal degree μ_V ; using the proof of Theorem 8.4, one can show that e_K^V is given by

$$e_K^V = (\gamma \circ a^{-1} \circ \eta_V)(e_K)\mu_V$$

for each $K \in \Omega(G)$. The desired relations concerning $K, K' \in \Omega(G)$ follows from the uniqueness of e_K^V and Lemma 4.4.

(b) For each $f \in E$, the smoothness of E shows that $f \in E^K$ for some $K \in \Omega(G)$, so that $e_K f = f$ (Lemma 4.6); we then set $f_V = e_K^V f$, and by (a) we know that f_V is independent of choices of K; then $E_V := \{f_V : f \in E\}$ and $E'_V := \{f - f_V : f \in E\}$ will have the desired properties. \Box

8.6. Suppose that G is compact (so G is unimodular over \mathbb{C} by § 3.8, and G is countable at infinity), and let $V \in \operatorname{Irr}_{\mathbb{C}}(G)$ (so V is necessarily compact).

We choose any $0 \neq v \in V$; as V is smooth, $v \in V^K$ for some $K \in \Omega(G)$; upon shrinking K when necessary, we may suppose furthermore that K is normal in G. The space V^K thus obtained is a nonzero sub- $\mathbb{C}G$ -module of V, so that $V = V^K = e_K V$ by the irreducibility of V and by Lemma 4.6, and in particular we have $\eta_V(e_K) = \mathrm{id}_V$.

By Theorem 8.5(a), there exists a unique idempotent $e_K^V \in H_{\mathbb{C}}(G)$ such that $\eta_V(e_K^V) = \operatorname{id}_V$ and $\eta_W(e_K^V) = 0$ for all $V \neq W \in \operatorname{Irr}_{\mathbb{C}}(G)$; moreover, by the proof of that theorem, the idempotent e_K^V is given by $e_K^V = (\gamma \circ a^{-1} \circ \eta_V)(e_K)\mu_V$; if we observe that $(\gamma \circ a^{-1})(A)(g) = \operatorname{trace}(g^{-1}A|V)$ for all $A \in \operatorname{End}_{\mathbb{C}G}(V)^{\infty}$ and all $g \in G$, then we can deduce that $e_K^V = \operatorname{trace}(g^{-1}|V)\mu_V(g)$.

On the other hand, in view of § 7(c), the idempotent $e_V = (\deg V) \operatorname{trace}(g^{-1}|V) \mu_G(g)$ (with $\mu_G(G) = 1$) also satisfies $\eta_V(e_V) = \operatorname{id}_V$ and $\eta_W(e_V) = 0$ for all $V \neq W \in \operatorname{Irr}_{\mathbb{C}}(G)$, so by the uniqueness of e_K^V we must have $e_K^V = e_V$, whence the relation

$$\mu_V = (\deg V)\mu_{G_2}$$

which links the formal degree of V and the degree of V.

Acknowledgements. The preliminary version of this note was used in a seminar talk on March 14th, 2023 in the Institute of Mathematics, Academia Sinica, and I thank Cheng-Chiang, Wille, Kazuki, Harrison and all the other participants in that talk for their enlightening comments, which led to an improvement of this note.

References

- [BZ] I. N. Bernshtein and A. V. Zelevinskii, Representations of the group GL(n, F), where F is a non-Archimedean local field, Russian Math. Surveys 31:3 (1976)
- [R] D. Renard, Représentations des groupes réductifs p-adiques, Cours Spécialisés n° 17, Soc. Math. de France (2010). Also available online at https://perso.pages. math.cnrs.fr/users/david.renard/recherche.html
- [S] V. Sécherre, The Bernstein decomposition for smooth complex representations of GL(n, F) (2013). Available online at https://lmv.math.cnrs.fr/laboratoire/ annuaire/membres-du-laboratoire/vincent-secherre/
- [V] M.-F. Vignéras, Représentations ℓ -modulaires d'un groupe réductif *p*-adique avec $\ell \neq p$, Birkhäuser (1996)
- [We] A. Weil, *Basic Number Theory*, reprint of the 1974 edition, Springer-Verlag (1995)
- [Ws] P. R. Wesolek, An introduction to totally disconnected locally compact groups (2019). Available online at https://zerodimensional.group/reading_group/ 190227_michal_ferov.pdf